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GO YAMASHITA

Abstract. We give a survey of S. Mochizuki’s ingenious inter-universal Teichmüller theory
and its consequences to Diophantine inequality. We explain the details as in self-contained
manner as possible.
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0. Introduction.

The author hears the following two stories: Once Grothendieck said that there were two ways
of cracking a nutshell. One way was to crack it in one breath by using a nutcracker. Another
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way was to soak it in a large amount of water, to soak, to soak, and to soak, then it cracked by
itself. Grothendieck’s mathematics is the latter one.
Another story is that once a mathematician asked an expert of étale cohomology what was

the point in the proof of the rationality of the congruent zeta functions via `-adic method
(not p-adic method). The expert meditated that Lefschetz trace formula was proved by using
the proper base change theorem, the smooth base change theorem, and by checking many
commutative diagrams, and that the proper base change theorem or the smooth base change
theorem themselves are not the point of the proof, and each commutative diagram is not the
point of the proof either. Finally, the expert was not able to point out what was the point
of the proof. If we could add some words, the point of the proof seems that establishing the
framework (i.e., scheme theory, and étale cohomology theory) in which already known Lefschetz
trace formula in the mathematical area of topology can be formulated and work even over fields
of positive characteristic.
S. Mochizuki’s proof of abc conjecture is something like that. After learning the prelimi-

nary papers (especially [AbsTopIII], [EtTh]), all constructions in the series papers [IUTchI],
[IUTchII], [IUTchIII], [IUTchIV] of inter-universal Teichmüller theory are trivial (However, the
way to combine them is very delicate (e.g., Remark 9.6.2, and Remark 12.8.1) and the way of
combinations is non-trivial). After piling up many trivial constructions after hundred pages,
then eventually a highly non-trivial consequence (i.e., Diophantine inequality) follows by itself!
The point of the proof seems that establishing the framework in which a deformation of a num-
ber field via “underlying analytic structure” works, by going out from the scheme theory to
inter-universal theory (See also Remark 1.15.3).
If we add some words, the constructions even in the preliminary papers [AbsTopIII], [EtTh],

etc. are also piling-ups of not so difficult constructions, however, finding some ideas e.g., finding
that the “hidden endomorphisms” are useful for absolute anabelian geometry (See Section 3.2)
or the insights on mathematical phenomena, e.g., arithmetically holomorphic structure and
mono-analytic structure (See Section 3.5), étale-like object and Frobenius-like object (See Sec-
tion 4.3), and multiradiality and uniradiality (See Section 11.1), are non-trivial. In some sense,
it seems to the author that the only non-trivial thing is just the classical result [pGC] in the last
century, if we put the delicate combinations etc. aside. For more introductions, see Appendix A,
and the beginning of Section 13.
The following is a consequence of inter-universal Teichmüller theory:

Theorem 0.1. (Vojta’s conjecture [Voj] for curves, proved by S. Mochizuki [IUTchI], [IUTchII],
[IUTchIII], [IUTchIV, Corollary 2.3]) Let X be a proper smooth geometrically connected curve
over a number field, D ⊂ X a reduced divisor, UX := X \D. Write ωX for the canonical sheaf
on X. Suppose that UX is a hyperbolic curve, i.e., deg(ωX(D)) > 0. For any d ∈ Z>0 and
ε ∈ R>0, we have

htωX(D) . (1 + ε)(log-diffX + log-condD)

on UX(Q)≤d.

For the notation in the above, see Section 1.

Corollary 0.2. (abc conjecture of Masser and Oesterlé [Mass1], [Oes]) For any ε ∈ R>0, we
have

max{|a|, |b|, |c|} ≤

∏
p|abc

p

1+ε

for all but finitely many coprime a, b, c ∈ Z with a+ b = c.

Proof. We apply Theorem 0.1 for X = P1
Q ⊃ D = {0, 1,∞}, and d = 1. We have ωP1(D) =

OP1(1), log-diffP1(−a/b) = 0, log-cond{0,1,∞}(−a/b) =
∑

p|a,b,a+b log p, and htOP1 (1)
(−a/b) =
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logmax{|a|, |b|} ≈ logmax{|a|, |b|, |a+b|} for a, b ∈ Z with b 6= 0, since |a+b| ≤ 2max{|a|, |b|}.
For any ε ∈ R>0, we take ε > ε′ > 0. According to Theorem 0.1, there exists C ∈ R such that
logmax{|a|, |b|, |c|} ≤ (1 + ε′)

∑
p|abc log p+C for any a, b, c ∈ Z with a+ b = c. There are only

finitely many triples a, b, c ∈ Z with a + b = c such that logmax{|a|, |b|, |c|} ≤ 1+ε
ε−ε′C. Thus,

we have logmax{|a|, |b|, |c|} ≤ (1 + ε′)
∑

p|abc log p +
ε−ε′
1+ε

logmax{|a|, |b|, |c|} for all but finitely
many triples a, b, c ∈ Z with a+ b = c. This gives us the corollary. �

0.1. Un Fil d’Ariane. By combining a relative anabelian result (relative Grothendieck Con-
jecture over sub-p-adic fields (Theorem B.1)) and “hidden endomorphism” diagram (EllCusp)
(resp. “hidden endomorphism” diagram (BelyiCusp)), we show absolute anabelian results: the
elliptic cuspidalisation (Theorem 3.7) (resp. Belyi cuspidalisation (Theorem 3.8)). By using
Belyi cuspidalisations, we obtain an absolute mono-anabelian reconstruction of the NF-portion
of the base field and the function field (resp. the base field) of hyperbolic curves of strictly Belyi
type over sub-p-adic fields (Theorem 3.17) (resp. over mixed characteristic local fields (Corol-
lary 3.19)). This gives us the philosophy of arithmetical holomorphicity and mono-analyticity
(Section 3.5), and the theory of Kummer isomorphism from Frobenius-like objects to étale-like
objects (cf.Remark 3.19.2).
The theory of Aut-holomorphic (orbi)spaces and reconstruction algorithms (Section 4) are

Archimedean analogue of the above absolute mono-anabelian reconstruction (Here, technique
of elliptic cusupidalisation is used again), however, the Archimedean theory is not so important.
In the theory of étale theta functions, by using elliptic cuspidalisation, we show the con-

stant multiple rigidity of mono-theta environment (Theorem 7.23 (3)). By using the quadratic
structure of Heisenberg group, we show the cyclotomic rigidity of mono-theta environment
(Theorem 7.23 (1)). By using the “less-than-or-equal-to-quadratic” structure of Heisenberg
group, (and by excluding the algebraic sections in the definition of mono-theta environments
unlike bi-theta environments), we show the discrete rigidity of mono-theta environment (The-
orem 7.23 (2)).
By the theory of Frobenioids (Section 8), we can construct Θ-links and log-links (Defini-

tion 10.8, Corollary 11.24 (3), Definition 13.9 (2), Definition 12.1 (1), (2), and Definition 12.3).
(The main theorems of the theory of Frobenioids are category theoretic reconstructions, how-
ever, these are not so important (cf. [IUTchI, Remark 3.2.1 (ii)]).)

By using the fact Q>0 ∩ Ẑ× = {1}, we can show another cyclotomic rigidity (Defini-
tion 9.6). The cyclotomic rigidity of mono-theta environment (resp. the cyclotomic rigid-

ity via Q>0 ∩ Ẑ× = {1}) makes the Kummer theory for mono-theta environments (resp. for
κ-coric functions) available in a multiradial manner (Proposition 11.4, Theorem 12.7, Corol-
lary 12.8) (unlike the cyclotomic rigidity via the local class field theory). By the Kummer
theory for mono-theta environments (resp. for κ-coric functions), we perform the Hodge-
Arakelov theoretic evaluation (resp. NF-counterpart of the Hodge-Arakelov theoretic evalu-
ation) and construct Gaussian monoids in Section 11.2. Here, we use a result of semi-graphs
of anabelioids (“profinite conjugate vs tempered conjugate” Theorem 6.11) to perform the
Hodge-Arakelov theoretic evaluation at bad primes. Via mono-theta environments, we can
transport the group theoretic Hodge-Arakelov evaluations and Gaussian monoids to Frobenioid
theoreteic ones (Corollary 11.17) by using the reconstruction of mono-theta environments from
a topological group (Corollary 7.22 (2) “Π 7→ M”) and from a tempered-Frobenioid (Theo-
rem 8.14 “F 7→ M”) (together with the discrete rigidity of mono-theta environments). In the
Hodge-Arakelov theoretic evaluation (resp. the NF-counterpart of the Hodge-Arakelov theo-
retic evaluation), we use Fo±

i -symmetry (resp. F>
i -symmetry) in Hodge theatre (Section 10.5

(resp. Section 10.4)), to synchronise the cojugate indeterminacies (Corollary 11.16). By the
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synchronisation of conjugate indeterminacies, we can construct horizontally coric objects via
“good (weighted) diagonals”.
By combining the Gaussian monoids and log-links, we obtain LGP-monoids (Proposition 13.6),

by using the compatibility of the cyclotomic rigidity of mono-theta environments with the profi-
nite topology, and the isomorphism class compatibility of mono-theta environments. By using
the constant multiple rigidity of mono-theta environments, we obtain the crucial canonical
splittings of theta monoids and LGP-monoids (Proposition 11.7, Proposition 13.6). By com-
bining the log-links, the log-shells (Section 5), and the Kummer isomorphisms from Frobenius-
like objects to étale-like objects, we obtain the log-Kummer correspondence for theta values
and NF’s (Proposition 13.7 and Proposition 13.11). The canonical splittings give us the non-
interference properties of log-Kummer correspondence for the value group portion, and the
fact F×mod ∩

∏
v≤∞Ov = µ(F×mod) give us the non-interference properties of log-Kummer corre-

spondence for the NF-portion (cf. the table before Corollary 13.13). The cyclotomic rigidity

of mono-theta environments and the cyclotomic rigidity via Q>0 ∩ Ẑ× = {1} also give us the
compatibility of log-Kummer correspondence with Θ-link in the value group portion and in the
NF-portion respectively (cf. the table before Corollary 13.13). After forgetting arithmetically
holomorphic structures and going to the underlying mono-analytic structures, and admitting
three kinds of mild indeterminacies, the non-interefence properties of log-Kummer correspon-
dences make the final algorithm multiradial (Theorem 13.12). We use the unit portion of the
final algorithm for the mono-analytic containers (log-shells), the value group portion for con-
structing Θ-pilot objects (Definition 13.9), and the NF-portion for converting �-line bundles
to �-line bundles vice versa (cf.Section 9.3). We cannot transport the labels (which depends
on arithmetically holomorphic structure) from one side of a theta link to another side of theta
link, however, by using processions, we can reduce the indeterminacy arising from forgetting
the labels (cf.Remark 13.1.1). The multiradiality of the final algorithm with the compabitility
with Θ-link of log-Kummer correspondence (and the compatibility of the reconstructed log-
volumes (Section 5) with log-links) gives us a upper bound of height function. The fact that
the coefficient of the upper bound is given by (1 + ε) comes from the calculation observed in
Hodge-Arakelov theory (Remark 1.15.3).
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The above dependences are rough (or conceptual) relations. For example, we use some portions
of §7 and §9 in the constructions in §10, however, conceptually, §7 and §9 are mainly used in
§11, and so on.
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0.2. Notation.
General Notation:
For a finite set A, let #A denote the cardinality of A. For a group G and a subgroup H ⊂ G
of finite index, we write [G : H] for #(G/H). For a finite extension K ⊃ F of fields, we also
write [K : F ] for the extension degree dimF K (There will be no confusions on the notations
[G : H] and [K : F ]). For a function f on a set X and a subset Y ⊂ X, we write f |Y for the
restriction of f on Y . We write π for the mathematical constant pi (i.e., π = 3.14159 · · · ).
In this paper, we call finite extensions ofQ number fields (i.e., we exclude infinite extensions

in this convention), and we call finite extensions of Qp for some p mixed characteristic (or
non-Archimedean) local fields. We use the abbreviations NF for number field, MLF for
mixed-characteristic local field, and CAF for complex Archimedean field, i.e., a topological
field isomorphic to C.
For a prime number l > 2, we put F>

l := F×l /{±1}, F
o±
l := Fl o {±1}, where {±1} acts

on Fl by the multiplication, and |Fl| := Fl/{±1} = F>
l

∐
{0}. Put also l> := l−1

2
= #F>

l and

l± := l> + 1 = l+1
2

= #|Fl|.

Categories:
For a category C and a filtered ordered set I 6= ∅, let pro-CI(= pro-C) denote the category of
the pro-objects of C indexed by I, i.e., the objects are ((Ai)i∈I , (fi,j)i<j∈I)(= (Ai)i∈I), where Ai
is an object in C, and fi,j is a morphism Aj → Ai satisfying fi,jfj,k = fi,k for any i < j < k ∈ I,
and the morphisms are Hompro-C((Ai)i∈I , (Bj)j∈I) := lim←−j lim−→i

HomC(Ai, Bj). We also consider

an object in C as an object in pro-C by setting every transition morphism to be identity (In
this case, we have Hompro-C((Ai)i∈I , B) = lim−→i

HomC(Ai, B)).

For a category C, let C0 denote the full subcategory of the connected objects, i.e., the
non-initial objects which are not isomorphic to the coproduct of two non-initial objects of
C. We write C> (resp. C⊥) for the category obtained by taking formal (possibly empty) count-
able (resp. finite) coproducts of objects in C, i.e., we define HomC> (resp. C⊥)(

∐
iAi,

∐
j Bj) :=∏

i

∐
j HomC(Ai, Bj) (cf. [SemiAnbd, §0]).

Let C1, C2 be categories. We say that two isomorphism classes of functors f : C1 → C2,
f ′ : C ′1 → C ′2 are abstractly equivalent if there are isomorphisms α1 : C1

∼→ C ′1, α2 : C2
∼→ C ′2

1The author hears that a mathematician (I. F.), who pretends to understand inter-universal Teichmüller
theory, suggests in a literature that the author began to study inter-universal Teichmüller theory “by his
encouragement”. But, this differs from the fact that the author began it by his own will. The same person,
in other context as well, modified the author’s email with quotation symbol “>” and fabricated an email,
seemingly with ill-intention, as though the author had written it. The author would like to record these facts
here for avoiding misunderstandings or misdirections, arising from these kinds of cheats, of the comtemporary
and future people.
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such that f ′ ◦ α1 = α2 ◦ f .

Let C be a category. A poly-morphism A → B for A,B ∈ Ob(C) is a collection of
morphisms A→ B in C. If all of them are isomorphisms, then we call it a poly-isomorphism.
If A = B, then a poly-isomorphism is called a poly-automorphism. We call the set of all
isomorphisms from A to B the full poly-isomorphism. For poly-morphisms {fi : A→ B}i∈I
and {gj : B → C}j∈J , the composite of them is defined as {gj ◦ fi : A → C}(i,j)∈I×J . A
poly-action is an action via poly-automorphisms.
Let C be a category. We call a finite collection {Aj}j∈J of objects of C a capsule of ob-

jects of C. We also call {Aj}j∈J a #J-capsule. A morphism {Aj}j∈J → {A′j′}j′∈J ′ of
capsules of objects of C consists of an injection ι : J ↪→ J ′ and a morphism Aj → A′ι(j)
in C for each j ∈ J (Hence, the capsules of objects of C and the morphisms among them
form a category). A capsule-full poly-morphism {Aj}j∈J → {A′j′}j′∈J ′ is a poly-morphism{
{fj : Aj

∼→ A′ι(j)}j∈J
}

(fj)j∈J∈
∏

j∈J IsomC(Aj ,A′
ι(j)

)
(=
∏

j∈J IsomC(Aj, A
′
ι(j))) in the category of the

capsules of objects of C, associated with a fixed injection ι : J ↪→ J ′. If the fixed ι is a bijection,
then we call a capsule-full poly-morphism a capsule-full poly-isomorphism.

Number Field and Local Field:
For a number field F , let V(F ) denote the set of equivalence classes of valuations of F , and
V(F )arc ⊂ V(F ) (resp. V(F )non ⊂ V(F )) the subset of Archimedean (resp. non-Archimedean)
ones. For number fields F ⊂ L and v ∈ V(F ), put V(L)v := V(L) ×V(F ) {v}(⊂ V(L)), where
V(L) � V(F ) is the natural surjection. For v ∈ V(F ), let Fv denote the completion of F
with respect to v. We write pv for the characteristic of the residue field (resp. e, that is,
e = 2.71828 · · · ) for v ∈ V(F )non (resp. v ∈ V(F )arc). We also write mv for the maximal ideal,
and ordv for the valuation normalised by ordv(pv) = 1 for v ∈ V(F )non. We also normalise
v ∈ V(F )non by v(uniformiser) = 1 (Thus v is ordv times the ramification index of Fv over Qv).
If there is no confusion on the valuation, we write ord for ordv.
For a non-Archimedean (resp. complex Archimedean) local field k, let Ok be the valuation

ring (resp. the subset of elements of absolute value ≤ 1) of k, O×k ⊂ Ok the subgroup of units
(resp. the subgroup of units i.e., elements of absolute value equal to 1), and O�

k := Ok\{0} ⊂ Ok

the multiplicative topological monoid of non-zero elements. Let mk denote the maximal ideal
of Ok for a non-Archimedean local field k.
For a non-Archimedean local field K with residue field k, and an algebraic closure k of k,

we write FrobK ∈ Gal(k/k) or Frobk ∈ Gal(k/k) for the (arithmetic) Frobenius element i.e.,
the map k 3 x 7→ x#k ∈ k (Note that “Frobenius element”, FrobK , or Frobk do not mean the
geometric Frobenius i.e., the map k 3 x 7→ x1/#k ∈ k in this survey).

Topological Groups and Topological Monoids:
For a Hausdorff topological group G, let (G→)Gab denote the abelianisation of G as Hausdorff
topological groups, and let Gtors (⊂ G) denote the subgroup of the torsion elements in G.
For a commutative topological monoid M , let (M →)Mgp denote the groupification of M ,

i.e., the coequaliser of the diagonal homomorphismM →M×M and the zero-homomorphism,
let Mtors, M

×(⊂M) denote the subgroup of torsion elements of M , the subgroup of invertible
elements of M , respectively, and let (M →)Mpf denote the perfection of M , i.e., the inductive
limit lim−→n∈N≥1

M , where the index set N≥1 is equipped with an order by the divisibility, and

the transition map from M at n to M at m is multiplication by m/n.
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For a Hausdorff topological group G, and a closed subgroup H ⊂ G, we write

ZG(H) := {g ∈ G | gh = hg, ∀h ∈ H} ,
⊂ NG(H) :=

{
g ∈ G | gHg−1 = H

}
, and

⊂ CG(H) :=
{
g ∈ G | gHg−1 ∩H has finite index in H, gHg−1

}
,

for the centraliser, the normaliser, and the commensurator of H in G, respectively (Note that
ZG(H) and NG(H) are always closed in G, however, CG(H) is not necessarily closed in G. See
[AbsAnab, Section 0], [Anbd, Section 0]). If H = NG(H) (resp. H = CG(H)), we call H
normally terminal (resp. commensurably terminal) in G (thus, if H is commensurably
terminal in G, then H is normally terminal in G).
For a locally compact Hausdorff topological group G, let Inn(G)(⊂ Aut(G)) denote the group

of inner automorphisms of G, and put Out(G) := Aut(G)/Inn(G), where we equip Aut(G)
with the open compact topology, and Inn(G), Out(G) with the topology induced from it. We
call Out(G) the group of outer automorphisms of G. Let G be a locally compact Hausdorff
topological group with ZG(G) = {1}. Then G → Inn(G)(⊂ Aut(G)) is injective, and we have
an exact sequence 1 → G → Aut(G) → Out(G) → 1. For a homomorphism f : H → Out(G)

of topological groups, let G
out
o H � H denote the pull-back of Aut(G)� Out(G) with respect

to f :

1 // G // Aut(G) // Out(G) // 1

1 // G //

=

OO

G
out
o H //

OO

H //

f

OO

1.

We call G
out
o H the outer semi-direct product of H with G with respect to f (Note that it

is not a semi-direct product).

Algebraic Geometry:
We put UP1 := P1 \ {0, 1,∞}. We call it a tripod. We writeMell ⊂ Mell for the fine moduli
stack of elliptic curves and its canonical compactification.
If X is a generically scheme-like algebraic stack over a field k which has a finite étale Galois

covering Y → X, where Y is a hyperbolic curve over a finite extension of k, then we call X a
hyperbolic orbicurve over k ([AbsTopI, §0]).

Others:
For an object A in a category, we call an object isomorphic to A an isomorph of A.

For a field K and a separable closure K of K, we put µẐ(K) := Hom(Q/Z, K×), and

µQ/Z(K) := µẐ(K) ⊗Ẑ Q/Z. Note that Gal(K/K) naturally acts on both. We call µẐ(K),

µQ/Z(K), µZl
(K) := µẐ(K)⊗Ẑ Zl for some prime number l, or µZ/nZ(K) := µẐ(K)⊗Ẑ Z/nZ for

some n the cyclotomes of K. We call an isomorph of one of the above cyclotomes of K as a
topological abelian group with Gal(K/K)-action a cyclotome. We write χcyc = χcyc,K (resp.
χcyc,l = χcyc,l,K) for the (full) cyclotomic character (resp. the l-adic cyclotomic character) of
Gal(K/K) (i.e., the character determined by the action of Gal(K/K) on µẐ(K) (resp. µZl

(K))).

1. Reduction Steps in General Arithmetic Geometry.

In this section, by arguments in a general arithmetic geometry, we reduce Theorem 0.1
to certain inequality −| log(q)| ≤ −| log(Θ)|, which will be finally proved by using the main

theorem of multiradial algorithm in Section 13.
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1.1. Notation around Height Functions. Take an algebraic closure Q of Q. Let X be a
normal, Z-proper, and Z-flat scheme. For d ∈ Z≥1, we writeX(Q) ⊃ X(Q)≤d :=

∪
[F :Q]≤dX(F ).

We write Xarc for the complex analytic space determined by X(C). An arithmetic line
bundle on X is a pair L = (L, || · ||L), where L is a line bundle on X and || · ||L is a hermitian
metric on the line bundle Larc determined by L on Xarc which is compatible with complex
conjugate on Xarc. A morphism of arithmetic line bundles L1 → L2 is a morphism of line
bundles L1 → L2 such that locally on Xarc sections with || · ||L1 ≤ 1 map to sections with
|| · ||L2 ≤ 1. We define the set of global sections Γ(L) to Hom(OX ,L), where OX is the
arithmetic line bundle on X determined by the trivial line bundle with trivial hermitian metric.
Let APic(X) denote the set of isomorphism classes of arithmetic line bundles on X, which is
endowed with a group structure by the tensor product of arithmetic line bundles. We have a
pull-back map f ∗ : APic(Y )→ APic(X) for a morphism f : X → Y of normal Z-proper Z-flat
schemes.
Let F be a number field. An arithmetic divisor (resp. Q-arithmetic divisor, R-arithmetic

divisor) on F is a finite formal sum a =
∑

v∈V(F ) cvv, where cv ∈ Z (resp. cv ∈ Q, cv ∈ R)
for v ∈ V(F )non and cv ∈ R for v ∈ V(F )arc. We call Supp(a) := {v ∈ V(F ) | cv 6= 0}
the support of a, and a effective if cv ≥ 0 for all v ∈ V(F ). We write ADiv(F ) (resp.
ADivQ(F ), ADivR(F )) for the group of arithmetic divisors (resp. Q-arithmetic divisor, R-
arithmetic divisor) on F . A principal arithmetic divisor is an arithmetic divisor of the form∑

v∈V(F )non v(f)v −
∑

v∈V(F )arc [Fv : R] log(|f |v)v for some f ∈ F×. We have a natural isomor-

phism of groups ADiv(F )/(principal ones) ∼= APic(SpecOF ) sending
∑

v∈V(F ) cvv to the line

bundle determined by the projective OF -moduleM = (
∏

v∈V(F )non m
cv
v )
−1OF of rank 1 equipped

with the hermitian metric onM⊗ZC =
∏

v∈V(F )arc Fv⊗RC determined by
∏

v∈V(F )arc e
− cv

[Fv :R] | · |v,
where | · |v is the usual metric on Fv tensored by the usual metric on C. We have a (non-
normalised) degree map

degF : APic(SpecOF ) ∼= ADiv(F )/(principal divisors)→ R

sending v ∈ V(F )non (resp. v ∈ V(F )arc) to log(qv) (resp. 1). We also define (non-normalised)
degree maps degF : ADivQ(F ) → R, degF : ADivR(F ) → R by the same way. We have

1
[F :Q]

degF (L) = 1
[K:Q]

degK(L|SpecOK
) for any finite extension K ⊃ F and any arithmetic line

bundle L on SpecOF , that is, the normalised degree 1
[F :Q]

degF is independent of the choice of F .

For an arithmetic line bundle L = (L, ||·||L) on SpecOF , a section 0 6= s ∈ L gives us a non-zero
morphism OF → L, thus, an identification of L−1 with a fractional ideal as of F . Then degF (L)
can be computed by the degree degF of an arithmetic divisor

∑
v∈V(F )non v(as)v−

∑
v∈V(F )arc([Fv :

R] log ||s||v)v for any 0 6= s ∈ L, where v(as) := mina∈as v(a), and || · ||v is the v-component of
|| · ||L in the decomposition Larc ∼=

∐
v∈V(F )arc Lv over (SpecOF )

arc ∼=
∐

v∈V(F )arc Fv ⊗R C.
For an arithmetic line bundle L on X, we define the (logarithmic) height function

htL : X(Q)

=
∪

[F :Q]<∞

X(F )

→ R

associated to L by htL(x) :=
1

[F :Q]
degFx

∗
F (L) for x ∈ X(F ), where xF ∈ X(OF ) is the element

corresponding to x by X(F ) = X(OF ) (Note that X is proper over Z), and x∗F : APic(X) →
APic(SpecOF ) is the pull-back map. By definition, we have htL1⊗L2 = htL1+htL2 for arithmetic

line bundles L1, L2 ([GenEll, Proposition 1.4 (i)]). For an arithmetic line bundle (L, || · ||L)
with ample LQ, it is well-known that #{x ∈ X(Q)≤d | htL(x) ≤ C} <∞ for any d ∈ Z≥1 and
C ∈ R (See Proposition C.1).
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For functions α, β : X(Q)→ R, we write α & β (resp. α . β, α ≈ β) if there exists a constant
C ∈ R such that α(x) > β(x)+C (resp. α(x) < β(x)+C, |α(x)−β(x)| < C) for all x ∈ X(Q).
We call an equivalence class of functions relative to ≈ bounded discrepancy class. Note that
htL & 0 ([GenEll, Proposition 1.4 (ii)]) for an arithmetic line bunde L = (L, ||·||L) such that the
n-th tensor product L⊗nQ of the generic fiber LQ on XQ is generated by global sections for some
n > 0 (e.g.LQ is ample), since the Archimedean contribution is bounded on the compact space
Xarc, and the non-Archimedean contribution is ≥ 0 on the subsets Ai := {si 6= 0}(⊂ X(Q)) for
i = 1, . . . ,m, where s1, . . . , sm ∈ Γ(XQ,L⊗nQ ) generate L⊗nQ (hence, A1 ∪ · · · ∪Am = X(Q)). We

also note that the bounded discrepancy class of htL for an arithmetic line bundle L = (L, || · ||L)
depends only on the isomorphism class of the line bundle LQ on XQ ([GenEll, Proposition 1.4
(iii)]), since for L1 and L2 with (L1)Q ∼= (L2)Q we have htL1 − htL2 = htL1⊗L2⊗(−1) & 0 (by the

fact that (L1)Q⊗ (L2)
⊗(−1)
Q

∼= OXQ is generated by global sections), and htL2−htL1 & 0 as well.
When we consider the bounded discrepancy class (and if there is no confusion), we write htLQ
for htL.
For x ∈ X(F ) ⊂ X(Q) where F is the minimal field of definition of x, the different ideal of

F determines an effective arithmetic divisor dx ∈ ADiv(F ) supported in V(F )non. We define
log-different function log-diffX on X(Q) to be

X(Q) 3 x 7→ log-diffX(x) :=
1

[F : Q]
degF (dx) ∈ R.

Let D ⊂ X be an effective Cartier divisor, and put UX := X \D. For x ∈ UX(F ) ⊂ UX(Q)
where F is the minimal field of definition of x, let xF ∈ X(OF ) be the element in X(OF )
corresponding to x ∈ UX(F ) ⊂ X(F ) via X(F ) = X(OF ) (Note that X is proper over Z).
We pull-back the Cartier divisor D on X to Dx on SpecOF via xF : SpecOF → X. We
can consider Dx to be an effective arithmetic divisor on F supported in V(F )non. Then we
call fDx := (Dx)red ∈ ADiv(F ) the conductor of x, and we define log-conductor function
log-condD on UX(Q) to be

UX(Q) 3 x 7→ log-condD(x) :=
1

[F : Q]
degF (f

D
x ) ∈ R.

Note that the function log-diffX on X(Q) depends only on the scheme XQ ([GenEll, Remark
1.5.1]). The function log-condD on UX(Q) may depend only on the pair of Z-schemes (X,D),
however, the bounded discrepancy class of log-condD on UX(Q) depends only on the pair

of Q-schemes (XQ, DQ), since any isomorphism XQ
∼→ X ′Q inducing DQ

∼→ D′Q extends an
isomorphism over an open dense subset of SpecZ ([GenEll, Remark 1.5.1]).

1.2. First Reduction. In this subsection, we show that, to prove Theorem 0.1, it suffices to
show it in a special situation.
Take an algebraic closure Q of Q. We call a compact subset of a topological space compact

domain, if it is the closure of its interior. Let V ⊂ VQ := V(Q) be a finite subset which contains
Varc

Q . For each v ∈ V ∩Varc
Q (resp. v ∈ V ∩Vnon

Q ), take an isomorphism between Qv and R and

we identify Qv with R, (resp. take an algebraic closure Qv of Qv), and let ∅ 6= Kv $ Xarc (resp.

∅ 6= Kv $ X(Qv)) be a Gal(C/R)-stable compact domain (resp. a Gal(Qv/Qv)-stable subset

whose intersection with each X(K) ⊂ X(Qv) for [K : Qv] <∞ is a compact domain in X(K)).
Then we write KV ⊂ X(Q) for the subset of points x ∈ X(F ) ⊂ X(Q) where [F : Q] < ∞
such that for each v ∈ V ∩ Varc

Q (resp. v ∈ V ∩ Vnon
Q ) the set of [F : Q] points of Xarc (resp.

X(Qv)) determined by x is contained in Kv. We call a subset KV ⊂ X(Q) obtained in this way
compactly bounded subset, and V its support. Note that Kv’s and V are determined by
KV by the approximation theorem in the elementary number theory.
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Lemma 1.1. ([GenEll, Proposition 1.7 (i)]) Let f : Y → X be a generically finite morphism
of normal, Z-proper, Z-flat schemes of dimension two. Let e be a positive integer, D ⊂ X,
E ⊂ Y effective, Z-flat Cartier divisors such that the generic fibers DQ, EQ satisfy: (a) DQ, EQ
are reduced, (b) EQ = f−1Q (DQ)red, and (c) fQ restricts a finite étale morphism (UY )Q → (UX)Q,
where UX := X \D and UY := Y \ E.

(1) We have log-diffX |Y + log-condD|Y . log-diffY + log-condE.
(2) If, moreover, the condition (d) the ramification index of fQ at each point of EQ divides

e, is satisfied, then we have

log-diffY . log-diffX |Y +

(
1− 1

e

)
log-condD|Y .

Proof. There is an open dense subscheme SpecZ[1/S] ⊂ SpecZ such that the restriction of
Y → X over SpecZ[1/S] is a finite tamely ramified morphism of proper smooth families of
curves. Then, the elementary property of differents gives us the primit-to-S portion of the
equality log-diffX |Y + log-condD|Y = log-diffY + log-condE, and the primit-to-S portion of
the inequality log-diffY ≤ log-diffX |Y +

(
1− 1

e

)
log-condD|Y under the condition (d) (if the

ramification index of fQ at each point of EQ is equal to e, then the above inequality is an
equality). On the other hand, the S-portion of log-condE and log-condD|Y is ≈ 0, and the
S-portion of log-diffY − log-diffX |Y is ≥ 0. Thus, it suffices to show that the S-portion of
log-diffY − log-diffX |Y is bounded in UY (Q). Working locally, it is reduced to the following
claim: Fix a prime number p and a positive integer d. Then there exists a positive integer
n such that for any Galois extension L/K of finite extensions of Qp with [L : K] ≤ d, the
different ideal of L/K contains pnOL. We show this claim. By considering the maximal tamely
ramified subextension of L(µp)/K, it is reduced to the case where L/K is totally ramified p-
power extension and K contains µp, since in the tamely ramified case we can take n = 1. It is
also redeced to the case where [L : K] = p (since p-group is solvable). Since K ⊃ µp, we have
L = K(a1/p) for some a ∈ K by Kummer theory. Here a1/p is a p-th root of a in L.
By multiplying an element of (K×)p, we may assume that a ∈ OK and a /∈ mp

K(⊃ ppOK).
Hence, we have OL ⊃ a1/pOL ⊃ pOL. We also have an inclusion of OK-algebras OK [X]/(Xp −
a) ↪→ OL. Thus, the different ideal of L/K contains p(a1/p)p−1OL ⊃ p1+(p−1)OL. The claim,
and hence the lemma, was proved. �

Proposition 1.2. ([GenEll, Theorem 2.1]) Fix a finite set of primes Σ. To prove Theorem 0.1,
it suffices to show the following: Put UP1 := P1

Q \ {0, 1,∞}. Let KV ⊂ UP1(Q) be a compactly
bounded subset whose support contains Σ. Then, for any d ∈ Z>0 and ε ∈ R>0, we have

htωP1 ({0,1,∞}) . (1 + ε)(log-diffP1 + log-cond{0,1,∞})

on KV ∩ UP1(Q)≤d.

Proof. Take X,D, d, ε as in Theorem 0.1. For any e ∈ Z>0, there is an étale Galois covering
UY → UX such that the normalisation Y of X in UY is hyperbolic and the ramification index of
Y → X at each point in E := (D×X Y )red is equal to e (later, we will take e sufficiently large).
First, we claim that it suffices to show that for any ε′ ∈ R>0, we have htωY

. (1 + ε′)log-diffY
on UY (Q)≤d·deg(Y/X). We show the claim. Take ε′ ∈ R>0 such that (1 + ε′)2 < 1 + ε. Then, we
have

htωX(D)|Y . (1 + ε′)htωY
. (1 + ε′)2log-diffY . (1 + ε′)2(log-diffX + log-condD)|Y

< (1 + ε)(log-diffX + log-condD)|Y
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for e > deg(D)
deg(ωX(D))

(
1− 1

1+ε′

)−1
on UY (Q)d·deg(Y/X). Here, the first . holds since we have

deg(ωY ) = deg(ωY (E))− deg(E) = deg(ωY (E))

(
1− deg(E)

deg(Y/X)deg(ωX(D))

)
= deg(ωY (E))

(
1− deg(D)

e · deg(ωX(D))

)
>

1

1 + ε′
deg(ωY (E)) =

1

1 + ε′
deg(ωX(D)|Y ).

The second . is the hypothesis of the claim, the third . comes from Lemma 1.1 (2), and the
final inequality < comes from the choice of ε′ ∈ R>0. Then, the claim follows since the map
UY (Q)≤d·deg(Y/X) → UX(Q)≤d is surjective. Therefore, the claim is proved.
Thus, it suffices to show Thoerem 0.1 in the case where D = ∅. We assume that htωX

.
(1 + ε)log-diffX is false on X(Q)=d. Let V ⊂ VQ be a finite subset such that V ⊃ Σ ∪ Varc

Q .
By using the compactness of X(K) where K/Qv (v ∈ V ) is a finite extension, there exists
a subset Ξ ⊂ X(Q)=d and an unordered d-tuple of points Ξv ⊂ X(Qv) for each v ∈ V such
that htωX

. (1 + ε)log-diffX is false on Ξ, and the unordered d-tuples of Q-conjugates of
points in Ξ converge to Ξv in X(Qv) for each v ∈ V . By Theorem C.2 (the existence of non-
critical Belyi map), there exists a morphism f : X → P1 which is unramified over UP1 and
f(Ξv) ⊂ UP1(Qv) for each v ∈ V . Then, after possibly eliminating finitely many elements from
Ξ, there exists a compactly bounded subset KV ⊂ UP1(Q) such that f(Ξ) ⊂ KV , by taking the
unions of Galois-conjugates of the images via f of sufficiently small compact neighbourhoods of
the points of Ξv in X(Qv) for v ∈ V . Put X ⊃ E := f−1({0, 1,∞})red Take ε′ ∈ R>0 satisfying
1 + ε′ ≤ (1 + ε)(1− 2ε′deg(E)/deg(ωX)). Then, we have

htωX
≈ htωX(E) − htOX(E) ≈ htωP1 ({0,1,∞})|X − htOX(E)

. (1 + ε′)(log-diffP1 |X + log-cond{0,1,∞}|X)− htOX(E)

. (1 + ε′)(log-diffX + log-condE)− htOX(E)

. (1 + ε′)(log-diffX + htOX(E))− htOX(E) = (1 + ε′)log-diffX + ε′htOX(E)

. (1 + ε′)log-diffX + 2ε′(deg(E)/deg(ωX))htωX

on Ξ. Here, the second ≈ comes from that ωX(E) = ωP1({0, 1,∞})|X . The first . is the
hypothesis of the proposition. The second . comes from Lemma 1.1 (1). The third .
comes from log-condE . htOX(E) which can be proved by observing that the Archimedean
contributions are bounded on the compact space Xarc and that the non-Archimedean por-
tion holds since we take (−)red in the definition of log-condE. The fourth . comes from

that ω
⊗(2deg(E))
X ⊗ OX(−E)⊗(deg(ωX)) is ample since its degree is equal to 2deg(E)deg(ωX) −

deg(E)deg(ωX) = deg(E)deg(ωX) > 0.
By the above displayed inequality, we have (1−2ε′(deg(E)/deg(ωX)))htωX

. (1+ε′)log-diffX
on Ξ. Then we have htωX

. (1 + ε)log-diffX on Ξ by the choice of ε′ ∈ R>0. This contradicts
the hypothesis on Ξ. �

1.3. Second Reduction —Log-Volume Computations. In this subsection and the next
subsection, we further reduce Theorem 0.1 to the relation “−| log(q)| ≤ −| log(Θ)|”. The reason
why we should consider this kind of objects naturally arises from the main contents of inter-
universal Teichmüller theory, which we will treat in the later sections. It might seem to readers

that it is unnatural and bizzard to consider abruptly “φ(p
j2

2l
ord(qvj )OKvj

⊗OKvj
(⊗0≤i≤jOKvi

)∼)

for all automorphisms φ of Q ⊗
⊗

0≤i≤j
1

2pvi
logp(O

×
Kvi

) which induces an automorphism of⊗
0≤i≤j

1
2pvi

logp(O
×
Kvi

)” and so on, and that the relation −| log(q)| ≤ −| log(Θ)| is almost the

same thing as the inequality which we want to show, since the reduction in this subsection and
in the next subsection is just calculations and it contains nothing deep. However, we would like
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to firstly explain how the inequality will be shown – the final step of showing the inequality by
concrete calculations– in these subsections before explaining the general theories.

Lemma 1.3. ([IUTchIV, Proposition 1.2 (i)]) For a finite extension k of Qp, let e denote the
ramification index of k over Qp. For λ ∈ 1

e
Z, let pλOk denote the fractional ideal generated by

any element x ∈ k with ord(x) = λ. Put

a :=

{
1
e

⌈
e

p−2

⌉
p > 2,

2 p = 2,
and b :=

 log
(
p e
p−1

)
log p

− 1

e
.

Then we have
paOk ⊂ logp(O

×
k ) ⊂ p−bOk.

If p > 2 and e ≤ p− 2, then paOk = logp(O
×
k ) = p−bOk.

Proof. We have a > 1
p−1 , since for p > 2 (resp. p = 2) we have a ≥ 1

e
e

p−2 = 1
p−2 >

1
p−1 (resp.

a = 2 > 1 = 1
p−1). Then, we have p

aOk ⊂ p
1

p−1
+εOCp ∩Ok ⊂ logp(O

×
k ) for some ε > 0, since the

p-adic exponential map converges on p
1

p−1
+εOCp and x = logp(expp(x)) for any x ∈ p

1
p−1

+εOCp

for ε > 0.

On the other hand, we have pb+
1
e > e

p−1 since b + 1
e
>

log(p e
p−1

)

log p
− 1 =

log e
p−1

log p
. We note that

b + 1
e
∈ Z≥0 and that b + 1

e
≥ 1 if and only if e ≥ p− 1. We have (b + 1

e
) + 1

e
> 1

p−1 , since for

e ≥ p−1 (resp. for e < p−1) we have (b+ 1
e
)+ 1

e
> b+ 1

e
≥ 1 ≥ 1

p−1 (resp. (b+
1
e
)+ 1

e
= 1

e
> 1

p−1).

In short, we have min
{
(b+ 1

e
) + 1

e
, 1
e
pb+

1
e

}
> 1

p−1 . For b+
1
e
∈ Z≥0, we have (1+ p

1
eOCp)

pb+
1
e $

1 + p
1

p−1OCp , since ord((1 + p
1
ex)p

b+1
e − 1) ≥ min{(b + 1

e
) + 1

e
, p

b+1
e

e
} > 1

p−1 for x ∈ OCp . Then,

we obtain pb+
1
e logp(O

×
k ) ⊂ Ok ∩ logp(1 + p

1
p−1

+εOCp) ⊂ Ok ∩ p
1

p−1
+εOCp ⊂ p

1
eOk for some ε > 0,

which gives us the second inclusion. The last claim follows by the definition of a and b. �
For finite extensions k ⊃ k0 of Qp, let dk/k0 denote ord(a), where a is any generator of the

different ideal of k over k0.

Lemma 1.4. ([IUTchIV, Proposition 1.1]) Let {ki}i∈I be a finite set of finite extensions of Qp.
Put di := dki/Qp. Fix an element ∗ ∈ I and put dI∗ :=

∑
i∈I\{∗} di. Then, we have

pddI∗e(⊗i∈IOki)
∼ ⊂ ⊗i∈IOki ⊂ (⊗i∈IOki)

∼,

where (⊗i∈IOki)
∼ is the normalisation of ⊗i∈IOki (tensored over Zp).

Proof. The second inclusion is clear. It suffices to show that pbdI∗c(OQp
⊗Ok∗

⊗i∈IOki)
∼ ⊂

OQp
⊗Ok∗

⊗i∈IOki , since OQp
is faithfully flat over Ok∗ . It suffices to show that pdI∗ (OQp

⊗Ok∗

⊗i∈IOki)
∼ ⊂ OQp

⊗Ok∗
⊗i∈IOki , where p

dI∗ ∈ Qp is an element with ord(pdI∗ ) = dI∗ . By using the

induction on #I, it is reduced to the case where #I = 2. In this case, OQp
⊗Ok1

(Ok1⊗ZpOk2)
∼=

OQp
⊗Zp Ok2 , and pd2(OQp

⊗Zp Ok2)
∼ ⊂ OQp

⊗Zp Ok2 holds by the definition of the different
ideal. �
Lemma 1.5. ([IUTchIV, Proposition 1.3]) Let k ⊃ k0 be finite extensions of Qp. Let e, e0
be the ramification indices of k and k0 over Qp respectively. Let m be the integer such that
pm | [k : k0] and p

m+1 - [k : k0]. Put dk := dk/Qp and dk0 := dk0/Qp.

(1) We have dk0+1/e0 ≤ dk+1/e. If k is tamely ramified over k0, then we have dk0+1/e0 =
dk + 1/e.

(2) If k is a finite Galois extension of a tamely ramified extension of k0, then we have
dk ≤ dk0 +m+ 1/e0.
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Remark 1.5.1. Note that “log-diff + log-cond”, not “log-diff”, behaves well under field ex-
tensions (See also the proof of Lemma 1.11 below). This is one of the reasons that the term
log-cond appears in Diophantine inequalities. cf. Lemma 1.1 for the geometric case.

Proof. (1): We may replace k0 by the maximal unramified subextension in k ⊃ k0, and assume
that k/k0 is totally ramified. Choose uniformizers $0 ∈ Ok0 and $ ∈ Ok, and let f(x) ∈ Ok0 [x]
be the minimal monic polynomial of $0 over Ok0 . Then we have an Ok0-algebra isomorphism
Ok0 [x]/(f(x))

∼→ Ok sending x to $. We also have f(x) ≡ xe/e0 modulo mk0 = ($0). Then,

dk − dk0 ≥ min{ord($0), ord(
e
e0
$

e
e0
−1
))} ≥ min

{
1
e0
, 1
e

(
e
e0
− 1
)}

= 1
e

(
e
e0
− 1
)
, where the

inequalities are equalities if k/k0 is tamely ramified.
(2): We use an induction on m. For m = 0, the claim is covered by (1). We assume m > 0.

By assumuption, k is a finite Galois extension of a tamely ramified extension k1 of k0 We may
assume that [k : k1] is p-powere by replacing k1 by the maximal tamely ramified subextension
in k ⊃ k1. We have a subextension k ⊃ k2 ⊃ k1, where [k : k2] = p and [k2 : k1] = pm−1 since
p-groups are solvable. By the induction hypothesis, we have dk2 ≤ dk0 + (m − 1) + 1/e0. It
is sufficient to show that dk ≤ dk0 + m + 1/e0 + ε for all ε > 0. After enlarging k2 and k1,
we may assume that k1 ⊃ µp and (e2 ≥)e1 ≥ p/ε, where e1 and e2 are the ramification index
of k1 and k2 over Qp respectively. By Kummer theory, we have an inclusion of Ok2-algebras
Ok2 [x]/(x

p− a) ↪→ Ok for some a ∈ Ok2 , sending x to a1/p ∈ Ok. By modifying a by (O×k2)
p, we

may assume that ord(a) ≤ p−1
e2

. Then we have dk ≤ ord(f ′(a1/p)) + dk2 ≤ ord(pa(p−1)/p) + dk0 +

(m− 1) + 1/e0 ≤ p−1
p

p−1
e2

+ dk0 +m+ 1/e0 < p/e2 + dk0 +m+ 1/e0 ≤ dk0 +m+ 1/e0 + ε. We

are done. �
For a finite extension k over Qp, let µ

log
k be the (non-normalised) log-volume function

(i.e., the logarithm of the usual p-adic measure on k) defined on compact open subsets of k

valued in R such that µlog
k (Ok) = 0. Note that we have µlog(pOk) = − log#(Ok/pOk) = −[k :

Qp] log p. Let µlog
C be the (non-normalised) radial log-volume function valued in R, such

that µlog
C (Ok) = 0, defined on compact subsets of C which project to a compact domain in R via

prR : C = R×O×C → R (see Section 1.2 for the definition of compact domain) (i.e., the logarithm
of the usual absolute value log |prR(A)| on R of the projection for A ⊂ C). Note that we have

µlog(eOk) = log e = 1. The non-normalised log-volume function µlog
k is the local version of the

non-normalised degree map degF (Note that we have the summation degF =
∑

v∈V(F ) µ
log
Fv
) and

the normalised one 1
[k:Qp]

µlog
k is the local version of the normalised degree map 1

[F :Q]
degF (Note

that we have the weighted average 1
[F :Q]

degF = 1∑
v∈V(F )[Fv :QvQ ]

∑
v∈V(F )[Fv : QvQ ](

1
[Fv:QvQ ]

µlog
Fv
)

with weight {[Fv : QvQ ]}v∈V(F ), where vQ ∈ VQ is the image of v ∈ V(F ) via the natural
surjection V(F ) � VQ). For finite extensions {ki}i∈I over Qp, the normalised log-volume

functions { 1
[ki:Qp]

µlog
ki
}i∈I give us a normalised log-volume function

∑
i∈I

1
[ki:Qp]

µlog
ki

on compact

open subsets of ⊗i∈Iki (tensored over Qp) valued in R (since we have 1
[ki:Qp]

µlog
ki
(pOki) = − log p

for any i ∈ I by the normalisation), such that (
∑

i∈I
1

[ki:Qp]
µlog
ki
)(⊗i∈IOki) = 0.

Lemma 1.6. ([IUTchIV, Proposition 1.2 (ii), (iv)] and [IUTchIV, “the fact...consideration”
in the part (v) and the part (vi) of the proof in Theorem 1.10]) Let {ki}i∈I be a finite set
of finite extensions of Qp. Let ei denote the ramification index of ki over Qp. We write
ai, bi for the quantity a, b defined in Lemma 1.3 for ki. Put di := dki/Qp, aI :=

∑
i∈I ai,

bI :=
∑

i∈I bi, and dI :=
∑

i∈I di. For λ ∈ 1
ei
Z, let pλOki denote the fractional ideal generated

by any element x ∈ ki with ord(x) = λ. Let φ :
⊗

i∈I logp(O
×
ki
)
∼→
⊗

i∈I logp(O
×
ki
) (tensered

over Zp) be an automorphism of Zp-modules. We extend φ to an automorphism of the Qp-
vector spaces Qp ⊗Zp

⊗
i∈I logp(O

×
ki
) by the linearity. We consider (⊗i∈IOki)

∼ as a submodule
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of Qp⊗Zp

⊗
i∈I logp(O

×
ki
) via the natural isomorphisms Qp⊗Zp (⊗i∈IOki)

∼ ∼= Qp⊗Zp ⊗i∈IOki
∼=

Qp ⊗Zp ⊗i∈I logp(O×ki).
(1) Put I ⊃ I∗ := {i ∈ I | ei > p− 2}. For any λ ∈ 1

ei0
Z, i0 ∈ I, we have

φ
(
pλOki0

⊗Oki0
(⊗i∈IOki)

∼
)
, pbλc

⊗
i∈I

1

2p
logp(O

×
ki
)

⊂ pbλc−ddIe−daIe
⊗
i∈I

logp(O
×
ki
) ⊂ pbλc−ddIe−daIe−dbIe(⊗i∈IOki)

∼, and

(
∑
i∈I

1

[ki : Qp]
µlog
ki
)(pbλc−ddIe−daIe−dbIe(⊗i∈IOki)

∼) ≤ (−λ+ dI + 4) log(p) +
∑
i∈I∗

(3 + log(ei)).

(2) If p > 2 and ei = 1 for each i ∈ I, then we have

φ((⊗i∈IOki)
∼),

⊗
i∈I

1

2p
logp(O

×
ki
) ⊂

⊗
i∈I

logp(O
×
ki
) ⊂ (⊗i∈IOki)

∼,

and (
∑

i∈I
1

[ki:Qp]
µlog
ki
)((⊗i∈IOki)

∼) = 0.

Proof. (1): We may assume that λ = 0 to show the inclusions. We have pddIe+daIe(⊗i∈IOki)
∼ ⊂

pdaIe⊗i∈IOki ⊂
⊗

i∈I logp(O
×
ki
), where the first (resp. second) inclusion follows from Lemma 1.4

(resp. Lemma 1.3). Then we have φ
(
pddIe+daIe(⊗i∈IOki)

∼) ⊂ φ
(⊗

i∈I logp(O
×
ki
)
)
=
⊗

i∈I logp(O
×
ki
) ⊂

p−dbIe(⊗i∈IOki)
∼, where the last inclusion follows from Lemma 1.3. If p = 2, we have ddIe +

daIe ≥ aI ≥ 2#I. If p > 2, we have ai ≥ 1
ei

and di ≥ 1 − 1
ei

by Lemma 1.5 (1), hence, we

have ddIe+ daIe ≥ dI + aI ≥ #I. Thus, we obtain the remaining inclusion
⊗

i∈I
1
2p
logp(O

×
ki
) ⊂

p−ddIe−daIe
⊗

i∈I logp(O
×
ki
) for p ≥ 2.

We show the upper bound of the log-volume. We have ai − 1
ei
< 4

p
< 2

log(p)
, where the first

inequality for p > 2 (resp. p = 2) follows from ai <
1
ei
( ei
p−2 +1) = 1

p−2 +
1
ei
and 1

p−2 <
4
p
for p > 2

(resp. ai − 1
ei
= 2− 1

ei
< 2 = 4

p
), and the second inequality follows from x > 2 log x for x > 0.

We also have (bi +
1
ei
) log(p) ≤ log( pei

p−1) ≤ log(2ei) < 1 + log(ei), where the first inequality

follows from the definion of bi, the second inequality follows from p
p−1 ≤ 2 for p ≥ 2, and the

last inequality follows from log(2) < 1. Then, by combining these, we have (ai + bi) log(p) ≤
3+ log(ei). For i ∈ I \ I∗, we have ai = −bi(= 1/ei), hence, we have (ai+ bi) log(p) = 0. Then,

we obtain (
∑

i∈I
1

[ki:Qp]
µlog
ki
)(pbλc−ddIe−daIe−dbIe(⊗i∈IOki)

∼) ≤ (−(λ − 1) + (dI + 1) + (aI + 1) +

(bI + 1)) log(p) = (−λ+ dI + aI + bI + 4) log(p) ≤ (−λ+ dI + 4) log(p) +
∑

i∈I∗(3 + log(ei)).
(2) follows from (1). �

For a non-Archimedean local field k, put Ik := 1
2pvQ

logp(O
×
k ). We also put IC := π(unit ball).

We call Ik the log-shell of k, where k is a non-Archimedean local field or k = C. Let F be
a number field. Take vQ ∈ Vnon

Q . For V(F ) 3 v1, . . . , vn | vQ, put Iv1,··· ,vn := ⊗1≤i≤nIFvi
(Here,

the tensor is over Zv). Take vQ ∈ Varc
Q . For V(F ) 3 v1, . . . , vn | vQ, let Iv1,...,vn ⊂ ⊗1≤i≤nFvi

denote the image of
∏

1≤i≤n IFvi
under the natural homomorphism

∏
1≤i≤n Fvi → ⊗1≤i≤nFvi)

(Here, the tensor is over R). For a subset A ⊂ Qp ⊗Zp Iv1,··· ,vn (resp. A ⊂ Iv1,··· ,vn), we call the
holomorphic hull of A the smallest subset, which contains A, of the form ⊕i∈IaiOLi

in the
natural direct sum decomposition of the topological fields ⊗1≤i≤nFvi

∼= ⊕i∈ILi.
We define the subgroup of primitive automorphisms Aut(C)prim ⊂ Aut(C) to be the sub-

group generated by the complex conjugate and the multiplication by
√
−1 (thus, Aut(C)prim ∼=

Z/4Z o {±1}).
In the rest of this subsection, we choose a tuple (F/F,EF ,Vbad

mod, l,V), where
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(1) F is a number field such that
√
−1 ∈ F , and F is an algebraic closure of F ,

(2) EF is an elliptic curve over F such that AutF (EF ) = {±1}, where EF := EF ×F F ,
the 2.3(= 6)-torsion points EF [2.3] are rational over F , and F is Galois over the field
of moduli Fmod of EF i.e., the subfield of F deteremined by the image of the natural
homomorphism Aut(EF )→ Aut(F ) = Gal(F/Q)(⊃ Gal(F/F )) (thus, we have a short
exact sequence 1 → AutF (EF ) → Aut(EF ) → Gal(F/Fmod) → 1), where Aut(EF )
(resp. AutF (EF )) denotes the group of automorphisms (resp. automorphisms over F )
of the group scheme EF ),

(3) Vbad
mod is a nonempty finite subset Vbad

mod ⊂ Vnon
mod(⊂ Vmod := V(Fmod)), such that v - 2

holds for each v ∈ Vbad
mod, and EF has bad multiplicative reduction over w ∈ V(F )v,

(4) l is a prime number l ≥ 5 such that l is prime to the elements of Vbad
mod as well as prime

to ordw of the q-parameters of EF at w ∈ V(F )bad := V(F )×Vmod
Vbad

mod, and
(5) V is a finite subset V ⊂ V(K), where K := F (EF [l]), such that the restriction of the

natural surjection V(K)� Vmod to V induces a bijection V ∼→ Vmod.

(Note that this is not the definition of initial Θ-data, in which we will have more objects and

conditions. See Section 10.1.) Put dmod := [Fmod : Q], (Varc
mod ⊂)V

good
mod := Vmod \ Vbad

mod, and

V(F )good := V(F ) ×Vmod
Vgood

mod . Let v ∈ V denote the element corresponding to v ∈ Vmod via
the above bijection.

Lemma 1.7. ([IUTchIV, Lemma 1.8 (ii), (iii), (iv), (v)])

(1) Ftpd = Fmod(EFmod
[2]) is independent of the choice of a model EFmod

.
(2) The elliptic curve EF has at most semistable reduction for all w ∈ V(F )non.
(3) Any model of EF over F such that all 3-torsion points are defined over F is isomorphic

to EF over F . In particular, we have an isomorphism EFtpd
×Ftpd

F ∼= EF over F for a
model EFtpd

of EF over Ftpd, such that F ⊃ Ftpd(EFtpd
[3]).

(4) The extension K ⊃ Fmod is Galois.

(Here, “tpd” stands for “tripod” i.e., the projective line minus three points.)

Proof. (1): In the short exact sequence 1 → AutF (EF ) → Aut(EF ) → Gal(F/Fmod) → 1, a
section of the surjection Aut(EF )� Gal(F/Fmod) corresponds to a model EFmod

of EF , and the
field Fmod(EFmod

[2]) correpsonds to the kernel of the composite of the section Gal(F/Fmod)→
Aut(EF ) and the natural homomorphism Aut(EF ) → Aut(EF [2]). On the other hand, by
the assumption AutF (EF ) = {±1}, the natural homomorphism Aut(EF ) → Aut(EF [2]) fac-
tors through the quotient Aut(EF ) � Gal(F/Fmod), since the action of AutF (EF ) = {±1}
on EF [2] is trivial (−P = P for P ∈ EF [2]). This implies that the kernel of the compos-
ite Gal(F/Fmod) → Aut(EF ) → Aut(EF [2]) is independent of the section Gal(F/Fmod) →
Aut(EF ). This means that Fmod(EFmod

[2]) is independent of the choice of a model EFmod
[2].

The first claim was proved.
(2): For a prime r ≥ 3, we have a fine moduliX(r)Z[1/r] of elliptic curves with level r structure

(Note that it is a scheme since r ≥ 3). Any Fw-valued point with w - r can be extended to
OFw-valued point, since X(r)Z[1/r] is proper over Z[1/r]. We apply this to an Fw-valued point
defined by EF with a level r = 3 structure (which is defined over F by the assumption). Then
EF has at most semistable reduction for w - 3. The second claim was proved.
(3): A model of EF over F corresponds to a section of AutF (EF )� Gal(F/F ) in a one-to-one

manner. Thus, a model of EF over F whose all 3-torsion points are rational over F corresponds
to a section of AutF (EF ) � Gal(F/F ) whose image is in ker{ρ : AutF (EF ) → Aut(EF [3])}.
Such a section is unique by AutF (EF ) ∩ ker(ρ) = {1}, since AutF (EF ) = {±1} and the image
of −1 ∈ AutF (EF ) in Aut(EF [3])} is non-trivial (if −P = P ∈ EF [3] then P ∈ EF [2]∩EF [3] =
{O}). The third claim was proved.
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(4): A model EFmod
of EF over Fmod, such that F ⊃ Ftpd(EFtpd

[3]), gives us a section of

AutF (EF ) � Gal(F/Fmod), hence homomorphisms ρEFmod
,r : Gal(F/Fmod) → Aut(EF [r]) for

r = 3, l, which may depend on a model EFmod
. Take any g ∈ Gal(F/Fmod). By assump-

tion that F is Galois over Fmod, we have gGal(F/F )g−1 = Gal(F/F ) in Gal(F/Fmod). Thus,
both of Gal(F/K) and gGal(F/K)g−1 are subgroups in Gal(F/F ). We consider the conju-
gate ρgEFmod

,r(·) := ρEFmod
,r(g

−1(·)g) of ρEFmod
,r by g. By definition, the subgroup Gal(F/K)

(resp. gGal(F/K)g−1) is the kernel of ρEFmod
,l (resp. ρgEFmod

,l). On the other hand, since

ρgEFmod
,3(a) = ρEFmod

,3(g)
−1ρEFmod

,3(a)ρEFmod
,3(g) = 1 for any a ∈ Gal(F/F ) by the assumption,

the homomorphism ρgEFmod
,3 arises from a model E ′Ftpd

of EF over Ftpd. Then, by the third

claim (3), the restriction ρEFmod
,l|Gal(F/F ) : Gal(F/F ) → Aut(EF [l]) to Gal(F/F ) is unique,

i.e., ρEFmod
,l|Gal(F/F ) = ρgEFmod

,l|Gal(F/F ). Hence we have Gal(F/K) = gGal(F/K)g−1. Thus K

is Galois over Fmod. The fourth claim was proved. �

We further assume that

(1) EF has good reduction for all v ∈ V(F )good ∩ V(F )non with v - 2l,
(2) all the points of EF [5] are defined over F , and
(3) we have F = Ftpd(

√
−1, EFtpd

[3.5]), where Ftpd := Fmod(EFmod
[2]) (Here EFmod

is any
model of EF over Fmod, and EFtpd

is a model of EF over Ftpd which is defined by the
Legendre form i.e., of the form y2 = x(x− 1)(x− λ) with λ ∈ Ftpd).

For an intermediate extension Fmod ⊂ L ⊂ K which is Galois over Fmod, we write dL ∈
ADiv(L) for the effective arithmetic divisor supported in V(L)non determined by the different
ideal of L over Q. We define log(dL) := 1

[L:Q]
degL(d

L) ∈ R≥0. We can consider the q-parameters

of EF at bad places, since EF has everywhere at most semistable reduction by Lemma 1.7 (2).
We write qL ∈ ADivQ(L) for the effective Q-arithmetic divisor supported in V(L)non determined
by the q-parameters of EFL := EF ×F (FL) at primes in V(FL)bad := V(FL) ×Vmod

Vbad
mod

divided by the ramification index of FL/L (Note that 2l is prime to the elements in Supp(qL)
even though EF has bad reduction over a place dividing 2l). We define log(q) = log(qL) :=

1
[L:Q]

degL(q
L) ∈ R≥0. Note that log(qL) does not depend on L. We write fL ∈ ADiv(L) for

the effective arithmetic divisor whose support coincides with Supp(qL), however, all of whose
coefficients are equal to 1 (Note that Supp(qL) excludes the places dividing 2l). We define
log(qL) := 1

[L:Q]
degL(q

L) ∈ R≥0.
For an intermediate extension Ftpd ⊂ L ⊂ K which is Galois over Fmod, we define the

set of distinguished places V(L)dist ⊂ V(L)non to be V(L)dist := {w ∈ V(L)non | there is v ∈
V(K)nonw which is ramified over Q}. We put Vdist

Q and Vdist
mod to be the images of V(Ftpd)

dist in VQ
and in Vmod respectively, via the natural surjections V(Ftpd)� Vmod � VQ. For L = Q, Fmod,
we put sL :=

∑
w∈V(L)dist eww ∈ ADiv(L), where ew is the ramification index of Lw/Qpw . We

define log(sL) := 1
[L:Q]

degL(s
L) ∈ R≥0. We put

d∗mod := 2.#(Z/4Z)×#GL2(F2)#GL2(F3)#GL2(F5)dmod = 212.33.5.dmod

(Note that #GL2(F2) = 2.3, #GL2(F3) = 24.3, and #GL2(F5) = 25.3.5). We write s≤ :=∑
vQ∈Vdist

Q

ιvQ
log(pvQ )

vQ ∈ ADivR(Q), where ιvQ := 1 if pvQ ≤ d∗modl and ιvQ := 0 if pvQ > d∗modl. We

define log(s≤) := degQ(s
≤) ∈ R≥0.

For number fields F ⊂ L, a Q-arithmetic divisor a =
∑

w∈V(L) cww on L, and v ∈ V(F ), we
define av :=

∑
w∈V(L)v cww.
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Lemma 1.8. ([IUTchIV, Proposition 1.8 (vi), (vii)]) The extension F/Ftpd is tamely ramified
outside 2.3.5, and K/F is tamely ramified outside l. The extension K/Ftpd is unramified outside
2.3.5.l and Supp(qFtpd).

Proof. First, we show that EFtpd
×Ftpd

F ′ has at most semistable reduction at w - 2 for some
[F ′ : Ftpd,w] ≤ 2 and we can take F ′ = Ftpd,w in the good reduction case as follows: Now EFtpd

is
defined by the Legendre form y2 = x(x−1)(x−λ). If λ ∈ OFtpd,w

, then it has at most semistable

reduction since 0 6≡ 1 in any characteristic. If $nλ ∈ O×Ftpd,w
for n > 0 where $ ∈ Ftpd,w is a

uniformizer, then by putting x′ := $nx and y′ := $3n/2y, we have (y′)2 = x′(x′−$n)(x′−$nλ)
over Ftpd,w(

√
$), which has semistable reduction.

Then, the action of Gal(Ftpd,w/F
′) on E[3.5] is unipotent (cf. [SGA7t1, Exposé IX §7] the

filtration by “finite part” and “toric part”) for w - 2.3.5. Hence, F = Ftpd(
√
−1, E[3.5]) is

tamely ramified over Ftpd outside 2.3.5. By the same reason, the action of Gal(Ftpd,w/F
′) on

E[l] is unipotent for w - l, and K = F (E[l]) is tamely ramified over F outside l.
We show the last claim. EF has good reduction outside 2l and Supp(qFtpd), since, by the

assumption, EF has good reduction for all v ∈ V(F )good ∩ V(F )non with v - 2l. Thus, K =
Ftpd(

√
−1, E[3.5.l]) is unramified outside 2.3.5.l and Supp(qFtpd). �

In the main contents of inter-universal Teichmüller theory, we will use the bijection V ∼→ Vmod

as a kind of “analytic section” of SpecOK � SpecOFmod
, and we will have an identifica-

tion of 1
[Kv :(Fmod)v ]

µlog
Kv

with µlog
(Fmod)v

and an identification of 1
[Fmod:Q]

∑
v∈V

1
[Kv :(Fmod)v ]

µlog
Kv

with
1

[Fmod:Q]

∑
v∈Vmod

µlog
(Fmod)v

(Note that the summation is taken with respect to V, not the whole

of the valuation V(K) of K). This is why we will consider
µlogKv

[Kv:(Fmod)v ]
or its normalised version

1
[(Fmod)v :QvQ ]

µlogKv

[Kv :(Fmod)v ]
=

µlogKv

[Kv :QvQ ]
for v ∈ V (not for V(K)) with weight [(Fmod)v : QvQ ] (not

[Kv : QvQ ]) in this subsection.

Lemma 1.9. ([IUTchIV, some portions of (v), (vi), (vii) of the proof of Theorem 1.10,
and Propotision 1.5]) For vQ ∈ VQ, 1 ≤ j ≤ l>(= l−1

2
), and v0, . . . , vj ∈ (Vmod)vQ (where

v0, . . . , vj are not necessarily distinct), let −| log(Θ)|{v0,...,vj} denote the normalised log-volume

(i.e.,
∑

0≤i≤j
1

[Kvi :QvQ ]
µlog
Kvi

) of the following:

• For vQ ∈ Vnon
Q , the holomorphic hull of the union of

– (vertical indeterminacy=:(Indet ↑))
q
j2/2l
vj Iv0,··· ,vj (resp. Iv0,··· ,vj) for vj ∈ Vbad (resp. for vj ∈ Vgood), and

– (horizontal and permutative indeterminacies =:(Indet →), (Indet xy))

φ
(
q
j2/2l
vj OKvj

⊗OKvj
(⊗0≤i≤jOKvi

)∼
)
(resp. φ

(
(⊗0≤i≤jOKvi

)∼
)
) for vj ∈ Vbad (resp.

for vj ∈ Vgood), where φ : QvQ ⊗ZvQ
Iv0,...,vj

∼→ QvQ ⊗ZvQ
Iv0,...,vj runs through all of

automorphisms of finite dimensional QvQ-vector spaces which induces an automor-
phism of the submodule Iv0,...,vj , and ⊗0≤i≤j’s are tensors over ZvQ (See also the
“Teichmüller dilation” in Section 3.5).

• For vQ ∈ Varc
Q , the holomorphic hull of the union of

– (vertical indeterminacy=:(Indet ↑))
Iv0,...,vj (⊂ ⊗0≤i≤jKvi

), and
– (horizontal and permutative indeterminacies =:(Indet →), (Indet xy))

(⊗0≤i≤jφi)(BI), where BI := (unit ball)⊕2
j
in the natural direct sum decomposition

⊗0≤i≤jKvi
∼= C⊕2j (tensored over R), and (φi)0≤i≤j runs through all of elements in∏

0≤i≤j Aut(Kvi
)prim.
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Put di := dKvi/QvQ
and dI :=

∑
0≤i≤j di for vQ ∈ Vnon

Q . Then, we have the following upper

bounds of −| log(Θ)|{v0,...,vj}:
(1) For vQ ∈ Vdist

Q , we have

− | log(Θ)|{v0,...,vj} ≤

{(
− j2

2l
ord(qvj) + dI + 4

)
log pvQ + 4(j + 1)ιvQ log(d

∗
modl) vj ∈ Vbad,

(dI + 4) log pvQ + 4(j + 1)ιvQ log(d
∗
modl) vj ∈ Vgood

= −j
2

2l

µlog
Kvj

(qvj)

[Kvj
: QvQ ]

+
∑
0≤i≤j

µlog
Kvj

(dKvi)

[Kvj
: QvQ ]

+ 4µlog
QvQ

(sQvQ) + 4(j + 1)µlog
QvQ

(s≤vQ) log(d
∗
modl).

(2) For vQ ∈ Vnon
Q \ Vdist

Q , we have −| log(Θ)|{v0,...,vj} ≤ 0.
(3) For vQ ∈ Varc

Q , we have −| log(Θ)|{v0,...,vj} ≤ (j + 1) log(π).

Remark 1.9.1. In Section 13, it will be clear that the vertical (resp. horizontal) indeterminacy
arises from the vertical (resp. horizontal) arrows of the log-theta lattice i.e., the log-links (resp.
the theta-links), and the permutative indeterminacy arises from the permutative symmetry of
the étale picture.

Proof. (1): We apply Lemma 1.6 (1) to λ := j2

2l
ord(qvj) (resp. 0) for vj ∈ Vbad (resp. for

vj ∈ Vgood), I := {0, 1, . . . , j}, i0 := j, and ki := Kvi
. (Note that λ ∈ 1

evj
Z since q

1/2l
vj ∈ Kvj

by the assumptions that K = F (EF [l]) and that EF [2] is rational over F , i.e., F = F (EF [2]).)

Then, by the first inclusion of Lemma 1.6 (1), both of φ
(
q
j2/2l
vj OKvj

⊗OKvj
(⊗0≤i≤jOKvi

)∼
)

(resp. φ
(
(⊗0≤i≤jOKvi

)∼
)
) ((Indet →), (Indet xy)) and q

j2/2l
vj Iv0,...,vj (resp. Iv0,...,vj) ((Indet ↑))

are contained in p
bλc−ddIe−daIe
vQ ⊗i∈I logpvQ (O

×
Kvi

). By the second inclusion of Lemma 1.6 (1), the

holomorphic hull of p
bλc−ddIe−daIe
vQ ⊗i∈I logpvQ (O

×
Kvi

) is contained in p
bλc−ddIe−daIe−dbIe
vQ (⊗i∈IO×Kvi

)∼,

and its normalised log-volume is ≤ (−λ+dI+4) log(pvQ)+
∑

i∈I∗(3+log(ei)) by Lemma 1.6 (1).
If ei > pvQ−2, then pvQ ≤ d∗modl, since for vi - l (resp. vi | l) we have pvQ ≤ 1+ei ≤ 1+d∗modl/2 ≤
d∗modl (resp. pvQ = l ≤ d∗modl). For ei > pvQ − 2, we also have log(ei) ≤ −3 + 4 log(d∗modl), since
ei ≤ d∗modl

4/2 and e3/2 ≤ (d∗mod)
3. Thus, we have (−λ+ dI +4) log(pvQ) +

∑
i∈I∗(3 + log(ei)) ≤

(−λ+dI+4) log(pvQ)+4(j+1)ιvQ log(d
∗
modl), since if ιvQ = 0, (i.e., pvQ > d∗modl), then ei ≤ pvQ−2

for all i, hence I∗ = ∅. The last equality of the claim follows from the definitions.
(2): For vQ ∈ Vnon

Q \Vdist
Q , the prime vQ is unramified inK and vQ 6= 2, since 2 ramifies inK by

K 3
√
−1. Thus, the ramification index ei of Kvi

over QvQ is 1 for each 0 ≤ i ≤ j, and pvQ > 2.

We apply Lemma 1.6 (2) to λ := 0, I := {0, 1, . . . , j}, and ki := Kvi
. Both of φ

(
(⊗0≤i≤jOKvi

)∼
)

((Indet →), (Indet xy)) and the log-shell Iv0,...,vj (Indet ↑) are contained in ⊗i∈I logpvQ (O
×
Kvi

).

By the second inclusion of Lemma 1.6 (2), the holomorphic hull of ⊗i∈I logpvQ (O
×
Kvi

) is contained

in (⊗i∈IO×Kvi
)∼, and its log-volume is = 0.

(3): The natural direct sum decomposition ⊗0≤i≤jKvi
∼= C⊕2j (tensored over R), whereKvi

∼=
C, the hermitian metric on C⊕2j , and the integral structure BI = (unit ball)⊕2

j ⊂ C⊕2j are
preserved by the automorphisms of ⊗0≤i≤jKvi

induced by any (φi)0≤i≤j ∈
∏

0≤i≤j Aut(Kvi
)prim

((Indet →), (Indet xy)). Note that, via the natural direct sum decomposition ⊗0≤i≤jKvi
∼=

C⊕(j+1), the direct sum metric on C⊕(j+1) induced by the standard metric on C is 2j times the
tensor product metric on ⊗0≤i≤jKvi

induced by the standard metric on Kvi
∼= C (Note that

|1 ⊗
√
−1|2C⊗RC = 1 and |(

√
−1,−

√
−1)|2C⊕C = 2) (See also [IUTchIV, Proposition 1.5 (iii),

(iv)]). The log-shell Iv0,...,vj is contained in πj+1BI (Indet ↑). Thus, an upper bound of the
log-volume is given by (j + 1) log(π). �
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Lemma 1.10. ([IUTchIV, Proposition 1.7, and some portions of (v), (vi), (vii) in the proof
of Theorem 1.10]) Fix vQ ∈ VQ. For 1 ≤ j ≤ l>(= l−1

2
), we take the weighted average

−| log(Θ)|vQ,j of −| log(Θ)|{v0,...,vj} with respect to all (j + 1)-tuples of elements {vi}0≤i≤j in
(Vmod)vQ with weight wv0,...,vj :=

∏
0≤i≤j wvi, where wv := [(Fmod)v : QvQ ] (not [Kv : QvQ ]), i.e.,

−| log(Θ)|vQ,j :=
1

W

∑
v0,...,vj∈(Vmod)vQ

wv0,...,vj(−| log(Θ)|{v0,...,vj}),

whereW :=
∑

v0,...,vj∈(Vmod)vQ
wv0,...,vj = (

∑
v∈(Vmod)vQ

wv)
j+1 = [Fmod : Q]j+1, and

∑
v0,...,vj∈(Vmod)vQ

is the summation of all (j+1)-tuples of (not necessarily distinct) elements v0, . . . , vj ∈ (Vmod)vQ
(we write

∑
v0,...,vj

for it from now on to lighten the notation). Let −| log(Θ)|vQ denote the av-

erage of −| log(Θ)|vQ,j with respect to 1 ≤ j ≤ l>, (which is called procession normalised

average), i.e., −| log(Θ)|vQ := 1
l>

∑
1≤j≤l>(−| log(Θ)|vQ,j).

(1) For vQ ∈ Vdist
Q , we have

−| log(Θ)|vQ ≤ −
l + 1

24
log(qvQ) +

l + 5

4
log(dKvQ) + 4 log(sQvQ) + (l + 5) log(s≤vQ) log(d

∗
modl).

(2) For vQ ∈ Vnon
Q \ Vdist

Q , we have −| log(Θ)|vQ ≤ 0.
(3) For vQ ∈ Varc

Q , we have −| log(Θ)|vQ ≤ l + 1.

Remark 1.10.1. In the identification of 1
[Kv :(Fmod)v ]

µlog
Kv

with µlog
(Fmod)v

and the identification of V

with Vmod, which are explained before, the weighted average 1
W

∑
v0,...,vj

wv0,...,vj
∑
0≤i≤j

µlogKvi

[Kvi :QvQ ]
corre-

sponds to 1
W

∑
0≤i≤j

∑
v0,...,vj

wv0,...,vj
µlog
(Fmod)vi

[(Fmod)vi :QvQ ]
= 1

W

∑
0≤i≤j

(
∑

v∈(Vmod)vQ

wv)
j (

∑
v∈(Vmod)vQ

wv
µlog
(Fmod)v

[(Fmod)v :QvQ ]
) =

j+1
[Fmod:Q]

∑
v∈(Vmod)vQ

µlog
(Fmod)v

= j+1
[Fmod:Q]

degFmod
, which is (j + 1) times the vQ-part of the normalised

degree map.

Proof. (1): The weighted average of the upper bound of Lemma 1.9 (1) gives us −| log(Θ)|vQ,j ≤

− 1
W

j2

2l

∑
v0,...,vj

wv0,...,vj
µlogKvj

(qvj )

[Kvj :QvQ ]
+ 1
W

∑
v0,...,vj

wv0,...,vj
∑
0≤i≤j

(
µlogKvi

(dKvi )

[Kvi :QvQ ]
+4

µlogQvQ
(sQvQ )

j+1
+4µlog

QvQ
(s≤vQ) log(d

∗
modl)).

Now, − 1
W

j2

2l

∑
v0,...,vj

wv0,...,vj
µlogKvj

(qvj )

[Kvj :QvQ ]
is equal to

− 1

W

j2

2l

 ∑
v∈(Vmod)vQ

wv

j ∑
v∈(Vmod)vQ

wv
µlog
Kv

(qv)

[Kv : QvQ ]

 = − 1

[Fmod : Q]

j2

2l

∑
v∈(Vmod)vQ

µlog
Kv

(qv)

[Kv : (Fmod)v]

= − 1

[Fmod : Q]

j2

2l

∑
w∈V(K)vQ

[Kv : (Fmod)v]

[K : Fmod]

µlog
Kw

(qw)

[Kv : (Fmod)v]

= − 1

[K : Q]

j2

2l

∑
w∈V(K)vQ

µlog
Kw

(qw) = −
j2

2l
log(qvQ),
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where the second equality follows from that µlog
Kw

(qw) = µlog
Kv

(qv), [Kw : (Fmod)v] = [Kv :

(Fmod)v], and #V(K)v =
[K:Fmod]

[Kv :(Fmod)v ]
for any w ∈ V(K)v with a fixed v ∈ Vmod, since K is Galois

over Fmod (Lemma 1.7 (4)). On the other hand, 1
W

∑
v0,...,vj

wv0,...,vj
∑
0≤i≤j

(
µlogKvi

(dKvi )

[Kvi :QvQ ]
+ 4

µlogQvQ
(sQvQ )

j+1
+

4µlog
QvQ

(s≤vQ) log(d
∗
modl)) is equal to

1

W

∑
0≤i≤j

 ∑
v∈(Vmod)vQ

wv

j ∑
v∈(Vmod)vQ

wv

 µlog
Kvi

(dKvi)

[Kvi
: QvQ ]

+ 4
µlog
QvQ

(sQvQ)

j + 1
+ 4µlog

QvQ
(s≤vQ) log(d

∗
modl)


=

j + 1

[Fmod : Q]

∑
v∈(Vmod)vQ

wv

 µlog
Kv

(dKv )

[Kv : QvQ ]
+ 4

µlog
QvQ

(sQvQ)

j + 1
+ 4µlog

QvQ
(s≤vQ) log(d

∗
modl)


=

j + 1

[Fmod : Q]

∑
v∈(Vmod)vQ

µlog
Kv

(dKv )

[Kv : (Fmod)v]
+ 4µlog

QvQ
(sQvQ) + 4(j + 1)µlog

QvQ
(s≤vQ) log(d

∗
modl)

=
j + 1

[Fmod : Q]

∑
w∈V(K)vQ

[Kv : (Fmod)v]

[K : Fmod]

µlog
Kw

(dKw )

[Kv : (Fmod)v]
+ 4µlog

QvQ
(sQvQ) + 4(j + 1)µlog

QvQ
(s≤vQ) log(d

∗
modl)

= (j + 1) log(dKvQ) + 4 log(sQvQ) + 4(j + 1) log(s≤vQ) log(d
∗
modl),

where the second equality follows from
∑

v∈(Vmod)vQ
wv = [Fmod : Q] and the third equality fol-

lows from that µlog
Kw

(dw) = µlog
Kv

(dv), [Kw : (Fmod)v] = [Kv : (Fmod)v], and #V(K)v =
[K:Fmod]

[Kv :(Fmod)v ]

for any w ∈ V(K)v with a fixed v ∈ Vmod as before. Thus, by combining these, we have

−| log(Θ)|vQ,j ≤ −
j2

2l
log(qvQ) + (j + 1) log(dKvQ) + 4 log sQvQ + 4(j + 1) log(s≤vQ) log(d

∗
modl).

Then (1) holds, since we have 1
l>

∑
1≤j≤l>(j + 1) = l>+1

2
+ 1 = l+5

4
, and 1

l>

∑
1≤j≤l> j

2 =
(l>+1)(2l>+1)

6
= (l+1)l

12
. Next, (2) trivally holds by Lemma 1.9 (2). Finally, (3) holds by Lemma 1.9

(3) with l+5
4

log(π) < l+5
4
2 ≤ l + 1 since l ≥ 3. �

Lemma 1.11. ([IUTchIV, (ii), (iii), (viii) in the proof of Theorem 1.10, and Proposition 1.6])

(1) We have the following bound of log(dK) in terms of log(dFtpd) and log(fFtpd):

log(dK) ≤ log(dFtpd) + log(fFtpd) + 2 log l + 21.

(2) We have the following bound of log(sQ) in terms of log(dFtpd) and log(fFtpd):

log(sQ) ≤ 2dmod(log(d
Ftpd) + log(fFtpd)) + log l + 5.

(3) We have the following bound of log(s≤) log(d∗modl): there is ηprm ∈ R>0 (which is a
constant determined by using the prime number theorem) such that

log(s≤) log(d∗modl) ≤
4

3
(d∗modl + ηprm).

Proof. Note that log(dL) + log(fL) = 1
[L:Q]

∑
w∈V(L)non ewdw log(qw) +

1
[L:Q]

∑
w∈Supp(fL) log(qw) =

1
[L:Q]

∑
w∈V(L)non(dw+ ιfL,w/ew)ew log(qw) for L = K,F, Ftpd, Fmod, where qw is the cardinality of

the residue field of Lw, ew is the ramification index of Lw overQpw and ιfL,w := 1 if w ∈ Supp(fL),
and ιfL,w := 0 if w /∈ Supp(fL).
(1): The extension F/Ftpd is tamely ramified outside 2.3.5 (Lemma 1.8). Then, by using

Lemma 1.5 (1) (dL0 + 1/e0 = dL + 1/e) for the primes outside 2.3.5 and Lemma 1.5 (2)
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(dL+1/e ≤ dL0 +1/e0+m+1/e ≤ dL0 +1/e0+(m+1)) for the primes dividing 2.3.5, we have
log(dF ) + log(fF ) ≤ log(dFtpd) + log(fFtpd) + log(211.33.52) ≤ log(dFtpd) + log(fFtpd) + 21 since
[F : Ftpd] = [Ftpd(

√
−1) : Ftpd][F : Ftpd(

√
−1)] ≤ 2.#GL2(F3).#GL2(F5) = 2.(24.3).(25.3.5) =

210.32.5, and log 2 < 1, log 3 < 2, log 5 < 2. In a similar way, we have log(dK) + log(fK) ≤
log(dF ) + log(fF ) + 2 log l, since K/F is tamely ramified outside l (Lemma 1.8). Then, we have
log(dK) ≤ log(dK) + log(fK) ≤ log(dF ) + log(fF ) + 2 log l ≤ log(dFtpd) + log(fFtpd) + 2 log l+ 21.
(2): We have log(sQvQ) ≤ dmod log(s

Fmod
vQ

) for vQ ∈ Vnon
Q . By using Lemma 1.5 (1), we have

log(sFmod
vQ

) ≤ 2(log(d
Ftpd
vQ )+ log(f

Ftpd
vQ )) for Vnon

Q 3 vQ - 2.3.5.l, since 1 = dQvQ
+1/eQvQ

≤ dFmod,v
+

1/eFmod,v
≤ 2(dFmod,v

+ ιfFmod ,v/eFmod,v
), where ιfFmod ,v := 1 for v ∈ Supp(fFmod) and ιfFmod ,v := 0

for v /∈ Supp(fFmod). Thus, we have log(sQ) ≤ 2dmod(log(d
Ftpd) + log(fFtpd)) + log(2.3.5.l) ≤

2dmod(log(d
Ftpd) + log(fFtpd)) + log l + 5, since log 2 < 1, log 3 < 2, and log 5 < 2.

(3): We have log(s≤) log(d∗modl) = log(d∗modl)
∑

p≤d∗modl
1. By the prime number theorem

limn→∞ n log(pn)/pn = 1 (where pn is the n-th prime number), there exists ηprm ∈ R>0 such that∑
prime p≤η 1 ≤

4η
3 log(η)

for η ≥ ηprm. Then, log(d
∗
modl)

∑
p≤d∗modl

1 ≤ 4
3
log(d∗modl)

d∗modl

log(d∗modl)
= 4

3
d∗modl

if d∗modl ≥ ηprm, and log(d∗modl)
∑

p≤d∗modl
1 ≤ log(ηprm)

4
3

ηprm
log(ηprm)

= 4
3
ηprm if d∗modl < ηprm. Thus,

we have log(s≤) log(d∗modl) ≤ 4
3
(d∗modl + ηprm). �

Proposition 1.12. ([IUTchIV, Theorem 1.10]) We set −| log(q)| := − 1
2l
log(q). We have the

following an upper bound of −| log(Θ)| := −
∑

vQ∈VQ
| log(Θ)|vQ:

− | log(Θ)| ≤ − 1

2l
log(q)+

l + 1

4

(
−1

6

(
1− 12

l2

)
log(q) +

(
1 +

36dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
.

In particular, we have −| log(Θ)| <∞. If −| log(q)| ≤ −| log(Θ)| , then we have

1

6
log(q) ≤

(
1 +

80dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 20(d∗modl + ηprm) ,

where ηprm is the constant in Lemma 1.11.

Proof. By Lemma 1.10 (1), (2), (3) and Lemma 1.11 (1), (2), (3), we have

−| log(Θ)| ≤ − l + 1

24
log(q) +

l + 5

4

(
log(dFtpd) + log(fFtpd) + 2 log l + 21

)
+ 4

(
2dmod(log(d

Ftpd) + log(fFtpd)) + log l + 5
)
+ (l + 5)

4

3
(d∗modl + ηprm) + l + 1.

Since l+5
4

= l2+5l
4l

< l2+5l+4
4l

= l+1
4
(1 + 4

l
), 4 < 4 l+1

l
= l+1

4
16
l
, and l+5 ≤ 20

3
l+1
4

(for l ≥ 5), this is
bounded above by

<
l + 1

4

(
−1

6
log(q) +

(
1 +

4

l

)(
log(dFtpd) + log(fFtpd) + 2 log l + 21

)
+
16

l

(
2dmod(log(d

Ftpd) + log(fFtpd)) + log l + 5
)
+

20

3

4

3
(d∗modl + ηprm) + 4

)
=
l + 1

4

(
−1

6
log(q) +

(
1 +

4

l
+

32dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+

(
1 +

4

l

)
(2 log l + 21) +

16

l
(log l + 5) +

80

9
(d∗modl + ηprm) + 4

)
.
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Since 4 + 32dmod ≤ 36dmod, (1 +
4
l
)(2 log l + 21) = 2 log l + 8 log l

l
+ (1 + 4

l
)21 < 2 log l + 81

2
+

(1 + 1)21 = 2 log l + 46 (for l ≥ 5), 16 log l
l
< 161

2
= 8, and 16

l
5 ≤ 16 (for l ≥ 5), this is bounded

above by

<
l + 1

4

(
−1

6
log(q) +

(
1 +

36dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 2 log l +

80

9
(d∗modl + ηprm) + 74

)
.

Since 2 log l + 74 < 2l + 74 < 2.74l + 2.74l = 22.74l < 22.212.3.5l < 4
9
d∗modl <

4
9
(d∗modl + ηprm),

and 80
9
+ 4

9
< 10, this is bounded above by

<
l + 1

4

(
−1

6
log(q) +

(
1 +

36dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
.

Since l+1
4

1
6
12
l2

= 1
2
(1 + 1

l
) > 1

2l
, this is bounded above by

<
l + 1

4

(
−1

6

(
1− 12

l2

)
log(q) +

(
1 +

36dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
− 1

2l
log(q).

If−| log(q)| ≤ −| log(Θ)|, then for any−| log(Θ)| ≤ CΘ log(q), we have−| log(q)| ≤ −| log(Θ)| ≤
CΘ log(q), hence, CΘ ≥ −1 , since | log(q)| = 1

2l
log(q) > 0. By taking CΘ to be

2l(l + 1)

4 log(q)

(
−1

6

(
1− 12

l2

)
log(q) +

(
1 +

36dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
−1,

we have

1

6
log(q) ≤

(
1− 12

l2

)−1((
1 +

36dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
.

Since (1− 12
l2
)−1 ≤ 2 and (1− 12

l2
)(1 + 80dmod

l
) ≥ 1 + 36dmod

l
⇔ 12 ≤ dmod(44l − 960

l
) which holds

for l ≥ 5 (by dmod(44l − 960
l
) ≥ 44l − 960

l
≥ 220− 192 > 12), we have

1

6
log(q) ≤

(
1 +

80dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 20(d∗modl + ηprm).

�

1.4. Third Reduction —Choice of Initial Θ-Data. In this subsection, we regard UP1 as the
λ-line, i.e., the fine moduli scheme whose S-valued points (where S is an arbitrary scheme) are
the isomorphism classes of the triples [E, φ2, ω], where E is an elliptic curve f : E → S equipped

with an isomorphism φ2 : (Z/2Z)⊕2 ∼→ E[2] of S-group schemes, and an S-basis ω of f∗Ω
1
E/S

to which an adapted x ∈ f∗OE(−2(origin)) satisfies x(φ2(1, 0)) = 0, x(φ2(0, 1)) = 1. Here, a
section x ∈ f∗OE(−2(origin)), for which {1, x} forms Zariski locally a basis of f∗OE(−2(origin)),
is called adapted to an S-basis ω of f∗Ω

1
E/S, if Zariski locally, there is a formal parameter T at

the origin such that ω = (1 + higher terms)dT and x = 1
T 2 (1 + higher terms) (cf. [KM, (2.2),

(4.6.2)]). Then, λ ∈ UP1(S) corresponds to E : y2 = x(x−1)(x−λ), φ2((1, 0)) = (x = 0, y = 0),
φ2((0, 1)) = (x = 1, y = 0), and ω = −dx

2y
. For a cyclic subgroup scheme H ⊂ E[l] of order

l > 2, a level 2 structure φ2 gives us a level 2 structure Im(φ2) of E/H. An S-basis ω also gives
us an S-basis Im(ω) of f∗Ω

1
(E/H)/S. For α = (φ2, ω), put Im(α) := (Im(φ2), Im(ω)).

Let F be a number field. For a semi-abelian variety E of relative dimension 1 over a number
SpecOF whose generic fiber EF is an elliptic curve, we define Faltings height of E as follows:
Let ωE be the module of invariant differentials on E (i.e., the pull-back of Ω1

E/OF
via the zero

section), which is finite flat of rank 1 over OF . We equip an hermitian metric || · ||FaltEv
on

ωEv := ωE ⊗OF
Fv for v ∈ V(F )arc by (||a||FaltEv

)2 :=
√
−1
2

∫
Ev
a ∧ a, where Ev := E ×F Fv and

a is the complex conjugate of a. We also equip an hermitian metric || · ||FaltE on ωE ⊗Z C ∼=



24 GO YAMASHITA

⊕real:v∈V(F )arcωEv ⊕ ⊕complex:v∈V(F )arc(ωEv ⊕ ωEv), by || · ||FaltEv
(resp. || · ||FaltEv

and its complex
conjugate) for real v ∈ V(F )arc (resp. for complex v ∈ V(F )arc), where ωEv is the complex
conjugate of ωEv . Then, we obtain an arithmetic line bundle ωE := (ωE, || · ||FaltE ). We define
Faltings height of E by htFalt(E) := 1

[F :Q]
degF (ωE) ∈ R. Note that for any 0 6= a ∈ ωE, the

non-Archimedean (resp. Archimedean) portion htFalt(E, a)non (resp. htFalt(E, a)arc) of htFalt(E)
is given by 1

[F :Q]

∑
v∈V(F )non log v(a) log qv = 1

[F :Q]
log#(ωE/aωE) (resp. − 1

[F :Q]

∑
v∈V(F )arc [Fv :

R] log
(√
−1
2

∫
Ev
a ∧ a

)1/2
= − 1

2[F :Q]

∑
v∈V(F )arc [Fv : R] log

(√
−1
2

∫
Ev
a ∧ a

)
), where htFalt(E) =

htFalt(E, a)non + htFalt(E, a)arc is independent of the choice of 0 6= a ∈ ωE (cf.Section 1.1).
Take an algebraic closure Q of Q. For any point [E,α] ∈ UP1(Q) of the λ-line, we define

htFalt([E,α]) := htFalt(E). When [E,α] ∈ UP1(C) varies, the hermitian metric || · ||FaltE on
ωE continuously varies, and gives a hermitian metric on the line bundle ωE on UP1(C), where
E is the universal elliptic curve of the λ-line. Note that this metric cannot be extended to
the compactification P1 of the λ-line, and the Faltings height has logarithmic singularity at
{0, 1,∞} (see also Lemma 1.13 (1) and its proof below).
We also introduce some notation. Let htnonωP1 ({0,1,∞})

denote the non-Archimedean portion of

htωP1({0,1,∞})([E,α]), i.e., ht
non
ωP1 ({0,1,∞})

([E,α]) := 1
[F :Q]

degF (x
−1
F ({0, 1,∞})) for xF : SpecOF →

P1 representing [E,α] ∈ P1(F ) ∼= P1(OF ) (Note that x−1F ({0, 1,∞}) is supported in V(F )non
and degF is the degree map on ADiv(F ), not on APic(SpecOF )). Note that we have

htnonωP1 ({0,1,∞})
≈ htωP1 ({0,1,∞})

on P1(Q), since the Archimedean portion is bounded on the compact space (P1)arc.
We also note that ht∞ in [GenEll, Section 3] is a function onMell(Q), on the other hand, our

htnonωP1({0,1,∞})
is a function on λ-line P1(Q), and that the pull-back of ht∞ to the λ-line is equal

to 6 times our htnonωP1 ({0,1,∞})
([IUTchIV, Corollary 2.2 (i)], See also the proof of Lemma 1.13 (1)

below).

Lemma 1.13. ([GenEll, Proposition 3.4, Lemma 3.5], [Silv, Proposition 2.1, Corollary 2.3])
Let l > 2 be a prime, E an elliptic curve over a number field F such that E has everywhere at
most semistable reduction, and H ⊂ E[l] a cyclic subgroup scheme of order l. Then, we have

(1) (relation between htωP1 ({0,1,∞}) and htFalt)

2htFalt . htωP1 ({0,1,∞}) . 2htFalt + log(htωP1 ({0,1,∞})) . 2htFalt + εhtωP1 ({0,1,∞})

for any ε ∈ R>0 on UP1(Q),
(2) (relation betwen htFalt([E,α]) and htFalt([E/H, Im(α)]))

htFalt([E,α])− 1

2
log l ≤ htFalt([E/H, Im(α)]) ≤ htFalt([E,α]) +

1

2
log l.

(3) (relation between htnonωP1 ({0,1,∞})
([E,α]) and htnonωP1 ({0,1,∞})

([E/H, Im(α)]))

Furthermore, we assume that l is prime to v(qE,v) ∈ Z>0 for any v ∈ V(F ), where E
has bad reduction with q-parameter qE,v (e.g., l > v(qE,v) for any such v’s). Then, we
have

l · htnonωP1 ({0,1,∞})
([E,α]) = htnonωP1 ({0,1,∞})

([E/H, Im(α)]).

Proof. (1): We have the Kodaira-Spencer isomorphism ω⊗2E
∼= ωP1({0, 1,∞}), where E is the

universal generalised elliptic curve over the compactification P1 of the λ-line, which extends
E over the λ-line UP1 . Thus we have htωP1({0,1,∞}) ≈ 2htωE

on P1(Q), since the Archimedean

contribution is bounded on the compact space (P1)arc. Thus, it is reduced to compare htωE

and htFalt. Here, htωE
is defined by equipping a hermitian metric on the line bundle ωE .
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On the other hand, htFalt is defined by equipping a hermitian metric on the line bundle ωE ,
which is the restriction of ωE . Thus, it is reduced to compare the Archimedean contribu-
tions of htωE

and htFalt. The former metric is bounded on the compact space (P1)arc. On
the other hand, we show the latter metric defined on the non-compact space (UP1)arc has log-
arithmic singularity along {0, 1,∞}. Take an invariant differential 0 6= dz ∈ ωE over OF .
Then dz decomposes as ((dzv)real:v∈V(F )arc , (dzv, dzv)complex:v∈V(F )arc) on E

arc ∼=
∐

real:v∈V(F )arc Ev∐∐
complex:v∈V(F )arc(Ev

∐
Ev), where dzv, Ev are the complex conjugates of dzv, Ev respec-

tively. For v ∈ V(F )arc, we have Ev ∼= Fv
×
/qZE,v

∼= Fv/(Z ⊕ τvZ) and dzv is the descent of

the usual Haar measure on Fv, where qE,v = e2πiτv and τv is in the upper half plane. Then

||dzv||FaltEv
= (

√
−1
2

∫
Ev
dzv ∧ dzv)1/2 = (Im(τv))

1/2 = (− 1
4π

log(|qE,v|2v))1/2 and htFalt(E, dz)arc ≈
− 1

2[F :Q]

∑
v∈V(F )arc [Fv : R] log(− log |qE,v|v) has a logarithmic singularity at |qE,v|v = 0. Thus,

it is reduced to calculate the logarithmic singularity of htFalt(E, dz)arc in terms of htωP1 ({0,1,∞}).

We have |jE|v = |jEv |v ≈ |qE,v|−1v near |qE,v|v = 0, where jE is the j-invariant of E. Then, by the

arithmetic-geometric inequality, we have htFalt(E, dz)arc ≈ − 1
2[F :Q]

log
∏

v∈V(F )arc(log |jE|v)[Fv :R]

≥ −1
2
log
(

1
[F :Q]

∑
v∈V(F )arc log |jE|v

)
near

∏
v∈V(F )arc |jE|v = ∞. On the other hand, we have

|j|−1v ≈ |λ|2v, |λ − 1|2v, 1/|λ|2v near |λ|v = 0, 1,∞ respectively for v ∈ V(F )arc, since j =
28(λ2 − λ + 1)3/λ2(λ − 1)2. Thus, we have htnonωP1 ({0,1,∞})

([E,α]) = 1
[F :Q]

∑
v∈V(F )non(v(λE) +

v(λE − 1) + v(1/λE)) log qv = 1
2[F :Q]

∑
v∈V(F )non v(j

−1
E ) log qv = 1

2[F :Q]

∑
v∈V(F )non log |j

−1
E |v. By

the product formula, this is equal to 1
2[F :Q]

∑
v∈V(F )arc log |jE|v. By combining these, we obtain

htFalt(E, dz)arc & −1
2
log(2htnonωP1 ({0,1,∞})

([E,α])) ≈ −1
2
log(htnonωP1 ({0,1,∞})

([E,α])) near
∏

v∈V(F )arc |jE|v =
∞, or equivalently, near

∏
v∈V(F )non |jE|v = 0. We also have htnonωP1 ({0,1,∞})

≈ htωP1 ({0,1,∞}) on

P1(Q), since the Archimedean contribution is bounded on the compact space (P1)arc. There-
fore, we have htFalt . htωE

. htFalt + 1
2
log(htωP1 ({0,1,∞})). This implies 2htFalt . htωP1 ({0,1,∞}) .

2htFalt+ log(htωP1 ({0,1,∞})). The remaining portion comes from log(1+x) . εx for any ε ∈ R>0.

(2): We have htFalt([E,α])non − log l ≤ htFalt([E/H, Im(α)])non ≤ htFalt([E,α])non, since since
#coker{ωE/H ↪→ ωE} is killed by l. We also have htFalt([E/H, Im(α)])arc = htFalt([E,α])arc +
1
2
log l, since (|| · ||FaltE/H)

2 = l(|| · ||FaltE )2 by the definition of || · ||Falt by the integrations on E(C)
and (E/H)(C). By combining the non-Archimedean portion and the Archimedean portion, we
have the second claim.
(3): Take v ∈ V(F )non where E has bad reduction. Then, the l-cyclic subgroup H ×F Fv

is the canonical multiplicative subgroup Fl(1) in the Tate curve E ×F Fv, by the assumption
l - v(qE,v). Then, the claim follows from that the Tate parameter of E/H is equal to l-th power
of the one of E. �

Corollary 1.14. ([GenEll, Lemma 3.5]) In the situation of Lemma 1.13 (3), we have

l

1 + ε
htωP1 ({0,1,∞})([E,α]) ≤ htωP1 ({0,1,∞})([E,α]) + log l + Cε

for some constant Cε ∈ R which (may depend on ε, however) is independent of E, F , H and l.

Remark 1.14.1. The above corollary says that if E[l] has a global multiplicative subgroup,
then the height of E is bounded. Therefore, a global multiplicative subspace M ⊂ E[l] does
not exist for general E in the moduli of elliptic curves. A “global multiplicative subgroup” is
one of the main themes of inter-universal Teichmüller theory. In inter-universal Teichmüller
theory, we construct a kind of “global multiplicative subgroup” for sufficiently general E in the
moduli of elliptic curves, by going out the scheme theory. See also Appendix A
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Proof. For ε > 0, take ε′ > 0 such that 1
1−ε′ < 1 + ε. There is a constant A′ε ∈ R such that

htωP1({0,1,∞}) ≤ 2htFalt + ε′htωP1 ({0,1,∞}) +A′ε on UP1(Q) by the second and the third inequalities

of Lemma 1.13 (1). We have htωP1({0,1,∞}) ≤ 2(1+ε)htFalt+Aε on UP1(Q) by the choice of ε′ > 0,

where Aε :=
1

1−ε′A
′
ε. By the first inequality of Lemma 1.13 (1), we have 2htFalt ≤ htωP1 ({0,1,∞})+

B for some constant B ∈ R. Put Cε := Aε + B. Then, we have l
1+ε

htnonωP1 ({0,1,∞})
([E,α]) =

1
1+ε

htnonωP1 ({0,1,∞})
([E/H, Im(α)]) ≤ 2htFalt([E/H, Im(α)]) + Aε ≤ 2htFalt([E,α]) + log l + Aε ≤

htωP1({0,1,∞})([E,α]) + log l +B, where the equality follows from Lemma 1.13 (3), and the first
inequality follows from Lemma 1.13 (2). Then, the corollary follows from that htnonωP1 ({0,1,∞})

≈
htωP1({0,1,∞}) (See just before Lemma 1.13). �
From now on, we use the assumptions and the notation in the previous subsection. We

also write log(q∀) (resp. log(q-2)) for the R-valued function on the λ-line UP1 obtained by
the normaised degree 1

[L:Q]
degL of the effictive (Q-)arithmetic divisor determined by the q-

parameters of an elliptic curve over a number field L at arbitrary non-Archimedean primes.
(resp. non-arcihmedean primes which do not divide 2). Note that log(q) in the previous
subsection avoids the primes dividing 2l, and that for a compactly bounded subset K ⊂ UP1(Q)
whose support contains the prime 2, we have log(q∀) ≈ log(q-2) on K (See [IUTchIV, Corolarry
2.2 (i)]). We also note that we have

1

6
log(q∀) ≈ htnonωP1 ({0,1,∞})

≈ htωP1 ({0,1,∞})

on P1(Q) (For the first equivalence, see the argument just before Lemma 1.13, and the proof
of Lemma 1.13 (1); For the second equivalence, see the argument just before Lemma 1.13).

Proposition 1.15. ([IUTchIV, Corollary 2.2]) Let K ⊂ UP1(Q) be a compactly bounded sub-
set with support containing Varc

Q and 2 ∈ Vnon
Q , and A ⊂ UP1(Q) a finite set containing{

[(E,α)] | #AutQ(E) 6= {±1}
}
. Then, there exists CK ∈ R>0, which depends only on K, sat-

isfying the following property: Let d ∈ Z>0, ε ∈ R>0, and set d∗ := 212.33.5.d. Then there
exists a finite subset ExcK,d,ε ⊂ UP1(Q)≤d such that ExcK,d,ε ⊃ A and satisfies the following
property: Let x = [(EF , α)] ∈ (UP1(F ) ∩ K) \ ExcK,d,ε with [F : Q] ≤ d. Write Fmod for the

field of moduli of EF := EF ×F F , and Ftpd := Fmod(EFmod
[2]) ⊂ F where EFmod

is a model
of EF over Fmod (Note that Fmod(EFmod

[2]) is independent of the choice of the model EFmod
by

the assumption of AutF (EF ) 6= {±1}, and that Fmod(EFmod
[2]) ⊂ F since [(EF , α)] ∈ UP1(F ).

See Lemma 1.7 (1)). We assume that all the points of EF [3.5] are rational over F and that
F = Ftpd(

√
−1, EFtpd

[3.5]), where EFtpd
is a model of EF over Ftpd which is defined by the

Legendre form (Note that EF ∼= EFtpd
×Ftpd

F and EF has at most semistable reduction for all
w ∈ V(F )non by Lemma 1.7 (2), (3)). Then, EF and Fmod arise from an initial Θ-data (See
Definition 10.1)

(F/F,XF , l, CK ,V,Vbad
mod, ε)

(Note that it is included in the definition of initial Θ-data that the image of the outer homomor-
phism Gal(Q/F ) → GL2(Fl) determined by EF [l] contains SL2(Fl)). Furthermore, we assume

that −| log(q)| ≤ −| log(Θ)| for EF and Fmod, which arise from an initial Θ-data. Then, we

have

htωP1 ({0,1,∞})(x) ≤ (1 + ε)(log-diffP1(x) + log-cond{0,1,∞}(x)) + CK.

Remark 1.15.1. We take A = {[(E,α)] ∈ UP1(Q) | E does not admit Q-core}. See Def-
inition 3.3 and Lemma C.3 for the definition of k-core, the finiteness of A, and that A ⊃{
[(E,α)] | #AutQ(E) 6= {±1}

}
.
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Remark 1.15.2. By Proposition 1.15, Theorem 0.1 is reduced to show −| log(q)| ≤ −| log(Θ)|
for EF and Fmod, which arise from an initial Θ-data. The inequality −| log(q)| ≤ −| log(Θ)| is
almost a tautological translation of the inequality which we want to show (See also Appendix A).
In this sense, these reduction steps are just calculations to reduce the main theorem to the
situation where we can take an initial Θ-data, i.e., the situation where the inter-universal
Teichmüller theory works, and no deep things happen in these reduction steps.

Proof. First we put ExcK,d := A, and we enlarge the finite set ExcK,d several times in the
rest of the proof in the manner that depends only on K and d, but not on x. When it will
depend on ε > 0, then we will change the notation ExcK,d by ExcK,d,ε. Take x = [(EF , α)] ∈
(UP1(F ) ∩ K) \ ExcK,d.
Let ηprm ∈ R>0 be the constant in Lemma 1.11. We take another constant ξprm ∈ R>0

determined by using the prime number theorem as follows (See [GenEll, Lemma 4.1]): We
define ϑ(x) :=

∑
prime: p≤x log p (Chebychev’s ϑ-function). By the prime number theorem (and

Proposition C.4), we have ϑ(x) ∼ x (x→∞), where ∼ means that the ration of the both side
goes to 1. Hence, there exists a constant R 3 ξprim ≥ 5 such that

(s0)
2

3
x < ϑ(x) ≤ 4

3
x

for any x ≥ ξprm.
Let h := h(EF ) = log(q∀) = 1

[F :Q]

∑
v∈V(F )non hvfv log(pv) be the summation of the contri-

butions from qv for v ∈ V(F )non, where pv and fv denote the residual characteristic at v and
the degree of extension of the residue field over Fpv respectively. Note also that hv ∈ Z≥0
and that hv = 0 if and only if EF has good reduction at v. By 1

6
log(q∀) ≈ htωP1 ({0,1,∞}) and

Proposition C.1, we there are only finiely many isomorphism classes of EF (hence finiely many

x = [EF , α]) satisfying h
1
2 < ξprm + ηprm. Therefore, by enlarging the finite set ExcK,d, we may

assume that

(s1) h
1
2 ≥ ξprm + ηprm.

Note that h
1
2 ≥ 5 since ξprm ≥ 5 and ηprm > 0. We have

2d∗h
1
2 log(2d∗h) ≥ 2[F : Q]h

1
2 log(2[F : Q]h) ≥

∑
hv 6=0

2h−
1
2 log(2hvfv log(pv))hvfv log(pv)(s2)

≥
∑
hv 6=0

h−
1
2 log(hv)hv ≥

∑
hv≥h1/2

h−
1
2 log(hv)hv ≥

∑
hv≥h1/2

log(hv),

where the third inequality follows from 2 log(pv) ≥ 2 log 2 = log 4 > 1. By [F : Q] ≤ d∗, we also
have

d∗h
1
2 ≥ [F : Q]h

1
2 =

∑
v∈V(F )non

h−
1
2hvfv log(pv) ≥

∑
v∈V(F )non

h−
1
2hv log(pv)(s3)

≥
∑

hv≥h1/2
h−

1
2hv log(pv) ≥

∑
hv≥h1/2

log(pv).

Let A be the set of prime numbers satisfying either

(S1) p ≤ h
1
2 ,

(S2) p | hv 6= 0 for some v ∈ V(F )non, or
(S3) p = pv for some v ∈ V(F )non and hv ≥ h

1
2 .

Then, we have

(S’1)
∑

p:(S1) log p = ϑ(h
1
2 ) ≤ 4

3
h

1
2 by the second inequality of (s0), and h

1
2 ≥ ξprm, which

follows from (s1),
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(S’2)
∑

p:(S2), not (S3) log p ≤
∑

hv>h1/2
log(hv) ≤ 2d∗h

1
2 log(2d∗h) by (s2), and

(S’3)
∑

p:(S3) log p ≤ d∗h
1
2 by (s3).

Then, we obtain

ϑA :=
∑
p∈A

log(p) ≤ 2h
1
2 + d∗h

1
2 + 2d∗h

1
2 log(2d∗h)(S’123)

≤ 4d∗h
1
2 log(2d∗h) ≤ −ξprm + 5d∗h

1
2 log(2d∗h),

where the first inequality follows from (S’1), (S’2), and (S’3), the second inequality follows

from 2h
1
2 ≤ d∗h

1
2 and log(2d∗h

1
2 ) ≥ log 4 > 1, and the last inequality follows from (s1). Then,

there exists a prime number l 6∈ A such that l ≤ 2(ϑA + ξprm), because otherwise we have
ϑA ≥ ϑ(2(ϑA + ξprm)) ≥ 2

3
(2(ϑA + ξprm)) ≥ 4

3
ϑA, by the second inequality of (s0), which is a

contradiction. Since l 6∈ A, we have

(P1) (upper bound of l)

(5 ≤ )h
1
2 < l ≤ 10d∗h

1
2 log(2d∗h) (≤ 20(d∗)2h2),

where the second inequality follows from that l does not satisfy (S1), the third inequal-
ity follows from l ≤ 2(ϑA + ξprm) and (S’123), and the last inequality follows from

log(2d∗h) ≤ 2d∗h ≤ 2d∗h
3
2 (since log x ≤ x for x ≥ 1),

(P2) (monodromy non-vanishing modulo l)
l - hv for any v ∈ V(F )non such that hv 6= 0, since l does not satisfy (S2), and

(P3) (upper bound of monodromy at l)

if l = pv for some v ∈ V(F )non, then hv < h
1
2 , since l does not satisfy (S3).

Claim 1: We claim that, by enlarging the finite set ExcK,d, we may assume that

(P4) there does not exist l-cyclic subgroup scheme in EF [l].

Proof of Claim 1: If there exists an l-cyclic subgroup scheme in EF [l], then by applying Corol-
lary 1.14 for ε = 1, we have l−2

2
htωP1 ({0,1,∞})(x) ≤ log l+TK ≤ l+TK (since log x ≤ x for x ≥ 1)

for some TK ∈ R>0, where TK depends only on K. Thus, htωP1 ({0,1,∞})(x) is bounded because we

have htωP1 ({0,1,∞})(x) ≤
2l
l−2 +

2
l−2TK <

14
7−2 +

2
7−2TK. Therefore, there exist only finitely many

such x = [EF , α]’s by Proposition C.1. The claim is proved.

Claim 2: Next, we claim that, by enlarging the finite set ExcK,d, we may assume that

(P5) ∅ 6= Vbad
mod := {v ∈ Vnon

mod | v - 2l, and EF has bad multiplicative reduction at v}
Proof of Claim 2: First, we note that we have

h
1
2 log l ≤ h

1
2 log(20(d∗)2h2) ≤ 2h

1
2 log(5d∗h)(p5a)

≤ 8h
1
2 log(2(d∗)

1
4h

1
4 ) ≤ 8h

1
22(d∗)

1
4h

1
4 = 16(d∗)

1
4h

3
4 .(p5b)

where the first inequality follows from (P1). If Vbad
mod = ∅, then we have h ≈ log(q-2) ≤

h
1
2 log l ≤ 16(d∗)

1
4h

3
4 on K, where the first inequality follows from (P3), and the last inequality

is (p5b). Thus, h
1
4 , hence h as well, is bounded. Therefore, there exist only finitely many such

x = [EF , α]’s by Proposition C.1. The claim is proved.

Claim 3: We also claim that, by enlarging the finite set ExcK,d, we may assume that

(P6) The image of the outer homomorphism Gal(Q/F ) → GL2(Fl) determined by EF [l]
contains SL2(Fl).
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Proof of Claim 3 (See [GenEll, Lemma 3.1 (i), (iii)]): By (P2) l - hv 6= 0 and (P5) Vbad
mod 6= ∅, the

image H of the outer homomorphism contains the matrix N+ :=

(
1 1
0 1

)
. Here, N+ generates

an l-Sylow subgroup S of GL2(Fl), and the number of l-Sylow subgroups of GL2(Fl) is precisely
l + 1. Note that the normaliser of S in GL2(Fl) is the subgroup of the upper triangular
matrices. By (P4) E[l] 6⊃ (l-cyclic subgroup), the image contains a matrix which is not upper
triangluar. Thus, the number nH of l-Sylow subgroups of H is greater than 1. On the other
hand, nH ≡ 1 (mod l) by the general theory of Sylow subgroups. Then, we have nH = l+1 since

1 < nH ≤ l+1. In particular, we have N+ =

(
1 1
0 1

)
, N− :=

(
1 0
1 1

)
∈ H. Let G ⊂ SL2(Fl) be

the subgroup generated by N+ and N−. Then, it suffices to show that G = SL2(Fl). We note
that for a, b ∈ Fl, the matrix N b

−N
a
+ (this makes sense since N l

+ = N l
− = 1) takes the vector

v :=

(
0
1

)
to

(
a

ab+ 1

)
. This implies that we have

(
F×l × Fl

)
⊂ G. This also implies that for

c ∈ F×l , there exists Ac ∈ G such that Acv =

(
c
0

)
(= cA1v). Then, we have cv = A−11 Acv ∈ Gv.

Thus, we proved that (Fl × Fl)\
{(

0
0

)}
⊂ Gv. Take any matrixM ∈ SL2(Fl). By multiplying

M by an element in G, we may assume that Mv = v, since (Fl × Fl) \
{(

0
0

)}
⊂ Gv. This

means that M ⊂
{(

1 0
∗ 1

)}
. Thus, M is a power of N−. The claim is proved.

Then, we take, as parts of initial Θ-data, F to be Q so far, F , XF , l to be the number field
F , once-punctured elliptic curve associated to EF , and the prime number, respectively, in the
above discussion, and Vbad

mod to be the set Vbad
mod of (P5). By using (P1), (P2), (P5), and (P6),

there exist data CK , V, and ε, which satisfy the conditions of initial Θ-data (See Definition 10.1.
The existence of V and ε is a consequence of (P6)), and moreover,

(P7) the resulting initial Θ-data (F/F,XF , l, CK ,V,Vbad
mod, ε) satisfies the conditions in Sec-

tion 1.3.

Now, we have −| log(q)| ≤ −| log(Θ)| by assumption, and apply Proposition 1.12 (Note that

we are in the situation where we can apply it).
Then we obtain

1

6
log(q) ≤

(
1 +

80dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 20(d∗modl + ηprm)

≤
(
1 + d∗h−

1
2

) (
log(dFtpd) + log(fFtpd)

)
+ 200(d∗)2h

1
2 log(2d∗h) + 20ηprm,(A)

where the second inequality follows from the second and third inequalities in (P1) and 80dmod <
d∗mod(:= 212.33.5.dmod) ≤ d∗(:= 212.33.5.dmod). We also have

1

6
log(q-2)− 1

6
log(q) ≤ 1

6
h

1
2 log l ≤ 1

3
h

1
2 log(5d∗h) ≤ h

1
2 log(2d∗h),(B)

where the first inequality follows from (P3) and (P5), the second inequality follows from (p5a),
and the last inequality follows from 5 < 23. We also note that

1

6
log(q∀)− 1

6
log(q-2) ≤ BK(C)
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for some constant BK ∈ R>0, which depends only on K, since log(q∀) ≈ log(q-2) on K as
remarked when we introduced log(q∀) and log(q-2) just before this proposition. By combining
(A), (B), and (C), we obtain

1

6
h =

1

6
log(q∀) ≤

(
1 + d∗h−

1
2

) (
log(dFtpd) + log(fFtpd)

)
+ (15d∗)2h

1
2 log(2d∗h) +

1

2
CK

≤
(
1 + d∗h−

1
2

) (
log(dFtpd) + log(fFtpd)

)
+

1

6
h
2

5
(60d∗)2h−

1
2 log(2d∗h) +

1

2
CK,(ABC)

where we put CK := 40ηprm + 2BK, the first inequality follows from 200 < 152, the second

inequality follows from 1 < 32
30

= 1
6
2
5
42. Here, we put εE := (60d∗)2h−

1
2 log(2d∗h) (≥ 5d∗h−

1
2 ).

We have

εE ≤ 4(60d∗)2h−
1
2 log(2(d∗)

1
4h

1
4 ) ≤ 4(60d∗)3h−

1
2h

1
4 = 4(60d∗)3h−

1
4 .(Epsilon)

Take any ε > 0. If εE > min{1, ε}, then h 1
4 , hence h as well, is bounded by (Epsilon). Therefore,

by Proposition C.1, by replacing the finite set ExcK,d by a finite set ExcK,d,ε, we may assume
that εE ≤ min{1, ε}. Then, finally we obtain

1

6
h ≤

(
1− 2

5
εE

)−1(
1 +

1

5
εE

)(
log(dFtpd) + log(fFtpd)

)
+

(
1− 2

5
εE

)−1
1

2
CK

≤ (1 + εE)
(
log(dFtpd) + log(fFtpd)

)
+ CK

≤ (1 + ε)
(
log-diffP1(xE) + log-cond{0,1,∞}(xE)

)
+ CK,

where the first inequality follows from the definition of εE and ε ≥ 5d∗h−
1
2 , the second inequality

follows from
1+ 1

5
εE

1− 2
5
εE
≤ 1+εE (i.e., εE(1−εE) ≥ 0, which holds since εE ≤ 1), and 1− 2

5
εE ≥ 1

2
(i.e.,

εE ≤ 5
4
, which holds since εE ≤ 1), and the third inequality follows from εE ≤ ε, log-diffP1(xE) =

log(dFtpd) by definition, and log(fFtpd) ≤ log-cond{0,1,∞}(xE) (Note that Supp(f) excludes the
places dividing 2l in the definition). Now the proposition follows from 1

6
log(q∀) ≈ htωP1 ({0,1,∞})

on P1(Q) as remarked just before this proposition (by the effect of this ≈, the CK in the
statement of the proposition may differ from the CK in the proof). �

Remark 1.15.3. (Miracle Identity) As shown in the proof, the reason that the main term

of the inequality is 1 (i.e., ht ≤ ( 1 + ε)(log-diff + log-cond) + bounded term) is as follows
(See the calculations in the proof of Lemma 1.10): On one hand (ht-side), we have an average

6 1
2l

1
l/2

∑l/2
j=1 j

2 ≈ 6 1
2l

1
l/2

1
3

(
l
2

)3
= l

4
. Note that we multiply 1

2l
since the theta function under

consideration lives in a covering of degree 2l, and that we multiply 6 since the degree of λ-line

over j-line is 6. On the other hand ((log-diff +log-cond)-side), we have an average 1
l/2

∑l/2
j=1 j ≈

1
l/2

1
2

(
l
2

)2
= l

4
. These two values miraculously coincide! In other words, the reason that the

main term of the inequality is 1 comes from the equality

6 (the degree of λ-line over j-line)× 1

2
(theta function involves a double covering)

× 1

22
(the exponent of theta series is quadratic)× 1

3
(the main term of

n∑
j=1

j2 ≈ n3/3)

=
1

21
(the terms of differents are linear)× 1

2
(the main term of

n∑
j=1

j ≈ n2/2).

This equality was already observed in Hodge-Arakelove theory, and motivates the definition
of the Θ-link (See also Appendix A). Mochizuki firstly observed this equality, and next he
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established the framework (i.e. going out of the scheme theory and studying inter-universal
geometry) in which these calculations work (See also [IUTchIV, Remark 1.10.1]).
Note also that it is already known that this main term 1 cannot be improved by Masser’s

calculations in analytic number theory (See [Mass2]).

Remark 1.15.4. (ε-term) In the proof of Proposition 1.15, we also obtained an upper bound
of the second main term (i.e., the main behaviour of the term involved to ε) of the Diophantine
inequality (when restricted to K):

ht ≤ δ + ∗δ
1
2 log(δ)

on K, where ∗ is a positive real constant, ht := htωP1 ({0,1,∞}) and δ := log-diffP1 +log-cond{0,1,∞}
(See (ABC) in the proof of Proposition 1.15) It seems that the exponent 1

2
suggests a possible

relation to Riemann hypothesis. For more informations, see [IUTchIV, Remark 2.2.1] for
remarks on a possible relation to inter-universal Melline transformation, and [vFr], [Mass2]
for lower bounds of the ε-term from analytic number theory.

Remark 1.15.5. (Uniform ABC) So-called uniform abc conjecture (uniformity with respect
to d of the bounded discrepancy in the Diophantine inequality) is not proved yet, however, we
have an estimate of the dependence on d of our upper bound as follows (cf. [IUTchIV, Corollary
2.2 (ii), (iii)]): For any 0 < εd ≤ 1, put ε∗d :=

1
16
εd(<

1
2
). Then, we have

min{1, ε}−1εE = min{1, ε}−1(60d∗)2h−
1
2 log(2d∗h) = (min{1, ε}ε∗d)−1(60d∗)2h−

1
2 log(2ε

∗
d(d∗)ε

∗
dhε

∗
d)

≤ (min{1, ε}ε∗d)−1(60d∗)2+ε
∗
dh−(

1
2
−ε∗d) ≤

(
(min{1, ε}ε∗d)−3(60d∗)4+εdh−1

) 1
2
−ε∗d ,

where the first inequality follows from h
1
2 ≥ 5, and x ≤ log x for x ≥ 1, and the second inequality

follows from −3(1
2
− ε∗d) = −3

2
+ 3

16
εd ≤ −21

16
< −1 and (1

2
− ε∗d)(4 + εd) = − 1

16
ε2d +

1
4
εd + 2 ≥

1
4
εd+2 ≥ ε∗d+2. We recall that, at the final stage of the proof of Proposition 1.15, we enlarged

ExcK,d to ExcK,d,ε so that it includes the points satisfying εE > min{1, ε}. Now, we enlarge ExcK,d
to ExcK,d,ε,εd , which depends only on K, d, ε, and εd, so that it includes the points satisfying
εE > min{1, ε}. Therefore, we obtain an inequality

ht :=
1

6
h ≤ Hunif min{1, ε}−3ε−3d d4+εd +HK

on ExcK,d,ε,εd , where Hunif ∈ R>0 is independent of K, d, ε, and εd, and HK ∈ R>0 depends only
on K. The above inequality shows an explicit dependence on d of our upper bound.

2. Preliminaries on Anabelian Geometry.

In this section, we give some reviews on the preliminaries on anabelian geometry which will
be used in the subsequent sections.

2.1. Some Basics on Galois Groups of Local Fields.

Proposition 2.1. ([AbsAnab, Proposition 1.2.1]) For i = 1, 2, let Ki be a finite extension of
Qpi with residue field ki, and Ki be an algebraic closure of Ki with residue field ki (which is
an algebraic closure of ki). Let e(Ki) denote the ramification index of Ki over Qpi and put
f(Ki) := [ki : Fpi ]. Put GKi

:= Gal(Ki/Ki), and let PKi
⊂ IKi

(⊂ GKi
) denote the wild inertia

subgroup and the inertia subgroup of GKi
respectively. Let α : GK1

∼→ GK2 be an isomorphism
of profinite groups. Then, we have the following:

(1) p1 = p2 (=: p).

(2) The abelianisation αab : Gab
K1

∼→ Gab
K2
, and the inclusions k×i ⊂ O×Ki

⊂ K×i ⊂ Gab
Ki
, where

the last inclusion is defined by the local class field theory, induce isomorphisms
(a) αab : k×1

∼→ k×2 ,
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(b) αab : O×K1

∼→ O×K2
,

(c) αab : O�
K1

∼→ O�
K2

(cf. Section 0.2 for the notation O�
Ki
), and

(d) αab : K×1
∼→ K×2 .

(3) (a) [K1 : Qp] = [K2 : Qp],
(b) f(K1) = f(K2), and
(c) e(K1) = e(K2).

(4) The restrictions of α induce

(a) α|IK1
: IK1

∼→ IK2, and

(b) α|PK1
: PK1

∼→ PK2.

(5) The induced map Gab
K1
/IK1

∼→ Gab
K2
/IK2 preserves the Frobenius element FrobKi

(i.e., the

automorphism given by ki 3 x 7→ x#ki).

(6) The collection of the isomorphisms
{
(α|U1)

ab : Uab
1
∼→ Uab

2

}
GK1

open
⊃ U1

α
∼−→U2⊂GK2

induces

an isomorphism µQ/Z(K1)
∼→ µQ/Z(K2), which is compatible with the actions of GKi

for

i = 1, 2, via α : GK1

∼→ GK2. In particular, α preserves the cyclotomic characters χcyc,i

for i = 1, 2.
(7) The isomorphism α∗ : H2(Gal(K2/K2), µQ/Z(K2))

∼→ H2(Gal(K1/K1), µQ/Z(K1)) in-

duced by α is compatible with the isomorphisms H2(Gal(Ki/Ki), µQ/Z(Ki))
∼→ Q/Z in

the local class field theory for i = 1, 2.

Remark 2.1.1. In the proof, we can see that the objects in the above (1)–(7) are functorially
reconstructed by using only K1 (or K2), and we have no need of both of K1 and K2, nor the
isomorphism α (i.e., no need of referred models). In this sense, the reconstruction algorithms
in the proof are in the “mono-anabelian philosophy” of Mochizuki (See also Remark 3.4.4
(2), (3)).

Proof. We can group-theoretically reconstruct the objects in (1)-(7) from GKi
as follows:

(1): pi is the unique prime number which attains the maximum of
{
rankZl

Gab
Ki

}
l: prime

, by the

local class field theory Gab
Ki

∼= (K×i )
∧.

(2a): k×i
∼= (Gab

Ki
)prime-to-p
tors the prime-to-p part of the torsion subgroup of Gab

Ki
, where p is

group-theoretically reconstructed in (1).
(3a): [Ki : Qp] = rankZpG

ab
Ki
− 1, where p is group-theoretically reconstructed in (1).

(3b): pf(Ki) = #(k×i ) + 1, where ki and p are group-theoretically reconstructed in (2a) and
(1) respectively.
(3c): e(Ki) = [Ki : Qp]/f(Ki), where the numerator and the denominator are group-

theoretically reconstructed in (3a) and (3b) respectively.
(4a): IKi

=
∩
GKi
⊃U : open, e(U)=e(GKi

) U , where e(U) denotes the number group-theoretically

constructed from U in (3c) (i.e., e(U) := (rankZpU
ab − 1)/ logp(#(Uab)prime-to-p

tors + 1), where

{p} :=
{
p | rankZpG

ab
Ki

= maxl rankZl
Gab
Ki

}
and logp is the (real) logarithm with base p).

(4b): PKi
= (IKi

)pro-p the pro-p part of IKi
, where IKi

is group-theoretically reconstructed in
(4a).
(2b): O×Ki

∼= Im (IKi
) := Im

{
IKi

↪→ GKi
� Gab

Ki

}
by the local class field theory, where IKi

is
group-theoretically reconstructed in (4a).
(5): The Fronbenius element FrobKi

is characterised by the element inGKi
/IKi

(∼= Gab
Ki
/Im (IKi

))

such that the conjugate action on IKi
/PKi

is a multiplication by pf(Ki) (Here we regard the
topological group IKi

/PKi
additively), where IKi

and PKi
are group-theoretically reconstructed

in (4a) and (4b) respectively.
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(2c): We reconstruc O�
Ki

by the following pull-back diagram:

0 // Im (IKi
) // Gab

Ki
// Gab

Ki
/Im (IKi

) // 0

0 // Im (IKi
) //

=

OO

O�
Ki

//
?�

OO

Z≥0FrobKi
//

?�

OO

0,

where IKi
and FrobKi

are group-theoretically reconstructed in (4a) and (5) respectively.
(2d): In the same way as in (2c), we reconstruc K×i by the following pull-back diagram:

0 // Im (IKi
) // Gab

Ki
// Gab

Ki
/Im (IKi

) // 0

0 // Im (IKi
) //

=

OO

K×i
//

?�

OO

ZFrobKi
//

?�

OO

0,

where IKi
and FrobKi

are group-theoretically reconstructed in (4a) and (5) respectively.
(6): Let L be a finite extension of Ki. Then, we have the Verlangerung (or transfer)

Gab
Ki
→ Gab

L of GL ⊂ GKi
by the norm map Gab

Ki

∼= H1(GKi
,Z) → H1(GL,Z) ∼= Gab

L in
group homology, which is a group-theoretic construction (Or, we can explicitly construct the
Verlangerung Gab

Ki
↪→ Gab

L without group homology as follows: For x ∈ GKi
, take a lift x̃ ∈ GKi

of x. Let GKi
=
∐

i giGL denote the coset decomposition, and we write x̃gi = gj(i)xi for each

i, where xi ∈ GL. Then the Verlangerung is given by Gab
Ki
3 x 7→ (

∏
i ximod [GL, GL]) ∈ Gab

L ,

where [GL, GL] denotes the topological closure of the commutator subgroup [GL, GL] of GL).
Then, this reconstructs the inclusion K×i ↪→ L×, by the local class field theory and the re-
construction in (2d). The conjugate action of GKi

on GL � Gab
L preserves L× ⊂ Gab

L by the
reconstruction of (2d). This reconstructs the action of GKi

on L×. By taking the limit, we

reconstruct Ki
×
, hence µQ/Z(Ki) = Q/Z⊗Ẑ Hom(Q/Z, Ki

×
) equipped with the action of GKi

.

(7): The isomorphism H2(Gal(Ki/Ki), µQ/Z(Ki))
∼→ Q/Z is defined by the composition

H2(Gal(Ki/Ki), µQ/Z(Ki))
∼→ H2(Gal(Ki/Ki), Ki

×
)
∼←− H2(Gal(Kur

i /Ki), (K
ur
i )×)

∼→ H2(Gal(Kur
i /Ki),Z)

∼←− H1(Gal(Kur
i /Ki),Q/Z) = Hom(Gal(Kur

i /Ki),Q/Z)
∼→ Q/Z,

where the first isomorphism is induced by the canonical inclusion µQ/Z(Ki) ↪→ Ki
×
, the multi-

plicative group (Kur
i )× (not the fieldKur

i ) of the maximal unramified extensionKur
i ofKi and the

Galois group Gal(Kur
i /K) are group-theoretically reconstructed in (2d) and (4a) respectively,

the third isomorphism is induced by the valuation (Kur
i )× � Z, which is group-theoretically

reconstructed in (2b) and (2d), the fourth isomorphism is induced by the long exact sequence
associated to the short exact sequence 0 → Z → Q → Q/Z → 0, and the last isomorphism is
induced by the evaluation at FrobKi

, which is group-theoretically reconstructed in (5). Thus,
the above composition is group-theoretically reconstructed. �

2.2. Arithmetic Quotients.

Proposition 2.2. ([AbsAnab, Lemma 1.1.4]) Let F be a field, and put G := Gal(F/F ) for a
separable closure F of F . Let

1→ ∆→ Π→ G→ 1

be an exact sequence of profinite groups. We assume that ∆ is topologically finitely generated.

(1) Assume that F is a number field. Then ∆ is group-theoretically characterised in Π by
the maximal closed normal subgroup of Π which is topologically finitely generated.
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(2) (Tamagawa) Assume that F is a finite extension of Qp. For an open subgroup Π′ ⊂ Π,
we put ∆′ := Π′ ∩ ∆ and G′ := Π′/∆′, and let G′ act on (∆′)ab by the conjugate. We
also assume that

∀Π′ ⊂ Π : open, Q :=
(
(∆′)

ab
)
G′

/
(tors) is a finitely generated free Ẑ-module,(Tam1)

where (·)G′ denotes the G′-coinvariant quotient, and (tors) denotes the torsion part of
the numerator. Then, ∆ is group-theoretically characterised in Π as the intersection of
those open subgroups Π′ ⊂ Π such that, for any prime number l 6= p, we have

dimQp (Π
′)
ab ⊗Ẑ Qp − dimQl

(Π′)
ab ⊗Ẑ Ql(Tam2)

= [Π : Π′]
(
dimQp (Π)

ab ⊗Ẑ Qp − dimQl
(Π)ab ⊗Ẑ Ql

)
,

where p is also group-theoretically characterised as the unique prime number such that
dimQp (Π)

ab ⊗Ẑ Qp − dimQl
(Π)ab ⊗Ẑ Ql 6= 0 for infinitely many prime numbers l.

Proof. (1): This follows from the fact that every topologically finitely generated closed normal
subgroup of Gal(F/F ) is trivial (See [FJ, Theorem 15.10]).
(2): We have the inflation-restriction sequence associated to 1→ ∆→ Π→ G→ 1:

1→ H1(G,Q/Z)→ H1(Π,Q/Z)→ H1(∆,Q/Z)G → H2(G,Q/Z),
where (·)G denotes the G-invariant submodule. For the last term H2(G,Q/Z), we also have
H2(G,Q/Z) = lim−→n

H2(G, 1
n
Z/Z) ∼= lim−→n

Hom(H0(G,µn),Q/Z) ∼= Hom(lim←−nH
0(G,µn),Q/Z) =

0 by the local class field theory. Thus, by taking Hom(−,Q/Z) of the above exact sequence,
we obtain an exact sequence

0→
(
∆ab

)
G
→ Πab → Gab → 0.

Take the finite extension F ′ corresponding to an open subgroup G′ ⊂ G. Then, by the assump-
tion of (Tam1), we obtain

dimQp (Π
′)
ab ⊗Ẑ Qp − dimQl

(Π′)
ab ⊗Ẑ Ql

= dimQp (G
′)
ab ⊗Ẑ Qp − dimQl

(G′)
ab ⊗Ẑ Ql = [F ′ : Qp],

where the last equality follows from the local class field theory. The group-theoretic charac-
terisation of p follows from the above equalies. The above equalites also imply that (Tam2)
is equivalent to [F ′ : Qp] = [Π : Π′][F : Qp], which is equivalent to [Π : Π′] = [G : G′], i.e.,
∆ = ∆′. This proves the second claim of the proposition. �
Lemma 2.3. ([AbsAnab, Lemma 1.1.5]) Let F be a non-Archimedean local field, and A a
semi-abelian variety over F . Take an algebraic closure F of F , and put G := Gal(F/F ). Let
T (A) := Hom(Q/Z, A(F )) denote the Tate module of A. Then, Q := T (A)G/(tors) is a finitely

generated free Ẑ-module.

Proof. We have an extension 0 → S → A → A′ → 0 of group schemes over F , where S is a

torus and A′ is an abelian variety over F . Then T (S) ∼= Ẑ(1)⊕n for some n after restristing on
an open subgroup of G, where T (S) is the Tate module of T . Thus, the image of T (S) in Q is
trivial. Therefore, we may assume that A is an abelian variety. By [SGA7t1, Exposé IX §2],
we have extensions

0→ T (A)≤−1 → T (A)→ T (A)0 → 0,

0→ T (A)−2 → T (A)≤−1 → T (A)−1 → 0

of G-modules, where T (A)≤−1 and T (A)≤−2 are the “fixed part” and the “toric part” of T (A)
respectively in the terminology of [SGA7t1, Exposé IX §2], and we have isomorphisms T (A)−1 ∼=
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T (B) for an abelian variety B over F which has potentially good reduction, and T (A)0 ∼=
M0 ⊗Z Ẑ, T (A)−2 ∼= M−2 ⊗Z Ẑ(1), where M0 and M−2 are finitely generated free Z-modules
and G acts both on M0 and M−2 via finite quotients. Thus, the images of T (A)−2 and T (A)−1

in Q are trivial (by the Weil conjecture proved by Weil for abelian varieties in the latter case).

Therefore, we obtain Q ∼= (T (A)0)G/(tors), which is isomorphic to (M0)G/(tors)⊗Z Ẑ, since Ẑ
is flat over Z. Now the lemma follows, since (M0)G/(tors) is free over Z. �
Corollary 2.4. We have a group-theoretic characterisation of ∆ = π1(XF , x) in Π = π1(X, x)
as Proposition 2.2 (2) (Tam2), where X is a geometrically connected smooth hyperbolic curve
over a finite extension F of Qp, and s : SpecF → X a geometric point lying over SpecF (which
gives a geometric point s on XF := X ×F F via XF → X).

Remark 2.4.1. Let Σ be a set of prime numbers such that p ∈ Σ and #Σ ≥ 2. In the situation
of Corollary 2.4, let ∆Σ be the maximal pro-Σ quotient, and put ΠΣ := Π/ker(∆� ∆Σ). Then,
the algorithm of Proposition 2.2 (2) works for ΠΣ as well, hence Corollary 2.4.1 holds for ΠΣ

as well.

Proof. The corollary immediately follows from Proposition 2.2 (2) and Lemma 2.3. �
2.3. Slimness and Commensurable Terminality.

Definition 2.5. (1) Let G be a profinite group. We say that G is slim if we have ZG(H) =
{1} for any open subgroup H ⊂ G.

(2) Let f : G1 → G2 be a continuous homomorhism of profinite groups. We say that G1

relatively slim over G2 (via f), if we have ZG2(Im{H → G2}) = {1} for any open
subgroup H ⊂ G1.

Lemma 2.6. ([AbsAnab, Remark 0.1.1, Remark 0.1.2]) Let G be a profinite gruop, and H ⊂ G
a closed subgroup of G.

(1) If H ⊂ G is relatively slim, then both of H and G are slim.
(2) If H ⊂ G is commensurably terminal and H is slim, then H ⊂ G is relatively slim.

Proof. (1): For any open subgroup H ′ ⊂ H, we have ZH(H
′) ⊂ ZG(H

′) = {1}. For any open
subgroup G′ ⊂ G, we have ZG(G

′) ⊂ ZG(H ∩G′) = {1}, since H ∩G′ is open in H.
(2): Take an open subgroup H ′ ⊂ H. The natural inclusion CG(H) ⊂ CG(H

′) is an equality
since H ′ is open in H. Then, we have ZG(H

′) ⊂ CG(H
′) = CG(H) = H. This combined with

ZH(H
′) = {1} implies ZG(H

′) = {1}. �
Proposition 2.7. ([AbsAnab, Theorem 1.1.1, Corollary 1.3.3, Lemma 1.3.1, Lemma 1.3.7])
Let F be a number field, and v a non-Archimedean place. Let Fv be an algebraic closure of Fv,
F the algebraic closure of F in Fv.

(1) Put G := Gal(F/F ) ⊃ Gv := Gal(Fv/Fv).
(a) Gv ⊂ G is commensurably terminal,
(b) Gv ⊂ G is relatively slim,
(c) Gv is slim, and
(d) G is slim.

(2) Let X be a hyperbolic curve over F . Take a geometric point s : SpecFv → XFv
:= X×F

Fv lying over SpecFv (which gives geometric points s on XF := X×FF , XFv := X×FFv,
and X via XFv

→ XF → X, and XFv
→ XFv → X). Put ∆ := π1(XF , s)

∼= π1(XFv
, s),

Π := π1(X, s), and Πv := π1(XFv , s). Let x be any cusp of XF (i.e., a point of the unique
smooth compactification of XF over F which does not lie in XF ), and Ix ⊂ ∆ (well-
defined up to conjugates) denote the inertia subgroup at x (Note that Ix is isomorphic

to Ẑ(1)). For any prime number l, let I
(l)
x → ∆(l) denote the maximal pro-l quotient of
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Ix ⊂ ∆ (Note that I
(l)
x is isomorphic to Zl(1) and that it is easy to see that I

(l)
x → ∆(l)

is injective).
(a) ∆ is slim,
(b) Π and Πv are slim, and

(c) I
(l)
x ⊂ ∆(l) and Ix ⊂ ∆ are commensurably terminal.

Remark 2.7.1. Furthermore, we can show that Gal(F/F ) is slim for any Kummer-faithful
field F (See Remark 3.17.3).

Proof. (1)(a)(See also [NSW, Corollary 12.1.3, Corollary 12.1.4]): First, we claim that any
subfield K ⊂ F with K 6= F has at most one prime ideal which is indecomposable in F . Proof
of the claim: Let p1 6= p2 be prime ideals in K which do not split in F . Let f1 ∈ K[X] be any
irreducible polynomial of degree d > 0, and f2 ∈ K[X] a completely split separable polynomial
of the same degree d. By the approximation theorem, for any ε > 0 there exists f ∈ K[X] a
polynomial of degree d, such that |f − f1|p1 < ε and |f − f2|p2 < ε. Then, for sufficiently small
ε > 0 the splitting fields of f and fi over Kpi coincide for i = 1, 2 by Krasner’s lemma. By
assumption that p1 6= p2 do not split in F , the splitting fields of f1 and f2 over K coincide.
Then, we have K = F , since splitting field of f2 is K, and f1 is any irreducible polynomial.
The claim is proved. We show (1a). We specify a base point of Gv to kill the conjugacy
indeterminacy, that is, we take a place ṽ in Kv over v, and we use Gṽ instead of Gv. Take any
g ∈ CG(Gṽ). Then Gṽ ∩Ggṽ 6= {1}, since Gṽ ∩ gGṽg

−1 = Gṽ ∩Ggṽ has finite index in Gṽ. Then
the above claim implies that Gṽ ∩Ggṽ = Gṽ, i.e., gṽ = ṽ. Thus, we have g ∈ Gṽ.
(c): Let GK ⊂ Gv be an open subgroup, and g ∈ ZGv(GK). Then for any finite Galois

extension L over K, the action of g on GL, hence on Gab
L , is trivial. By the local class field

theory, the action of g on L× is also trivial. Thus, we have g = 1, since L is any extension over
K.
(b) follows from (a), (c), and Lemma 2.6 (2).
(d) follows from (b) and Lemma 2.6 (1).
(2)(a): This is similar to the proof of (1c). Let H ⊂ ∆ be an open subgroup. Let XH → XF

denote the finite étale covering corresponding to H. We take any sufficiently small open normal
subgroup H ′ ⊂ ∆ such that H ′ ⊂ H and the corresponding finite étale covering XH′ → XH has
the canonical compactification XH′ of genus > 1. We have an identification H ′ = π1(XH′ , y)
for a basepoint y. Let JH′ := Jac(XH′) with the origin O denote the Jacobian variety of XH′ .
Take an element g ∈ ∆. Then we have the following commutative diagram of pointed schemes:

(XH′ , y) �
� //

gX

��

(XH′ , y)
fy //

gX

��

(JH′ , O)

gJ

��
(XH′ , g(y)) �

� // (XH′ , g(y))
fg(y) // (JH′ , g(O)),

which induces

π1(XH′ , y) // //

gX∗
��

π1(JH′ , O)
∼ //

gJ∗
��

T (JH′ , O)

gJ∗
��

π1(XH′ , g(y)) // // π1(JH′ , g(O))
∼ // T (JH′ , g(O)),

where T (JH′ , O) and T (JH′ , g(O)) denote the Tate modules of JH′ with origin O and g(O)
respectively (Note that we have the isomorphisms from π1 to the Tate modules, since F is
of characteristic 0). Here, the morphism gJ : (JH′ , O) → (JH′ , g(O)) is the composite of an
automorphism (gJ)′ : (JH′ , O) → (JH′ , O) of abelian varieties and an addition by g(O). We
also have a conjugate action conj(g) : H ′ = π1(XH′ , y)→ π1(XH′ , g∗(y)) = gH ′g−1 = H ′, which
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induces an action conj(g)ab : (H ′)ab → (H ′)ab. This is also compatible with the homomorphism
induced by (gJ)′:

(H ′)ab // //

conj(g)ab

��

T (JH′ , O)

(gJ )′∗
��

(H ′)ab // // T (JH′ , O).

Assume that g ∈ Z∆(H). Then the conjugate action of g on H ′, hence on (H ′)ab, is trivial. By
the surjection (H ′)ab � T (JH′ , O), the action (gJ)′∗ : T (JH′ , O) → T (JH′ , O) is trivial. Thus,
the action (gJ)′ : (JH′ , O)→ (JH′ , O) is also trivial, since the torsion points of JH′ are dense in
JH′ . Therefore, the morphism gJ : (JH′ , O)→ (JH′ , g∗(O)) of pointed schemes is the addition by

g(O). Then, the compatibility of gX : (XH′ , y) → (XH′ , g(y)) and gJ : (JH′ , O) → (JH′ , g(O))

with respect to fy and fg(y) (i.e., the first commutative diagram) implies that gX : (XH′ , y)→
(XH′ , g(y)), hence gX : (XH′ , y) → (XH′ , g(y)), is an identity morphism by (the uniqueness
assertion of) Torelli’s theorem (See [Mil, Theorem 12.1 (b)]). Then, we have g = 1, since H ′ is
any sufficiently small open subgroup in H.
(b) follows from (a), (1c), and (1d).

(c): This is similar to the proof of (1a). We assume that C∆(Ix) 6= Ix (resp. C∆(l)(I
(l)
x ) 6= I

(l)
x ).

Take g ∈ C∆(Ix) (resp. C∆(l)(I
(l)
x )) which is not in Ix (resp. I

(l)
x ). Since g 6∈ Ix (resp. g 6∈ I(l)x ),

we have a finite Galois covering (resp. a finite Galois covering of degree a power of l) Y → XF

(which is unramified over x) and a cusp y of Y over x such that y 6= g(y). By taking sufficiently
small ∆Y ⊂ ∆ (resp. ∆Y ⊂ ∆(l)), we may assume that Y has a cusp y′ 6= y, g(y). We have

Ig(y) = gIyg
−1 (resp. I

(l)
g(y) = gI

(l)
y g−1). Since Iy ∩ Ig(y) (resp. I(l)y ∩ I(l)g(y)) has a finite index in Iy

(resp. I
(l)
y ), we have a finite Galois covering (resp. a finite Galois covering of degree a power

of l) Z → Y such that Z has cusps z, g(z), and z′ lying over y, g(y), and y′ respectively, and

Iz = Ig(z) (resp. I
(l)
z = I

(l)
g(z)), i.e., z and g(z) have conjugate inertia subgroups in ∆Z (resp.

∆
(l)
Z ) (Note that inertia subgroups are well-defined up to inner conjugate). On the other hand,

we have abelian coverings of Z which are totally ramified over z and not ramified over g(z),
since we have a cusp z′ other than z and g(z) (Note that the abelianisation of a surface relation
γ1 · · · γn

∏g
i=1[αi, βi] = 1 is γ1 · · · γn = 1, and that if n ≥ 3, then we can choose the ramifications

at γ1 and γ2 independently). This contradicts that z and g(z) have conjugate inertia subgroups

in ∆Z (resp. ∆
(l)
Z ). �

2.4. Characterisation of Cuspidal Decomposition Groups. Let k a finite extension of
Qp. For a hyperbolic curve X of type (g, r) over k, let ∆X and ΠX denote the geometric

fundamental group (i.e., π1 of Xk := X×k k) and the arithmetic fundamental group (i.e., π1 of
X) of X for some basepoint, respectively. Note that we have a group-theoretic characterisation
of the subgroup ∆X ⊂ ΠX (hence, the quotient ΠX � Gk) by Corollary 2.4. For a cusp x,
we write Ix and Dx for the inertia subgroup and the decomposition subgroup at x in ∆X and
in ΠX respectively (they are well-defined up to inner automorphism). For a prime number l,

we also write I
(l)
x and ∆

(l)
X for the maximal pro-l quotient of Ix and ∆X , respectively. Put also

Π
(l)
X := ΠX/ker(∆X � ∆

(l)
X ). Then we have a short exact sequence 1→ ∆

(l)
X → Π

(l)
X → Gk → 1.

Lemma 2.8. ([AbsAnab, Lemma 1.3.9], [AbsTopI, Lemma 4.5]) Let X be a hyperbolic curve
of type (g, r) over k.

(1) X is not proper (i.e., r > 0) if and only if ∆X is a free profinite group (Note that this
criterion is group-theoretic ).
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(2) We can group-theoretically reconstruct (g, r) from ΠX as follows:

r = dimQl

(
∆ab
X ⊗Ẑ Ql

)wt=2 − dimQl

(
∆ab
X ⊗Ẑ Ql

)wt=0
+ 1 if r > 0, for l 6= p,

g =

{
1
2

(
dimQl

∆ab
X ⊗Ẑ Ql − r + 1

)
if r > 0,

1
2
dimQl

∆ab
X ⊗Ẑ Ql if r = 0 for any l,

where (−)wt=w with w ∈ Z is the subspace on which the Frobenius at p acts with eigen-
values of weight w, i.e., algebraic numbers with absolute values q

w
2 (Note that the weight

is independent of the choice of a lifting of the Frobenius element Frobk to Gk in the

extension 1 → Ik → Gk → ẐFrobk → 1, since the action of the inertia subgroup on
∆ab
X is quasi-unipotent). Here, note also that Gk and ∆X are group-theoretically recon-

structed from ΠX by Corollary 2.4, the prime number p, the cardinality q of the residue
field, and the Frobenius element Frobk are group-theoretically reconstructed from Gk by
Proposition 2.1 (1), (1) and (3b), and (5) respectively (See also Remark 2.1.1).

Remark 2.8.1. By the same group-theoretic algorithm as in Lemma 2.8, we can also group-

theoretically reconstruct (g, r) from the extension datum 1 → ∆
(l)
X → Π

(l)
X → Gk → 1 for any

l 6= p (i.e., in the case where the quotient Π
(l)
X � Gk is given).

Proof. (1): Trivial (Note that, in the proper case, the non-vanishing of H2 implies the non-
freeness of ∆X). (2): Let X ↪→ X be the canonical smooth compactification. Then, we have

r − 1 = dimQl
ker
{
∆ab
X ⊗Ẑ Ql � ∆ab

X
⊗Ẑ Ql

}
= dimQl

ker
{
∆ab
X ⊗Ẑ Ql � ∆ab

X
⊗Ẑ Ql

}wt=2

= dimQl
(∆ab

X ⊗Ẑ Ql)
wt=2 − dimQl

(∆ab
X
⊗Ẑ Ql)

wt=2

= dimQl
(∆ab

X ⊗Ẑ Ql)
wt=2 − dimQl

(∆ab
X
⊗Ẑ Ql)

wt=0

= dimQl
(∆ab

X ⊗Ẑ Ql)
wt=2 − dimQl

(∆ab
X ⊗Ẑ Ql)

wt=0,

where the forth equality follows from the self-duality of ∆X . The rest of the lemma (the formula
for g) is trivial. �
Corollary 2.9. ([NodNon, Lemma 1.6 (ii)⇒(i)]) Let X be an affine hyperbolic curves over k,
and X the canonical smooth compactification. We have the following group-theoretic charac-
terisations or reconstructions from ΠX :

(1) The natural surjection ∆X � ∆X (resp. ∆
(l)
X � ∆

(l)

X
for any l 6= p) is group-theoretically

characterised as follows: An open subgroup H ⊂ ∆X (resp. H ⊂ ∆
(l)
X ) is contained in

ker(∆X � ∆X) (resp. ker(∆
(l)
X � ∆

(l)

X
)) if and only if r(XH) = [∆X : H]r(X) (resp.

r(XH) = [∆
(l)
X : H]r(X)), where XH is the coverings corresponding to H ⊂ ∆X , and

r(−)’s are their number of cusps (Note that r(−)’s are group-theoretically computed by
Lemma 2.8 (2) and Remark 2.8.1.

(2) The inertia subgroups of cusps in ∆
(l)
X for any l 6= p are characterised as follows: A

closed subgroup A ⊂ ∆
(l)
X which is isomorphic to Zl is contained in the inertia subgroup

of a cusp if and only if, for any open subgroup ∆
(l)
Y ⊂ ∆

(l)
X , the composite

A ∩∆
(l)
Y ⊂ ∆

(l)
Y � ∆

(l)

Y
� (∆

(l)

Y
)ab

vanishes. Here, Y denotes the canonical smooth compactification of Y (Note that the

natural surjection ∆
(l)
Y � ∆

(l)

Y
has a group-theoretic characterisation in (1)).

(3) We can reconstruct the set of cusps of X as the set of ∆
(l)
X -orbits of the inertia subgroups

in ∆
(l)
X via conjugate actions by Proposition 2.7 (2c) (Note that inertia subgroups in ∆

(l)
X

have a group-theoretic characterisation in (2)).



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 39

(4) By functorially reconstructing the cusps of any covering Y → X from ∆Y ⊂ ∆X ⊂ ΠX ,

we can reconstruct the set of cusps of the universal pro-covering X̃ → X (Note that the
set of cusps of Y is reconstructed in (3)).

(5) We can reconstruct inertia subgroups in ∆X as the subgroups that fix some cusp of the

universal pro-covering X̃ → X of X determined by the basepoint under consideration

(Note that the set of cusps of X̃ is reconstructed in (4)).

(6) We have a characterisation of decomposition groups D of cusps in ΠX (resp. in Π
(l)
X

for any l 6= p) as D = NΠX
(I) (resp. D = N

Π
(l)
X
(I)) for some inertia subgroup in ∆X

(resp. in ∆
(l)
X ) by Proposition 2.7 (2c) (Note that inertia subgroups in ∆X and ∆

(l)
X are

reconstructed in (5) and in (2) respectively).

Remark 2.9.1. (See also [IUTchI, Remark 1.2.2, Remark 1.2.3]) The arguments in [AbsAnab,
Lemma 1.3.9], [AbsTopI, Lemma 4.5 (iv)], and [CombGC, Theorem 1.6 (i)] are wrong, because
there is no covering of degree l of proper curves, which is ramified at one point and unramified
elsewhere (Note that the abelianisations of the geometric fundamental group of a proper curve
is equal to the one of the curve obtained by removing one point from the curve).

Proof. The claims (1) is trivial. (2): The “only if” part is trivial, since an inertia subgroup

is killed in ∆Y . We show the “if” part. Put ∆
(l)
Z := A∆

(l)
Y ⊂ ∆

(l)
X . The natural surjection

∆
(l)
Z � ∆

(l)
Z /∆

(l)
Y
∼= A/(A ∩∆

(l)
Y ) factors as ∆

(l)
Z � (∆

(l)
Z )ab � A/(A ∩∆

(l)
Y ), since A/(A ∩∆

(l)
Y )

is isomorphic to an abelian group Z/lNZ for some N . By the assumption of the vanishing of

A ∩∆
(l)
Y in (∆Y )

ab, the image Im{A ∩∆
(l)
Y → (∆

(l)
Y )ab} is contained in the subgroup generated

by the image of the inertia subgroups in ∆
(l)
Y . Hence, the image Im{A ∩ ∆

(l)
Y → (∆

(l)
Y )ab →

(∆
(l)
Z )ab � A/(A ∩ ∆

(l)
Y )(∼= Z/lNZ)} is contained in the image of the subgroup in A/(A ∩

∆
(l)
Y )(∼= Z/lNZ) generated by the image of the inertia subgroups in ∆

(l)
Y . Since the composite

A ⊂ ∆
(l)
Z � ∆

(l)
Z /∆

(l)
Y
∼= A/(A ∩ ∆

(l)
Y )(∼= Z/lNZ) is a surjection, and since Z/lNZ is cyclic,

there exists the image Iz ⊂ (∆
(l)
Z )ab of the inertia subgroup of a cusp z in Z, such that the

composite Iz ⊂ (∆
(l)
Z )ab � A/(A ∩ ∆

(l)
Y )(∼= Z/lNZ) is surjective (Note that if we are working

in the profinite geometric fundamental groups, instead of pro-l geometric fundamental groups,
then the cyclicity does not hold, and we cannot use the same argument). This means that the
corresponding subcovering Y → Z(→ X) is totally ramified at z. The claims (3), (4), (5), and
(6) are trivial. �
Remark 2.9.2. (Generalisation to l-cyclotomically full fields, See also [AbsTopI, Lemma 4.5
(iii)], [CombGC, Proposition 2.4 (iv), (vii), proof of Corollary 2.7 (i)]) We can generalise the
results in this subsection for an l-cyclotomically full field k for some l (See Definition 3.1 (3)
below), under the assumption that the quotient ΠX � Gk is given, as follows: For the purpose
of a characterisation of inertia subgroups of cusps, it is enough to consider the case where
X is affine. First, we obtain a group-theoretic reconstruction of a positive power χ+

cyc,l,up to fin

of the l-adic cyclotomic character up to a character of finite order by the actions of Gk on∧dimQl
(Hab⊗ẐQl)(Hab ⊗Ẑ Ql) for characteristic open torsion-free subgroups H ⊂ ∆X . Next, we

group-theoretically reconstruct the l-adic cyclotomic character χcyc,l,up to fin up to a character
of finite order as χcyc,l,up to fin = χmax, where χmax is the maximal power of χ+

cyc,up to fin by which

Gk acts in some subquotient of Hab ⊗Ẑ Ql for sufficiently small characteristic open torsion-free
subgroups H ⊂ ∆X . Once we reconstruct the l-adic cyclotomic character χcyc,l,up to fin up to
a character of finite order, then, for a finite-dimensional Ql-vector space V with continuous
Gk-action, we take any filtration V = V 0 ⊃ V 1 ⊃ . . . (resp. V (χ−1cyc,l,up to fin) = V 0 ⊃ V 1 ⊃ . . .)

of Ql[Gk]-modules (Here V (χ−1) denotes the twist of V by χ−1) such that each graded quotient
either has the action of Gk factoring through a finite quotient or has no non-trivial subquotients,
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and we use, instead of dimQl
V wt=0 (resp. dimQl

V wt=2) in Lemma 2.8, the summation of
dimQl

V j/V j+1, where the Gk-action on V j/V j+1 factors through a finite quotient of Gk, and
the rest is the same.

3. Absolute Mono-Anabelian Reconstructions.

In this section, we show mono-anabelian reconstruction algorithms, which are crucial ingre-
dients of inter-universal Teichmüller theory.

3.1. Some Definitions.

Definition 3.1. ([pGC, Definition 1.5.4 (i)], [AbsTopIII, Definition 1.5], [CombGC, Definition
2.3 (ii)]) Let k be a field.

(1) We say that k is sub-p-adic, if there is a finitely generated field L over Qp for some p
such that we have an injective homomorphism k ↪→ L of fields.

(2) We say that k is Kummer-faithful, if k is of characteristic 0, and if for any finite
extension k′ of k and any semi-abelian variety A over k′, the Kummer map A(k′) →
H1(k′, T (A)) is injective (which is equivalent to

∩
N≥1NA(k

′) = {0}), where T (A)
denotes the Tate module of A.

(3) We say that k is l-cyclotomically full, if the l-adic cyclotomic character χcyc,l : Gk →
Z×l has an open image.

Remark 3.1.1. ([pGC, remark after Definition 15.4]) For example, the following fields are
sub-p-adic:

(1) finitely generated extensions of Qp, in particular, finite extensions of Qp,
(2) finite extensions of Q, and
(3) the subfield of an algebraic closure Q of Q which is the composite of all number fields

of degree ≤ n over Q for some fixed integer n (Note that such a field can be embedded
into a finite extension of Qp by Krasner’s lemma).

Lemma 3.2. ([AbsTopIII, Remark 1.5.1, Remark 1.5.4 (i), (ii)])

(1) If k is sub-p-adic, then k is Kummer-faithful.
(2) If k is Kummer-faithfull, then k is l-cyclotomically full for any l.
(3) If k is Kummer-faithfull, then any finitely generated field over k is also Kummer-faithful.

Proof. (3): Let L be a finitely generated extension of k. By Weil restriction, the injectivity of
the Kummer map for a finite extension L′ of L is reduced to the one for L, i.e., we may assume
that L′ = L. Let A be a semi-abelian variety over L. Let U be an integral smooth scheme over
k such that A extends to a semi-abelian scheme A over U and the function field of U is L. By
a commutative diagram

A(L) //
� _

��

H1(L, T (A))

��∏
x∈|U |Ax(Lx) //

∏
x∈|U |H

1(Lx, T (Ax)),

where |U | denotes the set of closed points, Lx is the residue field at x, and Ax is the fiber at
x (Note that a ∈ A(L) is zero on any fiber of x ∈ |U |, then a is zero, since |U | is dense in U),
we may assume that L is a finite extension of k. In this case, again by Weil restriction, the
injectivity of the Kummer map for a finite extension L is reduced to the one for k, which holds
by assumption.
(1): By the same way as in (3), by Weil restriction, the injectivity of the Kummer map for

a finite extension k′ of k is reduced to the one for k, i.e., we may assume that k′ = k. Let
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k embed into a finitely generated field L over Qp. By the base change from k to L and the
following commutative diagram

A(k) //
� _

��

H1(k, T (A))

��
A(L) // H1(L, T (A)),

the injectivity of the Kummer map for k is reduced to the one for L, i.e., we may assume that
k is a finitely generated extension over Qp. Then, by (3), we may assume that k = Qp. If A is
a torus, then

∩
N≥1NA(Qp) = {0} is trivial. Hence, the claim is reduced to the case where A

is an abelian variety. Then A(Qp) is a compact abelian p-adic Lie group, which contains Z⊕np
for some n as an open subgroup. Hence, we have

∩
N≥1NA(Qp) = 0. Thus, the Kummer map

is injective. We are done.
(2): For any finite extensin k′ over k, the Kummer map for Gm over k′ is injective by the

assumption. This implies that the image of l-adic cyclotomic character Gk → Z×l has an open
image. �
Definition 3.3. ([CanLift, Section 2]) Let k be a field. Let X be a geometrically normal,
geometrically connected algebraic stack of finite type over k.

(1) Let Lock(X) denote the category whose objects are generically scheme-like algebraic
stacks over k which are finite étale quotients (in the sense of stacks) of (necessarily
generically scheme-like) algebraic stacks over k that admit a finite étale morphism to X
over k, and whose morphisms are finite étale morphisms of stacks over k.

(2) We say X admits k-core if there exists a terminal object in Lock(X). We call a
terminal object in Lock(X) a k-core.

For an elliptic curveE over k with the originO, we call the hyperbolic orbicurve (cf. Section 0.2)
obtained as the quotient (E\{O})//±1 in the sense of stacks a semi-elliptic orbicurve over k
(cf. [AbsTopII, §0]. It is also called “punctured hemi-elliptic orbicurve” in [CanLift, Definition
2.6 (ii)]).

Definition 3.4. ([AbsTopII, Definition 3.5, Definition 3.1]) Let X be a hyperbolic orbicurve
(See Section 0.2) over a field k of characteristic 0.

(1) We say that X is of strictly Belyi type if (a) X is defined over a number field, and if
(b) there exist a hyperbolic orbicurveX ′ over a finite extension k′ of k, a hyperbolic curve
X ′′ of genus 0 over a finite extension k′′ of k, and finite étale coverings X � X ′ � X ′′.

(2) We say that X is elliptically admissible if X admits k-core X � C, where C is a
semi-elliptic orbicurve.

Remark 3.4.1. In the moduli spaceMg,r of curves of genus g with r cusps, the set of points
corresponding to the curves of strictly Belyi type is not Zariski open for 2g − 2 + r ≥ 3, g ≥ 1.
See [Cusp, Remark 2.13.2] and [Corr, Theorem B].

Remark 3.4.2. If X is elliptically admissible and defined over a number field, then X is
of strictly Belyi type (See also [AbsTopIII, Remark 2.8.3]), since we have a Belyi map from
once-punctured elliptic curve over a number field to a tripod (cf.Section 0.2).

For a hyperbolic curve X over a field k of characteristic zero with the canonical smooth
compactificationX. A closed point x inX is called algebraic, if there are a finite extensionK of
k, a hyperbolic curve Y over a number field F ⊂ K with the canonical smooth compactification
Y , and an isomorphism X ×k K ∼= Y ×F K over K such that x maps to a closed point under
the composition X ×k K ∼= Y ×F K → Y .
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3.2. Belyi and Elliptic Cuspidalisations —Hidden Endomorphisms. Let k be a field
of characteristic 0, and k an algebraic closure of k. Put Gk := Gal(k/k). Let X be a hyperbolic
orbicurve over k (cf. Section 0.2). Let ∆X and ΠX denote the geometric fundamental group
(i.e., π1 of Xk := X ×k k) and the arithmetic fundamental group (i.e., π1 of X) of X for some
basepoint, respectively. Note that we have an exact sequence 1 → ∆X → ΠX → Gk → 1. We
consider the following conditions on k and X:

(Delta)X : We have a “group-theoretic characterisation” (for example, like Proposition 2.2 (1), (2))
of the subgroup ∆X ⊂ ΠX (or equivalently, the quotient ΠX � Gk).

(GC): Isom-version of the relative Grothendieck conjecture (See also Theorem B.1) for the
profinite fundamental groups of any hyperbolic (orbi)curves over k holds, i.e., the natu-
ral map Isomk(X, Y )→ IsomOut

Gk
(∆X ,∆Y ) := IsomGk

(∆X ,∆Y )/Inn(∆Y ) is bijective for
any hyperbolic (orbi)curve X, Y over k.

(slim): Gk is slim (Definition 2.5 (1)).
(Cusp)X : We have a “group-theoretic characterisation” (for example, like Proposition 2.9 (3)) of

decomposition groups in ΠX of cusps.

We also consider the following condition (of different nature):

(Delta)’X : Either
• ΠX is given and (Delta)X holds, or
• ∆X ⊂ ΠX are given.

Note that (Delta)X , (GC), and (slim) are conditions on k and X, however, as for (Delta)’X ,
“the content of a theorem” depends on which case of (Delta)’X is satisfied, i.e., in the former
case, the algorithm in a theorem requires only ΠX as (a part of) an input datum, on the other
hand, in the latter case, the algorithm in a theorem requires both of ∆X ⊂ ΠX as (a part of)
input data.

Remark 3.4.3. (1) (Delta)X holds for any X in the case where k is an NF by Proposi-
tion 2.2 (1) or k is an MLF by Corollary 2.4.

(2) (GC) holds in the case where k is sub-p-adic by Theorem B.1.
(3) (slim) holds in the case where k is an NF by Proposition 2.7 (1) (d) or k is an MLF

by Proposition 2.7 (1) (c). More generally, it holds for Kummmer-faithful field k by
Remark 3.17.3, which is shown without using the results in this subsection.

(4) (Cusp)X holds for anyX in the case where k is an MLF by Corollary 2.9. More generally,
(Cusp)X holds for l-cyclotomically full field k for some l under the assumption (Delta)’X
by Remark 2.9.2.

In short, we have the following table (See also Lemma 3.2):

NF, MLF ⇒ sub-p-adic ⇒ Kummer-faithful ⇒ l-cyclotomically full
(Delta)X holds (GC) holds (slim) holds (Cusp)X holds

for any X under (Delta)’X .

Remark 3.4.4. (1) It seems difficult to rigorously formulate the meaning of “group-theoretic
characterisation”. Note that the formulation for (Delta)X like “any isomorphism ΠX1

∼=
ΠX2 of topological groups induces an isomorphism ∆X1

∼= ∆X2 of topological groups” (it
is called bi-anabelian approach) is a priori weaker than the notion of “group theoretic
characterisation” of ∆X in ΠX (this is called mono-anabelian approach), which allows
us to reconstruct the object itself (not the morphism between two objects).

(2) (Important Convention) In the same way, it also seems difficult to rigorously formulate
“there is a group-theoretic algorithm to reconstruct” something in the sense of mono-
anabelian approach (Note that it is easy to rigorously formulate it in the sense of



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 43

bi-anabelian approach). To rigorously settle the meaning of it, it seems that we have
to state the algorithm itself, i.e., the algorithm itself have to be a part of the statement.
However, in this case, the statement must be often rather lengthy and complicated.
In this survey, we use the phrase “group-theoretic algorithm” loosely in some sense,
for the purpose of making the input data and the output data of the algorithms in
the statement clear. However, the rigorous meaning will be clear in the proof, since
the proof shows concrete constructions, which, properly speaking, should be included
in the statement itself. We sometimes employ this convention of stating propositions
and theorems in this survey (If we use the language of species and mutations (See
[IUTchIV, §3]), then we can rigorously formulate mono-anabelian statements without
mentioning the contents of algorithms).

(3) Mono-anabelian reconstructions have an advantage, as contrasted with bi-anabelian
approach, of avoiding “a referred model” of a mathematical object like “the C”, i.e., it
is a “model-free” (or “model-implicit”) approach. For more informations on Mochizuki’s
philosophy of mono-anabelian reconstructions versus bi-anabelian reconstructions, see
[AbsTopIII, §I.3, Remark 3.7.3, Remark 3.7.5].

In this subsection, to avoid settling the meaning of “group-theoretic characterisation” in
(Delta)X and (Cusp)X (See Remark 3.4.4 (1)), we assume that k is sub-p-adic, and we include
the subgroup ∆X (⊂ ΠX) as an input datum. More generally, the results in this section hold in
the case where k and X satisfy (Delta)’X , (GC), (slim), and (Cusp)X . Note that if we assume
that k is an NF or an MLF, then (Delta)X , (GC), (slim), and (Cusp)X hold for any X, and we
do not need include the subgroup ∆X (⊂ ΠX) as an input datum.

Lemma 3.5. Let ψ : H → Π be an open homomorphism of profinite groups, and φ1, φ2 : Π→ G
two open homomorphisms of profinite groups. We assume that G is slim. If φ1 ◦ ψ = φ2 ◦ ψ,
then we have φ1 = φ2.

Proof. By replacing H by the image of ψ, we may assume that H is an open subgroup of Π.
By replacing H by ∩g∈Π/HgHg−1, we may assume that H is an open normal subgroup of Π.
For any g ∈ Π and h ∈ H, we have ghg−1 ∈ H, and φ1(ghg

−1) = φ2(ghg
−1) by assumption.

This implies that φ1(g)φ1(h)φ1(g)
−1 = φ2(g)φ2(h)φ2(g)

−1 = φ2(g)φ1(h)φ2(g)
−1. Hence we have

φ1(g)φ2(g)
−1 ∈ ZIm(Π)(G). By the assumption of the slimness of G, we have ZIm(Π)(G) = {1},

since Im(Π) is open in G. Therefore, we obtain φ1(g) = φ2(g), as desired. �
Remark 3.5.1. In the algebraic geometry, a finite étale covering Y � X is an epimorphism.
The above lemma says that the inclusion map ΠY ⊂ ΠX correspoinding to Y � X is also an
epimorphism if ΠX is slim. This enables us to make a theory for profinite groups (without
using 2-categories and so on.) which is parallel to geometry, when all involved profinite groups
are slim. This is a philosophy behind the geometry of anabelioids ([Anbd]).

Choose a hyperbolic orbicurve X over k, and let ΠX denote the arithmetic fundamental
group of X for some basepoint. We have the surjection ΠX � Gk determined by (Delta)’X .
Note that now we are assuming that k is sub-p-adic, hence, Gk is slim by Lemma 3.2 (1) and
Remark 3.17.3. Take an open subgroup G ⊂ Gk, and put Π := ΠX×Gk

G, and ∆ := ∆X∩Π. In
this survey, we do not adopt the convention that (−)′ always denotes the commutator subgroup
for a group (−).
In the elliptic and Belyi cuspidalisations, we use the following three types of operations:

Lemma 3.6. Put Π′ := ΠX′ to be the arithmetic fundamental group of a hyperbolic orbicurve
X ′ over a finite extension k′ of k. Put ∆′ := ker(Π′ � Gk′).

(1) Let Π′′ ↪→ Π′ be an open immersion of profinite groups. Then Π′′ arises as a finite étale
covering X ′′ � X ′ of X ′, and ∆′′ := Π′′ ∩∆′ reconstructs ∆X′′.



44 GO YAMASHITA

(2) Let Π′ ↪→ Π′′ be an open immersion of profinite groups such that there exists a surjection
Π′′ � G′′ to an open subgroup of G, whose restriction to Π′ is equal to the given
homomorphism Π′ � G′ ⊂ G. Then, the surjection Π′′ � G′′ is uniquely determined
(hence, we reconstruct the quotient Π′′ � G′′ as the unique quotient of Π′′ having this
property), and Π′′ arises as a finite étale quotient X ′ � X ′′ of X ′.

(3) Assume that X ′ is a scheme i.e., not a (non-scheme-like) stack (We can treat orbi-
curves as well, however, we do not use this generalisation in this survey. cf. [AbsTopI,
Definition 4.2 (iii) (c)]). Let Π′ � Π′′ be a surjection of profinite groups such that the
kernel is generated by a cuspidal inertia subgroup group-theoretically characterised by
Corollary 2.9 and Remark 2.9.2 (We call it a cuspidal quotient). Then Π′′ arises as
an open immersion X ′ ↪→ X ′′, and we reconstruct ∆X′′ as ∆′/∆′ ∩ ker(Π′ � Π′′).

Proof. (1) is trivial by the definition of ΠX′ .
The first asserion of (2) comes from Lemma 3.5, sinceG is slim. Put (Π′)Gal := ∩g∈Π′′/Π′gΠ′g−1 ⊂

Π′, which is normal in Π′′ by definition. Then, (Π′)Gal arises from a finite étale covering
(X ′)Gal � X ′ by (1). By the conjugation, we have an action of Π′′ on (Π′)Gal. By (GC),
this action determines an action of Π′′/(Π′)Gal on (X ′)Gal. We take the quotient X ′′ :=
(X ′)Gal//(Π′′/(Π′)Gal) in the sense of stacks. Then ΠX′′ is isomorphic to Π′′ by definition,
and the quotinet (X ′)Gal � X ′′ factors as (X ′)Gal � X ′ � X ′′ since the intermediate quotient
(X ′)Gal//(Π′/(Π′)Gal) is isomorphic to X ′. This proves the second assertion of (2).
(3) is also trivial. �

3.2.1. Elliptic Cuspidalisation. Let X be an elliptically admissible orbicurve over k. By defini-
tion, we have a k-core X � C = (E\{O})//{±1} where E denotes an elliptic curve over k with
the origin O. Take a positive integer N ≥ 1. Let UC,N := (E \ E[N ])//{±1} ⊂ C denote the
open sub-orbicurve of C determined by the image of E \ E[N ]. Put UX,N := UC,N ×C X ⊂ X,
which is an open suborbicurve of X. For a finite extension K of k, put XK := X ×k K,
CK := C ×k K, and EK := E ×k K. For a sufficiently large finite extension K of k, all points
of EK [N ] are rational over K. We have the following key diagram for elliptic cuspidalisation:

(EllCusp) X // // C E \ {O}oooo E \ E[N ]
Noooo

� _

��

// // UC,N� _

��

UX,N� _

��

oooo

E \ {O} // // C X,oooo

where�’s are finite étale coverings, ↪→’s are open immersions, and two sqauares are cartesian.
We will use the technique of elliptic cuspidalisation three times:

(1) Firstly, in the theory of Aut-holomorphic space in Section 4, we will use it for the
reconstruction of “local linear holomorphic structure” of an Aut-holomorphic space (See
Proposition 4.5 (Step 2)).

(2) (This is the most important usage) Secondly, in the theory of étale theta function in
Section 7, we will use it for the constant multiple rigidity of étale theta function (See
Proposition 7.9).

(3) Thirdly, we will use it for the reconstruction of “pseudo-monoids” (See Section 9.2).

Theorem 3.7. (Elliptic Cuspidalisation, [AbsTopII, Corollary 3.3]) Let X be an elliptically
admissible orbicurve over a sub-p-adic field k. Take a positive integer N ≥ 1, and let UX,N
denote the open sub-orbicurve of X defined as above. Then, from the profinite groups ∆X ⊂ ΠX ,
we can group-theoretically reconstruct (See Remark 3.4.4 (2)) the surjection

πX : ΠUX,N
� ΠX
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of profinite groups, which is induced by the open immersion UX,N ↪→ X, and the set of the
decomposition groups in ΠX at the points in X \ UX,N .
We call πX : ΠUX,N

� ΠX an elliptic cuspidalisation.

Proof. (Step 1): By (Delta)’X , we have the quotient ΠX � Gk with kernel ∆X . Let G ⊂ Gk

be a sufficiently small (which will depend on N later) open subgroup, and put Π := ΠX ×Gk
G,

and ∆ := ∆X ∩ Π.
(Step 2): We define a category LocG(Π) as follows: The objects are profinite groups Π

′ such
that there exist open immersions Π ←↩ Π′′ ↪→ Π′ of profinite groups and surjections Π′ � G′,
Π′′ � G′′ to open subgroups of G, and that the diagram

Π

����

Π′′

����

? _oo � � // Π′

����
G

=

��

G′′_�

��

G′_�

��
G G

= //=oo G.

is commutative. Note that, by this compatibility, the surjections Π′ � G′ and Π′′ � G′′ are
uniquely determined by Lemma 3.6 (1), (2) (or Lemma 3.5). The morphisms from Π1 to Π2

are open immersions Π1 ↪→ Π2 of profinite groups up to inner conjugates by ker(Π2 � G2)
such that the uniquely determined homomorphisms Π1 � G1 ⊂ G and Π2 � G2 ⊂ G are
compatible. The definition of the category LocG(Π) depends only on the topological group
structure of Π and the surjection Π� G of profinite groups. By (GC), the functor X ′ 7→ ΠX′

gives us an equivalence LocK(XK)
∼→ LocG(Π) of categories, where K is the finite extension

of k corresponding to G ⊂ Gk. Then, we group-theoretically reconstruct (ΠXK
⊂)ΠCK

as the
terminal object (Π ⊂)Πcore of the category LocG(Π).
(Step 3): We group-theoretically reconstruct ∆CK

(⊂ ΠCK
) as the kernel ∆core := ker(Πcore →

G). We group-theoretically reconstruct ∆EK\{O} as an open subgroup ∆ell of ∆core of index 2
such that ∆ell is torsion-free (i.e., the corresponding covering is a scheme, not a (non-scheme-
like) stack), since the covering is a scheme if and only if the geometric fundamental group
is torsion-free (See also [AbsTopI, Lemma 4.1 (iv)]). We take any (not necessarily unique)
extension 1→ ∆ell → Πell → G→ 1 such that the push-out of it via ∆ell ⊂ ∆core is isomorphic
to the extension 1→ ∆core → Πcore → G→ 1 (Note that Πell is isomorphic to ΠE′

K\{O}, where
E ′K \ {O} is a twist of order 1 or 2 of EK \ {O}). We group-theoretically reconstruct ΠE′

K\{O}
as Πell (Note that if we replace G by a subgroup of index 2, then we may reconstruct ΠEK\{O},
however, we do not detect group-theoretically which subgroup of index 2 is correct. However,
the final output does not depend on the choice of Πell).
(Step 4): Take

(a) an open immersion Πell,N ↪→ Πell of profinite groups with Πell/Πell,N
∼= (Z/NZ)⊕2 such

that the composite Πell,N ↪→ Πell � Πcpt
ell factors through as Πell,N � Πcpt

ell,N → Πcpt
ell ,

where Πell � Πcpt
ell , Πell,N � Πcpt

ell,N denote the quotients by all of the conjugacy classes
of the cuspidal inertia subgroups in Πell, Πell,N respectively, and

(b) a composite Πell,N � Π′ of (N2 − 1) cuspidal quotients of profinite groups such that
there exists an isomorphism Π′ ∼= Πell of profinite groups.

Note that the factorisation Πell,N � Πcpt
ell,N → Πcpt

ell means that the finite étale covering corre-
sponding to Πell,N ↪→ Πell extends to a finite étale covering of their compactifications i.e., the
covering corresponding to Πell,N ↪→ Πell is unramified at all cusps as well. Note that there exists
such a diagram

Πell ←↩ Πell,N � Π′ ∼= Πell
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by (EllCusp). Note that for any intermediate composite Πell,N � Π∗ � Π′ of cuspidal quotients
in the composite Πell,N � Π′ of cuspidal quotients, and for the uniquely determined quotient
Π∗ � G∗, we have G∗ = G for sufficiently small open subgroup G ⊂ Gk, and we take such an
open subgroup G ⊂ Gk.
We group-theoretically reconstruct the surjection πE′ : ΠE′

K\E
′
K [N ] � ΠE′

K\{O} induced by the
open immersion E ′K \ E ′K [N ] ↪→ E ′K \ {O} as the composite πE′? : Πell,N � Π′ ∼= Πell, since we
can identify πE′? with πE′ by (GC).
(Step 5): Let Πcore,1 denote Πcore for G = Gk. If necessary, by changing Πell, we may

take Πell such that there exists a unique lift of Πcore,1/Πell → Out(Πell) to Out(Πell,N) by

(EllCusp). We form
out
o (Πcore,1/Πell) (See Section 0.2) to the surjection Πell,N � Πell i.e.,

Πell,N

out
o (Πcore,1/Πell) � Πell

out
o (Πcore,1/Πell) = Πcore,1, where Πcore,1/Πell → Out(Πell) (in the

definition of
out
o (Πcore,1/Πell)) is the natural one, and Πcore,1/Πell → Out(Πell,N) (in the definition

of
out
o (Πcore,1/Πell)) is the unique lift of Πcore,1/Πell → Out(Πell) to Out(Πell,N). Then we obtain

a surjection πC? : Πcore,N := Πell,N

out
o (Πcore,1/Πell)� Πcore,1. We group-theretically reconstruct

the surjection πC : ΠUC,N
� ΠC induced by the open immersion UC,N ↪→ C as the surjection

πC? : Πcore,N � Πcore,1, since we can identify πC? with πC by (GC).
(Step 6): We form a fiber product ×Πcore,1ΠX to the surjection Πcore,N � Πcore,1 i.e., ΠX,N :=

Πcore,N ×Πcore,1 ΠX � Πcore,1 ×Πcore,1 ΠX = ΠX . Then we obtain a surjection πX? : ΠX,N �
ΠX . We group-theretically reconstruct the surjection πX : ΠUX,N

� ΠX induced by the open
immersion UX,N ↪→ X as the surjection πX? : ΠX,N � ΠX , since the identification of πC? with
πC induces an identification of πX? with πX .
(Step 7): We group-theretically reconstruct the decomposition groups at the points of X \

UX,N in ΠX as the image of the cuspidal decomposition groups in ΠX,N , which are group-
theoretically characterised by Corollary 2.9, via the surjection ΠX,N � ΠX . �

3.2.2. Belyi Cuspidalisation. Let X be a hyperbolic orbicurve of strictly Belyi type over k. We
have finite étale coverings X � Y � P1\(N points), where Y is a hyperbolic curve over a finite
extension k′ of k, and N ≥ 3. We assume that Y � X is Galois. For any open sub-orbicurve
UX ⊂ X defined over a number field, put UY := Y ×X UX . Then, by the theorem of Belyi
(See also Theorem C.2 for its refinement), we have a finite étale covering U ′Y � UP1 from an
open sub-orbicurve U ′Y ⊂ UY to the tripod UP1 (See Section 0.2) over k′. For a sufficiently large
finite extension K of k′, all the points of Y \U ′Y are defined over K. We have the following key
diagram for Belyi cuspidalisation:

(BelyiCusp) U ′Y

����

� � // UY

����

� � // Y

����
X Yoooo // // P1 \ (N points) �

� // UP1 UX
� � // X,

where �’s are finite étale coverings, ↪→’s are open immersions, and the square is cartesian.

Theorem 3.8. (Belyi Cuspidalisation, [AbsTopII, Corollary 3.7]) Let X be an orbicurve over a
sub-p-adic field k. We assume that X is of strictly Belyi type. Then, from the profinite groups
∆X ⊂ ΠX , we can group-theoretically reconstruct (See Remark 3.4.4 (2)) the set

{ΠUX
� ΠX}UX

of the surjections of profinite groups, where UX runs through the open subschemes of X defined
over a number field. We can also group-theoretically reconstruct the set of the decomposition
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groups in ΠX at the points in X \UX , where UX runs through the open subschemes of X defined
over a number field.

We call ΠUX
� ΠX a Belyi cuspidalisation.

Proof. (Step 1): By (Delta)’X , we have the quotient ΠX � Gk with kernal ∆X . For sufficiently
small (which will depend on U later) open subgroup G ⊂ Gk, put Π := ΠX ×Gk

G.
(Step 2): Take

(a) an open immersion Π←↩ Π∗ of profinite grouops,
(b) an open immersion Π∗ ↪→ Πtpd,U of profinite groups, such that the group-theoretic

algorithms described in Lemma 2.8 and Remark 2.9.2 tell us that the hyperbolic curve
corresponding to Πtpd,U has genus 0,

(c) a composite Πtpd,U � Πtpd of cuspidal quotients of profinite groups, such that the
number of the conjugacy classes of cuspidal inertia subgroups of Πtpd is three,

(d) an open immersion Πtpd ←↩ Π∗,U ′
of profinite groups,

(e) a composite Π∗,U
′ � Π∗,U of cuspidal quotients of profinite groups, and

(f) a composite Π∗,U � Π∗∗ of cuspidal quotients of profinite groups such that there exists
an isomorphism Π∗∗ ∼= Π∗ of profinite groups.

Note that there exists such a diagram

Π←↩ Π∗ ↪→ Πtpd,U � Πtpd ←↩ Π∗,U ′ � Π∗,U � Π∗∗ ∼= Π∗

by (BelyiCusp). Note also that any algebraic curve over a field of characteristic 0, which is finite
étale over a tripod, is defined over a number field (i.e., converse of Belyi’s theorem, essentially
the descent theory) and that algebraic points in a hyperbolic curve are sent to algebraic points
via any isomorphism of hyperbolic curves over the base field (See [AbsSect, Remark 2.7.1]).
Put πY ? : Π∗,U � Π∗∗ ∼= Π∗ to be the composite. Note that for any intermediate composite
Π∗,U

′ � Π# � Π∗∗ in the composite Π∗,U
′ � Π∗∗ of cuspidal quotients and for the uniquely

determined quotient Π# � G#, we have G# = G for sufficiently small open subgroup G ⊂ Gk,
and we take such an open subgroup G ⊂ Gk.
We group-theoretically reconstruct the surjection πY : ΠUY

� ΠY induced by some open
immersion UY ↪→ Y as πY ? : Π

∗,U � Π∗, since we can identify πY ? with πY by (GC) (Note that
we do not prescribe the open immersion UY ↪→ Y ).
(Step 3): We choose the data (a)-(e) such that the natural homomorphism ΠX/Π

∗ → Out(Π∗)
has a unique lift ΠX/Π

∗ → Out(Π∗,U) to Out(Π∗,U) (Note that this corresponds to that UY ⊂ Y

is stable under the action of Gal(Y/X), thus descends to UX ⊂ X). We form
out
o (ΠX/Π

∗) to

the surjection Π∗,U � Π∗ i.e., ΠX,U := Π∗,U
out
o (ΠX/Π

∗) � Π∗
out
o (ΠX/Π

∗) = ΠX . Then
we obtain a surjection πX? : ΠX,U � ΠX . We group-theretically reconstruct the surjection
πX : ΠUX

� ΠX induced by the open immersion UX ↪→ X as the surjection πX? : Π
X,U � ΠX ,

since we can identify πX? with πX by (GC) (Note again that we do not prescribe the open
immersion UX ↪→ X. We just group-theoretically reconstruct a surjection ΠUX

� ΠX for some
UX ⊂ X such that all of the points in X \ UX are defined over a number field).
(Step 4): We group-theretically reconstruct the decomposition groups at the points of X \UX

in ΠX as the image of the cuspidal decomposition groups in ΠX,U , which are group-theoretically
characterised by Corollary 2.9, via the surjection ΠUX

� ΠX . �
Corollary 3.9. ([AbsTopII, 3.7.2]) Let X be a hyperbolic orbicurve over a non-Archimedean
local field k. We assume that X is of strictly Belyi type. Then, from the profinite group ΠX ,
we can reconstruct the set of the decomposition groups at all closed points in X.

Proof. The corollary follows from Theorem 3.8 and the approximation of a decomposition group
in (the proof of) Lemma 3.10 below. �
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Since the geometric fundamental group ∆X of X (for some basepoint) is topologically finitely
generated, there exist characteristic open subgroups

. . . ⊂ ∆X [j + 1] ⊂ ∆X [j] ⊂ . . . ⊂ ∆X

of ∆X for j ≥ 1 such that
∩
j ∆X [j] = {1}. Take an algebraic closure k of k and put Gk :=

Gal(k/k). For any section σ : Gk → ΠX , we put

ΠX[j,σ] := Im(σ)∆X [j] ⊂ ΠX ,

and we obtain a corresponding finite étale coverings

. . .→ X[j + 1, σ]→ X[j, σ]→ . . .→ X.

Lemma 3.10. ([AbsSect, Lemma 3.1]) Let X be a hyperbolic curve over a non-Archimedean
local field k. Suppose X is defined over a number field. Let σ : Gk → ΠX be a section such
that Im(σ) is not contained in any cuspidal decomposition group of ΠX . Then, the following
conditions on σ is equivalent:

(1) Im(σ) is a decomposition group Dx of a point x ∈ X(k).
(2) For any j ≥ 1, the subgroup ΠX[j,σ] contains a decomposition group of an algebraic closed

point of X which surjects onto Gk.

Proof. (1)⇐(2): For j ≥ 1, take points xj ∈ X[j, σ](k). Since the topological space
∏

j≥1X[j, σ](k)
is compact, there exists an infinite set of positive integers J ′ such that for any j ≥ 1, the images
of xj′ in X[j, σ](k) for j′ ≥ j with j′ ∈ J ′ converges to a point yj ∈ X[j, σ](k). By definition of
yj, the point yj1 maps to yj2 in X[j2](k) for any j1 > j2. We write y ∈ X(k) for the image of yj
in X(k). Then we have Im(σ) ⊂ Dy (up to conjugates), and y is not a cusp by the assumption
that Im(σ) is not contained in any cuspidal decomposition group of ΠX .
(1)⇒(2): By using Krasner’s lemma, we can approximate x ∈ X(k) by a point x′ ∈ XF (F ) ⊂

X(k), where XF is a model of X ×k k over a number field F , which is sufficiently close to x so
that x′ lifts to a point x′j ∈ X[j, σ](k), which is algebraic. �
3.3. Uchida’s Lemma. Let X be a hyperbolic curve over a field k. Take an algebraic closure
k of k. Put Gk := Gal(k/k), and Xk := X ×k k. Let k(X) denote the function field of X.
Let ∆X and ΠX denote the geometric fundamental group (i.e., π1 of Xk) and the arithmetic
fundamental group (i.e., π1 of X) of X for some basepoint, respectively. Note that we have an
exact sequence 1→ ∆X → ΠX → Gk → 1.
We recall that we have Γ(X,O(D)) = {f ∈ k(X)× | div(f) +D ≥ 0} ∪ {0} for a divisor D

on X.

Lemma 3.11. ([AbsTopIII, Proposition 1.2]) Assume that k be an algebraically closed, and X
proper.

(1) There are distinct points x, y1, y2 ∈ X(k) and a divisor D on X such that x, y1, y2 6∈
Supp(D) and l(D) := dimk Γ(X,O(D)) = 2, and l(D − E) = 0 for any E = e1 + e2
with e1, e2 ∈ {x, y1, y2}, e1 6= e2.

(2) Let x, y1, y2, D be as in (1). For i = 1, 2, and λ ∈ k×, there exists a unique fλ,i ∈ k(X)×

such that

div(fλ,i) +D ≥ 0, fλ,i(x) = λ, fλ,i(yi) 6= 0, fλ,i(y3−i) = 0.

(3) Let x, y1, y2, D be as in (1). Take λ, µ ∈ k× with λ
µ
6= −1. Let fλ,1, fµ,2 ∈ k(X)× be as

in (2). Then fλ,1 + fµ,2 ∈ k(X)× is characterised as a unique element g ∈ k(X)× such
that

div(g) +D ≥ 0, g(y1) = fλ,1(y1), g(y2) = fµ,2(y2).

In particular, λ+ µ ∈ k× is characterised as g(x) ∈ k×.
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Proof. (1): For any divisor D of degree ≥ 2g − 2 + 3 on X, then we have l(D) = l(KX −D) +
deg(D)+1−g = deg(D)+1−g ≥ g+2 ≥ 2, by the theorem of Riemann-Roch (Here, KX denotes
the canonical divisor ofX). For any divisorD onX with d := l(D) ≥ 2, we write Γ(X,O(D)) =
〈f1, . . . , fd〉k, and take a point P in the locus “f1f2 · · · fd 6= 0” in X of non-vanishing of the
section f1f2 · · · fd such that P 6∈ Supp(D) (Note that this locus is non-empty, since there is a
non-constant function in Γ(X,O(D)) by l(D) ≥ 2). Then, we have l(D − P ) < l(D). On the
other hand, we have l(D)− l(D − P ) = l(KX −D)− l(KX −D + P ) + 1 ≤ 1. Thus, we have
l(D − P ) = l(D) − 1. Therefore, by substracting a suitable divisor from a divisor of degree
≥ 2g−2+3, there is a divisor D on X with l(D) = 2. In the same way, take x ∈ X(k)\Supp(D)
such that there is f ∈ Γ(X,OX(D)) with f(x) 6= 0 (this implies that l(D− x) = l(D)− 1 = 1).
Take y1 ∈ X(k)\ (Supp(D) ∪ {x}) such that there is g ∈ Γ(X,OX(D−x)) with g(y1) 6= 0 (this
implies that l(D− x− y1) = l(D− x)− 1 = 0), and y2 ∈ X(k) \ (Supp(D) ∪ {x, y1}) such that
there are h1 ∈ Γ(X,OX(D − x)) and h2 ∈ Γ(X,OX(D − y1)) with h1(y2) 6= 0 and h2(y2) 6= 0
(this implies that l(D−x− y2) = l(D− y1− y2) = 0). The first claim (1) is proved. The claims
(2) and (3) trivially follow from (1). �

Proposition 3.12. (Uchida’s Lemma, [AbsTopIII, Proposition 1.3]) Assume that k be an
algebraically closed, and X proper. There exists a functorial (with respect to isomorphisms of
the following triples) algorithm for constructing the additive structure on k(X)×∪{0} from the
following data:

(a) the (abstract) group k(X)×,
(b) the set of surjective homomorphisms VX := {ordx : k(X)× � Z}x∈X(k) of the valuation

maps at x ∈ X(k), and
(c) the set of the subgroups

{
Uv :=

{
f ∈ k(X)× | f(x) = 1

}
⊂ k(X)×

}
v=ordx∈VX

of k(X)×.

Proof. From the above data (a), (b), and (c), we reconstruct the additive structure on k(X)×

as follows:
(Step 1): We reconstruct k× ⊂ k(X)× as k× :=

∩
v∈VX ker(v). We also reconstruct the set

X(k) as VX .
(Step 2): For each v = ordx ∈ VX , we have inclusions k× ⊂ ker(v) and Uv ⊂ ker(v) with

k×∩Uv = {1}, thus we obtain a direct product decomposition ker(v) = Uv×k×. Let prv denote
the projection ker(v)→ k× Then, we reconstruct the evaluation map ker(v) 3 f 7→ f(x) ∈ k×
as f(x) := prv(f) for f ∈ ker(v).
(Step 3): We reconstruct divisors (resp. effective divisors) on X as formal finite sums of

v ∈ VX with coefficient Z (resp. Z≥0). By using ordx ∈ VX , we reconstruct the divisor div(f)
for an element f in an abstract group k(X)×.
(Step 4): We reconstruct a (multiplicative) k×-module Γ(X,O(D)) \ {0} for a divisor D

as {f ∈ k(X)× | div(f) +D ≥ 0}. We also reconstruct l(D) ≥ 0 for a divisor D as the
smallest non-negative integer d such that there is an effective divisor E of degree d on X
such that Γ(X,O(D − E)) \ {0} = ∅ (See also the proof of Lemma 3.11 (1)). Note that
dimk of Γ(X,O(D)) is not available yet here, since we do not have the additive structure on
{f ∈ k(X)× | div(f) +D ≥ 0} ∪ {0} yet.
(Step 5): For λ, µ ∈ k×, λ

µ
6= −1 (Here, −1 is the unique element of order 2 in k×), we take

ordx, ordy1 , ordy2 ∈ VX corresponding to x, y1, y2 in Lemma 3.11 (1). Then, we obtain unique
fλ,1, fµ,2, g ∈ k(X)× as in Lemma 3.11 (2), (3) from abstract data (a), (b), and (c). Then,
we reconstruct the addition λ + µ ∈ k× of λ and µ as g(x). We also reconstruct the addition
λ+µ := 0 for λ

µ
= −1, and λ+0 = 0+λ := λ for λ ∈ k×∪{0}. These reconstruct the additive

structure on k× ∪ {0}.
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(Step 6): We reconstruct the addition f + g of f, g ∈ k(X)× ∪ {0} as the unique element
h ∈ k(X)× ∪ {0} such that h(x) = f(x) + g(x) for any ordx ∈ VX with f, g ∈ ker(ordx) (Here,
we put f(x) := 0 for f = 0). This reconstructs the additive structure on k(X)× ∪ {0}. �

3.4. Mono-Anabelian Reconstructions of Base Field and Function Field. We continue
the notation in Section 3.3 in this subsection. Furthermore, we assume that k is of characteristic
0.

Definition 3.13. (1) We assume that X has genus ≥ 1. Let (X ⊂)X be the canonical
smooth compactification of X. We define

µẐ(ΠX) := Hom(H2(∆X , Ẑ), Ẑ).

We call µẐ(ΠX) the cyclotome of ΠX as orientation.
(2) In the case where the genus of X is not necessarily greater than or equal to 2, we take a

finite étale covering Y � X such that Y has genus ≥ 2, and we define the cyclotome
of ΠX as orientation to be µẐ(ΠX) := [∆X : ∆Y ]µẐ(ΠY ). It does not depend on the
choice of Y in the functorial sense, i.e., For any such coverings Y � X, Y ′ � X, take
Y ′′ � X which factors through Y ′′ � Y � X and Y ′′ � Y ′ � X. Then the restrictions

H2(∆Y , Ẑ) → H2(∆Y ′′ , Ẑ), H2(∆Y ′ , Ẑ) → H2(∆Y ′′ , Ẑ) (where Y , Y ′, and Y ′′ are the

canonical compactifications of Y , Y ′, and Y ′′ respectively), and taking Hom(−, Ẑ) in-
duce natural isomorphisms [∆X : ∆Y ]µẐ(ΠY )

∼← [∆X : ∆Y ][∆Y : ∆Y ′′ ]µẐ(ΠY ′′) = [∆X :

∆Y ′′ ]µẐ(ΠY ′′) = [∆X : ∆Y ′ ][∆Y ′ : ∆Y ′′ ]µẐ(ΠY ′′)
∼→ [∆X : ∆Y ′ ]µẐ(ΠY ′) (See [AbsTopIII,

Remark 1.10.1 (i), (ii)]).
(3) For an open subscheme ∅ 6= U ⊂ X, let ∆U � ∆cusp-cent

U (� ∆X) be the maximal
intermediate quotient ∆U � Q � ∆X such that ker (Q� ∆X) is in the center of Q,
and ΠU � Πcusp-cent

U the push-out of ∆U � ∆cusp-cent
U with respect to ∆U ⊂ ΠU . We call

them the maximal cuspidally central quotient of ∆U and ΠU respectively.

Remark 3.13.1. In this subsection, by the functoriality of cohomology with µẐ(Π(−))-coefficients
for an open injective homomorphism of profinite groups ∆Z ⊂ ∆Y , we always mean multiply-
ing 1

[∆Y :∆Z ]
on the homomorphism between the cyclotomes ΠY and ΠZ (See also [AbsTopIII,

Remark 1.10.1 (i), (ii)]).

Proposition 3.14. (Cyclotomic Rigidity for Inertia Subgroups, [AbsTopIII, Proposition 1.4])
Assume that X has genus ≥ 2. Let (X ⊂)X be the canonical smooth compactification of X.
Take a non-empty open subscheme U ⊂ X. We have an exact sequence 1 → ∆U → ΠU →
Gk → 1. For x ∈ X(k) \ U(k), put Ux := X \ {x}. Let Ix denote the inertia subgroup of x
in ∆U (it is well-defined up to inner automorphism of ∆U), which is naturally isomorphic to

Ẑ(1).
(1) ker (∆U � ∆Ux) and ker (ΠU � ΠUx) are topologically normally generated by the inertia

subgroups of the points of Ux \ U .
(2) We have an exact sequence

1→ Ix → ∆cusp-cent
Ux

→ ∆X → 1,

which induces the Leray spectral sequence Ep,q
2 = Hp(∆X , H

q(Ix, Ix))⇒ Hp+q(∆cusp-cent
Ux

, Ix)

(Here, Ix and ∆cusp-cent
Ux

act on Ix by the conjugates). Then, the composite

Ẑ = Hom(Ix, Ix) ∼= H0(∆X , H
1(Ix, Ix)) = E0,1

2

→ E2,0
2 = H2(∆X , H

0(Ix, Ix)) ∼= Hom(µẐ(ΠX), Ix)
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sends 1 ∈ Ẑ to the natural isomorphism

(Cyc.Rig. Iner.) µẐ(ΠX)
∼−→ Ix.

(this is a natural identification between “Ẑ(1)” arising from H2 and “Ẑ(1)” arising
from Ix.) Therefere, we obtain a group-theoretic reconstruction of the isomorphism
(Cyc.Rig. Iner.) from the surjection ∆Ux � ∆X (Note that the intermediate quotient
∆Ux � ∆cusp-cent

Ux
� ∆X is group-theoretically characterised). We call the isomorphism

(Cyc.Rig. Iner.) the cyclotomic rigidity for inertia subgroup.

Proof. (1) is trivial. (2): By the definitions, for any intermediate quotient ∆Ux � Q � ∆X

such that ker (Q� ∆X) is in the center of Q, the kernel ker (Q� ∆X) is generated by the
image of Ix. Thus, we have the exact sequence 1→ Ix → ∆cusp-cent

Ux
→ ∆X → 1 (See also [Cusp,

Proposition 1.8 (iii)]). The rest is trivial. �

Remark 3.14.1. In the case where the genus of X is not necessarily greater than or equal to 2,
we take a finite étale covering Y � X such that Y has genus ≥ 2, and a point y ∈ Y (k′) lying
over x ∈ X(k) for a finite extension k′ of k. Then, we have the cyclotomic rigidity µẐ(ΠY ) ∼= Iy
by Proposition 3.14. This induces isomorphisms

µẐ(ΠX) = [∆X : ∆Y ]µẐ(ΠY )

1
[∆X :∆Y ]

∼−→ µẐ(ΠY ) ∼= Iy = Ix.

We also call this the cyclotomic rigidity for inertia subgroup. It does not depend on the
choice of Y and y in the functorial sense of Definition 3.13 (2), i.e., For such Y � X, Y ′ � X
with y ∈ Y (kY ), y

′ ∈ Y ′(kY ′), take Y ′′ � X with y′′ ∈ Y ′′(kY ′′) lying over Y, Y ′ and y, y′, then
we have the following commutative diagram (See also Remark 3.13.1)

Ẑ = Hom(Iy, Iy) //

=

��

Hom(µẐ(ΠY ), Iy)

1
[∆Y :∆Y ′′ ]

∼=
��

Ẑ = Hom(Iy′′ , Iy′′) // Hom(µẐ(ΠY ′′), Iy′′)

Ẑ = Hom(Iy′ , Iy′) //

=

OO

Hom(µẐ(ΠY ′), Iy′).

1
[∆Y ′ :∆Y ′′ ]

∼=

OO

For a proper hyperbolic curve X over k, let Jd denote the Picard scheme parametrising line
bundles of degree d on X (Note that Jd is a J := J0-torsor). We have a natural map X → J1

(P 7→ O(P )), which induces ΠX → ΠJ1 (for some basepoint). For x ∈ X(k), let tx : Gk → ΠJ1

be the composite of the section Gk → ΠX determined by x and the natural map ΠX → ΠJ1 . The
group structure of Picard schemes also determines a morphism ΠJ1 × · · · (d-times) · · · ×ΠJ1 →
ΠJd for d ≥ 1. For any divisor D of degree d on X such that Supp(D) ⊂ X(k), by forming a
Z-linear combination of tx’s, we have a section tD : Gk → ΠJd .

Lemma 3.15. ([AbsTopIII, Proposition 1.6]) Assume that k is Kummer-faithful, and that X
is proper. Take an open subscheme ∅ 6= U ⊂ X, and let

κU : Γ(U,O×U )→ H1(ΠU , µẐ(k(X))) = H1(ΠU , µẐ(k))
∼= H1(ΠU , µẐ(ΠX))

denote the composite of the Kummer map (for an algebraic closure k(X) of k(X)) and the

natural isomorphism µẐ(k)
∼= µẐ(ΠX)(∼= Ẑ(1)) (which comes from the scheme theory).

(1) κU is injective.
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(2) (See also [Cusp, Proposition 2.3 (i)]) For any divisor D of degree 0 on X such that
Supp(D) ⊂ X(k), the section tD : Gk → ΠJ is equal to (up to conjugates by ∆X) the
section determined by the origin O of J(k) if and only if the divisor D is principal.

(3) (See also [Cusp, Proposition 2.1 (i)]) We assume that U = X \ S, where S ⊂ X(k) is a
finite set. Then, the quotient ΠU � Πcusp-cent

U induces an isomorphism

H1(Πcusp-cent
U , µẐ(ΠX))

∼→ H1(ΠU , µẐ(ΠX)).

(4) (See also [Cusp, Proposition 1.4 (ii)]) We have an isomorphism

H1(ΠX , µẐ(ΠX)) ∼= (k×)∧,

where (k×)∧ denotes the profinite completion of k×.
(5) (See also [Cusp, Proposition 2.1 (ii)]) We have a natural exact sequence induced by the

restrictions to Ix (x ∈ S):

0→ H1(ΠX , H
0(
∏
x∈S

Ix, µẐ(ΠX)))→ H1(Πcusp-cent
U , µẐ(ΠX)))→

⊕
x∈S

H0(ΠX , H
1(Ix, µẐ(ΠX))).

The cyclotomic rigidity isomorphism (Cyc.Rig. Iner.) µẐ(ΠX) ∼= Ix in Proposi-
tion 3.14 induces an isomorphism

H0(ΠX , H
1(Ix, µẐ(ΠX))) = HomΠX

(Ix, µẐ(ΠX)) ∼= Ẑ
(Hence, note that we can use the above isomorphism for a group-theoretic reconstruction
later). Then, by the isomorphisms in (3) and (4) and the above cyclotomic rigidity
isomorphism, the above exact sequence is identified with

1→ (k×)∧ → H1(ΠU , µẐ(ΠX))→
⊕
x∈S

Ẑ.

(6) The image of Γ(U,O×U ) in H1(ΠU , µẐ(ΠX))/(k
×)∧ via κU is equal to the inverse image

in H1(ΠU , µẐ(ΠX))/(k
×)∧ of the submodule P ′U of

⊕
x∈S Z (⊂

⊕
x∈S Ẑ) determined by

the principal divisors with support in S.

Remark 3.15.1. (A general remark to the readers who are not familiar with the culture of
anabelian geometers) In the above lemma, note that we are currently studying in a scheme
theory here, and that the natural isomorphism µẐ(k)

∼= µẐ(ΠX) comes from the scheme theory.
A kind of “general principle” of studying anabelian geometry is like this:

(1) First, we study some objects in a scheme theory to obtain group-theoretic properties or
group-theoretic characterisations.

(2) Next, by using the group-theoretic properties or group-theoretic characterisations ob-
tained in the first step, we formulate group-theoretic reconstruction algorithms, and we
cannot use a scheme theory in this situation.

When we consider cyclotomes as abstract abelian groups with Galois action (i.e., when we
are working in the group theory), we only know a priori that two cyclotomes are abstractly
isomorphic (this is the definition of the cyclotomes), the way to identify them is not given, and

there are Ẑ×-ways (or we have a Ẑ×-torsor) for the identification (i.e., we have Ẑ×-indeterminacy
for the choice). It is important to note that the cylotomic rigidity isomorphism (Cyc.Rig. Iner.)
is constructed in a purely group theoretic manner, and we can reconstruct the identification
even when we are working in the group theory. See also the (Step 3) in Theorem 3.17.

Proof. (1): By the assumption that k is Kummer-faithful, k(X) is also Kummer-faithful by
Lemma 3.2 (3).
(2): The origin O ∈ J determines a section sO : Gk → ΠJ , and, by taking (in the additive

expression) the substraction ηD := tD − sO : Gk → ∆J (⊂ ΠJ) (i.e., the quotient ηD := tD/sO
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in the multiplicative expression), which is a 1-cocycle, of two sections tD, sO : Gk → ΠJ , we
obtain a cohomology class [ηD] ∈ H1(Gk,∆J). On the other hand, the Kummer map for J(k)
induces an injection (J(k) ⊂)J(k)∧ ⊂ H1(k,∆J), since k is Kummer-faithful (Here, J(k)∧

denotes the profinite completion of J(k)). Then, we claim that [D] = [O(D)] ∈ J(k) is sent
to ηD ∈ H1(Gk,∆J) (See also [NTs, Lemma 4.14] and [Naka, Claim (2.2)]). Let αD : J → J
denote the morphism which sends x to x− [D], and for a positive integer N , let JD,N → J be
the pull-back of αD : J → J via the morphism [N ] : J → J of multiplication by N :

JD,N

��

// J

[N ]

��
J \ {O} � � // J

αD // J.

The origin O ∈ J([N ]→ J) corresponds to a k-rational point 1
N
[D] ∈ JD,N(k) lying over [D] ∈ J(k).

By the k-rationality of 1
N
[D], we have tD(σ) ∈ ΠJD,N

(⊂ ΠJ) for σ ∈ Gk. The inertia sub-
group IO (⊂ ∆J\{O}) of the origin O ∈ J(� JD,N) determines a system of geometric points

QD,N ∈ JD,N(k) corresponding to the divisor 1
N
(−[D]) for N ≥ 1 such that IO always lies

over QD,N . The conjugation conj(tD(σ)) ∈ Aut(∆J\{O}) by tD(σ) coincides with the automor-

phism induced by σ∗N := id×Spec k Spec (σ
−1) ∈ Aut((J \ {O})⊗k k) (Note that a fundamental

group and the corresponding covering transformation group are opposite groups to each other).
Thus, tD(σ)IOtD(σ)

−1 gives an inertia subgroup over σ∗N(QD,N) = σ(QD,N). On the other
hand, by definition, we have tD(σ)zOtD(σ)

−1 = tD(σ)sO(σ)
−1sO(σ)zOsO(σ)

−1sO(σ)tD(σ)
−1 =

ηD(σ)z
χcyc(σ)
O ηD(σ)

−1 for a generator zO of IO, hence, tD(σ)IOtD(σ)
−1 is an inertia subgroup

over νN(ηD(σ)
−1)(QD,N), where νN : ∆J � Aut((J \ J [N ]) ⊗k k

[N ]→ (J \ {O}) ⊗k k)opp (Here,
(−)opp denotes the opposite group. Note that a fundamental group and the corresponding cov-
ering transformation group are opposite groups to each other). Therefore, we have σ(QD,N) =

νN(ηD(σ)
−1)(QD,N). By noting the natural isomorphism Aut

(
(J \ J [N ])⊗k k

[N ]→ (J \ {O})⊗k k
)
∼=

J [N ] given by γ 7→ γ(O), we obtain that

σ

(
1

N
(−[D])

)
= −νN(ηD(σ))(O) +

1

N
(−[D]) .

Hence we have σ
(

1
N
[D]
)
− 1

N
[D] = νN(ηD(σ))(O). This gives us the claim. The assertion (2)

follows from this claim.
(3): We have the following commutative diagram:

0 // H1(Gk, H
0(∆cusp-cent

U )) //

��

H1(Πcusp-cent
U ) //

��

H0(Gk, H
1(∆cusp-cent

U ))

��
0 // H1(Gk, H

0(∆U)) // H1(ΠU) // H0(Gk, H
1(∆U)),

where the horizontal sequences are exact, and we abbreviate the coefficient µẐ(ΠU) by the
typological reason. Here, we have

H1(Gk, H
0(∆U , µẐ(ΠX))) = H1(Gk, µẐ(ΠX)) = H1(Gk, H

0(∆cusp-cent
U , µẐ(ΠX))),

and
H0(Gk, H

1(∆U , µẐ(ΠX))) = H0(Gk,∆
ab
U ) = H0(Gk, H

1(∆cusp-cent
U , µẐ(ΠX))).

Thus by combining these, the assertion (3) is proved.
(4): By the exact sequence

0→ H1(Gk, H
0(∆X , µẐ(ΠX)))→ H1(ΠX , µẐ(ΠX))→ H0(Gk, H

1(∆X , µẐ(ΠX))) (∼= H0(Gk,∆
ab
X )),
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andH1(Gk, H
0(∆X , µẐ(ΠX))) = H1(Gk, µẐ(ΠX)) ∼= (k×)∧, it suffices to show thatH0(Gk,∆

ab
X ) =

0. This follows from (∆ab
X )Gk ∼= T (J)Gk = 0, since ∩NNJ(k) = 0 by the assumption that k is

Kummer-faithful (Here, T (J) denotes the Tate module of J , and J [N ] is the group of N -torsion
points of J).
(5) is trivial by noting H1(ΠX , H

0(
∏

x∈S Ix, µẐ(ΠX))) = H1(ΠX , µẐ(ΠX)) ∼= (k×)∧ by (4).
(6) is trivial. �

Let kNF denote the algebraic closure of Q in k (Here, NF stands for “number field”). If Xk

is defined over kNF, we say that X is an NF-curve. For an NF-curve X, points of X(k) (resp.
rational functions on Xk, constant rational functions (i.e., k ⊂ k(X))) which descend to kNF,
we call them NF-points (resp. NF-rational functions, NF-constants) on Xk.

Lemma 3.16. ([AbsTopIII, Proposition 1.8]) Assume that k is Kummer-faithful. Take an
open subscheme ∅ 6= U ⊂ X, and put S := X \ U . We also assume that U is an NF-
curve (hence X is also an NF-curve). Let PU ⊂ H1(ΠU , µẐ(ΠX)) denote the inverse image of

P ′U ⊂
⊕

x∈S Z (⊂
⊕

x∈S Ẑ) via the homomorphism H1(ΠU , µẐ(ΠX)) →
⊕

x∈S Ẑ constructed in
Lemma 3.15.

(1) an element η ∈ PU is the Kummer class of a non-constant NF-rational function if
and only if there exist a positive integer n and two NF-points x1, x2 ∈ U(k′) with a
finite extension k′ of k such that the restrictions (nη)|xi := s∗xi(nη) ∈ H

1(Gk′ , µẐ(ΠX)),
where sxi : Gk′ → ΠU is the section corresponding to xi for i = 1, 2, satisfy (in the
additive expression) (nη)|x1 = 0 and (nη)|x2 6= 0 (i.e., = 1 and 6= 1 in the multiplicative
expression).

(2) Assume that there exist non-constant NF-rational functions in Γ(U,O×U ). Then, an
element η ∈ PU ∩ H1(Gk, µẐ(ΠX)) ∼= (k×)∧ is the Kummer class of an NF-constant
in k× if and only if there exist a non-constant NF-rational function f ∈ Γ(U,O×U )
and an NF-point x ∈ U(k′) with a finite extension k′ of k such that κU(f)|x = η|x in
H1(Gk′ , µẐ(ΠX)).

Proof. Let XNF be a model of Xk over kNF. Then, any non-constant rational function on XNF

determines a morphism XNF → P1
kNF

, which is non-constant i.e., XNF(kNF) → P1
kNF

(kNF) is

surjective. Then, the lemma follows from the definitions. �

Theorem 3.17. (Mono-Anabelian Reconstruction of NF-Portion, [AbsTopIII, Theorem 1.9])
Assume that k is sub-p-adic, and that X is a hyperbolic orbicurve of strictly Belyi type. Let X
be the canonical smooth compactification of X. From the extension 1→ ∆X → ΠX → Gk → 1
of profinite groups, we can functorially group-theoretically reconstruct the NF-rational function
field kNF(X) and NF-constant field kNF as in the following. Here, the functoriality is with
respect to open injective homomorphisms of extension of profinite groups (See Remark 3.13.1),
as well as with respect to homomorphisms of extension of profinite groups arising from a base
change of the base field.

(Step 1) By Belyi cuspidalisation (Theorem 3.8), we group-theoretically reconstruct the set of
surjections {ΠU � ΠX}U for open sub-NF-curves ∅ 6= U ⊂ X and the decomposition
groups Dx in ΠX of NF-points x. We also group-theoretically reconstruct the inertia
subgroup Ix := Dx ∩∆U .

(Step 2) By cyclotomic rigidity for inertia subgroups (Proposition 3.14 and Remark 3.14.1), we

group-theoretically obtain isomorphism Ix
∼→ µẐ(ΠX) for any x ∈ X(k), where Ix is

group-theoretically reconstructed in (Step 1).
(Step 3) By the inertia subgroups Ix reconstructed in (Step 1), we group-theoretically reconstruct

the restriction homomorphism H1(ΠU , µẐ(ΠX)) → H1(Ix, µẐ(ΠX)). By the cyclotomic
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rigidity isomorphisms in (Step 2), we have an isomorphism H1(Ix, µẐ(ΠX)) ∼= Ẑ. There-
fore, we group-theoretically obtain an exact sequence

1→ (k×)∧ → H1(ΠU , µẐ(ΠX))→
⊕
x∈S

Ẑ

in Lemma 3.15 (5) (Note that, without the cyclotomic rigidity Proposition 3.14, we

would have Ẑ×-indeterminacies on each direct summand of
⊕

x∈S Ẑ, and that the re-
construction algorithm in this theorem would not work). By the characterisation of
principal cuspidal divisors (Lemma 3.15 (2), and the decomposition groups in (Step 1)),
we group-theoretically reconstruct the subgroup

PU ⊂ H1(ΠU , µẐ(ΠU))

of principal cuspidal divisors.
(Step 4) Note that we already group-theoretically reconstructed the restriction map η|xi in Lemma 3.16

by the decomposition group Dxi reconstructed in (Step 1). By the characterisations of
non-constant NF-rational functions and NF-constants in Lemma 3.16 (1), (2) in PU
reconstructed in (Step 3), we group-theoretically reconstruct the subgroups (via Kummer
maps κU ’s in Lemma 3.15)

k
×
NF ⊂ kNF(X)× ⊂ lim−→

U

H1(ΠU , µẐ(ΠX)),

where U runs through the open sub-NF-curves of X ×k k′ for a finite extension k′ of k.
(Step 5) In (Step 4), we group-theoretically reconstructed the datum kNF(X)× in Proposition 3.12

(a). Note that we already reconstructed the data ordx’s in Proposition 3.12 (b) as the

component at x of the homomorphism H1(ΠU , µẐ(ΠX)) →
⊕

x∈S Ẑ reconstructed in
(Step 3). Note also that we already group-theoretically reconstructed the evaluation map
f 7→ f(x) in Proposition 3.12 as the restriction map to the decomposition group Dx

reconstructed in (Step 1). Thus, we group-theoretically obtain the data Uv’s in Propo-
sition 3.12 (c). Therefore, we can apply Uchida’s Lemma (Proposition 3.12), and we
group-theoretically reconstruct the additive structures on

k
×
NF ∪ {0}, kNF(X)× ∪ {0}.

Proof. The theorem immediately follows from the group-theoretic algorithms referred in the
statement of the theorem. The functoriality immediately follows from the described construc-
tions. �
Remark 3.17.1. The input data of Theorem 3.17 is the extension 1→ ∆X → ΠX → Gk → 1
of profinite groups. If k is a number field or a non-Archimedean local field, then we need only
the profinite group ΠX as an input datum by Proposition 2.2 (1), and Corollary 2.4. (Note that
we have a group-theoretic characterisation of cuspidal decomposition groups for the number
field case as well by Remark 2.9.2.)

Remark 3.17.2. (Elementary Birational Analogue, [AbsTopIII, Theorem 1.11]) Let ηX denote
the generic point of X. If k is l-cyclotomically full for some l, then we have the characterisation
of the cuspidal decomposition groups in ΠηX at (not only NF-points but also) all closed points
of X (See Remark 2.9.2). Therefere, under the assumption that k is Kummer-faithful (See also
Lemma 3.2 (2)), if we start not from the extension 1 → ∆X → ΠX → Gk → 1, but from the
extension 1→ ∆ηX → ΠηX → Gk → 1, then the same group-theoretic algorithm (Step 2)-(Step
5) works without using Belyi cuspidalisation (Theorem 3.8) or (GC) (See Theorem B.1), and
we can obtain (not only the NF-rational function field kNF(X) but also) the rational function
field k(X) and (not only the NF-constant field kNF but also) the constant field k (Note also
that we do not use the results in Section 3.2, hence we have no circular arguments here).
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Remark 3.17.3. (Slimness of Gk for Kummer-Faithful k, [AbsTopIII, a part of Theorem 1.11])
By using the above Remark 3.17.2 (Note that we do not use the results in Section 3.2 to show
Remark 3.17.2, hence we have no circular arguments here), we can show that Gk := Gal(k/k)
is slim for any Kummer-faithful field k as follows (See also [pGC, Lemma 15.8]): Let Gk′ ⊂ Gk

be an open subgroup, and take g ∈ ZGk
(Gk′). Assume that g 6= 1. Then we have a finite Galois

extension K of k′ such that g : K
∼→ K is not an identity on K. We have K = k′(α) for some

α ∈ K. Take an elliptic E over K with j-invariant α. Put X := E \ {O}, where O is the origin

of E. Put also Xg := X×K,gK i.e., the base change by g : K
∼→ K. The conjugate by g defines

an isomorphism ΠX
∼→ ΠXg . This isomorphism is compatible to the quotients to GK , since g

is in ZGk
(Gk′). Thus, by the functoriality of the algorithm in Remark 3.17.2, this isomorphism

induces an K-isomorphism K(X)
∼→ K(Xg)(= K(X)⊗K,gK) of function fields. Therefore, we

have g(α) = α by considering the j-invariants. This is a contradiction.

Remark 3.17.4. (See also [AbsTopIII, Remark 1.9.5 (ii)], and [IUTchI, Remark 4.3.2]) The
theorem of Neukirch-Uchida (which is a bi-anabelian theorem) uses the data of the decom-
position of primes in extensions of number fields. Hence, it has no functoriality with respect
to the base change from a number field to non-Archimedean local fields. On the other hand,
(mono-anabelian) Theorem 3.17 has the functoriality with respect to the base change of the
base fields, especially from a number field to non-Archimedean local fields. This is crucial for
the applications to inter-universal Teichmüller theory (For example, see the beginning of 10,
Example 8.12 etc.). See also [IUTchI, Remark 4.3.2 requirements (a), (b), and (c)].
In inter-universal Teichmüller theory, we will treat local objects (i.e., objects over local

fields) which a priori do not come from a global object (i.e., an object over a number field), in
fact, we completely destroy the above data of “the decomposition of primes” (Recall also the
“analytic section” of SpecOK � SpecOFmod

). Therefore, it is crucial to have a mono-anabelian
reconstruction algorithm (Theorem 3.17) in a purely local situation for the applications to
inter-universal Teichmüller theory. It also seems worthwhile to give a remark that such a
mono-anabelian reconstruction algorithm in a purely local situation got available by the fact
that the bi-anabelian theorem in [pGC] was proved for a purely local situation, unexpectedly
at that time to many people from a point of view of analogy with Tate conjecture!

Definition 3.18. Let k be a finite extension of Qp. We define

µQ/Z(Gk) := lim−→
H⊂Gk: open

(Hab)tors, µẐ(Gk) := Hom(Q/Z, µQ/Z(Gk)),

where the transition maps are given by Verlangerung (or transfer) maps (See also the proof of
Proposition 2.1 (6) for the definition of Verlangerung map). We call them the cyclotomes of
Gk.

Remark 3.18.1. Similarly as Remark 3.13.1, in this subsection, by the functoriality of coho-
mology with µQ/Z(G(−))-coefficients for an open injective homomorphism of profinite groups
Gk′ ⊂ Gk, we always mean multiplying 1

[Gk:Gk′ ]
on the homomorphism between the cyclotomes

of Gk and Gk′ (See also [AbsTopIII, Remark 3.2.2]). Note that we have a commutative diagram

H2(Gk, µQ/Z(Gk))
∼= //

∼=
1

[Gk:Gk′ ]
·restriction

��

Q/Z

=

��
H2(Gk′ , µQ/Z(Gk′))

∼= // Q/Z,

where the horizontal arrows are the isomorphisms given in Proposition 2.1 (7).
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Corollary 3.19. (Mono-Anabelian Reconstruction over MLF, [AbsTopIII, Corollary 1.10,
Proposition 3.2 (i), Remark 3.2.1]) Assume that k is a non-Archimedean local field, and that
X is a hyperbolic orbicurve of strictly Belyi type. From the profinite group ΠX , we can group-
theoretically reconstruct the following in a functorial manner with respect to open injections of
profinite groups:

(1) the set of the decomposition groups of all closed points in X,
(2) the function field k(X) and the constant field k, and
(3) a natural isomorphism

(Cyc.Rig. LCFT) µẐ(Gk)
∼→ µẐ(O

�(ΠX)),

where we put µẐ(O
�(ΠX)) := Hom(Q/Z, κ(k×NF)) for κ : k

×
NF ↪→ lim−→U

H1(ΠU , µẐ(ΠX)).

We call the isomorphism (Cyc.Rig. LCFT) the cyclotomic rigidity via LCFT or classical
cyclotomic rigidity (LCFT stands for “local class field theory”).

Proof. (1) is just a restatement of Corollary 3.9.
(2): By Theorem 3.17 and Corollary 2.4, we can group-theoretically reconstruct the fields

kNF(X) and kNF. On the other hand, by the natural isomorphism H2(Gk, µẐ(Gk))
∼→ Ẑ

group-theoretically constructed in Proposition 2.1 (7) (with Hom(Q/Z,−)) and the cup prod-

uct, we group-theoretically construct isomorphisms H1(Gk, µẐ(Gk))
∼→ Hom(H1(Gk, Ẑ), Ẑ) ∼=

Gab
k . We also have group-theoretic constructions of a surjection Gab

k � Gab
k /Im(Ik → Gab

k )

and an isormorphism Gab
k /Im(Ik → Gab

k ) ∼= Ẑ by Proposition 2.1 (4a) and Proposition 2.1
(5) respectively (See also Remark 2.1.1). Hence, we group-theoretically obtain a surjection

H1(Gk, µẐ(Gk)) � Ẑ. We have an isomorphism µẐ(Gk) ∼= µẐ(ΠX) well-defined up to mul-

tiplication by Ẑ×. Then, this induces a surjection H1(Gk, µẐ(ΠX)) � Ẑ well-defined up to

multiplication by Ẑ×. We group-theoretically reconstruct the field k as the completion of the

field (H1(Gk, µẐ(ΠX)) ∩ k
×
NF) ∪ {0} (induced by the field structure of k

×
NF ∪ {0}) with respect

to the valuation determined by the subring of (H1(Gk, µẐ(ΠX)) ∩ k
×
NF) ∪ {0} generated by

ker
{
H1(Gk, µẐ(ΠX))� Ẑ

}
∩k×NF. The reconstructed object is independent of the choice of an

isomorphism µẐ(Gk) ∼= µẐ(ΠX). By taking the inductive limit of this construction with respect

to open subgroups of Gk, we group-theoretically reconstruct k. Finally, we group-theoretically
reconstruct k(X) by k(X) := k ⊗kNF

kNF(X).
(3): We put µQ/Z(O

�(ΠX)) := µẐ(O
�(ΠX)) ⊗Ẑ Q/Z. We group-theoretically reconstruct

Gur = Gal(kur/k) by Proposition 2.1 (4a). Then, by the same way as Proposition 2.1 (7), we
have group-theoretic constructions of isomorphisms:

H2(Gk, µQ/Z(O
�(ΠX)))

∼→ H2(Gk, κ(k
×
))

∼←− H2(Gur, κ((kur)×))
∼→ H2(Gur,Z) ∼←− H1(Gur,Q/Z) = Hom(Gur,Q/Z) ∼→ Q/Z.

Thus, by taking Hom(Q/Z,−), we obtain a natural isomorphism H2(Gk, µẐ(O
�(ΠX)))

∼→ Ẑ.
By imposing the compatibility of this isomorphism with the group-theoretically constructed iso-

morphismH2(Gk, µẐ(Gk))
∼→ Ẑ in (2), we obtain a natural isomorphism µẐ(Gk)

∼→ µẐ(O
�(ΠX)).

�
Remark 3.19.1. ([AbsTopIII, Corollary 1.10 (c)]) Without assuming that X is of strictly Belyi

type, we can construct an isomorphism µẐ(Gk)
∼→ µẐ(ΠX) (cf.Corollary 3.19 (3)). However, the

construction needs technically lengthy reconstructions of the graph of special fiber ([profGC, §1–
5], [AbsAnab, Lemma 2.3]. See also [SemiAnbd, Theorem 3.7, Corollary 3.9] Proposition 6.6 for
the reconstruction without Galois action in the case where a tempered structure is available)
and the “rational positive structure” of H2 (See also [AbsAnab, Lemma 2.5 (i)]), where we



58 GO YAMASHITA

need Raynaud’s theory on “ordinary new part” of Jacobians (See also [AbsAnab, Lemma 2.4]),
though it has an advantage of no need of [pGC]. See also Remark 6.12.2.

Remark 3.19.2. ([AbsTopIII, Proposition 3.2, Proposition 3.3]) For a topological monoid

(resp. topological group) M with continuous Gk-action, which is isomorphic to O�

k
(resp. k

×
)

compatible with the Gk-action, we put µẐ(M) := Hom(Q/Z,M×)) and µQ/Z(M) := µẐ(M)⊗Ẑ
Q/Z. We call them the cyclotome of a topological monoid M . We also put Mur :=
Mker(G→Gur). We can canonically take the generator of Mur/M× ∼= N (resp. the generator of
Mur/M× up to {±1}) to obtain an isomorphism (Mur)gp/(Mur)× ∼= Z (resp. an isomorphism
(Mur)gp/(Mur)× ∼= Z well-defined up to {±1}). Then, by the same way as Corollary 3.19 (3),
we have

H2(Gk, µQ/Z(M))
∼→ H2(Gk,M

gp)
∼←− H2(Gur, (Mur)gp)

∼→ H2(Gur, (Mur)gp/(Mur)×)
∼→
(∗)
H2(Gur,Z) ∼←− H1(Gur,Q/Z) = Hom(Gur,Q/Z) ∼→ Q/Z,

where the isomorphism H2(Gur, (Mur)gp/(Mur)×)
∼→
(∗)

H2(Gur,Z) is canonically defined (resp.

well-defined up to {±1}), as noted above. Then, we have a canonical isomorphism (resp. an
isomorphism well-defined up to {±1})

(Cyc.Rig. LCFT2) µẐ(Gk)
∼→ µẐ(M),

by the same way as in Corollary 3.19 (3). We also call the isomorphism (Cyc.Rig. LCFT2)
the cyclotomic rigidity via LCFT or classical cyclotomic rigidity. We also obtain a
canonical homomorphism (resp. a homomorphism well-defined up to {±1})

M ↪→ lim−→
J⊂G: open

H1(J, µẐ(M)) ∼= lim−→
J⊂G: open

H1(J, µẐ(Gk)),

by the above isomorphism, where the first injection is the canonical injection (The notation
� in O�

k
= O×

k
· (uniformiser)N indicates that the “direction” N (∼= (uniformiser)N) of Z (∼=

(uniformiser)Z) (or a generator of Z) is chosen, compared to k
×
= O×

k
· (uniformiser)Z, which

has {±1}-indeterminacy of choosing a “direction” or a generator of Z (∼= (uniformiser)Z). In
the non-resp’d case (i.e., the O�-case), the above canonical injection induces an isomorphism

M
Kum
∼→ O�

k
(ΠX),

where O�

k
(ΠX) denotes the ind-topological monoid determined by the ind-topological field

reconstructed by Corollay 3.19. We call this isomprhism the Kummer isomorphism for M .
We can also consider the case where M is an topological group with Gk-action, which is

isomorphic to O×
k
compatible with the Gk-action. Then, in this case, we have an isomorphism

µẐ(Gk)
∼→ µẐ(M) and an injectionM ↪→ lim−→J⊂G: open

H1(J, µẐ(Gk)), which are only well-defined

up to Ẑ×-multiple (i.e., there is no rigidity).
It seems important to give a remark that we use the value group portion (i.e., we use O�, not

O×) in the construction of the cyclotomic rigidity via LCFT. In inter-universal Teichmüller the-
ory, not only the existence of reconstruction algorithms, but also the contents of reconstruction
algorithms are important, and whether or not we use the value group portion in the algorithm
is crucial for the constructions in the final multiradial algorithm in inter-universal Teichmüller
theory. See also Remark 9.6.2, Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.
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3.5. Philosophy of Mono-Analyticity and Arithmetical Holomorphicity (Explana-
tory). In this subsection, we explain Mochizuki’s philosophy of mono-analyticity and arith-
metical holomorphicity, which is closely related to inter-universality.
Let k be a finite extension of Qp, k an algebraic closure of k, and k′(⊂ k) a finite extension

of Qp. It is well-known that, at least for p 6= 2, the natural map

(nonGC for MLF)
Isomtopological fields(k/k, k/k

′) ↪→ Isomprofinite groups(Gal(k/k′),Gal(k/k))
(scheme theory) (group theory)

is not bijective (See [NSW, Chap. VII, §5, p.420–423]. See also [AbsTopI, Corollary 3.7]). This
means that there exists an automorphism of Gk := Gal(k/k) which does not come from an
isomorphism of topological fields (i.e., does not come from a scheme theory). In this sense, by
treating Gk as an abstract topological group, we can go outside of a scheme theory. (A part of)
Mochizuki’s philosophy of arithmetically holomorphicity and mono-analyiticity is to consider
the image of the map (nonGC for MLF) as arithmetically holomorphic, and the right hand
side of (nonGC for MLF) as mono-analytic (Note that this is a bi-anabelian explanation, not
a mono-anabelian explanation (cf.Remark 3.4.4) for the purpose of the reader’s easy getting
the feeling. We will see mono-anabelian one a little bit later). The arithmetical holomorphicity
versus mono-analyticity is an arithmetic analougue of holomorphic structure of C versus the
undeyling analytic strucutre of R2(∼= C).
Note that Gk has cohomological dimension 2 like C is two-dimensional as a topological

manifold. It is well-known that this two-dimensionality comes from the exact sequence 1 →
Ik → Gk → ẐFrobk → 1 and that both of Ik and ẐFrobk have cohomological dimension 1. In
the abelianisation, these groups correspond to the unit group and the value group respectively
via the local class field theory. Proposition 2.1 (2d) says that we can group-theoretically
reconstruct the multiplicative group k× from the abstract topological group Gk. This means
that we can see the multiplicative structure of k in any scheme theory, in other words, the
multiplicative structure of k is inter-universally rigid. However, we cannot group-theoretically
reconstruct the field k from the abstract topological group Gk, since there exists a non-scheme
theoretic automorphism of Gk as mentioned above. In other words, the additive structure of
k is inter-universally non-rigid. Proposition 2.1 (5) also says that we can group-theoretically

reconstruct Frobenius element Frobk in ẐFrobk(� Gk) from the abstract topological group Gk,

and the unramified quotient ẐFrobk corresponds to the value group via the local class field
theory. This means that we can detect the Frobenius element in any scheme theory. In other

words, the unramified quotient ẐFrobk and the value group Z(� k×) are inter-universally rigid.
However, there exists automorphisms of the topological group Gk which do not preserve the
ramification filtrations (See also [AbsTopIII, Remark 1.9.4]), and the ramification filtration
(with upper numberings) corresponds to the filtration (1 + mn

k)n of the unit group via the
local class field theory, where mk denotes the maximal ideal of Ok. In other words, the inertia
subgroup Ik and the unit group O×k are inter-universally non-rigid (We can also directly see that
the unit group O×k is non-rigid under the automorphism of topological group k× without the
class field theory). In summary, one dimension of Gk or k× (i.e., the unramified quotient and
the value group) is inter-universally rigid, and the other dimension (i.e., the inertia subgroup
and the unit group) is not. Thus, Mochizuki’s philosophy of arithmetical holomorphicity and
mono-analyticity regards a non-scheme theoretic automorphism of Gk as a kind of arithmetic
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analogue of Teichmüller dilation of the undeyling analytic strucutre of R2(∼= C):

↑  ↑
→ −−−−−−−−−→

(See also [Pano, Fig. 2.1] instead of the above poor picture). Note that [QpGC, Theorem 4.2]
says that if an automorphisms of Gk preserves the ramification filtration, then the automor-
phism arises from an automorphism of k/k. This means that when we rigidify the portion
corresponding to the unit group (i.e., non-rigid dimension of Gk), then it becomes arithmeti-
cally holomorphic i.e., [QpGC, Theorem 4.2] supports the philosophy. Note also that we have
C× ∼= S1 × R>0, where we put S1 := O×C ⊂ C× (See Section 0.2), and that the unit group S1 is
rigid and the “value group” R>0 is non-rigid under the automorphisms of the topological group
C× (Thus, rigidity and non-rigidity for unit group and “value group” in Archimedean case are
opposite to the non-Archimedean case).
Let X be a hyperbolic orbicurve of strictly Belyi type over a non-Archimedean local field k.

Corollary 3.19 says that we can group-theoretically reconstruct the field k from the abstract
topological group ΠX . From this mono-anabelian reconstruction theorem, we obtain one of the
fundamental observations of Mochizuki: ΠX or equivalently the outer action Gk → Out(∆X)
(and the actions ΠX y k,Ok, O

�

k
, O×

k
) is arithmetically holomorphic, and Gk (and the actions

Gk y O�

k
, O×

k
on multiplicative monoid and multiplicative group) is mono-analytic (thus, taking

the quotient ΠX 7→ Gk is a “mono-analyticisation”) (cf.Section 0.2 for the notation O�

k
). In

other words, the outer action of Gk on ∆X rigidifies the “non-rigid dimension” of k×. We can
also regard X as a kind of “tangent space” of k, and it rigidifies k×. Note also that, in the p-adic
Teichmüller theory, a nilpotent ordinary indigenous bundle over a hyperbolic curve in positive
characteristic rigidifies the non-rigid p-adic deformations. In the next section, we study an
Archimedean analogue of this rigidifying action. In inter-universal Teihmüller theory, we study
number field case by putting together the local ones. In the analogy between p-adic Teichmüller
theory and inter-universal Teichmüller theory, a number field corresponds to a hyperbolic curve
over a perfect field of positive characteristic, and a once-punctured elliptic curve over a number
field corresponds to a nilpotent ordinary indigenous bundle over a hyperbolic curve over a
perfect field of positive characteristic. We will deepen this analogy later such that log-link
corresponds to a Frobenius endomorphism in positive characteristic, a vertical line of log-theta
lattice corresponds to a scheme theory in positive characteristic, Θ-link corresponds to a mixed
characteristic lifting of ring of Witt vectors pn/pn+1 ; pn+1/pn+2, a horizontal line of log-theta
lattice corresponds to a deformation to mixed characteristic, and a log-theta lattice corresponds
to a canonical lifting of Frobenius (cf.Section 12.1).
In short, we obtain the following useful dictionaries:

rigid ẐFrobk value group multiplicative structure of k S1(⊂ C×)

non-rigid Ik unit group additive structure of k R>0(⊂ C×)

C field k ΠX ΠX y k,Ok, O
�

k
, O×

k
arith. hol.

R2(∼= C) multiplicative group k× Gk Gk y O�

k
, O×

k
mono-an.
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inter-universal Teich. p-adic Teich.

number field hyperbolic curve of pos. char.

onece-punctured ell. curve nilp. ord. indigenous bundle

log-link Frobenius in pos. char.

vertical line of log-theta lattice scheme theory in pos. char.

Θ-link lifting pn/pn+1 ; pn+1/pn+2

horizontal line of log-theta lattice deformation to mixed. char.

log-theta lattice canonical lift of Frobenius

See also [AbsTopIII, §I.3] and [Pano, Fig. 2.5]. Finally, we give a remark that separating ad-
ditive and multiplicative structures is also one of the main themes of inter-universal Teichmüller
theory (cf. Section 10.4 and Section 10.5).

4. Archimedean Theory —Avoiding Specific Reference Model C.

In this section, we introduce a notion of Aut-holomorphic space to avoid a specific fixed
local referred model of C (i.e., “the C”) for the formulation of holomorphicity, i.e., “model-
implicit” approach. Then, we study an Archimedean analogue mono-anabelian reconstructions
of Section 3, including elliptic cuspidalisation, and an Archimedean analogue of Kummer theory.

4.1. Aut-Holomorphic Spaces.

Definition 4.1. ([AbsTopIII, Definition 2.1])

(1) Let X, Y be Riemann surfaces.
(a) Let AX denote the assignment, which assigns to any connected open subset U ⊂ X

the group AX(U) := Authol(U) := {f : U
∼→ U holomorphic} ⊂ Aut(U top) := {f :

U
∼→ U homeomorphic}.

(b) Let U be a set of connected open subset of X such that U is a basis of the topology
of X and that for any connected open subset V ⊂ X, if V ⊂ U ∈ U , then V ∈ U .
We call U a local structure on the underlying topological space Xtop.

(c) We call a map f : X → Y between Riemann surfaces an RC-holomorphic mor-
phism if f is holormophic or anti-holomorphic at any point x ∈ X (Here, RC
stands for “real complex”).

(2) Let X be a Riemann surface, and U a local structure on Xtop.
(a) The Aut-holomorphic space associated to X is a pair X = (Xtop,AX), where

Xtop := Xtop the underlying topological space of X, and AX := AX .
(b) We call AX the Aut-holomorphic structure on Xtop.
(c) We call AX|U a U-local pre-Aut-holomorphic structure on Xtop.
(d) If X is biholomorphic to an open unit disc, then we call X an Aut-holomorphic

disc.
(e) If X is a hyperbolic Riemann surface of finite type, then we call X hyperbolic of

finite type.
(f) If X is a hyperbolic Riemann surface of finite type associated to an elliptically

admissible hyperbolic curve over C, then we call X elliptically admissible.
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(3) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respectively.
Let U , V be local structures of Xtop, Y top respectively.
(a) A (U ,V)-local morphism φ : X → Y of Aut-holomorphic spaces is a local iso-

morphism φtop : Xtop → Ytop of topological spaces suth that, for any U ∈ U with
φtop : U

∼→ V ∈ V (homeomorphism), the map AX(U) → AY(V ) obtained by the
conjugate by φtop is bijective.

(b) If U , V are the set of all connected open subset of Xtop, Y top respectively, then we
call φ a local morphism of Aut-holomorphic spaces.

(c) If φtop is a finite covering space map, then we call φ finite étale.
(4) Let Z, Z ′ be orientable topological surfaces.

(a) Take p ∈ Z, and put Orn(Z, p) := lim←−p∈W⊂Z: connected, open π1(W \ {p})
ab, which is

non-canonically isomorphic to Z. Note that after taking the abelianisation, there
is no indeterminacy of inner automorphisms arising from the choice of a basepoint
in (the usual topological) fundamental group π1(W \ {p}).

(b) The assignment p 7→ Orn(Z, p) is a trivial local system, since Z is orientable. Let
Orn(Z) denote the abelian group of global sections of this trivial local system,
which is non-canonically isomorphic to Zπ0(Z).

(c) Let α, β : Z → Z ′ be local isomorphisms. We say that α and β are co-oriented if
the induced homomorphisms α∗, β∗ : Orn(Z)→ Orn(Z ′) of abelian groups coincide.

(d) A pre-co-orientation ζ : Z → Z ′ is an equivalence class of local isomorphisms
Z → Z ′ of orientable topological surfaces with respect to being co-oriented.

(e) The assignment which assigns to the open sets U in Z the sets of pre-co-orientations
U → Z ′ is a presheaf. We call a global section ζ : Z → Z ′ of the sheafification of
this presheaf a co-orientation.

(5) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respectively.
Let U , V be local structures of Xtop, Y top respectively.
(a) (U ,V)-local morphisms φ1, φ2 : X → Y of Aut-holomorphic spaces is called co-

holomorphic, if φtop
1 and φtop

2 are co-oriented.
(b) A pre-co-holomorphicisation ζ : X → Y is an equivalence class of (U ,V)-

local morphisms X → Y of Aut-holomorphic spaces with respect to being co-
holomorphic.

(c) The assignment which assigns to the open sets U in Xtop the sets of pre-co-
holomorphicisation U → Y is a presheaf. We call a global section ζ : X → Y
of the sheafification of this presheaf a co-holomorphicisation.

By replacing “Riemann surface” by “one-dimensional complex orbifold”, we can easily extend
the notion of Aut-holomorphic space to Aut-holomorphic orbispace.

Proposition 4.2. ([AbsTopIII, Proposition 2.2]) Let X,Y be Aut-holomorphic discs arising
from Riemann surfaces X, Y respectively. We equip the group Aut(Xtop) of homeomorphisms
with the compact-open topology. Let AutRC-hol(X) (⊂ Aut(Xtop)) denote the subgroup of RC-
holomorphic automorphisms of X. We regard Authol(X) and AutRC-hol(X) as equipped with the
induced topology by the inclusions

Authol(X) ⊂ AutRC-hol(X) ⊂ Aut(Xtop).

(1) We have isomorphisms

Authol(X) ∼= PSL2(R), AutRC-hol(X) ∼= PGL2(R)
as topological groups, Authol(X) is a subgroup in AutRC-hol(X) of index 2, and AutRC-hol(X)
is a closed subgroup of Aut(Xtop).

(2) AutRC-hol(X) is commensurably terminal (cf. Section 0.2) in Aut(Xtop).
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(3) Any isomorphism X ∼→ Y of Aut-holomorphic spaces arises from an RC-holomorphic

isomorphism X
∼→ Y .

Proof. (1) is well-known (the last assertion follows from the fact of complex analysis that the
limit of a sequence of holomorphic functions which uniformly converges on compact subsets is
also holomorphic).
(2) It suffices to show that CAut(Xtop)(Aut

hol(X)) = AutRC-hol(X) (cf. Section 0.2). Take

α ∈ CAut(Xtop)(Aut
hol(X)). Then, Authol(X)∩αAuthol(X)α−1 is a closed subgroup of finite index

in Authol(X), hence an open subgroup in Authol(X). Since Authol(X) is connected, we have
Authol(X) ∩ αAuthol(X)α−1 = Authol(X). Thus, α ∈ NAut(Xtop)(Aut

hol(X)) (cf. Section 0.2).

Then, by the conjugation, α gives an automorphism of Authol(X). The theorem of Schreier-van
der Waerden ([SvdW]) says that Aut(PSL2(R)) ∼= PGL2(R) by the conjugation. Hence, we have
α ∈ AutRC-hol(X). (Without using the theorem of Schreier-van der Waerden, we can directly
show it as follows: By Cartan’s theorem (a homomorphism as topological groups between Lie
groups is automatically a homomorphism as Lie groups, cf. [Serre1, Chapter V, §9, Theorem
2]), the automorphism of Authol(X) given by the conjugate of α is an automorphism of Lie
groups. This induces an automorphism of Lie algebra sl2(C) with sl2(R) stabilised. Hence, α is
given by an element of PGL2(R). See also [AbsTopIII, proo of Proposition 2.2 (ii)], [QuConf,
the proof of Lemma1.10].)
(3) follows from (2), since (2) implies that AutRC-hol(X) is normally terminal. �
The followoing corollary says that the notions of “holomorphic structure”, “Aut-holomorphic

structure”, and “pre-Aut-holomorphic structure” are equivalent.

Corollary 4.3. (a sort of Bi-Anabelian Grothendieck Conjecture in Archimedean Theory,
[AbsTopIII, Corollary 2.3]) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces
X, Y respectively. Let U , V be local structures of Xtop, Y top respectively.

(1) Any (U ,V)-local isomorphism φ : X → Y of Aut-holomorphic spaces arises from a
unique étale RC-holomorphic morphism ψ : X → Y . If X and Y are connected, then
there exist precisely 2 co-holomorphicisations X→ Y, corresponding to the holomorphic
and anti-holomorphic local isomorphisms.

(2) Any pre-Aut-holomorphic structure on Xtop extends to a unique Aut-holomorphic struc-
ture on Xtop.

Proof. (1) follows from Proposition 4.2 (3).
(2) follows by applying (1) to automorphisms of the Aut-holomorphic spaces determined by

the connected open subsets of Xtop which determine the same co-holomorphicisation as the
identity automorphism. �
4.2. Elliptic Cuspidalisation and Kummer theory in Archimedean Theory.

Lemma 4.4. ([AbsTopIII, Corollary 2.4]) Let X be a hyperbolic Aut-holomorphic orbispace
of finite type, arising from a hyperbolic orbicurve X over C. Only from the Aut-holomorphic
orbispace X, we can determine whether or not X admits C-core, and in the case where X admits
C-core, we can construct the Aut-holomorphic orbispace associated to the C-core in a functorial
manner with respect to finite étale morphisms by the following algorithms:

(1) Let Utop → Xtop be any universal covering of Xtop. Then we reconstruct the topological
fundamental group π1(Xtop) as the opposite group Aut(Utop/Xtop)opp of Aut(Utop/Xtop).

(2) Take the local structure U of Utop consisting of connected open subsets of Utop which
map isomorphically onto open sub-orbispaces of Xtop. We construct a natural U-local
pre-Aut-holomorphic structure on Utop by restricting Aut-holomorphic structure of X
on Xtop and by transporting it to Utop. By Corollary 4.3 (2), this gives us a natural
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Aut-holomorphic structure AU on Utop. We put U := (Utop,AU). Thus, we obtain a
natural injection π1(Xtop)opp = Aut(Utop/Xtop) ↪→ Aut0(U) ⊂ Aut(U) ∼= PGL2(R),
where Aut0(U) denotes the connected component of the identity of Aut(U), and the last
isomorphism is an isomorphism as topological groups (Here, we regard Aut(U) as a
topological space by the compact-open topology).

(3) X admits C-core if and only if Im(π1(Xtop)opp) := Im(π1(Xtop)opp ⊂ Aut0(U)) is of
finite index in Πcore := CAut0(U)(Im(π1(Xtop)opp)). If X admits C-core, then the quotient
Xtop � Xcore := Utop//Πcore in the sense of stacks is the C-core of X. The restriction
of the Aut-holomorphic structure of U to an appropriate local structure on U and trans-
porting it to Xcore give us a natural Aut-holomorphic structure AXcore of Xcore, hence,
the desired Aut-holomorphic orbispace (X�)Xcore := (Xcore,AXcore).

Proof. Assertions follow from the described algorithms. See also [CanLift, Remark 2.1.2]. �
Proposition 4.5. (Elliptic Cuspidalisation in Archimedean Theory, [AbsTopIII, Corollary 2.7],
See also [AbsTopIII, Proposition 2.5, Proposition 2.6]) Let X be an elliptically admissible Aut-
holomorphic orbispace arising from a Riemann orbisurface X. By the following algorithms,
only from the holomorphic space X, we can reconstruct the system of local linear holomorphic
structures on Xtop in the sense of (Step 10) below in a functorial manner with respect to finite
étale morphisms:

(Step 1) By the definition of elliptical admissibility and Lemma 4.4 (2), we construct X→ Xcore,
where Xcore arises from the C-core Xcore of X, and Xcore is semi-elliptic (cf. Section 3.1).
There is a unique double covering E → Xcore by an Aut-holomorphic space (not orbis-
pace), i.e., the covering corresponding to the unique torsion-free subgroup of index 2 of
the group Πcore of Lemma 4.4. Here, E is the Aut-holomorphic space associated to a
onec-punctured elliptic curve E \ {O} over C.

(Step 2) We consider elliptic cuspidalisation diagrams E � EN ↪→ E (See also the portion of
“E\{O}� E\E[N ] ↪→ E\{O}” in the diagram (EllCusp) of Section 3.2), where EN �
E is an abelian finite étale coveing which is also unramified at the unique punctured point,
Etop ↪→ (EN)top is an open immersion, and EN ↪→ E, EN � E are co-holomorphic. By
these diagrams, we can reconstruct the torsion points of the elliptic curve E as the
points in E \ EN . We also reconstruct the group structure on the torsion points
induced by the group structure of the Galois group Gal(EN/E), i.e., σ ∈ Gal(EN/E)
corresponds to “+[P ]” for some P ∈ E[N ].

(Step 3) Since the torsion points constructed in (Step 2) are dense in Etop, we reconstruct the
group structure on Etop as the unique topological group structure extending the group
structure on the torsion points constructed in (Step 2). In the subsequent steps, we take
a simply connected open non-empty subset U in Etop.

(Step 4) Let p ∈ U . The group structure constructed in (Step 3) induces a local additive
structure of U at p, i.e., a+p b := (a− p) + (b− p) + p ∈ U for a, b ∈ U , whenever it
is defined.

(Step 5) We reconstruct the line segments of U by one-parameter subgroups relative to the
local additive structures constructed in (Step 4). We also reconstruct the pairs of par-
allel line segments of U by translations of line segments relative to the local additive
structures constructed in (Step 4). For a line segment L, put ∂L to be the subset of
L consisting of points whose complements are connected, we call an element of ∂L an
endpoint of L.

(Step 6) We reconstruct the parallelograms of U as follows: We define a pre-∂-parallelogram
A of U to be L1 ∪ L2 ∪ L3 ∪ L4, where Li (i ∈ Z/4Z) are line segments (constructed in
(Step 5)) such that (a) for any p1 6= p2 ∈ A, there exists a line segment L constructed
in (Step 5) with ∂L = {p1, p2}, (b) Li and Li+2 are parallel line segments constructed
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in (Step 5) and non-intersecting for any i ∈ Z/4Z, and (c) Li ∩Li+1 = (∂Li)∩ (∂Li+1)
with #(Li∩Li+1) = 1. We reconstruct the parallelograms of U as the interiors of the
unions of the line segments L of U such that ∂L ⊂ A for a pre-∂-parallelogram A. We
define a side of a parallelogram in U to be a maximal line segment contained in P \ P
for a parallelogram P of U , where P denotes the closure of P in U .

(Step 7) Let p ∈ U . We define a frame F = (S1, S2) to be an ordered pair of intersecting sides
S1 6= S2 of a parallelogram P of U constructed in (Step 6), such that S1∩S2 = {p}. If a
line segment L of U have an infinite intersection with P , then we call L being framed
by F . We reconstruct an orientation of U at p (of which there are precisely 2) as an
equivalence class of frames of U top at p relative to the equivalence relation of frames
F = (S1, S2), F = (S ′1, S

′
2) of U at p generated by the relation that S ′1 is framed by F

and S2 is framed by F ′.
(Step 8) Let V be the Aut-holomorphic space determined by a parallelogram Vtop ⊂ U constructed

in (Step 7). Let p ∈ Vtop. Take a one-parameter subgroup S of the topological group
AV(Vtop)(∼= PSL2(R)) and a line segment L in U constructed in (Step 5) such that one
of the endpoints (cf. (Step 5)) of L is equal to p. Note that one-parameter subgroups
are characterised by using topological (not differentiable) group structure as the closed
connected subgroups for which the complement of some connected open neighbourhood
of the identity element is not connected. We say that L is tangent to S · p at p if any
pairs of sequences of points of L \ {p}, (S · p) \ {p} converge to the same element of
the quotient space Vtop \ {p}� P(V, p) determined by identifying positive real multiples
of points of Vtop \ {p} relative to the local additive structure constructed in (Step 4)
at p (i.e., projectivification). We can reconstruct the orthogonal frames of U as the
frames consisting of pairs of line segments L1, L2 having p ∈ U as an endpoint that are
tangent to the orbits S1 · p, S2 · p of one-parameter subgroups S1, S2 ⊂ AV(Vtop) such
that S2 is obtained from S1 by conjugating S1 by an element of order 4 (i.e., “±i”) of a
compact one-parameter subgroup of AV(Vtop).

(Step 9) For p ∈ U , let (V )p∈V⊂U be the projective system of connected open neighbourhoods of p
in U , and put

Ap :=
{
f ∈ Aut((V )p∈V⊂U)

∣∣∣ f satisfies (LAS), (Orth), and (Ori)
}
,

where
(LAS): compatibility with the local additive structures of V (⊂ U) at p constructed in (Step

4),
(Orth): preservation of the orthogonal frames of V (⊂ U) at p constructed in (Step 8), and
(Ori): preservation of the orientations of V (⊂ U) at p constructed in (Step 7)
(See also Section 0.2 for the Hom for a projective system). We equip Ap with the
topology induced by the topologies of the open neighbourhoods of p that Ap acts on. The
local additive structures of (Step 4) induce an additive structure on Ap := Ap ∪ {0}.
Hence, we have a natural topological field structure on Ap. Tha tautological action of

C× on C ⊃ U induces a natural isomorphism C× ∼→ Ap of topological groups, hence a

natural isomorphism C ∼→ Ap of topological fields. In this manner, we reconstruct the
local linear holomorphic structure “C× at p” of U at p as the topological field Ap
with the tautological action of Ap(⊂ Ap) on (V )p∈V⊂U .

(Step 10) For p, p′ ∈ U , we construct a natural isomorphism Ap
∼→ Ap′ of topological fields as

follows: If p′ is sufficiently close to p, then the local additive structures constructed
in (Step 4) induce homeomorphism from sufficiently small neighbourhoods of p onto
sufficiently small neighbourhoods of p′ by the translation (=the addition). These home-

omorphisms induce the desired isomorphism Ap
∼→ Ap′. For general p, p′ ∈ U , we can
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obtain the desired isomorphism Ap
∼→ Ap′ by joining p′ to p via a chain of sufficiently

small open neighbourhoods and composing the isomorphisms on local linear holomorphic
structures. This isomorphism is independent of the choice of such a chain. We call
((Ap)p, (Ap

∼→ Ap′)p,p′) the system of local linear holomorphic structures on Etop

or Xtop. We identify (Ap ⊂ Ap)’s for p’s via the above natural isomorphisms and let

AX ⊂ AX denote the identified ones.

Proof. The assertions immedeately follow from the described algorithms. �
Hence, the formulation of “Aut-holomorphic structure” succeeds to avoid a specific fixed

local referred model of C (i.e., “the C”) in the above sense too, unlike the usual notion of
“holomorphic structure”. This is also a part of “mono-anabelian philosophy” of Mochizuki.
See also Remark 3.4.4 (3), and [AbsTopIII, Remark 2.1.2, Remark 2.7.4].
Let k be a CAF (See Section 0.2). We recall (cf.Section 0.2) that we write Ok ⊂ C for the

subset of elements with | · | ≤ 1 in k, O×k ⊂ Ok for the group of units i.e., elements with | · | = 1,
and O�

k := Ok \ {0} ⊂ Ok for the multiplicative monoid.

Definition 4.6. ([AbsTopIII, Definition 4.1])

(1) Let X be an elliptically admissible Aut-holomorphic orbispace. A model Kummer

structure κk : k
∼→ AX (resp. κO×

k
: O×k ↪→ AX, resp. κk× : k× ↪→ AX, resp.

κO�
k

: O�
k ↪→ AX) on X is an isomorphism of topological fields (resp. its restriction

to O×k , resp. its restriction to k×, resp. its restriction to O�
k ). An isomorphism κM :

M
∼→ AX of topological fields (resp. an inclusion κM : O×k ↪→ AX of topological

groups, resp. an inclusion κM : k× ↪→ AX of topological groups, resp. an inclusion
κM : O�

k ↪→ AX of topological monoids) is called a Kummer structure on X, if there
exist an automorphicm f : X ∼→ X of Auto-holomorphic spaces, and an isomorphism
g : M

∼→ k of topological fields (resp. an isomorphism g : M
∼→ O×k of topological

groups, resp. an isomorphism g :M
∼→ k× of topological groups, resp. an isomorphism

g :M
∼→ O�

k of topological monoids) such that f ∗ ◦κk = κM ◦g (resp. f ∗ ◦κO×
k
= κM ◦g

resp. f ∗ ◦ κk× = κM ◦ g resp. f ∗ ◦ κO�
k

= κM ◦ g), where f ∗ : AX ∼→ AX (resp.

f ∗ : AX ∼→ AX, resp. f ∗ : AX ∼→ AX, resp. f ∗ : AX ∼→ AX) is the automorphism induced

by f . We often abbreviate it as X κxM .

(2) A morphism φ : (X1
κ1x M1) → (X2

κ2x M2) of elliptically admissible Aut-
holomorphic orbispaces with Kummer structures is a pair φ = (φX, φM) of
a finite étale morphism φX : X1 → X2 and a homomorphism φM : M1 → M2 of
topological monoids, such that the Kummer structures κ1 and κ2 are compatible with
φM :M1 →M2 and the homomorphism (φX)∗ : AX1 → AX2 arising from the functorial-
ity of the algorithms in Proposition 4.5.

The reconstruction

X 7→
(
X,X x AX ⊂ AX (with field str.) tautological Kummer structure

)
described in Proposition 4.5 is an Archimedean analogue of the reconstruction

Π 7→

(
Π,Π y k (with field str.) ⊃ k

× Kummer map
↪→ lim−→

J⊂Π: open

H1(J, µẐ(Π))

)
,

described in Corollary 3.19 for non-Archimedean local field k. Namely, the reconstruction in
Corollary 3.19 relates the base field k to ΠX via the Kummer theory, and the reconstruction
in Proposition 4.5 relates the base field AX (∼= C) to X, hence, it is a kind of Archimedean
Kummer theory.
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Definition 4.7. (See also [AbsTopIII, Definition 5.6 (i), (iv)])

(1) We say that a pair G = (C,
−→
C ) of a topological monoid C and a topological submonoid

−→
C ⊂ C is a split monoid, if C is isomorphic to O�

C , and
−→
C ↪→ C determines an

isomorphism C××
−→
C
∼→ C of topological monoids (Note that C× and

−→
C are necessarily

isomorphic to S1 and (0, 1]
log∼= R≥0 respectively). A morphism of split monoids

G1 = (C1,
−→
C 1) → G2 = (C2,

−→
C 2) is an isomorphism C1

∼→ C2 of topological monoids

which induce an isomorphism
−→
C 1

∼→
−→
C 2 of the topological submonoids.

Remark 4.7.1. We omit the definition of Kummer structure of split monoids ([AbsTopIII,
Definition 5.6 (i), (iv)]), since we do not use them in inter-universal Teichmüllert theory (In-
stead, we consider split monoids for mono-analytic Frobenius-like objects). In [AbsTopIII],

we consider a split monoid G = (C,
−→
C ) arising from arith-holomorphic “O�

C” via the mono-
analyticisation, and consider a Frobenius-like object M and k∼(G) = C∼ × C∼ (See Proposi-

tion 5.4 below) for G = (C,
−→
C ). On the other hand, in inter-universal Teichmüller theory, we

consider k∼(G) = C∼ × C∼ directly from “O�
C” (See Proposition 12.2 (4)). When we consider

k∼(G) directly from “O�
C”, then the indeterminacies are only {±1} × {±1} (i.e., Archimedean

(Indet →)), however, when we consider a Frobenius-like object for G = (C,
−→
C ), then we need

to consider the synchronisation of k1 and k2 via group-germs, and need to consider
−→
C up to

R>0 (i.e., we need to consider the category TB� in [AbsTopIII, Definition 5.6 (i)]). See also
[AbsTopIII, Remark 5.8.1 (i)].

Let GX = (O�

AX ,
−→
OAX) denote the split monoid associated to the topological field AX, i.e.,

the topological monoid O�
AX , and the splitting O�

AX ←↩ O�
AX ∩ R>0 =:

−→
OAX of O�

AX � O�
AX/O

×
AX

and X x O�
k . For a Kummer structure X κx O�

k of an elliptically admissible Aut-holomorphic

orbispace, we pull-back
−−→
OAX via the Kummer structure O�

k ↪→ AX, we obtain a decomposition

of O�
k as O×k ×

−→
Ok, where

−→
Ok
∼= O�

k /O
×
k . We consider this assignment

(X x O�
k ) 7→ (GX x O×k ×

−→
Ok)

as a mono-analytification.

4.3. Philosophy of Étale- and Frobenius-like Objects (Explanatory). We further con-
sider the similarities between the reconstructions in Corollary 3.19 and Proposition 4.5, and
then, we explain Mochizuki’s philosophy of the dichotomy of étale-like objects and
Frobenius-like objects.
Note also that the tautological Kummer structure X x AX rigidifies the non-rigid “R>0”

(See Secton 3.5) in AX (∼= C×) in the exact sequence 0 → S1 → C× → R>0 → 0 (See also
[AbsTopIII, Remark 2.7.3]). In short, we have the following dictionary:

Arith. Hol. Mono-Analytic

non-Arch. k/Qp : fin. ΠX , ΠX y O�

k
rigidifies O×k Gk, Gk y O×

k
×
−→
Ok

0→ O×k → k× → Ẑ(rigid)→ 0 “k” can be reconstructed O×k : non-rigid

Arch. k (∼= C) X, X x O�
k rigidifies “R>0” GX, GX x O×k ×

−→
Ok

0→ S1(rigid)→ C× → R>0 → 0 “C” can be reconstructed “R>0”: non-rigid
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We consider profinite groups ΠX , Gk, categories of the finite étale coverings over hyperbolic
curves or spectra of fields, and the objects reconstructed from these as étale-like objects.
On the other hand, we consider abstract topological monoids (with actions of ΠX , Gk), the
categories of line bundles on finite étale coverings over hyperbolic curves, the categories of
arithmetic line bundles on finite étale coverings over spectra of number fields, as Frobenius-
like objects. Note that when we reconstruct ΠX y O�

k
or X x O�

k , then these are regarded as
étale-like objects whenever we remember that the relations with ΠX and X via the reconstruction
algorithms, however, if we forget the relations with ΠX and X via the reconstruction algorithms,
and we consider them as an abstract topological monoid with an action of ΠX , and an abstract
topological monoid with Kummer structure on X, then these objects are regarded as Frobenius-
like objects (See also [AbsTopIII, Remark 3.7.5 (iii), (iv), Remark 3.7.7], [FrdI, §I4], [IUTchI,
§I1]). Note that if we forget the relations with ΠX and X via the reconstruction algorithms,
then we cannot obtain the functoriality with respect to ΠX or X for the abstract objects.
We have the dichotomy of étale-like objects and Frobenius-like objects both on arithmeti-

cally holomorphic objects and mono-analytic objects, i.e., we can consider 4 kinds of objects
– arithmetically holomorphic étale-like objects (indicated by D), arithmetically holomorphic
Frobenius-like objects (indicated by F), mono-analytic étale-like objects (indicated by D`),
and mono-analytic Frobenius-like objects (indicated by F`) (Here, as we can easily guess, the
symbol ` means “mono-analytic”). The types and structures of prime-strips (cf.Section 10.3)
and Hodge theatres reflect this classification of objects (See Section 10).
Note that the above table also exhibits these 4 kinds of objects. Here, we consider Gk y O×

k
×

(O�

k
/O×

k
) and GX x O×k ×(O�

k /O
×
k ) as the mono-analyticisations of arithmetically holomorphic

objects Πk y O�

k
, and X x O�

k respectively. See the following diagrams:

Frobenius-like
(base with line bundle)

forget // étale-like
(base)

arith. hol.

mono-anyticisation

��

ΠX y O�

k

� //
_

��

ΠX_

��
mono-an. Gk y O×

k
×
−→
Ok

� // Gk,

Frobenius-like
(base with line bundle)

forget // étale-like
(base)

X x O�
k

� //
_

��

X_

��
GX x O×k ×

−→
Ok

� // GX.

The composite of the reconstruction algorithms Theorem 3.17 and Proposition 4.5 with “for-
getting the relations with the input data via the reconstruction algorithms” are the canonical

“sections” of the corresponding functors Frobenius-like
forget−→ étale-like (Note also that, by Propo-

sition 2.1 (2c), the topological monoid O�
k can be group-theoretically reconstructed from Gk,

however, we cannot reconstruct O�
k as a submonoid of a topological field k, which needs an

arithmetically holomorphic structure).
In inter-universal Teichüller theory, the Frobenius-like objects are used to construct links (i.e.,

log-links and Θ-links). On the other hand, some of étale-like objects are used (a) to construct
shared objects (i.e., vertically coric, horizontally coric, and bi-coric objects) in both sides of the
links, and (b) to exchange (!) both sides of a Θ-link (which is called étale-transport. See
also Remark 9.6.1, Remark 11.1.1, and Theorem 13.12 (1)), after going from Frobenius-like
picture to étale-like picture, which is called Kummer-detachment (See also Section 13.2), by
Kummer theory and by admitting indeterminacies (Indet→), (Indet ↑), and (Indet xy). (More
precisely, étale-like ΠX and Gk are shared in log-links. The mono-analytic Gk is also (as an
abstract topological group) shared in Θ-links, however, arithmetically holomorphic ΠX cannot
be shared in Θ-links, and even though O×

k
/tors’s are Frobenius-like objects, O×

k
/tors’s (not
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O�

k
’s because the portion of the value group is dramatically dilated) are shared after admitting

Ẑ×-indeterminacies.) See also Theorem 12.5.

étale objects reconstructed from Galois category indifferent to order

-like ΠX , Gk, X, GX coverings can be shared, can be exchanged

Frobenius abstract ΠX y O�

k
, Gk y O×

k
×−→Ok, Frobenioids order-conscious

-like X x O�
C , GX x O×C ×

−→
OC line bundles can make links

4.4. Absolute Mono-Anabelian Reconstructions in Archimedean Theory. The follow-
ing theorem is an Archimedean analogue of Theorem 3.17.

Proposition 4.8. (Absolute Mono-Anabelian Reconstructions, [AbsTopIII, Corollary 2.8]) Let
X be a hyperbolic curve of strictly Belyi type over a number field k. Let k be an algebraic
closure of k, and ΠX the arithmetic fundamental group of X for some basepoint. From the
topological group ΠX , we group-theoretically reconstruct the field k = kNF by the algorithm
in Theorem 3.17 (cf. Remark 3.17.1). Take an Archimedean place v of k. By the following
group-theoretic algorithm, from the topological group ΠX and the Archimedean place v, we can
reconstruct the Aut-holomorphic space Xv associated to Xv := X ×k kv in a functorial manner
with respect to open injective homomorphisms of profinite groups which are compatible with the
respective choices of Archimedean valuations:

(Step 1) We reconstruct NF-points of Xv as conjugacy classes of decomposition groups of NF-
points in ΠX by in Theorem 3.17. We also reconstruct non-constant NF-rational func-
tions on Xk by Theorem 3.17 (Step 4) (or Lemma 3.16). Note that we also group-
theoretically obtain the evaluation map f 7→ f(x) at NF-point x as the restriction to the
decomposition group of x (cf. Theorem 3.17 (Step 4), (Step 5)), and that the order func-
tion ordx at NF-point x as the component at x of the homomorphism H1(ΠU , µẐ(ΠX))→
⊕y∈SẐ in Theorem 3.17 (Step 3) (cf. Theorem 3.17 (Step 5)).

(Step 2) Define a Cauchy sequence {xj}j∈N of NF-points to be a sequence of NF-points xj
such that there exists an exceptional finite set of NF-points S satisfying the following
conditions:
• xj 6∈ S for all but finitely many j ∈ N, and
• For any non-constant NF-rational function f on Xk, whose divisor of poles avoids
S, the sequence of values {f(xj) ∈ kv}j∈N forms a Cauchy sequence (in the usual
sense) in kv.

For two Cauchy sequences {xj}j∈N, {yj}j∈N of NF-points with common exceptional set S,
we call that these are equivalent, if for any non-constant NF-rational function f on Xk,
whose divisor of poles avoids S, the Cauchy sequences {f(xj) ∈ kv}j∈N, {f(yj) ∈ kv}j∈N
in kv converge to the same element of kv.

(Step 3) For an open subset U ⊂ kv and a non-constant NF-rational function f on Xv, put
N(U, f) to be the set of Cauchy sequences of NF-points {xj}j∈N such that f(xj) ∈ U for
all j ∈ N. We reconstruct the topological space Xtop = Xv(kv) as the set of equivalence
classes of Cauchy sequences of NF-points, equipped with the topology defined by the sets
N(U, f). A non-contant NF-rational function extends to a function on Xtop, by taking
the limit of the values.



70 GO YAMASHITA

(Step 4) Let UX ⊂ Xtop, Uv ⊂ kv be connected open subsets, and f a non-constant NF-rational
function on Xk, such that the function defined by f on UX gives us a homeomorphism

fU : UX
∼→ Uv. Let Aut

hol(Uv) denote the group of homeomorphisms f : Uv
∼→ Uv (⊂ kv),

which can locally be expressed as a convergent power series with coefficients in kv with
respect to the topological field structure of kv.

(Step 5) Put AX(UX) := f−1U ◦ Aut
hol(Uv) ◦ fU ⊂ Aut(UX). By Corollary 4.3, we reconstruct the

Aut-holomorphic structure AX on Xtop as the unique Aut-holomorphic structure which
extends the pre-Aut-holomorphic structure defined by the groups AX(UX) in (Step 4).

Proof. The assertions immediately follow from the described algorithms. �

We can easily generalise the above theorem to hyperbolic orbi curves of strictly Belyi type
over number fields.

Lemma 4.9. (Compatibility of Elliptic Cuspidalisation in Archimedean Place with Galois The-
oretic Belyi Cuspidalisation, [AbsTopIII, Corollary 2.9]) In the situation of Proposition 4.8,
suppose further that X is elliptically admissible. From the topological group ΠX , we group-
theoretically reconstruct the field k = kNF by Theorem 3.17 (cf. Remark 3.17.1), i.e., via Belyi
cuspidalisation. Take an Archimedean place v of k(ΠX). Let X = (Xtop,AX) be the Aut-
holomorphic space constructed from the topological group ΠX and the Archimedean valuation v
in Proposition 4.8, i.e., via Cauchy sequences. Let AX be the field constructed in Proposition 4.5,
i.e., via elliptic cuspidalisation. By the following group-theoretically algorithm, from the topo-
logical group ΠX and the Archimedean valuation v, we can construct an isomorphism AX ∼→ kv
of topological fields in a functorial manner with respect to open injective homomorphisms of
profinite groups which are compatible with the respective choices of Archimedean valuations:

(Step 1) As in Proposition 4.8, we reconstruct NF-points of Xv, non-constant NF-rational func-
tions on Xk, the evaluation map f 7→ f(x) at NF-point x, and the order function
ordx at NF-point x. We also reconstruct Etop and the local additive structures on it in
Proposition 4.5.

(Step 2) The local additive structures of Etop determines the local additive structures of Xtop. Let
x be an NF-point of Xv(kv), ~v an element of a sufficiently small neighbourhood UX ⊂ Xtop

of x in Xtop which admits such a local additive structure. For each NF-rational function
f which vanishes at x, the assignment (~v, f) 7→ limn→∞ nf (n ·x ~v) ∈ kv, where “ ·x ′′

is the operation induced by the local additive structure at x, depends only on the image
df |x ∈ ωx of f in the Zariski cotangent space ωx to Xv. It determines an embedding
UX ↪→ Homkv(ωx, kv) of topological spaces, which is compatible with the local additive
structures.

(Step 3) Varying the neighbourhood UX of x, the embeddings in (Step 2) give us an isomorphism

Ax
∼→ kv of topological fields by the compatibility with the natural actions of Ax, k×v

respectively. As x varies, the isomorphisms in (Step 3) are compatible with the isomor-

phisms Ax
∼→ Ay in Proposition 4.5. This gives us the desired isomorphism AX ∼→ kv.

Remark 4.9.1. An importance of Proposition 4.5 lies in the fact that the algorithm starts in
a purely local situation, since we will treat local objects (i.e., objects over local fields) which a
priori do not come from a global object (i.e., an object over a number field) in inter-universal
Teichmüller theory. See also Remark 3.17.4.

Proof. The assertions immediately follow from the described algorithms. �
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5. Log-Volumes and Log-Shells.

In this section, we construct a kind of “rigid containers” called log-shells both for non-
Archimedean and Archimedean local fields. We also reconstruct the local log-volume functions.
By putting them together, we reconstruct the degree functions of arithmetic line bundles.

5.1. Non-Archimedean Places. Let k be a finite extension of Qp, and k an algebraic closure
of k. Let X be a hyperbolic orbicurve over k of strictly Belyi type. Put k∼ := (O×

k
)pf (� O×

k
)

the perfection of O×
k
(See Section 0.2). The p-adic logarithm logk induces an isomorphism

logk : k
∼ ∼→ k

of topological monoids, which is compatible with the actions of ΠX . We equip k∼ with the
topological field structure by transporting it from k via the above isomorphism logk. Then, we
have the following diagram, which is called a log-link:

(Log-Link (non-Arch)) O�

k
⊃ O×

k
� k∼ = (O�

k∼)
gp

:= (O�
k∼)

gp ∪ {0} ← O�
k∼ ,

which is compatible with the action of ΠX (this will mean that ΠX is vertically core. See
Proposition 12.2 (1), Remark 12.3.1, and Theorem 12.5 (1)). Note that we can construct
the sub-diagram O�

k
⊃ O×

k
→ k∼, which is compatible with the action of Gk, only from

the topological monoid O�

k
(i.e., only from the mono-analytic structure), however, we need the

topological field k (i.e., need the arithmetically holomorphic structure) to equip k∼ a topological
field structure and to construct the remaining diagram k∼ = (O�

k∼)
gp ← O�

k∼ .

Definition 5.1. We put(
OΠX
k∼ ⊂

)
Ik :=

1

2p
I∗k
(
⊂ (k∼)ΠX

)
, where I∗k := Im

{
O×k →

(
O×
k

)pf
= k∼

}
where (−)ΠX denotes the fixed part of the action of ΠX , and we call Ik a Frobenius-like
holomorphic log-shell.
On the other hand, from ΠX , we can group-theoretically reconstruct an isomorph k(ΠX) of

the ind-topological field k by Theorem 3.19, and we can construct a log-shell I(ΠX) by using
k(ΠX), instead of k. Then, we call I(ΠX) the étale-like holomorphic log-shell for ΠX . By
the cyclotomic rigidity isomorphism (Cyc.Rig. LCFT2), the Kummer homomorphism gives us
a Kummer isomorphism

(ΠX y k
×
)
∼→ (ΠX y k

×
(ΠX)) (⊂ lim−→

U

H1(ΠU), µẐ(ΠX))

for k
×
(ΠX) (See (Step 4) of Theorem 3.17, and Remark 3.19.2), hence obtain a Kummer

isomorphism

(Kum (non-Arch)) Ik
∼→ I(ΠX)

for Ik. In inter-universal Teichmüller theory, we will also use the Kummer isomorphism of
log-shells via the cyclotomic rigidity of mono-theta environments in Theorem 7.23 (1) See
Proposition 12.2.

Note that we have important natural inclusions
(Upper Semi-Compat. (non-Arch))

O×k , logk(O
×
k ) ⊂ Ik and O×k (ΠX), logk(ΠX)(O

×
k (ΠX)) ⊂ I(ΠX),

which will be used for the upper semi-compatibility of log-Kummer correspondence (See
Proposition 13.7 (2)). Here, we put O×k (ΠX) := Ok(ΠX)

×, Ok(ΠX) := Ok(Π)
ΠX , and Ok(ΠX)

is the ring of integers of the ind-topological field k(Π).
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Proposition 5.2. (Mono-Analytic Reconstruction of Log-Shell and Local Log-Volume in non-
Archimedean Places, [AbsTopIII, Proposition 5.8 (i), (ii), (iii)]) Let G be a topological group,
which is isomorphic to Gk. By the following algorithm, from G, we can group-theoretically recon-
struct the log-shell “ Ik” and the (non-normalised) local log-volume function “µlog

k ” (cf. Section 1.3)
in a functorial manner with respect to open homomorphisms of topological groups:

(Step 1) We reconstruct p, f(k), e(k), k
×
, O�

k
, and O×

k
by Proposition 2.1 (1), (3b), (3c), (2a),

(2c), and (2b) respectively. To indicate that these are reconstructed from G, let pG,

fG, eG, k
×
(G), O�

k
(G) and O×

k
(G) denote them respectively (From now on, we use

the notation (−)(G) in this sense). Let pmG
G be the number of elements of k

×
(G)G of

pG-power orders, where (−)G denotes the fixed part of the action of G.

(Step 2) We reconstruct the log-shell “ Ik” as I(G) := 1
2pG

Im
{
O×
k
(G)G → k∼(G) := O×

k
(G)pf

}
.

Note that, by the canonical injection Q ↪→ End(k∼(G)) (Here, End means the endomor-
phisms as (additive) topological groups), the multiplication by 1

2pG
canonically makes

sense. We call I(G) the étale-like mono-analytic log-shell.

(Step 3) Put Rnon(G) := (k
×
(G)/O×

k
(G))∧, where (−)∧ denotes the completion with respect

to the order structure determined by the image of O�

k
(G)/O×

k
(G). By the canonical

isomorphism R ∼= End(Rnon(G)), we consider Rnon(G) as an R-module. It is also
equipped with a distinguished element, i.e., the image F(G) ∈ Rnon(G) of the Frobe-
nius element (constructed in Proposition 2.1 (5)) of O�

k
(G)G/O×

k
(G)G via the com-

posite O�

k
(G)G/O×

k
(G)G ⊂ O�

k
(G)/O×

k
(G) ⊂ Rnon(G). By sending fG log pG ∈ R to

F(G) ∈ Rnon(G), we have an isomorphism R ∼→ Rnon(G) of R-modules. By transporting
the topological field structure from R to Rnon(G) via this bijection, we consider Rnon(G)
as a topological field, which is isomorphic to R.

(Step 4) Let M(k∼(G)G) denote the set of open compact subsets of the topological additive group
k∼(G)G. We can reconstruct the local log-volume function µlog(G) : M(k∼(G)G)→
Rnon(G) by using the following characterisation properties:
(a) (additivity) For A,B ∈M(k∼(G)G) with A∩B = ∅, we have exp(µlog(G)(A∪B)) =

exp(µlog(G)(A)) + exp(µlog(G)(B)), where we use the topological field structure of
Rnon(G) to define exp(−),

(b) (+-translation invariance) For A ∈M(k∼(G)G) and a ∈ k∼(G)G, we have µlog(G)(A+
a) = µlog(G)(A),

(c) (normalisation)

µlog(G)(I(G)) =
(
−1− mG

fG
+ εGeGfG

)
F(G),

where we put εG to be 1 if pG 6= 2, and to be 2 if pG = 2.
Moreover, if a field structure on k := k∼(G)G is given, then we have the p-adic logarithm
logk : O×k → k on k (where we can see k both on the domain and the codomain), and
we have

(5.1) µlog(G)(A) = µlog(G)(logk(A))

for an open subset A ⊂ O×k such that logk induces a bijection A
∼→ logk(A).

Remark 5.2.1. Note that, we cannot normalise µlog(G) by “µlog(G)(OG
k∼) = 0”, since “OG

k∼”
needs arithmetically holomorphic structure to reconstruct (cf. [QpGC]).

Remark 5.2.2. The formula (5.1) will be used for the compatibility of log-links with
log-volume functions (See Proposition 13.10 (4)).
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Proof. To lighten the notation, put p := pG, e := eG, f := fG, m := mG, ε := εG. Then, we have
µlog
k (Ik) = εef log p+µlog

k (log(O×k )) = (εef−m) log p−log(pf−1)+µlog
k (O×k ) = (εef−m) log p−

log(pf − 1) + log
(
1− 1

pf

)
+ µlog

k (Ok) = (εef −m− f) log p =
(
−1 + εe− m

f

)
f log p. �

5.2. Archimedean Places. Let k be a CAF (See Section 0.2). Let X be an elliptically

admissible Aut-holomorphic orbispace, and κk : k
∼→ AX a Kummer structure. Note that

k (resp. k×, O×k ) and AX have natural Aut-holomorphic structures, and κk determines co-

holomorphicisations between k (resp. k×, O×k ) and AX. Let k∼ � k× be the universal covering
of k×, which is uniquely determined up to unique isomorphism, as a pointed topological space
(It is well-known that it can be explicitly constructed by the homotopy classes of paths on
k×). The topological group structure of k× induces a natural topological group structure of
k∼. The inverse (i.e., the Archimedean logarithm) of the exponential map k � k× induces an
isomorphism

logk : k
∼ ∼→ k

of topological groups. We equip k∼ (resp. O�
k∼) with the topological field structure (resp.

the topological multiplicative monoid structure) by transporting it from k via the above iso-

morphism logk. Then, κk determines a Kummer structure κk∼ : k∼
∼→ AX (resp. κOk∼ :

Ok∼ ↪→ AX) which is uniquely characterised by the property that the co-holomorphicisation
determined by κk∼ (resp. κOk∼ ) coincides with the co-holomorphicisation determined by the

composite of k∼
∼→ k and the co-holomorphicisation determined by κk. By definition, the co-

holomorphicisations determined by κk, and κk∼ (resp. κOk∼ ) are compatible with logk (This
compatibility is an Archimedean analogue of the compatibility of the actions of ΠX in the
non-Archimedean situation). We have the following diagram, which is called a log-link:

(Log-Link (Arch)) O�
k ⊂ k× � k∼ = (O�

k∼)
gp

:= (O�
k∼)

gp ∪ {0} ← O�
k∼ ,

which is compatible with the co-holomorphicisations determined by the Kummer structures (This
will mean X is vertically core. See Proposition 12.2 (1)). Note that we can construct the sub-
diagram O�

k ⊂ k× � k∼ only from the topological monoid O�
k (i.e., only from the mono-analytic

structure), however, we need the topological field k (i.e., need the arithmetically holomorphic
structure) to equip k∼ a topological field structure and to construct the remaining diagram
k∼ = (O�

k∼)
gp ← O�

k∼ .

Definition 5.3. We put (
Ok∼ =

1

π
Ik ⊂

)
Ik := O×k∼ · I

∗
k (⊂ k∼) ,

where I∗k is the the uniquely determined “line segment” (i.e., closure of a connected pre-compact
open subset of a one-parameter subgroup) of k∼ which is preserved by multiplication by ±1
and whose endpoints differ by a generator of ker(k∼ � k×) (i.e., I∗k is the interval between
“−πi” and “πi”, and Ik is the closed disk with redius π). Here, a pre-compact subset means a
subset contained in a compact subset, and see Section 0.2 for π. We call Ik a Frobenius-like
holomorphic log-shell.
On the other hand, from X, we can group-theoretically reconstruct an isomorph k(X) := AX

of the field k by Proposition 4.5, and we can construct a log-shell I(X) by using k(X), instead of
k. Then, we call I(X) the étale-like holomorphic log-shell for X. The Kummer structure
κk gives us a Kummer isomorphism

(Kum (Arch)) Ik
∼→ I(X)

for Ik.
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Note that we have important natural inclusions
(Upper Semi-Compat. (Arch))

O�
k∼ ⊂ Ik, O×k ⊂ expk(Ik) and O�

k∼(X) ⊂ I(X), O×k (X) ⊂ expk(X)(I(X))
which will be used for the upper semi-compatibility of log-Kummer correspondence (See
Proposition 13.7 (2)). Here, we put O×k (X) := Ok(X)×, and Ok(X) (See also Section 0.2) is the
subset of elements of absolute value ≤ 1 for the topological field k(X) (or, if we do not want
to use absolute value, the topological closure of the subset of elements x with limn→∞ x

n = 0),
and expk (resp. expk(X)) is the exponential function for the topological field k (resp. k(Π)).

Note also that we use O×k∼ to define Ik in the above, and we need the topological field

structure of k to construct O×k∼ , however, we can construct Ik as the closure of the union of the
images of I∗k via the finite order automorphisms of the topological (additive) group k∼, thus,

we need only the topological (multiplicative) group structure of k
×
(not the topological field

structure of k) to construct Ik.

Proposition 5.4. (Mono-Analytic Reconstruction of Log-Shell and Local Log-Volumes in

Archimedean Places, [AbsTopIII, Proposition 5.8 (iv), (v), (vi)]) Let G = (C,
−→
C ) be a split

monoid. By the following algorithm, from G, we can group-theoretically reconstruct the log-shell
“ IC”, the (non-normalised) local radial log-volume function “µlog

C ” and the (non-normalised)

local angular log-volume function “µ̆log
C ” in a functorial manner with respect to morphisms of

split monoids (In fact, the constructions do not depend on
−→
C , which is “non-rigid” portion.

See also [AbsTopIII, Remark 5.8.1]):

(Step 1) Let C∼ � C× be the (pointed) unversal covering of C×. The topological group structure
of C× induces a natural topological group structure on C∼. We regard C∼ as a topological
group (Note that C× and C∼ are isomorphic to S1 and the additive group R respectively).
Put

k∼(G) := C∼ × C∼, k×(G) := C× × C∼.
(Step 2) Let Seg(G) be the equivalence classes of compact line segments on C∼, i.e., compact

subsets which are either equal to the closure of a connected open set or are sets of one
element, relative to the equivalence relation determined by translation on C∼. Forming
the union of two compact line segments whose intersection is a set of one element deter-
mines a monoid structure on Seg(G) with respect to which Seg(G) ∼= R≥0 (non-canonical
isomorphism). Thus, this monoid structure determines a topological monoid structure
on Seg(G) (Note that the topological monoid structure on Seg(G) is independent of the
choice of an isomorphism Seg(G) ∼= R≥0).

(Step 3) We have a natural homomorphism k∼(G) = C∼×C∼ � k×(G) = C××C∼ of two dimen-
sional Lie groups, where we equip C∼, C× with the differentiable structure by choosing
isomorphisms C∼ ∼= R, C× ∼= R× (the differentiable structures do not depend on the
choices of isomorphisms). We reconstruct the log-shell “ IC” as

I(G) :=
{
(ax, bx) | x ∈ I∗C∼ ; a, b ∈ R; a2 + b2 = 1

}
⊂ k∼(G),

where I∗C∼ ⊂ C∼ denotes the unique compact line segment on C∼ which is invariant
with respect to the action of {±1}, and maps bijectively, except for its endpoints, to
C×. Note that, by the canonical isomorphism R ∼= End(C∼) (Here, End means the
endomorphisms as (additive) topological groups), ax for a ∈ R and x ∈ I∗C∼ canonically
makes sense. We call I(G) the étale-like mono-analytic log-shell.

(Step 4) We put Rarc(G) := Seg(G)gp (Note that Rarc(G) ∼= R as (additive) topological groups).
By the canonical isomorphism R ∼= End(Rarc(G)), we consider Rarc(G) as an R-module.
It is also equipped with a distinguished element, i.e., (Archimedean) Frobenius element
F(G) ∈ Seg(G) ⊂ Rarc(G) determined by I∗C∼. By sending 2π ∈ R to F(G) ∈ Rarc(G),
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we have an isomorphism R ∼→ Rarc(G) of R-modules. By transporting the topological
field structure from R to Rarc(G) via this bijection, we consider Rarc(G) as a topological
field, which is isomorphic to R.

(Step 5) By the same way as I(G), we put

O×k∼(G) :=
{
(ax, bx) | x ∈ ∂I∗C∼ ; a, b ∈ R; a2 + b2 = π−2

}
⊂ k∼(G),

where ∂I∗C∼ is the set of endpoints of the line segment I∗C∼ (i.e., the points whose
complement are connected. cf. Proposition 4.5). Then, we have a natural isomorphism
R>0×O×k∼(G) ∼ k∼(G)\{(0, 0)}, where (a, x) is sent to ax (Note that ax makes sense by
the canonical isomorphism R ∼= End(C∼) as before). Let prrad : k∼(G)\{(0, 0)}� R>0,
prang : k∼(G) \ {(0, 0)}O×k∼(G) denote the first and second projection via the above
isomorphism. We extend the map prrad : k∼(G) \ {(0, 0)} � R>0 to a map prrad :
k∼(G)→ R.

(Step 6) Let M(k∼(G)) be the set of nonempty compact subsets A ⊂ k∼(G) such that A projects
to a (compact) subset prrad(A) of R which is the closure of its interior in R. For any
A ∈ M(k∼(G)), by taking the length µ(G)(A) of prrad(A) ⊂ R with respect to the usual
Lebesgues measure on R. By taking the logarithm µlog(G)(A) := log(µ(G)(A)) ∈ R ∼=
Rarc(G), where we use the canonical identification R ∼= Rarc(G), we reconstruct the
desired local radial log-volume function µlog(G) : M(k∼(G)) → Rarc(G). This also
satisfies

µlog(G)(I(G)) = log π

2π
F(G)

by definition.
(Step 7) Let M̆(k∼(G)) denote the set of non-empty compact subsets A ⊂ k∼(G) \ {(0, 0)} such

that A projects to a (compact) subset prang(A) of O×k∼(G) which is the closure of its

interior in O×k∼(G). We reconstruct the local angular log-volume function µ̆log(G) :

M̆(k∼(G)) → Rarc(G) by taking the integration µ̆(G)(A) of prang(A) ⊂ O×k∼(G) on

O×k∼(G) with respect to the differentiable structure induced by the one in (Step 1), taking
the logarithm µ̆log(G)(A) := log(µ̆(G)(A)) ∈ R ∼= Rarc(G), where we use the canonical
identification R ∼= Rarc(G), and the normalisation

µ̆log(G)(O×k∼(G)) =
log 2π

2π
F(G).

Moreover, if a field structure on k := k∼(G) is given, then we have the exponential map expk :
k → k× on k (where we can see k both on the domain and the codomain), and we have

(5.2) µlog(G)(A) = µ̆log(G)(expk(A))

for a non-empty compact subset A ⊂ k with expk(A) ⊂ O×k , such that prrad and expk induce

bijections A
∼→ prrad(A), and A

∼→ expk(A) respectively.

Remark 5.4.1. The formula (5.2) will be used for the compatibility of log-links with
log-volume functions (See Proposition 13.10 (4)).

Proof. Proposition immediately follows from the described algorithms. �

6. Preliminaries on Tempered Fundamental Groups.

In this section, we collect some prelimiraries on tempered fundamental groups, and we show
a theorem on “profinite conjugate vs tempered conjugate”, which plays an important role in
inter-universal Teichmüller theory.
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6.1. Some Definitions. From this section, we use André’s theory of tempered fundamental
groups ([A1]) for rigid-analytic spaces (in the sense of Berkovich) over non-Archimedean fields.
We give a short review on it here. He introduced the tempered fundamental groups to obtain a
fundamental group of “reasonable size” for rigid analytic spaces: On one hand, the topological
fundamental groups πtop

1 for rigid analytic spaces are too small (e.g., πtop
1 (P1

Cp
\ {0, 1,∞}, x) =

{1}. If X is a proper curve with good reduction, then πtop
1 (Xan, x) = {1}). On the other

hand, the étale fundamental groups πét
1 for rigid analytic spaces aree too big (e.g., By the

Gross-Hopkins period mappings ([GH1], [GH2]), we have a surjection πét
1 (P1

Cp
, x) � SL2(Qp).

See also [A2, II.6.3.3, and Remark after III Corollary 1.4.7]). André’s tempered fundamental
group πtemp

1 is of reasonable size, and it comparatively behaves well at least for curves. An
étale covering Y � X of rigid analytic spaces is called tempered covering if there exists a
commutative diagram

Z // //

����

T

����
Y // // X

of étale coverings, where T � X is a finite étale covering, and Z � T is a possibly inifinite
topological covering. When we define a class of coverings, then we can define the fundamental
group associated to the class. In this case, πtemp

1 (X, x) classifies all tempered pointed coverings

of (X, x). For example, we have πtemp
1 (P1

Cp
\ {0,∞}) = Ẑ, and for an elliptic curve E over Cp

with j-invariant jE, we have πtemp
1 (E) ∼= Ẑ × Ẑ if |j|p ≤ 1, and πtemp

1 (E) ∼= Z × Ẑ if |j|p > 1
([A1, §4.6]). Here, Z corresponds to the universal covering of the graph of the special fiber.
The topology of πtemp

1 is a little bit complicated. In general, it is neither discrete, profinite, nor
locally compact, however, it is pro-discrete. For a (log-)orbicurve X over an MLF, let Btemp(X)
denote the category of the (log-)tempered coverings over the rigid analytic space associated
with X. For a (log-)orbicurve X over a field, let also B(X) denote the Galois category of the
finite (log-)étale coverings over X.

Definition 6.1. ([SemiAnbd, Definition 3.1 (i), Definition 3.4])

(1) If a topological group Π can be written as an inverse limit of an inverse system of
surjections of countable discrete topological groups, then we call Π a tempered group
(Note that any profinite group is a tempered group).

(2) Let Π be a tempered group. We say that Π is temp-slim if we have ZΠ(H) = {1} for
any open subgroup H ⊂ Π.

(3) Let f : Π1 → Π2 be a continuous homomorphism of tempered groups. We say Π1 is
relatively temp-slim over Π2 (via f), if we have ZΠ2(Im{H → Π2}) = {1} for any
open subgroup H ⊂ Π1.

(4) ([IUTchI, §0]) For a topological group Π, let Btemp(Π) (resp. B(Π)) denote the category
whose objects are countable discrete sets (resp. finite sets) with a continuous Π-action,
and whose morphisms are morphisms of Π-sets. A category C is called a connected
temperoid, (resp. a connected anabelioid) if C is equivalent to Btemp(Π) (resp.
B(Π)) for a tempered group Π (resp. a profinite group Π). Note that, if C is a connected
temperoid (resp. a connected anabelioid), then C is naturally equivalent to (C0)> (resp.
(C0)⊥) (See Section 0.2 for (−)0, (−)> and (−)⊥). If a category C is equivalent to
Btemp(Π) (resp. B(Π)) for a tempered group Π with countable basis (resp. a profinite
group Π), then we can reconstruct the topological group Π, up to inner automorphism,
by the same way as Galois category (resp. by the theory of Galois category). (Note that
in the anabelioid/profinite case, we have no need of condition like “having countable
basis”, since “compact set arguments” are available in profinite topology.) We write
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π1(C) for it. We also put π1(C0) := π1((C0)>) (resp. π1(C0) := π1((C0)⊥)) for C a
connected temperoid (resp. a connected anabelioid).

(5) For connected temperoids (resp. anabelioids) C1, C2, amorphism C1 → C2 of temper-
oids (resp. a morphism C1 → C2 of anabelioids) is an isomorphism class of functors
C2 → C1 which preserves finite limits and countable colimits (resp. finite colimits) (This
is definition in [IUTchI, §0] is slightly different from the one in [SemiAnbd, Definition
3.1 (iii)]). We also define a morphism C01 → C02 to be a morphism (C01)> → (C02)> (resp.
(C01)⊥ → (C02)⊥).

Note that if Π1,Π2 are tempered groups with countable basis (resp. profinite groups), then
there are natural bijections among

• the set of continuous outer homomorphisms Π1 → Π2,
• the set of morphisms Btemp(Π1)→ Btemp(Π2) (resp. B(Π1)→ B(Π2)), and
• the set of morphisms Btemp(Π1)

0 → Btemp(Π2)
0 (resp. B(Π1)

0 → B(Π2)
0).

(See also [IUTchI, Remark 2.5.3].)

Let K be a finite extension of Qp.

Lemma 6.2. Let X be a hyperbolic curve over K. Let ∆temp
X ⊂ Πtemp

X denote the geomet-
ric tempered fundamental group πtemp

1 (X, x) and the arithmetic tempered fundamental group
πtemp
1 (X, x) for some basepoint x, respectively. Then, we have a group-theoretic charasterisa-

tion of the closed subgroup ∆temp
X in Πtemp

X .

Remark 6.2.1. By remark 2.4.1, pro-Σ version of Lemma 6.2 holds as well.

Proof. Note that the homomorphisms ∆temp
X → ∆X := (∆temp

X )∧ and Πtemp
X → ΠX := (Πtemp

X )∧

to the profinite completions are injective respectively, since the homomorphism from a (discrete)
free group to its profinite completion is injective (Free groups and surface groups are residually
finite (See also Proposition C.5)). Then, by using the group-theoretic characterisation of ∆X in
ΠX (Corollary 2.4), we obtain a group-theoretic characterisation of ∆temp

X as ∆temp
X = Πtemp

X ∩
∆X . �
Let K be an algebraic closure of K. Let k and k denote the residue field of K and K

respectively (k is an algebraic closure of k).

Definition 6.3. (1) Let X be a pointed stable curve over k with marked points D. Put
X := X \D. Then, we associate a dual semi-graph (resp. dual graph) GX to X as
follows: We set the set of the vertices of GX to be the set of the irreducible components
of X, the set of the closed edges of GX to be the set of the nodes of X, and the set
of the open edges of GX to be the set of the divisor of infinity of X (i.e., the marked
points D of X). To avoid confusion, we write Xv and νe for the irreducible component
of X and the node of X corresponding to a vertex v and an closed edge e respectively.
A closed edge e connects vertices v and v′ (we may allow the case of v = v′), if and only
if the node νe is the intersection of two branches corresponding to Xv and Xv′ . An open
e connects a vertex v, if and only if the marked point corresponding to e lies in Xv.

(2) (cf. [AbsAnab, Appendix]) We contitue the situation of (1). Let Σ be a set of prime
numbers. A finite étale covering of curves is called of Σ-power degree if any prime
number dividing the degree is in Σ. We also associate a (pro-Σ) semi-graph GX(= GΣX)
of anabelioids to X, such that the underlying semi-graph is GX as follows: Put
X ′ := X \ {nodes}. For each vertex v of GX , let Gv be the Galois category (or a
connected anabelioid) of the finite étale coverings of Σ-power degree of X ′v := Xv×XX ′
which are tamely ramified along the nodes and the marked points. For the branches
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νe(1) and νe(2) of the node νe corresponding to a closed edge e of GX , we consider the
scheme-theoretic interstion X ′νe(i) of the completion along the branch νe(i) at the node

νe of X
′ for i = 1, 2 (Note that X ′νe(i) is non-canonically isomorphic to Spec k((t))). We

fix a k-isomorphism X ′νe(1)
∼= X ′νe(2), we identify these, and let X ′e denote the identified

object. Let Ge be the Galois category (or a connected anabelioid) of the finite étale
coverings of Σ-power degree of X ′e which are tamely ramified along the node. For each
open edge ex corresponding to a marked point x, put X ′x to be the scheme-theoretic
interstion of the completion of X at the marked point x with X ′ (Note that X ′x is non-
canonically isomorphic to Spec k((t))). Let Gex be the Galois category (or a connected
anabelioid) of the finite étale coverings of Σ-power degree of X ′x which are tamely
ramified along the marked point. For each edge e connecting vertices v1 and v2, we have
natural functors Gv1 → Ge, Gv2 → Ge by the pull-backs. For an open edge e connected
to a vertex v, we have a natural functor Gv → Ge by the pull-backs. Then the data
GX(= GΣX) := {Gv;Ge;Gv → Ge} defines a semi-graph of anabelioids.

(3) (cf. [SemiAnbd, Definition 2.1]) For a (pro-Σ) semi-graph G(= GΣ) = {Gv;Ge;Gv → Ge}
of anabelioids with connected underlying semi-graph G, we define a category B(G)(=
B(GΣ)) as follows: An object of B(G)(= B(GΣ)) is data {Sv, φe}v,e, where v (resp. e)
runs over the vertices (resp. the edges) of G, such that Sv is an object of Gv, and
φe : e(1)

∗Sv1
∼→ e(2)∗Sv2 is an isomorphism in Ge, where e(1) and e(2) are the branches

of e connecting v1 and v2 respectively (Here, e(i)∗ : Gvi → Ge is a given datum of G).
We define a morphism of B(G) in the evident manner. Then, B(G) itself is a Galois
category (or a connected anabelioid). In the case of G = GX in (2), the fundamental
group associated to B(G)(= B(GΣ)) is called the (pro-Σ) admissible fundamental
group of X.

(4) (cf. [SemiAnbd, paragraph before Definition 3.5 and Definition 3.5]) Let G(= GΣ) =
{Gv;Ge;Gv → Ge} be a (pro-Σ) semi-graph of anabelioids such that the underlying
semi-graph G is connected and countable. We define a category Bcov(G)(= Bcov(GΣ)) as
follows: An object of Bcov(G)(= BΣ,cov(G)) is data {Sv, φe}v,e, where v (resp. e) runs over
the vertices (resp. the edges) of G, such that Sv is an object of (G0v)> (See Section 0.2

for (−)0 and (−)>), and φe : e(1)∗Sv1
∼→ e(2)∗Sv2 is an isomorphism in (G0e )>, where e(1)

and e(2) are the branches of e connecting v1 and v2 respectively (Here, e(i)∗ : Gv → Ge
is a given datum of G). We define a morphism of Bcov(G) in the evident manner.
We can extend the definition of Bcov(G) to a semi-graph of anabelioids such that the
underlying semi-graph G is countable, however, is not connected. We have a natural full
embedding B(G) ↪→ Bcov(G). Let (B(G) ⊂)Btemp(G)(= Btemp(GΣ)) ⊂ Bcov(G) denote
the full subcategory whose objects {Sv, φe}v,e are as follows: There exists an object
{S ′v, φ′e} of B(G) such that for any vertex or edge c, the restriction of {S ′v, φ′e} to Gc
splits the restriction of {Sv, φe} to Gc i.e., the fiber product of S ′v (resp. φ′e) with Sv
(resp. φe) over the terminal object (resp. over the identity morphism of the terminal
object) in (G0v)> (resp. (G0e )>) is isomorphic to the coproduct of a countable number of
copies of S ′v (resp. φ

′
e) for any vertex v and any edge e. We call Btemp(G)(= Btemp(GΣ))

(pro-Σ) (connected) temperoid associated with G(= GΣ).
We can associate the fundamental group ∆temp

G (= ∆
(Σ),temp
G ) := π1(Btemp(G)) (=

π1(Btemp(GΣ))) of Btemp(G)(= Btemp(GΣ)) (after taking a fiber functor) by the same

way as a Galois category. Let ∆G(= ∆
(Σ)
G ) denote the profinite completion of ∆

(Σ),temp
G .

(Note that ∆G(= ∆
(Σ)
G ) is not the maximal pro-Σ quotient of π1(B(GΣ)), since the profi-

nite completion of the “graph covering portion” is not pro-Σ). By definition, ∆temp
G (=
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∆
(Σ),temp
G ) and ∆

(Σ)
G are tempered groups (Definition 6.1 (1), See also [SemiAnbd, Propo-

sition 3.1 (i)]).

Remark 6.3.1. (cf. [SemiAnbd, Example 3.10]) Let X be a smooth log-curve over K. The
special fiber of the stable model of X determines a semi-graph G of anabelioids. We can
relate the tempered fundamental group ∆temp

X := πtemp
1 (X) of X with a system of admissible

fundamental groups of the special fibers of the stable models of coverings of X as follows: Take
an exhausitive sequence of open characteristic subgroups · · · ⊂ Ni ⊂ · · · ⊂ ∆temp

X (i ≥ 1) of finite
index of ∆temp

X . Then, Ni determines a finite log-étale covering of X whose special fiber of the
stable model gives us a semi-graph Gi of anabelioids, on which ∆temp

X /Ni acts faithfully. Then, we
obtain a natural sequence of functors · · · ← Btemp(Gi)← · · · ← Btemp(G) which are compatible
with the actions of ∆temp

X /Ni. Hence, this gives us a sequence of surjections of tempered groups

∆temp
X � · · · � π1(Btemp(Gi))

out
o (∆temp

X /Ni) � · · · � π1(Btemp(Gj))
out
o (∆temp

X /Nj) � · · · �
π1(Btemp(G)). Then, by construction, we have

(6.1) ∆temp
X
∼= lim←−

i

(
∆temp
Gi

out
o (∆temp

X /Ni)

)
= lim←−

i

∆temp
X /ker(Ni � ∆temp

Gi ).

We also have

(6.2) ∆X
∼= lim←−

i

(
∆Gi

out
o (∆X/N̂i)

)
= lim←−

i

∆X/ker(N̂i � ∆Gi),

where N̂i denotes the closure of Ni in ∆X . By these expressions of ∆temp
X and ∆X in terms of

∆temp
Gi ’s and ∆Gi ’s, we can reduce some properties of the tempered fundamental group ∆temp

X of
the generic fiber to some properties of the admissible fundamental groups of the special fibers

(See Lemma 6.4 (5), and Corollary 6.10 (1)). Let ∆
(Σ),temp
X denote the fundamental group

associated to the category of the tempered coverings dominated by coverings which arise as a

graph covering of a finite étale Galois covering of X over K of Σ-power degree, and ∆
(Σ)
X its

profinite completion (Note that ∆
(Σ)
X is not the maximal pro-Σ quotient of ∆temp

X or ∆X , since
the profinite completion of the “graph covering portion” is not pro-Σ). If p 6∈ Σ, then we have

∆
(Σ),temp
X

∼= ∆
(Σ),temp
G and ∆

(Σ)
X
∼= ∆

(Σ)
G ,

since Galois coverings of Σ-power degree are necessarily admissible (See [Hur, §3], [SemiAnbd,
Corollary 3.11]).

6.2. Profinite Conjugate VS Tempered Conjugate.

Lemma 6.4. (special case of [SemiAnbd, Proposition 2.6, Corollary 2.7 (i), (ii), Proposition
3.6 (iv)] and [SemiAnbd, Example 3.10]) Let X be a smooth hyperbolic log-curve over K. Put
∆temp
X := πtemp

1 (X ×K K) and Πtemp
X := πtemp

1 (X). Let Gtemp(= GΣ,temp) denote the temperoid
determined by the special fiber of the stable model of X×KK and a set Σ of prime numbers, and
put ∆temp

G := π1(Gtemp) (for some base point). Take a connected sub-semi-graph H containing
a vertex of the underling semi-graph G of Gtemp. We assume that H is stabilised by the natural
action of GK on G. Let Htemp denote the temperoid over H obtained by the restriction of Gtemp

to H. Put ∆temp
H := π1(Htemp)(⊂ ∆temp

G ). Let ∆G and ∆H denote the profinite completion of

∆temp
G and ∆temp

H respectively.

(1) ∆H ⊂ ∆G is commensurably terminal,
(2) ∆H ⊂ ∆G is relatively slim (resp. ∆temp

H ⊂ ∆temp
G is relatively temp-slim),

(3) ∆H and ∆G are slim (resp. ∆temp
H and ∆temp

G are temp-slim),

(4) inertia subgroups in ∆temp
G of cusps are commensurably terminal, and

(5) ∆temp
X and Πtemp

X are temp-slim.
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Proof. (1) can be shown by the same manner as in Proposition 2.7 (1a) (i.e., consider coverings
which are connected over H and totally split over a vertex outside H). (3) for ∆: We can show
that ∆H and ∆G are slim in the same way as in Proposition 2.7. (2): ∆H ⊂ ∆G is relatively
slim, by (1), (3) for ∆ and Lemma 2.6 (2). Then the injectivity (which comes from the residual
finiteness of free groups and surface groups (See also Proposition C.5)) of ∆temp

H ↪→ ∆H and
∆temp
G ↪→ ∆G implies that ∆temp

H ⊂ ∆temp
G is relatively temp-slim. (3) for ∆temp: It follows from

(2) for ∆temp in the same way as in Proposition 2.6 (2). (4) can also be shown by the same
manner as in Proposition 2.7 (2c). (5): By the isomorphism (6.1) in Remark 6.3.1 and (3) for
∆temp, it follows that ∆temp

X is temp-slim (See [SemiAnbd, Example 3.10]). Hence, Πtemp
X is also

temp-slim by Proposition 2.7 (1c). �
Definition 6.5. Let G be a semi-graph of anabelioids.

(1) We call a subgroup of the form ∆v := π1(Gv) (⊂ ∆temp
G ) for a vertex v a verticial

subgroup.

(2) We call a subgroup of the form ∆e := π1(Ge) (∼= ẐΣ\{p} :=
∏

l∈Σ\{p} Zl)(⊂ ∆temp
G ) for a

closed edge e an edge-like subgroup.

Proposition 6.6. ([SemiAnbd, Theorem 3.7 (iv)]) Let X be a smooth hyperbolic log-curve over
K. Let Gtemp(= GΣ,temp) denote the temperoid determined by the special fiber of the stable model
of X and a set Σ of prime numbers, and put ∆temp

G := π1(Gtemp) (for some base point). For a
vertex v (resp. an edge e) of the underlying sub-semi-graph G of Gtemp, we put ∆v := π1(Gv)(⊂
∆temp
G ) (resp. ∆e := π1(Ge)(⊂ ∆temp

G )) to be the profinite group corresponding to Gv (resp. Ge)
(Note that we are not considering open edges here). Then, we have the followng group-theoretic
characterisations of ∆v’s and ∆e’s.

(1) The maximal compact subgroups of ∆temp
G are precisely the verticial subgroups of ∆temp

G .

(2) The non-trivial intersection of two maximal compact subgroups of ∆temp
G are precisely

the edge-like subgroups of ∆temp
G .

Remark 6.6.1. Proposition 6.6 reconstructs the dual graph (not the dual semi-graph) of the
special fiber from the tempered fundamental group without using the action of the Galois group
of the base field. In Corollary 6.12 below, we reconstruct the inertia subgroups, hence open
edges as well, using the Galois action. However, we can reconstruct the open edges without
Galois action, by more delicate method in [SemiAnbd, Corollary 3.11] (i.e., by constructing a
covering whose fiber at a cusp under consideration contains a node).
We can also reconstruct the dual semi-graph of the special fiber from the profinite funda-

mental group by using the action of the Galois group of the base field (See [profGC]).

Proof. Let ∆G denote the profinite completion of ∆temp
G . First, note that it follows that ∆v∩∆v′

has infinite index in ∆v for any vertices v 6= v′ by the commensurable terminality of ∆temp
v

(Lemma 6.4 (1)). Next, we take an exhausitive sequence of open characteristic subgroups
· · · ⊂ Ni ⊂ · · · ⊂ ∆temp

G of finite index, and let Gi(→ G) be the covering corresponding to

Ni(⊂ ∆temp
G ). Let G∞i denote the universal graph covering of the underlying semi-graph Gi of

Gi.
Take a compact subgroup H ⊂ ∆temp

G , then H acts continuously on G∞i for each i ∈ I, thus
its action factors through a finite quotient. Hence, H fixes a vertex or an edge of G∞i (see also
[SemiAnbd, Lemma 1.8 (ii)]), since an action of a finite group on a tree has a fixed point by
[Serre2, Chapter I, §6.5, Proposition 27] (Note that a graph in [Serre2] is an oriented graph,
however, if we split each edge of G∞i into two edges, then the argument works). Since the action
of H is over G, if H fixes an edge, then it does not change the branches of an edge. Therefore, H
fixes at least one vertex. If, for some cofinal subset J ⊂ I, H fixes more than or equal to three
vertices of G∞j for each j ∈ J , then by considering paths connecting these vertices (cf. [Serre2,
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Chapter I, §2.2, Proposition 8]), it follows that there exists a vertex having (at least) two closed
edges in which H fixes the vertex and the closed edges (see also [SemiAnbd, Lemma 1.8 (ii)]).
Since each Gj is finite semi-graph, we can choose a compatible system of such a vertex having
(at least) two closed edges on which H acts trivially. This implies that H is contained in (some
conjugate in ∆G of) the intersection of ∆e and ∆e′ , where e and e′ are distinct closed edges.
Hence, H should be trivial. By the above arguments also show that any compact subgroup in
∆temp
G is contained in ∆v for precisely one vertex v or in ∆v,∆v′ for precisely two vertices v, v′,

and, in the latter case, it is contained in ∆e for precisely one closed edge e. �
Proposition 6.7. ([IUTchI, Proposition 2.1]) Let X be a smooth hyperbolic log-curve over K.
Let Gtemp(= GΣ,temp) denote the temperoid determined by the special fiber of the stable model
of X and a set Σ of prime numbers. Put ∆temp

G := π1(Gtemp), and let ∆G denote the profinite

completion of ∆temp
G (Note that the “profinite portion” remains pro-Σ, and the “combinatorial

portion” changes from discrete to profinite). Let Λ ⊂ ∆temp
G be a non-trivial compact subgroup,

γ ∈ ∆G an element such that γΛγ−1 ⊂ ∆temp
G . Then, γ ∈ ∆temp

G .

Proof. Let Γ̂ (resp. Γtemp) be the “profinite semi-graph” (resp. “pro-semi-graph”) associated
with the universal profinite étale (resp. tempered) covering of Gtemp. Then, we have a natural

inclusion Γtemp ↪→ Γ̂. We call a pro-vertex in Γ̂ in the image of this inclusion tempered vertex.
Since Λ and γΛγ−1 are compact subgroups of ∆temp

G , there exists vertices v, v′ of G (here G
denotes the underlying semi-graph of Gtemp) such that Λ ⊂ ∆temp

v and γΛγ−1 ⊂ ∆temp
v′ by

Proposition 6.6 (1) for some base points. Here, ∆temp
v and ∆temp

v′ for this base points correspond

to tempered vertices ṽ, ṽ′ ∈ Γtemp. Now, {1} 6= γΛγ−1 ⊂ γ∆temp
v γ−1 ∩∆temp

v′ , and γ∆temp
v γ−1 is

also a fundamental group of Gtemp
v with the base point obtained by conjugating the base point

under consideration above by γ. This correponding to a tempered vertex ṽγ ∈ Γtemp. Hence, for
the tempered vertices ṽγ and ṽ′, the associated fundamental group has non-trivial intersection.
By replacing Πtemp

G by an open covering, we may assume that each irreducible component has
genus ≥ 2, any edge of G abuts to two distinct vertices, and that, for any two (not necessarily
distinct) vertices w,w′, the set of edges e in G such that e abuts to a vertex w′′ if and only
if w′′ ∈ {w,w′} is either empty of of cardinality ≥ 2. In the case where Σ = {2}, then by
replacing Πtemp

G by an open covering, we may assume that the last condition “cardinality ≥ 2”
is strongthen ot the condition “even cardinality”.
If ṽγ is not equal to ṽ′ nor ṽγ is adjacent to ṽ′, then we can construct the covering overXv (here

Xv is the irreducible component corresponding to v), such that the ramification indices at the
nodes and cusps of Xv are all equal (Note that such a covering exists by the assumed condition
on G in the last paragraph), then we extend this covering over the irreducible components
which adjacent to Xv, finally we extend the covering to a split covering over the rest of X
(See also [AbsTopII, Proposition 1.3 (iv)] or [NodNon, Proposition 3.9 (i)]). This implies that
there exist open subgroups J ⊂ ∆temp

G which contain ∆temp
v′ and determine arbitrarily small

neighbourhoods γ∆temp
v γ−1 ∩ J of {1}. This is a contradiction. Therefore, ṽγ is equal to ṽ′, or

ṽγ is adjacent to ṽ′. In particular, ṽγ is tempered, since ṽ′ is tempered. Hence, both of ṽ and
ṽγ are tempered. Thus, we have γ ∈ ∆temp

G , as desired. �

Corollary 6.8. ([IUTchI, Proposition 2.2]) Let ∆temp
G and ∆temp

H be as in Lemma 6.4.

(1) ∆temp
G ⊂ ∆G is commensurably terminal, and

(2) ∆temp
H ⊂ ∆G is commensurably terminal. In particular, ∆temp

H ⊂ ∆temp
G is also commen-

surably terminal as well.

Proof. (1): Let γ ∈ ∆G be an element such that ∆temp
G ∩ γ∆temp

G γ−1 is finite index in ∆temp
G .

Let ∆v ⊂ ∆temp
G be a verticial subgroup, and put Λ := ∆v ∩ γ∆temp

G γ−1 ⊂ ∆v ⊂ ∆temp
G . Since
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[∆v : Λ] = [∆temp
G : ∆temp

G ∩ γ∆temp
G γ−1] <∞, the subgroup Λ is open in the compact subgroup

∆v, so, it is a non-trivial compact subgroup of ∆temp
G . Now, γ−1Λγ = γ−1∆vγ ∩∆temp

G ⊂ ∆temp
G .

Since Λ, γ−1Λγ ⊂ ∆temp
G and Λ is a non-trivial compact subgroup, we have γ−1 ∈ ∆temp

G by

Proposition 6.7. Thus γ ∈ ∆temp
G , as desired.

(2): We have ∆temp
H ⊂ C∆temp

G
(∆temp
H ) ⊂ C∆G(∆

temp
H ) ⊂ C∆G(∆H) by definition. By Lemma 6.4

(1), we have C∆G(∆H) = ∆H. Thus, we have C∆G(∆
temp
H ) = C∆H(∆

temp
H ) combining these. On

the other hand, by (1) for ∆temp
H , we have C∆H(∆

temp
H ) = ∆temp

H . By combining these, we have
∆temp
H ⊂ C∆G(∆

temp
H ) = C∆H(∆

temp
H ) = ∆temp

H , as desired. �

Corollary 6.9. ([IUTchI, Corollary 2.3]) Let ∆X , ∆
temp
G , ∆temp

H , H, ∆G, ∆H be as in Lemma 6.4.

Put ∆temp
X,H := ∆temp

X ×∆temp
G

∆temp
H (⊂ ∆temp

X ), and ∆X,H := ∆X ×∆G ∆H(⊂ ∆X).

(1) ∆temp
X,H ⊂ ∆temp

X (resp. ∆X,H ⊂ ∆X) is commensurably terminal.

(2) The closure of ∆temp
X,H in ∆X is equal to ∆X,H.

(3) We have ∆X,H ∩∆temp
X = ∆temp

X,H (⊂ ∆X).

(4) Let Ix ⊂ ∆temp
X (resp. Ix ⊂ ∆X) be a cusp x of X. Write x̃ for the cusp in the stable

model corresponding to x. Then Ix lies in a ∆temp
X -(resp. ∆X-)conjugate of ∆temp

X,H (resp.
∆X,H) if and only if x̃ meets an irreducible component of the special fiber of the stable
model which is contained in H.

(5) Suppose that p /∈ Σ, and there is a prime number l 6∈ Σ ∪ {p}. Then, ∆X,H is slim. In
particular, we can define

Πtemp
X,H := ∆temp

X,H
out
o GK , ΠX,H := ∆X,H

out
o GK

by the natural outer actions of GK on ∆temp
X,H and ∆X,H respectively.

(6) Suppose that p 6∈ Σ, and there is a prime number l 6∈ Σ ∪ {p}. Πtemp
X,H ⊂ Πtemp

X and
ΠX,H ⊂ ΠX are commensurably terminal.

Proof. (1) follows from Lemma 6.4 (1) and Corollary 6.8 (2). Next, (2) and (3) are trivial.
(4) follows by noting that an inertia subgroup of a cusp is contained in precisely one verticial
subgroup. We can show this, (possibly after replacing G by a finite étale covering) for any
vertex v which is not abuted by the open edge e corresponding to the inertia subgroup, by
constructing a covering which is trivial over Gv and non-trivial over Ge ([CombGC, Proposition
1.5 (i)]). (6) follows from (5) and (1). We show (5) (The following proof is a variant of the proof
of Proposition 2.7 (2a)). Let J ⊂ ∆X be an open normal subgroup, and put JH := J ∩∆X,H.

We write J � JΣ∪{l} for the maximal pro-Σ ∪ {l} quotient, and JΣ∪{l}
H := Im(JH → JΣ∪{l}).

Suppose α ∈ ∆X,H commutes with JH. Let v be a vertex of the dual graph of the geometric
special fiber of a stable model XJ of the covering XJ of XK corresponding to J . We write
Jv ⊂ J for the decomposition group of v, (which is well-defined up to conjugation in J), and

we put J
Σ∪{l}
v := Im(Jv → JΣ∪{l}). First, we show a claim that J

Σ∪{l}
v ∩ JΣ∪{l}

H is infinite and

non-abelian. Note that Jv ∩ JH, hence also J
Σ∪{l}
v ∩ JΣ∪{l}

H , surjects onto the maxmal pro-l
quotient J lv of Jv, since the image of the homomorphism Jv ⊂ J ⊂ ∆X � ∆G is pro-Σ, and
we have ker(Jv ⊂ J ⊂ ∆X � ∆G) ⊂ Jv ∩ JH, and l 6∈ Σ. Now, J lv is the pro-l completion
of the fundamental group of hyperbolic Riemann surface, hence is infinite and non-abelian.
Therefore, the claim is proved. Next, we show (5) from the claim. We consider various ∆X-

conjugates of J
Σ∪{l}
v ∩JΣ∪{l}

H in JΣ∪{l}. Then, by Proposition 6.6, it follows that α fixes v, since

α commutes with J
Σ∪{l}
v ∩JΣ∪{l}

H . Moreover, since the conjugation by α on J lv(� J
Σ∪{l}
v ∩JΣ∪{l}

H )
is trivial, it follows that α not only fixes v, but also acts trivially on the irreducible component
of the special fiber of XJ corresponding to v (Note that any non-trivial automorphism of an
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irreducible component of the special fiber induces a non-trivial outer automorphism of the
tame pro-l fundamental group of the open subscheme of this irreducible component given by
taking the complement of the nodes and cusps). Then, α acts on (JΣ∪{l})ab as a unipotent
automorphism of finite order, since v is arbitrary, hence α acts trivially on (JΣ∪{l})ab. Then,
we have α = 1, as desired, since J is arbitrary. �
Corollary 6.10. ([IUTchI, Proposition 2.4 (i), (iii)]) We continue to use the same notation as

above. We assume that p 6∈ Σ (which implies that ∆temp
X � ∆

(Σ),temp
X

∼= ∆
(Σ),temp
G = ∆temp

G and

∆X � ∆
(Σ)
X
∼= ∆

(Σ)
G = ∆G).

(1) Let Λ ⊂ ∆temp
X be a non-trivial pro-Σ compact group, γ ∈ ΠX an element such that

γΛγ−1 ⊂ ∆temp
X . Then we have γ ∈ Πtemp

X .
(2) ([A1, Corollary 6.2.2]) ∆temp

X ⊂ ∆X (resp. Πtemp
X ⊂ ΠX) is commensurably terminal.

Remark 6.10.1. By Corollary 6.10 (2) and Theorem B.1, we can show a tempered version of
Theorem B.1:

Homdom
K (X, Y )

∼→ Homdense in an open subgp. of fin. index
GK

(Πtemp
X ,Πtemp

Y )/Inn(∆temp
Y )

(For a homomorphism, up to inner automorphisms of ∆temp
Y , in the right hand side, consider

the induced homomorphism on the profinite completions. Then it comes from a morphism in
the left hand side by Theorem B.1, and we can reduce the ambiguity of inner automorphisms of
the profinite completion of ∆temp

Y to the one of inner automorphisms of ∆temp
Y by Corollary 6.10

(2)). See also [SemiAnbd, Theorem 6.4].

Proof. (1): Take a lift γ̃ ∈ Πtemp
X � GK of the image of γ ∈ ΠX � GK . By replacing γ

by γ(γ̃)−1 ∈ ∆X , we may assume that γ ∈ ∆X . For an open characteristic sugroup N ⊂
∆temp
X , let N̂ denote the closure of N in ∆X , and let GN denote the (pro-Σ) semi-graph of

anabelioids determined by the stable model of the covering of X ×K K corresponding to N .
By the isomorphisms (6.1) and (6.2) in Remark 6.3.1, it suffices to show that for any open

characteristic subgroup N ⊂ ∆temp
X , the image of γ ∈ ∆X � ∆X/ker(N̂ � ∆GN ) comes from

∆temp
X /ker(N � ∆temp

GN ) ↪→ ∆X/ker(N̂ � ∆GN ). Take such an N . Since N is of finite index

in ∆temp
X , we have ∆temp

X /N ∼= ∆X/N̂ . We take a lift γ̃ ∈ ∆temp
X � ∆temp

X /N ∼= ∆X/N̂ of the

image γ ∈ ∆X � ∆X/N̂ . By replacing γ by γ(γ̃)−1 ∈ N̂ , we may assume that γ ∈ N̂ . Note
that ΛN := Λ ∩ N(⊂ N ⊂ ∆temp

X ) is a non-trivial open compact subgroup, since N is of finite
index in ∆temp

X . Since ΛN is a pro-Σ subgroup in ∆temp
X , it is sent isomorphically to the image

by ∆temp
X � ∆

(Σ),temp
X . Hence, the image ΛN ⊂ ∆temp

G of ΛN by ∆temp
X � ∆

(Σ),temp
X

∼= ∆
(Σ),temp
G =

∆temp
G is also non-trivial open compact subgroup (Here we need the assumption p 6∈ Σ. If p ∈ Σ,

then we only have a surjection ∆
(Σ),temp
X � ∆

(Σ),temp
G , and the image of ΛN might be trivial).

Note that ΛN is in ∆temp
GN = Im(N ⊂ ∆temp

X � ∆temp
G ). Consider the following diagram, where

the horizontal sequences are exact:

1 // ∆temp
GN

//
_�

��

∆temp
X /ker(N � ∆temp

GN ) //
_�

��

∆temp
X /N //

∼=
��

1

1 // ∆GN
// ∆X/ker(N̂ � ∆temp

GN ) // ∆X/N̂ // 1

Since γ is in N̂ , the image γ of γ ∈ ∆X � ∆X/ker(N̂ � ∆GN ) lands in ∆GN . Since ΛN(⊂ ∆temp
GN )

is a non-trivial open compact subgroup, and γΛNγ
−1 ⊂ ∆temp

GN by assumption, we conclude

γ ∈ ∆temp
GN by Proposition 6.7, as desired. (2) follows from (1) by the same way as in Corollary 6.8

(1). �
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The following theorem is technically important for inter-universal Teichmüller theory:

Theorem 6.11. (Profinite Conjugate VS Tempered Conjugate, [IUTchI, Corollary 2.5]) We
continue to use the same notation as above. We assume that p 6∈ Σ. Then,

(1) Any inertia subgroup in ΠX of a cusp of X is contained in Πtemp
X if and only if it is an

inertia subgroup in Πtemp
X of a cusp of X, and

(2) A ΠX-conjugete of Πtemp
X contains an inertia subgroup in Πtemp

X of a cusp of X if and
only if it is equal to Πtemp

X .

Remark 6.11.1. In inter-universal Teichmüller theory,

(1) we need to use tempered fundamental groups, because the theory of étale theta function
(see Section 7) plays a crucial role, and

(2) we also need to use profinite fundamental groups, because we need hyperbolic orbicurve
over a number field for the purpose of putting “labels” for each places in a consistent
manner (See Proposition 10.19 and Proposition 10.33). Note also that tempered funda-
mental groups are available only over non-Archimedean local fields, and we need to use
profinite fundamental groups for hyperbolic orbicurve over a number field.

Then, in this way, the “Profinite Conjugate VS Tempered Conjugate” situation as in Theo-
rem 6.11 naturally arises (See Lemma 11.9). The theorem says that the profinite conjugacy
indeterminacy is reduced to the harmless tempered conjugacy indeterminacy.

Proof. Let Ix(∼= Ẑ) be an inertia subgroup of a cusp x. By applying Corollary 6.10 to the
unique pro-Σ subgroup of Ix, it follows that a ΠX-conjugate of Ix is contained in Πtemp

X if and
only if it is a Πtemp

X -conjugate of Ix, and that a ΠX-conjugate of Πtemp
X containes Ix if and only

if it is equal to Πtemp
X �

Corollary 6.12. Let X be a smooth hyperbolic log-curve over K, an algebraic closure K of
K. Then, we can group-theoretically reconstruct the inertia subgroups and the decomposition
groups of cusps in Πtemp

X := πtemp
1 (X).

Remark 6.12.1. By combining Corollary 6.12 with Proposition 6.6, we can group-theoretically
reconstruct the dual semi-graph of the special fiber (See also Remark 6.6.1).

Proof. By Lemma 6.2 (with Remark 6.2.1) we have a group-theoretic reconstruction of the
quotient Πtemp

X � GK from Πtemp
X . Let ∆X and ΠX denote the profinite completions of ∆temp

X

and Πtemp
X respectively. By using the injectivity of ∆temp

X ↪→ ∆X and Πtemp
X ↪→ ΠX (i.e.,

residual finiteness (See also Proposition C.5)), we can reconstruct inertia subgroups I of cusps
by using Corollary 2.9, Remark 2.9.2, and Theorem 6.11 (Note that the reconstruction of the
inertia subgroups in ∆X has ∆X-conjugate indeterminacy, however, by using Theorem 6.11,
this indeterminacy is reduced to ∆temp

X -conjugate indeterminacy, and it is harmless). Then, we
can group-theoretically reconstruct the decomposition groups of cusps, by taking the normaliser
NΠtemp

X
(I), since I is normally terminal in ∆temp

X by Lemma 6.4 (4). �

Remark 6.12.2. (a little bit sketchy here, cf. [AbsAnab, Lemma 2.5], [AbsTopIII, Theorem
1.10 (c)]) By using the reconstruction of the dual semi-graph of the special fiber (Remark 6.12.1),
we can reconstruct

(1) a positive rational structure on H2(∆X , µẐ(GK))
∨ := Hom(H2(∆X , µẐ(GK)), Ẑ),

(2) hence, a cyclotomic rigidity isomorphism:

(Cyc.Rig. viaPos.Rat. Str.) µẐ(GK)
∼→ µẐ(ΠX)

(We call this the cyclotomic rigidity isomorphism via positive rational structure
and LCFT.)
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as follows (See also Remark 3.19.1):

(1) By taking finite étale covering of X, it is easy to see that we may assume that the nor-
malisation of each irreducible component of the special fiber of the stable model X of X
has genus ≥ 2, and that the dual semi-graph ΓX of the special fiber is non-contractible
(cf. [profGC, Lemma 2.9, the first two paragraphs of the proof o Theorem 9.2]). By
Remark 6.12.1, we can group-theoretically reconstruct the quotient ∆temp

X � ∆comb
X cor-

responding to the coverings of graphs (Note that, in [AbsAnab], we reconstruct the dual
semi-graph of the special fiber from profinite fundamental group, i.e., without using tem-
pered structure, via the reconstruction algorithms in [profGC]. See also Remark 6.6.1).
Let ∆X denote tha profinite completion of ∆temp

X , and put V := ∆ab
X . Note that the

abelianisation V comb := (∆comb
X )ab ∼= Hsing

1 (ΓX ,Z)( 6= 0) is a free Z-module. By using a
theorem of Raynaud (cf. [AbsAnab, Lemma 2.4], [Tam, Lemma 1.9], [Ray, Théorème
4.3.1]), after replacing X by a finite étale covering (whose degree depends only on p
and the genus of X), and K by a finite unramified extension, we may assume that the
“new parts” of the Jacobians of the irreducible components of the special fiber are all
ordinary, hence we obtain a GK-equivariant quotient V � V new, such that we have an
exact sequence

0→ V mult → V new
Zp

:= V new ⊗Ẑ Zp → V ét → 0,

where V ét is an unramified GK-module, and V mult is the Cartier dual of an unramified

GK-module, and that V new � V comb
Ẑ

:= V comb ⊗Z Ẑ(6= 0). Let (−)− (like V new
Zp

, V comb
Ẑ

)
denote the tensor product in this proof. Then the restriction of the non-degenerate
group-theoretic cup product

V ∨ ⊗Ẑ V
∨ ⊗Ẑ µẐ(GK)→M := H2(∆, µẐ(GK)) (∼= Ẑ),

where (−)∨ := Hom(−, Ẑ), to (V new)∨

(V new)∨ ⊗Ẑ (V new)∨ ⊗Ẑ µẐ(GK)→M (∼= Ẑ)

is still non-degenerate, since it arises from the restriction of the polarisation given by
the theta divisor on the Jacobian of X to the “new part” of X (i.e., it gives us an ample
divisor). Then, we obtain an inclusion

(V comb
Ẑ )∨ ⊗Ẑ µẐ(GK)⊗Ẑ M

∨ ↪→ (V new)∨ ⊗Ẑ µẐ(GK)⊗Ẑ M
∨ ↪→ ker(V new � V comb

Ẑ ) ⊂ V new,

where the second last inclusion comes from µẐ(GK)
GK = 0.

By the Riemann hypothesis for abelian varieties over finite fields, the (ker(V ét �
V comb
Zp

) ⊗Zp Qp)
GK = ((ker(V ét � V comb

Zp
) ⊗Zp Qp)GK

= 0, where (−)GK
denotes the

GK-coinvariant quotient (Note that ker(V ét � V comb
Zp

) arises from the p-divisible group

of an abelian variety over the residue field). Thus, the surjection V ét � V comb ⊗Ẑ Zp
has a unique GK-splitting V

comb
Zp

↪→ V ét⊗Qp . Similarly, by taking Cartier duals, the

injection (V comb
Ẑ

)∨ ⊗Ẑ µẐ(GK) ⊗ M∨ ⊗Ẑ Zp ↪→ V mult also has a unique GK-splitting

V mult � (V comb
Ẑ

)∨ ⊗Ẑ µẐ(GK) ⊗ M∨ ⊗Ẑ Qp. By these splittings, the GK-action on
V new⊗Zp gives us a p-adic extension class

ηZp ∈ ((V comb
Qp

)∨)⊗2 ⊗M∨ ⊗H1(K,µẐ(GK))/H
1
f (K,µẐ(GK)) = ((V comb

Qp
)∨)⊗2 ⊗M∨ :



86 GO YAMASHITA

0 // V mult
Qp

//

����

V new
Qp

// V ét
Qp

//

����

0

(V comb
Qp

)∨ ⊗ µẐ(GK)⊗M∨
?�

OO

V comb
Qp

.
/�

``

Next, ker(V new
Ẑ′ � V comb

Ẑ′ ) is an unramified GK-module, since it arises from l( 6= p)-

divisible group of a semi-abelian variety over the residue field, where we put Ẑ′ :=∏
l 6=p Zl. Again by the Riemann hypothesis for abelian varieties over finite fields, the

injection (V comb
Ẑ′ )∨ ⊗ µẐ(GK) ⊗M∨ ↪→ ker(V new

Ẑ′ � V comb
Ẑ′ ) of unramified GK-modules

splits uniquely over Q. Then, we can construct a prime-to-p-adic extension class

ηẐ′ ∈ ((V comb
Ẑ′ )∨)⊗2 ⊗M∨ ⊗H1(K,µẐ(GK))/H

1
f (K,µẐ(GK))⊗Q = ((V comb

Ẑ′ )∨)⊗2 ⊗M∨ ⊗Q :

0 // ker(V new
Ẑ′⊗Q � V comb

Ẑ′⊗Q )
//

����

V new
Ẑ′⊗Q

// V comb
Ẑ′⊗Q

// 0

(V comb
Ẑ′⊗Q )

∨ ⊗ µẐ(GK)⊗M∨.
?�

OO

Then, combining p-adic extension class and prime-to-p-adic extension class, we obtain
an extension class

ηẐ ∈ ((V comb
Ẑ )∨)⊗2 ⊗M∨ ⊗H1(K,µẐ(GK))/H

1
f (K,µẐ(GK))⊗Q = ((V comb

Ẑ )∨)⊗2 ⊗M∨ ⊗Q.

Therefore, we obtain a bilinear form

(V comb
Ẑ )⊗2 →M∨ ⊗Ẑ Q,

and the image of (V comb)⊗2 ⊂ (V comb
Ẑ

)⊗2 gives us a positive rational structure (i.e.,

Q>0-structure) on M
∨ ⊗Ẑ Q (cf. [AbsAnab, Lemma 2.5]).

(2) By the group-theoretically reconstructed homomorphisms

H1(GK , µẐ(GK))
∼→ Hom(H1(GK , Ẑ), Ẑ) ∼= Gab

K � Gab
K /Im(IK → Gab

K ) ∼= Ẑ

in the proof of Corollary 3.19 (2), we obtain a natural surjection

H1(GKµẐ(ΠX))� Hom(µẐ(GK), µẐ(ΠX)) ∼= H2(∆X , µẐ(GK))
∨

(Recall the definition of µẐ(ΠX)). Then, by taking the unique topological genera-
tor of Hom(µẐ(GK), µẐ(ΠX)) which is contained in the positive rational structue of

H2(∆X , µẐ(GK))
∨, we obtain the cyclotomic rigidity isomorphism µẐ(GK)

∼→ µẐ(ΠX).

It seems important to give a remark that we use the value group portion (i.e., we use O�, not

O×) in the construction of the above surjection H1(GK , µẐ(GK))
∼→ Hom(H1(GK , Ẑ), Ẑ) ∼=

Gab
K � Gab

K /Im(IK → Gab
K ) ∼= Ẑ, hence, in the construction of the cyclotomic rigidity via

positive rational structure and LCFT as well. In inter-universal Teichmüller theory, not only
the existence of reconstruction algorithms, but also the contents of reconstruction algorithms
are important, and whether or not we use the value group portion in the algorithm is crucial
for the constructions in the final multiradial algorithm in inter-universal Teichmüller theory.
See also Remark 9.6.2, Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.
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7. Étale Theta Functions —Three Rigidities.

In this sectin, we introduce another (probably the most) important ingredient of inter-
universal Teichmüller theory, that is, the theory of étale theta functions. In Section 7.1, we
introduce some varieties related to the étale theta functions. In Section 7.4, we introduce the
notion of mono-theta environment, which plays important roles in inter-universal Teichmüller
theory.

7.1. Theta-Related Varieties. We introduce some varieties and study them in this subsec-
tion. LetK be a finite extension of Qp, andK an algebraic closure ofK. Put GK := Gal(K/K).
Let X→ Spf OK be a stable curve of type (1, 1) such that the special fiber is singular and ge-
ometrically irreducible, the node is rational, and the Raynaud generic fiber X (which is a
rigid-analytic space) is smooth. For the varieties and rigid-analytic spaces in this Section, we
also call marked points cusps, we always put log-structure on them, and we always consider
the fundamental groups for the log-schemes and log-rigid-analytic spaces. Let Πtemp

X , ∆temp
X

denote the tempered fundamental group of X (with log-structure on the marked point) for
some basepoint. We have an exact sequence 1→ ∆X → ΠX → GK → 1. Put ΠX := (Πtemp

X )∧,
∆X := (∆temp

X )∧ to be the profinite completions of Πtemp
X , ∆temp

X respectively. We have the
natural surjection ∆temp

X � Z corresponding to the universal graph-covering of the dual-graph
of the configuration of the irreducible components of X. We write Z for this quotient for the

purpose of distinguish it from other Z’s. We also write ∆X � Ẑ for the profinite completion
of ∆temp

X � Z.
Put ∆Θ

X := ∆X/[∆X , [∆X ,∆X ]], and we call it the theta quotient of ∆X . We also put

∆Θ :=
∧2∆ab

X (∼= Ẑ(1)), and ∆ell
X := ∆ab

X . We have the following exact sequences:

1→ ∆Θ → ∆Θ
X → ∆ell

X → 1,

1→ Ẑ(1)→ ∆ell
X → Ẑ→ 1.

Let (∆temp
X )Θ and (∆temp

X )ell denote the image of ∆temp
X via the surjections ∆X � ∆Θ

X and
∆X � (∆Θ

X �)∆ell
X respectively:

∆X
// // ∆Θ

X
// // ∆ell

X

∆temp
X

// //
?�

OO

(∆temp
X )Θ // //
?�

OO

(∆temp
X )ell.
?�

OO

Let (Πtemp
X )Θ and (Πtemp

X )ell denote the push-out of Πtemp
X via the surjections ∆temp

X � (∆temp
X )Θ

and ∆temp
X � ((∆temp

X )Θ �)(∆temp
X )ell respectively:

Πtemp
X

// // (Πtemp
X )Θ // // (Πtemp

X )ell

∆temp
X

// //
?�

OO

(∆temp
X )Θ // //
?�

OO

(∆temp
X )ell.
?�

OO

We have the following exact sequences:

1→ ∆Θ → (∆temp
X )Θ → (∆temp

X )ell → 1,

1→ Ẑ(1)→ (∆temp
X )ell → Z→ 1.

Let Y � X (resp. Y � X) be the infinite étale covering correspoinding to the kernel
Πtemp
Y of Πtemp

X � Z. We have Gal(Y/X) = Z. Here, Y is an infinite chain of copies of the
projective line with a marked point 6= 0,∞ (which we call a cusp), joined at 0 and ∞, and
each of these points “0” and “∞”is a node in Y. Let (∆temp

Y )Θ, (∆temp
Y )ell (resp. (Πtemp

Y )Θ,
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(Πtemp
Y )ell) denote the image of ∆temp

Y (resp. Πtemp
Y ) via the surjections ∆temp

X � (∆temp
X )Θ and

∆temp
X � ((∆temp

X )Θ �)(∆temp
X )ell (resp. Πtemp

X � (Πtemp
X )Θ and Πtemp

X � ((Πtemp
X )Θ �)(Πtemp

X )ell)
respectively:

∆temp
X

// // (∆temp
X )Θ // // (∆temp

X )ell Πtemp
X

// // (Πtemp
X )Θ // // (Πtemp

X )ell

∆temp
Y

// //
?�

OO

(∆temp
Y )Θ // //
?�

OO

(∆temp
Y )ell,
?�

OO

Πtemp
Y

// //
?�

OO

(Πtemp
Y )Θ // //
?�

OO

(Πtemp
Y )ell.
?�

OO

We also have a natural exact sequence

1→ ∆Θ → (∆temp
Y )Θ → (∆temp

Y )ell → 1.

Note that (∆temp
Y )ell ∼= Ẑ(1) and that (∆temp

Y )Θ(∼= Ẑ(1)⊕2) is abelian.
Let qX ∈ OK be the q-parameter of X. For an integer N ≥ 1, set KN := K(µN , q

1/N
X ) ⊂ K.

Any decomposition group of a cusp of Y gives us a section GK → (Πtemp
Y )ell of the natu-

ral surjection (Πtemp
Y )ell � GK (Note that the inertia subgroup of cusps are killed in the

quotient (−)ell). This section is well-defined up to conjugate by (∆temp
Y )ell. The composite

GKN
↪→ GK → (Πtemp

Y )ell � (Πtemp
Y )ell/N(∆temp

Y )ell is injective by the definition of KN , and the
image is stable under the conjugate by Πtemp

X , since GKN
acts trivially on 1 → Z/NZ(1) →

(∆temp
X )ell/N(∆temp

Y )ell → Z → 1 (whose extension class is given by q
1/N
X ), by the definition of

KN . Thus, the image GKN
↪→ (Πtemp

Y )ell/N(∆temp
Y )ell determines a Galois covering YN � Y .

We have natural exact sequences:

1→ Πtemp
YN
→ Πtemp

Y → Gal(YN/Y )→ 1,

1→ (∆temp
Y )ell ⊗ Z/NZ (∼= Z/NZ(1))→ Gal(YN/Y )→ Gal(KN/K)→ 1.

Let (∆temp
YN

)Θ, (∆temp
YN

)ell (resp. (Πtemp
YN

)Θ, (Πtemp
YN

)ell) denote the image of ∆temp
YN

(resp. Πtemp
YN

)

via the surjections ∆temp
Y � (∆temp

Y )Θ and ∆temp
Y � ((∆temp

Y )Θ �)(∆temp
Y )ell (resp. Πtemp

Y �
(Πtemp

Y )Θ and Πtemp
Y � ((Πtemp

Y )Θ �)(Πtemp
Y )ell) respectively:

∆temp
Y

// // (∆temp
Y )Θ // // (∆temp

Y )ell Πtemp
Y

// // (Πtemp
Y )Θ // // (Πtemp

Y )ell

∆temp
YN

// //
?�

OO

(∆temp
YN

)Θ // //
?�

OO

(∆temp
YN

)ell,
?�

OO

Πtemp
YN

// //
?�

OO

(Πtemp
YN

)Θ // //
?�

OO

(Πtemp
YN

)ell.
?�

OO

We also have a natural exact sequence

1→ ∆Θ ⊗ Z/NZ (∼= Z/NZ(1))→ (Πtemp
YN

)Θ/N(∆temp
Y )Θ → GKN

→ 1.

Let YN � Y be the normalisation of Y in YN , i.e., write Y and YN as the formal scheme and
the rigid-analytic space associated to OK-algebra A and K-algebra BN respectively, and take
the normalisation AN of A in BN , then YN = Spf AN . Here, YN is also an infinite chain of
copies of the projective line with N marked points 6= 0,∞ (which we call cusps), joined at 0
and ∞, and each of these points “0” and “∞”is a node in Y. The covering YN � Y is the
covering of N -th power map on the each copy of Gm obtained by removing the nodes, and the
cusps correspond to “1”, since we take a section GK → (Πtemp

Y )ell corresponding to a cusp in
the construction of YN . Note also that if N is divisible by p, then YN is not a stable model
over Spf OKN

.
We choose some irreducible component of Y as a “basepoint”, then by the natural action of

Z = Gal(Y/X) on Y, the projective lines in Y are labelled by elements of Z. The isomorphism
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class of a line bundle on YN is completely determined by the degree of the restriction of the line
bundle to each of these copies of the projective line. Thus, these degrees give us an isomorphism

Pic(YN)
∼→ ZZ,

i.e., the abelian group of the functions Z → Z. In the following, we consider Cartier divisors
on YN , i.e., invertible sheaves for the structure sheaf OYN

of YN . Note that we can also
consider an irreducible component of YN as a Q-Cartier divisor of YN (See also the proof of
[EtTh, Proposition 3.2 (i)]) although it has codimension 0 as underlying topological space in
the formal scheme YN . Let LN denote the line bundle on YN correspoinding to the function
Z→ Z : a 7→ 1 for any a ∈ Z, i.e., it has degree 1 on any irreducible component. Note also that
we have Γ(YN ,OYN

) = OKN
. In this section, we naturally identify a line bundle as a locally

free sheaf with a geometric object (i.e., a (log-)(formal) scheme) defined by it.
Put JN := KN(a

1/N | a ∈ KN) ⊂ K, which is a finite Galois extension of KN , since
K×N/(K

×
N)

N is finite. Two splitting of the exact sequence

1→ ∆Θ ⊗ Z/NZ→ (Πtemp
YN

)Θ/N(∆temp
Y )Θ → GKN

→ 1

determines an element of H1(GKN
,∆Θ ⊗ Z/NZ). By the definition of JN , the restriction

of this element to GJN is trivial. Thus, the splittings coincide over GJN , and the image
GJN ↪→ (Πtemp

YN
)Θ/N(∆temp

Y )Θ is stable under the conjugate by Πtemp
X . Hence, the image GJN ↪→

(Πtemp
YN

)Θ/N(∆temp
Y )Θ determines a finite Galois covering ZN � YN . We have the natural exact

sequences

1→ Πtemp
ZN
→ Πtemp

YN
→ Gal(ZN/YN)→ 1,

1→ ∆Θ ⊗ Z/NZ→ Gal(ZN/YN)→ Gal(JN/KN)→ 1.(7.1)

Let (∆temp
ZN

)Θ, (∆temp
ZN

)ell (resp. (Πtemp
ZN

)Θ, (Πtemp
ZN

)ell) denote the image of ∆temp
ZN

(resp. Πtemp
ZN

)

via the surjections ∆temp
YN

� (∆temp
YN

)Θ and ∆temp
YN

� ((∆temp
YN

)Θ �)(∆temp
YN

)ell (resp. Πtemp
YN

�
(Πtemp

YN
)Θ and Πtemp

YN
� ((Πtemp

YN
)Θ �)(Πtemp

YN
)ell) respectively:

∆temp
YN

// // (∆temp
YN

)Θ // // (∆temp
YN

)ell Πtemp
YN

// // (Πtemp
YN

)Θ // // (Πtemp
YN

)ell

∆temp
ZN

// //
?�

OO

(∆temp
ZN

)Θ // //
?�

OO

(∆temp
ZN

)ell,
?�

OO

Πtemp
ZN

// //
?�

OO

(Πtemp
ZN

)Θ // //
?�

OO

(Πtemp
ZN

)ell.
?�

OO

Let ZN � YN be the normalisation of Y in ZN in the same sense as in the definition of YN .
Note that the irreducible components of ZN are not isomorphic to the projective line in general.
A section s1 ∈ Γ(Y,L1) whose zero locus is the cusps is well-defined up to an O×K-multiple,

since we have Γ(Y,OY) = OK . Fix an isomorphism L⊗NN
∼→ L1|YN

and we identify them.
A natural action of Gal(Y/X) (∼= Z) on L1 is uniquely determined by the condition that it
preserves s1. This induces a natural action of Gal(YN/X) on L1|YN

.

Lemma 7.1. ([EtTh, Proposition 1.1])

(1) The section s1|YN
∈ Γ(YN ,L1|YN

) = Γ(YN ,L
⊗N
N ) has an N -th root sN ∈ Γ(ZN ,LN |ZN

)
over ZN .

(2) There is a unique action of Πtemp
X on the line bundle LN ⊗OKN

OJN over YN ×OKN
OJN

which is compatible with the section sN : ZN → LN ⊗OKN
OJN . Furthermore, this action

factors through Πtemp
X � Πtemp

X /Πtemp
ZN

= Gal(ZN/X), and the action of ∆temp
X /∆temp

ZN
on

LN ⊗OKN
OJN is faithful.
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Proof. Put (YN)JN := YN ×KN
JN , and GN to be the group of automorphisms of LN |(YN )JN

which is lying over the JN -automorphisms of (YN)JN induced by elements of ∆temp
X /∆temp

YN
⊂

Gal(YN/X) and whose N -th tensor power fixes the s1|(YN )JN
. Then, by definition, we have a

natural exact sequence

1→ µN(JN)→ GN → ∆temp
X /∆temp

YN
→ 1.

We claim that

HN := ker(GN � ∆temp
X /∆temp

YN
� ∆temp

X /∆temp
Y
∼= Z)

is an abelian group killed by N , where the above two surjections are natural ones, and the
kernels are µN(JN) and (∆temp

X )ell ⊗ Z/NZ (∼= Z/NZ(1)) respectively. Proof of the claim (This
immediate follows from the structure of the theta group (=Heisenberg group), however, we
include a proof here): Note that we have a natural commutative diagram

1

��

1

��

1 // µN(JN) //

=

��

HN
//

��

(∆temp
Y )ell ⊗ Z/NZ (∼= Z/NZ(1)) //

��

1

1 // µN(JN) // GN //

��

∆temp
X /∆temp

YN
//

��

1

∆temp
X /∆temp

Y
= //

��

∆temp
X /∆temp

Y (∼= Z),

��
1 1

whose rows and columns are exact. Let ζ be a primitive N -th root of unity. The function

whose restriction to every irreducible component minus nodes Ĝm = Spf OK [[U ]] of YN is
equal f(U) := U−1

U−ζ represents an element of H which maps to a generator of ∆temp
Y /∆temp

YN
,

since it changes the pole divisor from 1 to ζ. Then, the claim follows from the identity∏
0≤j≤N−1 f(ζ

−jU) = U−1
U−ζ

U−ζ
U−ζ2 · · ·

U−ζN
U−ζN−1 = 1. The claim is shown.

Let RN be the tautological Z/NZ(1)-torsor RN → YN obtained by taking an N -th root

of s1, i.e., the finite YN -formal scheme Spf
(
⊕0≤j≤N−1L

⊗(−j)
N

)
, where the algebra structure is

defined by the multiplication L
⊗(−N)
N → OYN

by s1|YN
. Then, GN naturally acts on (RN)JN :=

RN ×OKN
JN by the definition of GN . Since s1|YN has zero of order 1 at each cusp, (RN)JN

is connected and Galois over XJN := X ×K JN , and GN
∼→ Gal((RN)JN/XJN ). Since (i)

∆temp
X /∆temp

YN
acts trivially on µN(JN), and (ii) HN is killed by N by the above claim, we

have a morphism ZN ×OJN
K → RN ×OKN

OJN over YN ×OKN
OJN by the definitions of

∆Θ
X = ∆X/[∆X , [∆X ,∆X ]] and ZN , i.e., geometrically, ZN ×OJN

K(� YN ×OKN
K) has the

universality having properties (i) and (ii) (Note that the domain of the morphism is ZN×OJN
K,

not ZN , since we are considering ∆(−), not Π(−)). Since we used the open immersion GJN ↪→
(Πtemp

YN
)Θ/N(∆temp

Y )Θ, whose image is stable under conjugate by Πtemp
X , to define the morphism

ZN � YN , and s1|YN is defined over KN , the above morphism ZN ×OJN
K → RN ×OKN

OJN

factors through ZN , and induces an isomorphism ZN
∼→ RN ×OKN

OJN by considering the

degrees over YN ×OKN
OJN on both sides (i.e., this isomorphism means that the covering
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determined by ∆Θ ⊗ Z/NZ coincides with the covering determined by an N -th root of s1|YN ).
This proves the claim (1) of the lemma.
Next, we show the claim (2) of the lemma. We have a unique action of Πtemp

X on LN⊗OKN
OJN

over YN ×OKN
OJN which is compatible with the section sN : ZN → LN ⊗OKN

OJN , since the

action of Πtemp
X (� Gal(YN/X)) on L1|YN

∼= L⊗NN preserves s1|YN
, and the action of Πtemp

X on
YN preserves the isomorphism class of LN . This action factors through Πtemp

X /Πtemp
ZN

, since sN
is defined over ZN . Finally, the action of Πtemp

X /Πtemp
ZN

is faithful, since s1 has zeroes of order 1

at the cusps of YN , and the action of ∆temp
X /∆temp

YN
on YN is tautologically faithful. �

We set

K̈N := K2N , J̈N := K̈N(a
1/N | a ∈ K̈N) ⊂ K,

ŸN := Y2N ×OK̈N
OJ̈N

, ŸN := Y2N ×K̈N
J̈N , L̈N := LN |ŸN

∼= L⊗22N ×OK̈N
OJ̈N

.

(The symbol ¨(−) roughly expresses “double covering”. Note that we need to consider double
coverings of the rigid analytic spaces under consideration to consider a theta function below.)

Let Z̈N be the composite of the coverings ŸN � YN and ZN � YN , and Z̈N the normalisation
of ZN in Z̈N in the same sense as in the definition of YN . Put also

Ÿ := Ÿ1 = Y2, Ÿ := Ÿ1 = Y2, K̈ := K̈1 = J̈1 = K2.

Since Πtemp
X acts compatibly on ŸN andYN , and on LN⊗OKN

OJN , and the natural commutative
diagram

L̈N

��

// LN

��
ŸN

// YN

is cartesian, we have a natural action of Πtemp
X on L̈N , which factors through Πtemp

X /Πtemp

Z̈N
.

Next, we choose an orientation on the dual graph of the configuration of the irreducible
components of Y. Such an orientation gives us an isomorphism Z ∼→ Z. We give a label
∈ Z for each irreducible component of Y. This choice of labels also determines a label ∈ Z
for each irreducible component of YN , ŸN . Recall that we can also consider the irreducible
component (ŸN)j of ŸN labelled j as a Q-Cartier divisor of ŸN (See also the proof of [EtTh,
Proposition 3.2 (i)]) although it has codimension 0 as underlying topological space in the formal

scheme ŸN (Note that (ŸN)j is Cartier, since the completion of ŸN at each node is isomorphic

to Spf OJ̈N
[[u, v]]/(uv − q

1/2N
X )). Put DN :=

∑
j∈Z j

2(ŸN)j (i.e., the divisor defined by the

summation of “q
j2/2N
X = 0” on the irreducible component labelled j with respect to j ∈ Z). We

claim that

(7.2) OŸN
(DN) ∼= L̈N (∼= L⊗22N ⊗OK̈N

OJ̈N
).

Proof of the claim: Since Pic(ŸN) ∼= ZZ, it suffices to show that DN .(ŸN)i = 2 for any

i ∈ Z, where DN .(ŸN)i denotes the intersection product of DN and (ŸN)i, i.e., the degree

of OŸN
(DN)|(ŸN )i

. We have 0 = ŸN .(ŸN)i =
∑

j∈Z(ŸN)j.(ŸN)i = 2 + ((ŸN)i)
2 by the

configuration of the irreducible components of ŸN (i.e., an infinite chain of copies of the

projective line joined at 0 and∞). Thus, we obtain ((ŸN)i)
2 = −2. Then, we haveDN .(ŸN)j =∑

j∈Z j
2(ŸN)j.(ŸN)i = (j − 1)2 − 2j2 + (j + 1)2 = 2. This proves the claim.

By the claim, there exists a section

τN : ŸN → L̈N ,
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well-defined up to an O×
J̈N

-multiple, whose zero locus is equal to DN . We call τN a theta

trivialisation. Note that the action of Πtemp
Y on ŸN , L̈N preserves τN up to an O×

J̈N
-multiple,

since the action of Πtemp
Y on ŸN fixes DN .

Let M ≥ 1 be an integer which divides N . Then, we have natural morphisms YN �
YM � Y, ŸN � ŸM � Y, ZN � ZM � Y, and natural isomorphisms LM |YN

∼= L
⊗(N/M)
N ,

L̈M |YN
∼= L̈

⊗(N/M)
N . By the definition of J̈N(= K2N(a

1/N | a ∈ K2N)), we also have a natural
diagram

L̈N // // L̈M

ŸN
// //

τN

OO

ŸM ,

τM

OO

which is commutative up to an O×
J̈N

-multiple at L̈N , and an O×
J̈M

-multiple at L̈M , since τN and

τM are defined over Y2N and Y2M respectively (Recall that ŸN := Y2N ×OK̈N
OJ̈N

). By the

relation Θ̈(−Ü) = −Θ̈(Ü) given in Lemma 7.4 (2), (3) below (Note that we have no circular

argument here), we can choose τ1 so that the natural action of Πtemp

Ÿ
on L̈1 preserves ±τ1. In

summary, by the definition of J̈N , we have the following:

• By modifying τN ’s by O
×
J̈N

-multiples, we can assume that τ
N/M
N = τM for any positive

integers N and M such that M | N .

• In particular, we have a compatible system of actions of Πtemp

Ÿ
on {ŸN}N≥1, {L̈N}N≥1

which preserve {τN}N≥1.
• Each of the above actions of Πtemp

Ÿ
on ŸN , L̈N differs from the action determined by

the action of Πtemp
X on YN , LN ⊗OKN

OJN in Lemma 7.1 (2) by an element of µN(J̈N).

Definition 7.2. We take τN ’s as above. By taking the difference of the compatible system
of the action of Πtemp

Ÿ
on {ŸN}N≥1, {L̈N}N≥1 in Lemma 7.1 determined by {sN}N≥1 and the

compatible system of the action of Πtemp

Ÿ
on {ŸN}N≥1, {L̈N}N≥1 in the above determined by

{τN}N≥1 (Note also that the former actions, i.e., the one determined by {sN}N≥1 in Lemma 7.1
come from the actions of Πtemp

X , however, the latter actions, i.e., the one determined by {τN}N≥1
in the above do not come from the actions of Πtemp

X ), we obtain a cohomology class

η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ),

via the isomorphism µN(J̈N) ∼= Z/NZ(1) ∼= ∆Θ ⊗ Z/NZ (Note that we are currently studying
in a scheme theory here, and that the natural isomorphism µN(J̈N) ∼= ∆Θ⊗Z/NZ comes from
the scheme theory (See also Remark 3.15.1).

Remark 7.2.1. (See also [EtTh, Proposition 1.3])

(1) Note that η̈Θ arises from a cohomology class in lim←−N≥1H
1(Πtemp

Ÿ
/Πtemp

Z̈N
,∆Θ ⊗ Z/NZ),

and that the restriction

lim←−
N≥1

H1(Πtemp

Ÿ
/Πtemp

Z̈N
,∆Θ ⊗ Z/NZ)→ lim←−

N≥1
H1(∆temp

ŸN
/∆temp

Z̈N
,∆Θ ⊗ Z/NZ)

∼= lim←−
N≥1

Hom(∆temp

ŸN
/∆temp

Z̈N
,∆Θ ⊗ Z/NZ)

sends η̈Θ to the system of the natural isomorphisms {∆temp

ŸN
/∆temp

Z̈N

∼→ ∆Θ⊗Z/NZ}N≥1.
(2) Note also that s2 : Ÿ→ L̈1 is well-defined up to an O×

K̈
-multiple, s2N : Z̈N → L̈N is an

N -th root of s2, τ1 : Ÿ→ L̈1 is well-defined up to an O×
K̈
-multiple, and τN : ŸN → L̈N
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is an N -th root of τ1. Thus, η̈
Θ ∈ H1(Πtemp

Ÿ
,∆Θ) is well-defined up to an O×

K̈
-multiple.

Hence, the set of cohomology classes

O×
K̈
· η̈Θ ⊂ H1(Πtemp

Ÿ
,∆Θ)

is independent of the choices of sN ’s and τN ’s, where O
×
K̈

acts on H1(Πtemp

Ÿ
,∆Θ) via

the composite of the Kummer map O×
K̈
→ H1(GK̈ ,∆Θ) and the natural homomorphism

H1(GK̈ ,∆Θ)→ H1(Πtemp

Ÿ
,∆Θ). We call any element in the set O×

K̈
· η̈Θ the étale theta

class.

7.2. Étale Theta Function. Let (Ĝm
∼= )U ⊂ Y be the irreducible component labelled 0 ∈ Z

minus nodes. We take the unique cusp of U as the origin. The group structure of the underlying
elliptic curve X, determines a group structure on U. By the orientation on the dual graph of

the configuration of the irreducible components of Y, we have a unique isomorphism U ∼= Ĝm

over OK . This gives us a multiplicative coordinate U ∈ Γ(U,O×U ). This has a square root

Ü ∈ Γ(Ü,O×
Ü
) on Ü := U×Y Ÿ (Note that the theta function lives in the double covering. See

also Lemma 7.4 below).
We recall the section associated with a tangential basepoint. (See also [AbsSect, Definition 4.1

(iii), and the terminology before Definition 4.1]): For a cusp y ∈ Ÿ (L) with a finite extension
L of K̈, let Dy ⊂ ΠŸ be a cuspidal decomposition group of y (which is well-defined up to
conjugates). We have an exact sequence

1→ Iy (∼= Ẑ(1))→ Dy → GL → 1,

and the set Sect(Dy � GL) of splittings of this short exact sequnece up to conjugates by Iy
is a torsor over H1(GL, Ẑ(1)) ∼= (L×)∧ by the usual way (the difference of two sections gives
us a 1-cocycle, and the conjugates by Iy yield 1-coboundaries), where (L×)∧ is the profinite

completion of L. Let ωy denotes the cotangent space to Ÿ at y. For a non-zero element θ ∈ ωy,
take a system of N -th roots (N ≥ 1) of any local coordinate t ∈ mŸ ,y with dt|y = θ, then, this

system gives us a Ẑ(1) (∼= Iy)-torsor (Ÿ |∧y (t1/N))N≥1 � Ÿ |∧y over the formal completion of Ÿ at

y. This Ẑ(1) (∼= Iy)-covering (Ÿ |∧y (t1/N))N≥1 � Ÿ |∧y corresponding to the kernel of a surjection

Dy � Iy (∼= Ẑ(1)), hence it gives us a section of the above short exact sequence. This is called
the (conjugacy class of ) section associated with the tangential basepoint θ. In this
manner, the structure group (L×)∧ of the (L×)∧-torsor Sect(Dy � GL) is canonically reduced
to L×, and the L×-torsor obtained in this way is canonically identified with the L×-torsor of
the non-zero elements of ωy. Furthermore, noting also that Ÿ comes from the stable model Ÿ,
which gives us the canonical OL-submodule ω̂y(⊂ ωy) of ωy, the structure group (L×)∧ of the
(L×)∧-torsor Sect(Dy � GL) is canonically reduced to O×L , and the O×L -torsor obtained in this
way is canonically identified with the O×L -torsor of the generators of ω̂y.

Definition 7.3. We call this canonical reduction of the (L×)∧-torsor Sect(Dy � GL) to the
canonical O×L -torsor the canonical integral structure of Dy, and we say that a section s in
Sect(Dy � GL) is compatible with the canonical integral structure of Dy, if s comes
from a section of the canonical O×L -torsor. We call the L×-torsor obtained by the push-out

of the canonical O×L -torsor via O×L → L× the canonical discrete structure of Dy. Let Ẑ′

denote the maximal prime-to-p quotient of Ẑ, and put (O×L )
′ := Im(O×L → (L×) ⊗ Ẑ′). We

call the (O×L )
′-torsor obtained by the push-out of the canonical O×L -torsor via O×L → (O×L )

′

the canonical tame integral structure of Dy (See [AbsSect, Definition 4.1 (ii), (iii)]). We
also call a reduction of the (L×)∧-torsor Sect(Dy � GL) to a {±1}-torsor (resp. µ2l-torsor)
{±1}-structure of Dy (resp. µ2l-structure of Dy). When a {±1}-structure (resp. µ2l-
structure) of Dy is given, we say that a section s in Sect(Dy � GL) is compatible with the
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{±1}-structure of Dy, (resp. the µ2l-structure of Dy, if s comes from a section of the
{±1}-torsor (resp. the µ2l-torsor).

Lemma 7.4. ([EtTh, Proposition 1.4]) Put

Θ̈(Ü) := q
− 1

8
X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

X Ü2n+1 ∈ Γ(Ü,OÜ).

Note that Θ̈(Ü) extends uniquely to a meromorphic function on Ÿ (cf. a classical complex theta

function θ1,1(τ, z) :=
∑
n∈Z

exp
(
πiτ

(
n+ 1

2

)2
+ 2πi

(
z + 1

2

) (
n+ 1

2

))
= 1

i

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

Ü2n+1,

where q := e2πiτ , and Ü := eπiz) and that q
− 1

8
X q

1
2(n+

1
2)

2

X = q
n(n+1)

2
X is in K.

(1) Θ̈(Ü) has zeroes of order 1 at the cusps of Ÿ, and there is no other zeroes. Θ̈(Ü) has
poles of order j2 on the irreducible component labelled j, and there is no other poles,
i.e., the divisor of poles of Θ̈(Ü) is equal to D1.

(2) For a ∈ Z, we have

Θ̈(Ü) = −Θ̈(Ü−1), Θ̈(−Ü) = −Θ̈(Ü),

Θ̈
(
q

a
2
XÜ
)
= (−1)aq−

a2

2
X Ü−2aΘ̈(Ü).

(3) The classes O×
K̈
·η̈Θ are precisely the Kummer classes associated to an O×

K̈
-multiple of the

regular function Θ̈(Ü) on the Raynaud generic fiber Ÿ . In particular, for a non-cuspidal
point y ∈ Ÿ (L) with a finite extension L of K̈, the restriction of the classes

O×
K̈
· η̈Θ|y ∈ H1(GL,∆Θ) ∼= H1(GL, Ẑ(1)) ∼= (L×)∧

lies in L× ⊂ (L×)∧, and are equal to O×
K̈
· Θ̈(y) (Note that we are currently studying

in a scheme theory here, and that the natural isomorphism ∆Θ
∼= Ẑ(1) comes from the

scheme theory (See also Remark 3.15.1).
(4) For a cusp y ∈ Ÿ (L) with a finite extension L of K̈, we have a similar statement as

in (3) by modifying as below: Let Dy ⊂ ΠŸ be a cuspidal decomposition group of y
(which is well-defined up to conjugates). Take a section s : GL ↪→ Dy compatible with

the canonical integral structure of Dy. Let s comes from a generator θ̂ ∈ ω̂y. Then, the
restriction of the classes

O×
K̈
· η̈Θ|s(GL) ∈ H1(GL,∆Θ) ∼= H1(GL, Ẑ(1)) ∼= (L×)∧,

via GL
s
↪→ Dy ⊂ Πtemp

Ÿ
, lies in L ⊂ (L×)∧, and are equal to O×

K̈
· dΘ̈
θ̂
(y), where dΘ̈

θ̂
(y)

is the value at y of the first derivative of Θ̈(Ü) at y by θ̂. In particular, the set of
the restriction of the classes O×

K̈
· η̈Θ|s(GL) is independent of the choice of the generator

θ̂ ∈ ω̂y (hence, the choice of the section s which is compatible with the canonical integral
structure of Dy).

We also call the classes in O×
K̈
· η̈Θ étale theta function in light of the above relationship

of the values of the theta function and the restrictions of these classes to GL via points.
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Proof. (2):

Θ̈(Ü−1) = q
− 1

8
X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

X Ü−2n−1 = q
− 1

8
X

∑
n∈Z

(−1)−n−1q
1
2(−n−1+

1
2)

2

X Ü2n+1

= −q−
1
8

X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

X Ü2n+1 = −Θ̈(Ü),

Θ̈(−Ü) = q
− 1

8
X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

X (−Ü)2n+1 = −q−
1
8

X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

X Ü2n+1 = −Θ̈(Ü),

Θ̈
(
q

a
2
XÜ
)
= q

− 1
8

X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2

X (q
a
2
XÜ)

2n+1 = q
− 1

8
X

∑
n∈Z

(−1)nq
1
2(n+

1
2)

2
+a(n+ 1

2)
X Ü2n+1

= q
− 1

8
X

∑
n∈Z

(−1)nq
1
2(n+a+

1
2)

2
−a2

2

X Ü2n+1 = (−1)aq−
a2

2
X Θ̈(Ü).

(1): Firstly, note that q
a
2
XÜ is the canonical coordinate of the irreducible component labelled

a, and that the last equality of (2) gives us the translation formula for changing the irreducible
components. The description of the divisor of poles comes from this translation formula and
Θ̈(Ü) ∈ Γ(Ü,OÜ) (i.e., Θ̈(Ü) is a regular function on Ü). Next, by putting Ü = ±1 in the first

equality of (1), we obtain Θ̈(±1) = 0. Then, by the last equality of (2) again, it suffices to show

that Θ̈(Ü) has simple zeroes at Ü = ±1 on Ü. By taking modulo the maximal ideal of OK̈ , we

have Θ̈(Ü) ≡ Ü − Ü−1. This shows the claim.
(3) is a consequence of the construction of the classes O×

K̈
· η̈Θ and (1).

(4): For a generator θ̂ ∈ ω̂y, the corresponding section s ∈ Sect(Dy � GL) described before
this lemma is as follows: Take a system of N -th roots (N ≥ 1) of any local coordinate t ∈ mŸ,y

with dt|y = θ̂, then, this system gives us a Ẑ(1) (∼= Iy)-torsor (Ÿ|∧y (t1/N))N≥1 � Ÿ|∧y over the

formal completion of Ÿ at y. This Ẑ(1) (∼= Iy)-covering (Ÿ|∧y (t1/N))N≥1 � Ÿ|∧y corresponding

to the kernel of a surjection Dy � Iy (∼= Ẑ(1)), hence a section s ∈ Sect(Dy � GL). For
g ∈ GL, take any lift g̃ ∈ Dy (Π

temp

Ÿ
) of GL, then the above description says that s(g) =

(g̃(t1/N)/t1/N)−1N≥1 · g̃, where (g̃(t1/N)/t1/N)N≥1 ∈ Ẑ(1) ∼= Iy (Note that the right hand side does

not depend on the choice of a lift g̃). The Kummer class of Θ̈ := Θ̈(Ü) is given by Πtemp

Ÿ
3

h 7→ (h(Θ̈1/N)/Θ̈1/N)N≥1 ∈ Ẑ(1). Hence, the restriction to GL via GL
s→ Dy ⊂ Πtemp

Ÿ
is given

by GL 3 g 7→ ((g̃(t1/N)/t1/N)−1g̃(Θ̈1/N)/Θ̈1/N)N≥1 = (g̃((Θ̈/t)1/N)/(Θ̈/t)1/N)N≥1 ∈ Ẑ(1). Since

Θ̈(Ü) has a simple zero at y, we have (g̃((Θ̈/t)1/N)/(Θ̈/t)1/N)N≥1 = (g((dΘ̈/θ̂)1/N)/(dΘ̈/θ̂)1/N)N≥1,

where dΘ̈/θ̂ is the first derivative dΘ̈

θ̂
at y by θ̂. Then, GL 3 g 7→ (g((dΘ̈/θ̂)1/N)/(dΘ̈/θ̂)1/N)N≥1 ∈

Ẑ(1) is the Kummer class of the value dΘ̈

θ̂
(y) at y. �

If an automorphism ιY of Πtemp
Y is lying over the action of “−1” on the underlying elliptic

curve of X which fixes the irreducible component of Y labelled 0, then we call ιY an inversion
automorphism of Πtemp

Y .

Lemma 7.5. ([EtTh, Proposition 1.5])

(1) Both of the Leray-Serre spectral sequences

Ea,b
2 = Ha((∆temp

Ÿ
)ell, Hb(∆Θ,∆Θ)) =⇒ Ha+b((∆temp

Ÿ
)Θ,∆Θ),

E ′a,b2 = Ha(GK̈ , H
b((∆temp

Ÿ
)Θ,∆Θ)) =⇒ Ha+b((Πtemp

Ÿ
)Θ,∆Θ)
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associated to the filtration of closed subgroups

∆Θ ⊂ (∆temp

Ÿ
)Θ ⊂ (Πtemp

Ÿ
)Θ

degenerate at E2, and this determines a filtration 0 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = H1((Πtemp

Ÿ
)Θ,∆Θ)

on H1((Πtemp

Ÿ
)Θ,∆Θ) such that we have

Fil0/Fil1 = Hom(∆Θ,∆Θ) = Ẑ,

Fil1/Fil2 = Hom((∆temp

Ÿ
)Θ/∆Θ,∆Θ) = Ẑ · log(Ü),

Fil2 = H1(GK̈ ,∆Θ)
∼→ H1(GK̈ , Ẑ(1))

∼→ (K̈×)∧.

Here, the symbol log(Ü) denotes the standard isomorphism (∆temp

Ÿ
)Θ/∆Θ = (∆temp

Ÿ
)ell

∼→
Ẑ(1) ∼→ ∆Θ (given in a scheme theory).

(2) Any theta class η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ) arises from a unique class η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ)

(Here, we use the same symbol η̈Θ by abuse of the notation) which maps to the iden-

tity homomorphism in the quotient Fil0/Fil1 = Hom(∆Θ,∆Θ) (i.e., maps to 1 ∈ Ẑ =
Hom(∆Θ,∆Θ)). We consider O×

K̈
· η̈Θ ⊂ H1((Πtemp

Ÿ
)Θ,∆Θ) additively, and write η̈Θ +

log(O×
K̈
) for it. Then, a ∈ Z ∼= Z = Πtemp

X /Πtemp
Y acts on η̈Θ + log(O×

K̈
) as

η̈Θ + log(O×
K̈
) 7→ η̈Θ − 2a log(Ü)− a2

2
log(qX) + log(O×

K̈
).

In a similar way, for any inversion automorphism ιY of Πtemp
Y , we have

ιY (η̈
Θ + log(O×

K̈
)) = η̈Θ + log(O×

K̈
)

ιY (log(Ü) + log(O×
K̈
)) = − log(Ü) + log(O×

K̈
).

Proof. (1): Since ∆Θ
∼= Ẑ(1) and (∆temp

Ÿ
)ell ∼= Ẑ(1) and Ẑ(1) has cohomological dimension 1,

the first spectral sequence degenerates at E2, and this gives us a short exact sequence

0→ H1((∆temp

Ÿ
)ell,∆Θ)→ H1((∆temp

Ÿ
)Θ,∆Θ)→ H1(∆Θ,∆Θ)→ 0.

This is equal to

0→ Ẑ · log(Ü)→ H1((∆temp

Ÿ
)Θ,∆Θ)→ Ẑ→ 0.

On the other hand, the second spectral sequence gives us an exact sequnece

0→ H1(GK̈ ,∆Θ)→ H1((Πtemp

Ÿ
)Θ,∆Θ)→ H1((∆temp

Ÿ
)Θ,∆Θ)

GK̈ → H2(GK̈ ,∆Θ)→ 0.

Then, by Remark 7.2.1 (1), the composite

H1((Πtemp

Ÿ
)Θ,∆Θ)→ H1((∆temp

Ÿ
)Θ,∆Θ)

GK̈

⊂ H1((∆temp

Ÿ
)Θ,∆Θ)→ H1(∆Θ,∆Θ) = Ẑ

maps the Kummer class of Θ̈(Ü) to 1 (Recall also the definition of ZN and the short exact
sequence (7.1)). Hence, the second spectral sequence degenerates at E2, and we have the
description of the graded quotients of the filtration on H1((Πtemp

Ÿ
)Θ,∆Θ).

(2): The first assertion holds by definition. Next, note that the subgroup (∆temp

Ÿ
)ell ⊂

(∆temp
X )ell corresponds to the subgroup 2Ẑ(1) ⊂ Ẑ(1) × Z ∼= (∆temp

X )ell by the theory of Tate

curves, where Ẑ(1) ⊂ (∆temp
X )ell corresponds to the system of N(≥ 1)-th roots of the canonical

coordinate U of the Tate curve associated to X, and 2Ẑ(1) ∼= (∆temp

Ÿ
)ell corresponds to the

system of N(≥ 1)-th roots of the canonical coordinate Ü introduced before (In this sense, the
usage of the symbol log(Ü) ∈ Hom((∆temp

Ÿ
)ell,∆Θ) is justified). Then, the description of the
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action of a ∈ Z ∼= Z follows from the last equality of Lemma 7.4 (2), and the first description
of the action of an inversion automorphism follows from the first equality of Lemma 7.4 (2).
The second description of the action of an inversion automorphism immediately follows from
the definition. �
The following proposition says that the étale thete function has an anabelian rigidity, i.e., it

is preserved under the changes of scheme theory.

Proposition 7.6. (Anabelian Rigidity of the Étale Theta Function, [EtTh, Theorem 1.6]) Let
X (resp. †X) be a smooth log-curve of type (1, 1) over a finite extension K (resp. †K) of Qp

such that X (resp. †X) has stable reduction over OK (resp O†K), and that the special fiber is
singular, geometrically irreducible, the node is rational. We use similar notation for objects
associated to †X to the notation which was used for objects associated to X. Let

γ : Πtemp
X

∼→ Πtemp
†X

be any isomorphism of abstract topological groups. Then, we have the following:

(1) γ(Πtemp

Ÿ
) = Πtemp

†Ÿ
.

(2) γ induces an isomorphism ∆Θ
∼→ †∆Θ, which is compatible with the surjections

H1(GK̈ ,∆Θ)
∼→ H1(GK̈ , Ẑ(1))

∼→ (K̈×)∧ � Ẑ

H1(G†K̈ ,
†∆Θ)

∼→ H1(G†K̈ , Ẑ(1))
∼→ (†K̈×)∧ � Ẑ

determined the valuations on K̈ and †K̈ respectively. In other words, γ induces an
isomorphism H1(GK̈ ,∆Θ)

∼→ H1(G†K̈ ,
†∆Θ) which preserves both the kernel of these

surjections and the element 1 ∈ Ẑ in the quotients.
(3) The isomorphism γ∗ : H1(Πtemp

Ÿ
,∆Θ) ∼= H1(Πtemp

†Ÿ
, †∆Θ) induced by γ sends O×

K̈
· η̈Θ

to some †Z ∼= Πtemp
†X

/Πtemp
†Y

-conjugate of O×†K̈ ·
†η̈Θ (This indeterminacy of †Z-conjugate

inevitably arises from the choice of the irreducible component labelled 0).

Remark 7.6.1. ([EtTh, Remark 1.10.3 (i)]) The étale theta function lives in a cohomology
group of the theta quotient (Πtemp

X )Θ, not whole of Πtemp
X . However, when we study anabelian

properties of the étale theta function as in Proposition 7.6, the theta quotient (Πtemp
X )Θ is

insufficient, and we need whole of Πtemp
X .

Remark 7.6.2. ([IUTchIII, Remark 2.1.2]) Related with Remark 7.6.1, then, how about con-

sidering Πpartial temp
X := ΠX ×Ẑ Z instead of Πtemp

X ? (Here, ΠX denotes the profinite fundamen-

tal group, and ΠX � Ẑ is the profinite completion of the natural surjection Πtemp
X � Z.)

The answer is that it does not work in inter-universal Teichmüller theory, since we have

NΠX
(Πpartial temp

X )/Πpartial temp
X

∼→ Ẑ/Z (On the other hand, NΠX
(Πtemp

X ) = Πtemp
X by Coro-

rally 6.10 (2)). The profinite conjugacy indeterminacy on Πpartial temp
X gives rise to Ẑ-translation

indeterminacies on the coordinates of the evaluation points (See Definition 10.17). On the other

hand, for Πtemp
X , we can reduce the Ẑ-translation indeterminacies to Z-translation indetermina-

cies by Theorem 6.11 (See also Lemma 11.9).

Remark 7.6.3. The statements in Proposition 7.6 are bi-anabelian ones (cf.Remark 3.4.4).
However, we can reconstruct the †Z-conjugate class of the theta classes O×†K̈ ·

†η̈Θ in Propo-

sition 7.6 (3) in a mono-anabelian manner, by considering the descriptions of the zero-divisor
and the pole-divisor of the theta function.

Proof. (1): Firstly, γ sends ∆temp
X to ∆temp

†X
, by Lemma 6.2. Next, note that γ sends ∆temp

Y to

∆temp
†Y

by the discreteness (which is a group-theoretic property) of Z and †Z. Finally, γ sends the
cuspidal decomposition groups to the cuspidal decomposition groups by Corollary 6.12. Hence,
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γ sends ΠŸ to Π†Ÿ , since the double coverings Ÿ � Y and †Ÿ � †Y are the double covering

characterised as the 2-power map [2] : Ĝm � Ĝm on each irreducible component, where the
origin of the target is given by the cusps.
(2): We proved that γ(∆temp

X ) = †∆temp
X . Then, γ(∆Θ) =

†∆Θ holds, since ∆Θ (resp. †∆Θ)
is group-theoretically defined from ∆temp

X (resp. †∆temp
X ). The rest of the claim follows from

Corollary 6.12 and Proposition 2.1 (5), (6).

(3): After taking some Πtemp
X /Πtemp

Y
∼= Z-conjugate, we may assume that γ : Πtemp

Ÿ

∼→ Πtemp
†Ÿ

is

compatible with suitable inversion automorphisms ιY and †ιY by Theorem B.1 (cf. [SemiAnbd,
Theorem 6.8 (ii)], [AbsSect, Theorem 2.3]). Next, note that γ tautologically sends 1 ∈
Ẑ = Hom(∆Θ,∆Θ) = Fil0/Fil1 to 1 ∈ Ẑ = Hom(†∆Θ,

†∆Θ) = †Fil0/†Fil1. On the other

hand, η̈Θ (resp. †η̈Θ) is sent to 1 ∈ Ẑ = Hom(∆Θ,∆Θ) = Fil0/Fil1 (resp. 1 ∈ Ẑ =
Hom(†∆Θ,

†∆Θ) = †Fil0/†Fil1), and fixed by ιY (resp. †ιY ) up to an O×
K̈
-multiple (resp. an

O×†K̈-multiple) by Lemma 7.5 (2). This determines η̈Θ (resp. †η̈Θ) up to a (K̈×)∧-multiple

(resp. a (†K̈×)∧-multiple). Hence, it is sufficient to reduce this (K̈×)∧-indeterminacy (resp.
(†K̈×)∧-indeterminacy) to an O×

K̈
-indeterminacy (resp. an O×†K̈-indeterminacy). This is done

by evaluating the class η̈Θ (resp. †η̈Θ) at a cusp y of the irreducible component labelled 0
(Note that “labelled 0” is group-theoretically characterised as “fixed by inversion isomorphism
ιY (resp. †ιY )”), if we show that γ preserves the canonical integral structure of Dy.
(See also [SemiAnbd, Corollary 6.11] and [AbsSect, Theorem 4.10, Corollary 4.11] for the

rest of the proof). To show the preservation of the canonical integral structure of Dy by γ, we
may restrict the fundamental group of the irreducible component labelled 0 by Proposition 6.6
and Corollary 6.12 (See also Remark 6.12.1). The irreducible component minus nodes Ü is

isomorphic to Ĝm with marked points (=cusps) {±1} ⊂ Ĝm. Then, the prime-to-p-quotient

∆prime-to-p
UK̈

of the geometric fudamental group of the generic fiber is isomorphic to the prime-

to-p-quotient ∆prime-to-p
Uk̈

of the one of the special fiber, where k̈ denotes the residue field of

K̈. This shows that the reduction of the structure group of (K̈×)∧-torsor Sect(Dy � GK̈)

to (O×
K̈
)′ := Im(O×

K̈
→ K̈× ⊗ Ẑ′), which is determined the canonical integral strucure (i.e.,

the canonical tame integral structure), is group-theoretically preserved as follows (cf. [AbsSect,

Proposition 4.4 (i)]): The outer action GK̈ → Out(∆prime-to-p
UK̈

) canonically factors through

Gk̈ → Out(∆prime-to-p
UK̈

), and the geometrically prime-to-p-quotient Π
(prime-to-p)
Uk̈

of the arithmetic

fundamental group of the special fiber is group-theoretically constructed as ∆prime-to-p
UK̈

out
o Gk̈ by

using Gk̈ → Out(∆prime-to-p
UK̈

). Then, the decomposition group D′y in the geometrically prime-

to-p-quotient of the arithmetic fundamental group of the integral model fits in a short exact

sequence 1 → (I ′y :=)Iy ⊗ Ẑ′ → D′y → Gk̈ → 1, where Iy is an inertia subgroup at y. The

set of the splitting of this short exact sequence forms a torsor over H1(Gk̈, I
′
y)
∼= k̈×. These

splittings can be regarded as elements of H1(D′y, I
′
y) whose restriction to I ′y is equal to the

identity element in H1(I ′y, I
′
y) = Hom(I ′y, I

′
y). Thus, the pull-back to Dy of any such element of

H1(D′y, I
′
y) gives us the reduction of the structure group to (O×

K̈
)′ determined by the canonical

integral structure.
Then, it suffices to show that the reduction of the structure group of (K̈×)∧-torsor Sect(Dy �

GK̈) to K̈×, which is determined the canonical integral strucure (i.e., the canonical discrete

structure), is group-theoretically preserved, since the restriction of the projection Ẑ � Ẑ′ to
Z ⊂ Ẑ is injective (cf. [AbsSect, Proposition 4.4 (ii)]).
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Finally, we show that the canonical discrete structure of (K̈×)∧-torsor Sect(Dy � GK̈) is

group-theoretically preserved. Let Ü be the canonical cooridnate of GmK̈ . For y = ±1, we
consider the unit Ü ∓ 1 ∈ Γ(GmK̈ \ {±1},OGmK̈\{±1}), which is invertible at 0, fails to be
invertible at y, and has a zero of order 1 at y. We consider the exact sequence

1→ (K̈×)∧ → H1(ΠP1\{0,y}, µẐ(ΠX))→ Ẑ⊕ Ẑ
constructed in Lemma 3.15 (5). The image of the Kummer class κ(T∓1) ∈ H1(ΠP1\{0,y}, µẐ(ΠX))

in Ẑ⊕ Ẑ (i.e., (1, 0)) determines the set (K̈×)∧ · κ(Ü ∓ 1). The restriction of (K̈×)∧ · κ(Ü ∓ 1)
to Dy is the (K̈

×)∧-torsor Sect(Dy � GK̈), since the zero of order of κ(Ü ∓ 1) at y is 1. On the

other hand, κ(Ü ∓ 1) is invertible at 0. Thus, the subset K̈× · κ(Ü ∓ 1) ⊂ (K̈×)∧ · κ(Ü ∓ 1) is
characterised as the set of elements of (K̈×)∧ · κ(Ü ∓ 1) whose restriction to the decomposition
group D0 at 0 (which lies in (K̈×)∧ ∼= H1(GK̈ , µẐ(ΠX)) ⊂ H1(D0, µẐ(ΠX)) since κ(Ü ∓1) is in-

vertible at 0) in fact lies in K̈× ⊂ (K̈×)∧. Thus, we are done by Corollary 6.12 (or Corollary 2.9)
(cf. the proof of [AbsSect, the proof of Theorem 4.10 (i)]). �
From now on, we assume that

(1) K̈ = K,
(2) the hyperbolic curve X minus the marked points admits a K-core X � C := X//{±1},

where the quotient is taken in the sense of stacks, by the natural action of {±1} deter-
mined by the multiplication-by-2 map of the underlying elliptic curve of X (Note that
this excludes four exceptional j-invariants by Lemma C.3), and

(3)
√
−1 ∈ K.

Let Ẍ � X denote the Galois covering of degree 4 determined by the multiplication-by-2 map
of the underlying elliptic curve of X (i.e., Grig

m /q
Z
X � Grig

m /q
Z
X sending the coordinate U of the

Grig
m in the codomain to Ü2, where Ü is the coordinate of the Gm

rig in the domain). Let Ẍ� X

denote its natural integral model. Note that Ẍ � C is Galois with Gal(Ẍ/C) ∼= (Z/2Z)⊕3.
Choose a square root

√
−1 ∈ K of −1. Note that the 4-torsion points of the underlying

elliptic curve of Ẍ are Ü =
√
−1i√qX

j
4 ⊂ K for 0 ≤ i, j ≤ 3, and that, in the irreducible

components of Ẍ, the 4-torsion points avoiding nodes are ±
√
−1. Let τ denote the 4-torsion

point determined by
√
−1 ∈ K. For an étale theta class η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ), let

η̈Θ,Z×µ2 ⊂ H1(Πtemp

Ÿ
,∆Θ)

denote the Πtemp
X /Πtemp

Ÿ
∼= Z× µ2-orbit of η̈

Θ.

Definition 7.7. (cf. [EtTh, Definition 1.9])

(1) We call each of two sets of values of η̈Θ,Z×µ2

η̈Θ,Z×µ2 |τ , η̈Θ,Z×µ2 |τ−1 ⊂ K×

a standard set of values of η̈Θ,Z×µ2 .
(2) There are two values in K× of maximal valuations of some standard set of values of

η̈Θ,Z×µ2 (Note that Θ̈(q
a
2
X

√
−1) = (−1)aq−

a2

2
X (
√
−1)−2aΘ̈(

√
−1) by the third equality of

Lemma 7.4 (2), and Θ̈(−q
a
2
X

√
−1) = −Θ̈(q

a
2
X

√
−1) by the second equality of Lemma 7.4

(2)). If they are equal to ±1, then we say that η̈Θ,Z×µ2 is of standard type.

Remark 7.7.1. Double coverings Ẋ � X and Ċ � C are introduced in [EtTh], and they are
used to formulate the definitions of a standard set of values and an étale theta class of standard
type, ([EtTh, Definition 1.9]), the definition of log-orbicurve of type (1,Z/lZ), (1, (Z/lZ)Θ),
(1,Z/lZ)±, (1, (Z/lZ)Θ)± ([EtTh, Definition 2.5]), and the constant multiple rigidity of the
étale theta function ([EtTh, Theorem 1.10]). However, we avoid them in this survey, since they
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are not directly used in inter-universal Teichmüller theory, and it is enough to formulate the
above things by modifying in a suitable manner.

Lemma 7.8. (cf. [EtTh, Proposition 1.8]) Let C = X//{±1} (resp. †C = †X//{±1}) be a
smooth log-orbicurve over a finite extension K (resp. †K) of Qp such that

√
−1 ∈ K (resp.√

−1 ∈ †K). We use the notation †(−) for the associated objects with †C. Let γ : Πtemp
C

∼→
Πtemp

†C
be an isomorphism of topological groups. Then, γ induces isomorphisms Πtemp

X

∼→ Πtemp
†X

,

Πtemp

Ẍ

∼→ Πtemp
†Ẍ

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

.

Proof. (See also the proof of Proposition 7.6 (1)). By Lemma 6.2, the isomorphism γ induces an

isomorphism γ∆C
: ∆temp

C

∼→ ∆temp
†C

. Since ∆temp
X ⊂ ∆temp

C (resp. ∆temp
†X
⊂ ∆temp

†C
) is characterised

as the open subgroup of index 2 whose profinite completion is torsion-free i.e., corresponds to
the geometric fundamental group of a scheme, not a non-scheme-like stack (See also [AbsTopI,

Lemma 4.1 (iv)]), γ∆C
induces an isomorphism γ∆X

: ∆temp
X

∼→ ∆temp
†X

. Then, γ∆X
induces

an isomorphism γ∆ell
X

: (∆temp
X )ell

∼→ (∆temp
†X

)ell, since (∆temp
X )ell (resp. (∆temp

†X
)ell) is group-

theoretically constructed from ∆temp
X (resp. ∆temp

†X
). By the discreteness of Gal(Y/X) ∼= Z

(resp. Gal(†Y/†X) ∼= †Z), the isomorphism γ∆ell
X

induces an isomorphism γZ : ∆temp
X /∆temp

Y (∼=
Z) ∼→ ∆temp

†X
/∆temp

†Y
(∼= †Z). Thus, by considering the kernel of the action of Πtemp

C (resp. Πtemp
†C

)

on ∆temp
X /∆temp

Y (resp. ∆temp
†X

/∆temp
†Y

), the isomorphisms γ and γZ induce an isomorphism γΠX
:

Πtemp
X

∼→ Πtemp
†X

. Since γΠX
preserves the cuspical decomposition groups by Corollary 6.12, it

induces isomorphisms Πtemp

Ẍ

∼→ Πtemp
†Ẍ

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

. �

Proposition 7.9. (Constant Multiple Rigidity of the Étale Theta Function, cf. [EtTh, Theorem
1.10]) Let C = X//{±1} (resp. †C = †X//{±1}) be a smooth log-orbicurve over a finite
extension K (resp. †K) of Qp such that

√
−1 ∈ K (resp.

√
−1 ∈ †K). We assume that C is

a K-core. We use the notation †(−) for the associated objects with †C. Let γ : Πtemp
C

∼→ Πtemp
†C

be an isomorphism of topological groups. Note that the isomorphism γ induces an isomorphism
Πtemp
X

∼→ Πtemp
†X

by Lemma 7.8. Assume that γ maps the subset η̈Θ,Z×µ2 ⊂ H1(Πtemp

Ÿ
,∆Θ) to the

subset †η̈Θ,Z×µ2 ⊂ H1(Πtemp
†Ÿ

, †∆Θ) (cf. Proposition 7.6 (3)). Then, we have the following:

(1) The isomorphism γ preserves the property that η̈Θ,Z×µ2 is of standard type, i.e., η̈Θ,Z×µ2

is of standard type if and only if †η̈Θ,Z×µ2 is of standard type. This property uniquely
determines this collection of classes.

(2) Note that γ induces an isomorphism K×
∼→ †K×, where K× (resp. †K×) is regarded a

subset of (K×)∧ ∼= H1(GK ,∆Θ) ⊂ H1(Πtemp
C ,∆Θ)) (resp. (†K×)∧ ∼= H1(G†K ,

†∆Θ) ⊂
H1(Πtemp

†C
, †∆Θ))). Then, γ maps the standard sets of values of η̈Θ,Z×µ2 to the standard

sets of values of †η̈Θ,Z×µ2.
(3) Assume that η̈Θ,Z×µ2 (hence, †η̈Θ,Z×µ2 as well by the claim (1)) is of standard type,

and that the residue characteristic of K (hence, †K as well) is > 2. Then, η̈Θ,Z×µ2

(resp. †η̈Θ,Z×µ2) determines a {±1}-structure (See Definition 7.3) on (K×)∧-torsor
(resp. (†K×)∧-torsor) at the unique cusp of C (resp. †C) which is compatible with the
canonical integral structure, and it is preserved by γ.

Remark 7.9.1. The statements in Proposition 7.9 are bi-anabelian ones (cf.Remark 3.4.4).
However, we can reconstruct the set †η̈Θ,Z×µ2 in Proposition 7.9 (2) and (3) in a mono-anabelian
manner, by a similar way as Remark 7.6.3.

Proof. The claims (1) and (3) follows from the claim (2). We show the claim (2). Since γ

induces an isomorphism from the dual graph of Ÿ to the dual graph of †Ÿ (Proposition 6.6), by
the elliptic cuspidalisation (Theorem 3.7), the isomorphism γ maps the decomposition group
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of the points of Ÿ lying over τ to the decomposition group of the points of †Ÿ lying over τ±1.
The claim (2) follows from this. �

7.3. l-th Root of Étale Theta Function. First, we introduce some log-curves, which are
related with l-th root of the étale theta function. Let X be a smooth log-curve of type (1, 1)
over a field K of characteristic 0 (As before, we always put the log-structure associated to the
cusp on X, and consider the log-fundamental group). Note also that we are working in a field
of characteristic 0, not in a finite extension of Qp as in the previous subsections.

Assumption (0): We assume that X admits K-core.

We have a short exact sequence 1 → ∆X → ΠX → GK → 1, where ΠX and ∆X are the
arithmetic fundamental group and the geometric fundamental group (with respect to some
basepoints) respectively, and GK = Gal(K/K). Put ∆ell

X := ∆ab
X = ∆X/[∆X ,∆X ], ∆

Θ
X :=

∆X/[∆X , [∆X ,∆X ]], and ∆Θ := Im{∧2∆ell
X → ∆Θ

X}. Then, we have a natural exact sequence
1→ ∆Θ → ∆Θ

X → ∆ell
X → 1. Put also ΠΘ

X := ΠX/ker(∆X � ∆Θ
X).

Take l > 2 be a prime number. Note that the subgroup of ∆Θ
X generated by l-th powers of

elements of ∆Θ
X is normal (Here we use l 6= 2). We write ∆Θ

X � ∆X for the quotient of ∆Θ
X

by this normal subgroup. Put ∆Θ := Im{∆Θ → ∆X}, ∆
ell

X := ∆X/∆Θ, ΠX := ΠX/ker(∆X �
∆X), and Π

ell

X := ΠX/∆Θ. Note that ∆Θ
∼= (Z/lZ)(1) and ∆

ell

X is a free Z/lZ-module of rank 2.
Let x be the unique cusp of X, and let Ix ⊂ Dx denote the inertia subgroup and the

decomposition subgroup at x respectively. Then, we have a natural injective homomorphism
Dx ↪→ ΠΘ

X such that the restriction to Ix gives us an isomorphism Ix
∼→ ∆Θ(⊂ ΠΘ

X). Put also
Dx := Im{Dx → ΠX}. Then, we have a short exact sequence

1→ ∆Θ → Dx → GK → 1.

Assumption (1): We choose a quotient Π
ell

X � Q onto a free Z/lZ-module of rank 1 such that

the restriction ∆
ell

X → Q to ∆
ell

X remains surjective, and the restriction Dx → Q to Dx is trivial.

Let

X � X

denote the corresponding covering (Note that every cusp ofX isK-rational, since the restriction
Dx → Q to Dx is trivial) with Gal(X/X) ∼= Q, and we write ΠX ⊂ ΠX , ∆X ⊂ ∆X , and

∆
ell

X ⊂ ∆
ell

X for the corresponding open subgroups. Let ιX (resp. ιX) denote the automorphism
of X (resp. X) given by the multiplication by −1 on the underlying elliptic curve, where the
origin is given by the unique cusp of X (resp. a choice of a cusp of X). Put C := X//ιX ,
C := X//ιX (Here, //’s mean the quotients in the sense of stacks). We call a cusp of C, which
arises from the zero (resp. a non-zero) element of Q, the zero cusp (resp. a non-zero cusp) of
C. We call ιX and ιX inversion automorphisms. We also call the unique cusp of X over the
zero cusp of C the zero cusp of X. This X (resp. C) is the main actor for the global additive
(�) portion (resp. global multiplicative (�) portion) in inter-universal Teichmüller theory.

Definition 7.10. ([EtTh, Definition 2.1]) A smooth log-orbicurve over K is called of type
(1, l-tors) (resp. of type (1, l-tors)±) if it is isomorphic to X (resp. C) for some choice of

Π
ell

X � Q (satisfying Assumption (0), (1)).

Note that X → X is Galois with Gal(X/X) ∼= Q, however, C → C is not Galois, since
ιX acts on Q by the multiplication by −1, and any generator of Gal(X/X) does not de-
scend to an automorphism of C over C (Here we use l 6= 2. See [EtTh, Remark 2.1.1]). Let



102 GO YAMASHITA

∆C ⊂ ΠC (resp. ∆C ⊂ ΠC) denote the geometric fundamental group and the arithmetic

fundamental group of C (resp. C) respectively. Put also ΠC := ΠC/ker(ΠX � ΠX), (resp.
ΠC := ΠC/ker(ΠX � ΠX),) ∆C := ∆C/ker(∆X � ∆X), (resp. ∆C := ∆C/ker(∆X � ∆X),),

and ∆
ell

C := ∆C/ker(∆X � ∆
ell

X ).

Assumption (2): We choose ειX ∈ ∆C an element which lifts the non-trivial element of Gal(X/C) ∼=
Z/2Z.

We consider the conjugate action of ειX on ∆X , which is a free Z/lZ-module of rank 2. Then,

the eigenspace of ∆X with eigenvalue −1 (resp. +1) is equal to ∆
ell

X (resp. ∆Θ). Hence, we
obtain a direct product decomposition

∆X
∼= ∆

ell

X ×∆Θ

([EtTh, Proposition 2.2 (i)]) which is compatible with the conjugate action of ΠX (since the

conjugate action of ειX commutes with the conjugate action of ΠX). Let sι : ∆
ell

X ↪→ ∆X denote

the splitting of ∆X � ∆
ell

X given by the above direct product decomposition. Then, the normal

subgroup Im(sι) ⊂ ΠX induces an isomorphism

Dx
∼→ ΠX/Im(sι)

over GK .

Assumption (3): We choose any element sA(3) of theH1(GK ,∆Θ)(∼= K×/(K×)l)-torsor Sect(Dx �
GK), where Sect(Dx � GK) denotes the set of sections of the surjection Dx � GK .

Then, we obtain a quotient ΠX � ΠX � ΠX/Im(sι)
∼→ Dx � Dx/s

A(3)(GK) ∼= ∆Θ. This
quotient gives us a covering

X � X

with Gal(X/X) ∼= ∆Θ. Let ∆X ⊂ ∆X , ΠX ⊂ ΠX denote the open subgroups determined by

X. Note that the composition ∆X ↪→ ∆X � ∆
ell

X is an isomorphism, and that ∆X = Im(sι),

∆X = ∆X ·∆Θ. Since Gal(X/X) = ∆X/∆X = ∆Θ, and Ix ∼= ∆Θ � ∆Θ, the covering X � X

is totally ramified at the cusps (Note also that the irreducible components of the special fiber
of the stable model of X are isomorprhic to P1, however, the irreducible components of the
special fiber of the stable model of X are not isomorphic to P1). Note also that the image of ειX
in ∆C/∆X is characterised as the unique coset of ∆C/∆X which lifts the non-trivial element

of ∆C/∆X and normalises the subgroup ∆X ⊂ ∆C , since the eigenspace of ∆X/∆X
∼= ∆Θ

with eigenvalue 1 is equal to ∆Θ ([EtTh, Proposition 2.2 (ii)]). We omit the construction of
“C” (See [EtTh, Proposition 2.2 (iii)]), since we do not use it. This X plays the central role
in the theory of mono-theta environment, and it also plays the central role in inter-universal
Teichmüller theory for places in Vbad.

Definition 7.11. ([EtTh, Definition 2.3]) A smooth log-orbicurve over K is called of type
(1, l-torsΘ) if it is isomorphic to X (which is constructed under Assumptions (0), (1), (2), and
(3)).

The underlines in the notation of X and C indicate “extracting a copy of Z/lZ”, and the
double underlines in the notation of X and C indicate “extracting two copy of Z/lZ” ([EtTh,
Remark 2.3.1]).
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Lemma 7.12. (cf. [EtTh, Proposition 2.4]) Let X (resp. †X) be a smooth log-curve of type

(1, l-torsΘ) over a finite extension K (resp. †K) of Qp. We use the notation †(−) for the
associated objects with †X. Assume that X (resp. †X) has stable reduction over OK (resp.
O†K) whose special fiber is singular and geometrically irreducible, and the node is rational. Let

γ : Πtemp
X

∼→ Πtemp
†X

be an isomorphism of topological groups. Then, γ induces isomorphisms

Πtemp
C

∼→ Πtemp
†C

, Πtemp
C

∼→ Πtemp
†C

Πtemp
X

∼→ Πtemp
†X

, Πtemp
X

∼→ Πtemp
†X

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

.

Proof. By Lemma 6.2, γ induces an isomorphism ∆temp
X

∼→ ∆temp
†X

. By the K-coricity, the

isomorphism γ induces an isomorphism Πtemp
C

∼→ Πtemp
†C

, which induces an isomorphism ∆temp
C

∼→
∆temp

†C
. Then, by the same way as in Lemma 7.8, this induces isomorphisms ∆temp

X

∼→ ∆temp
†X

,

Πtemp
X

∼→ Πtemp
†X

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

. Note that ∆X (resp. ∆†X) and ∆Θ (resp. †∆Θ) are

group-theoretically constructed from ∆temp
X (resp. ∆temp

†X
), and that we can group-theoretically

reconstruct ∆X ⊂ ∆temp
X (resp. ∆†X ⊂ ∆temp

†X
) by the image of ∆temp

X (resp. ∆temp
†X

). Hence,

the above isomorphisms induce an isomorphism ∆X
∼→ ∆†X , since ∆X = ∆X · ∆Θ (resp.

∆†X = ∆†X · †∆Θ). This isomorphism induces an isomorphism ∆temp
X

∼→ ∆temp
†X

, since ∆temp
X

(reps. ∆temp
†X

) is the inverse image of ∆X ⊂ ∆temp
X (resp. ∆†X ⊂ ∆temp

†X
) under the natural

quotient ∆temp
X � ∆X (resp. ∆temp

†X
� ∆†X). The isomorphism ∆temp

X

∼→ ∆temp
†X

induces an

isomprhism Πtemp
X

∼→ Πtemp
†X

, since Πtemp
X (resp. Πtemp

†X
) is reconstructed as the outer semi-direct

product ∆X

out
o GK (resp. ∆†X

out
o G†K), where the homomorphism GK → Out(∆X) (resp.

G†K → Out(∆†X)) is given by the above constructions induced by the action of GK (resp.
G†K). �

Remark 7.12.1. ([EtTh, Remark 2.6.1]) Suppose µl ⊂ K. By Lemma 7.12, we obtain

AutK(X) = µl × {±1}, AutK(X) = Z/lZ o {±1}, AutK(C) = {1},

where o is given by the natural multiplicative action of {±1} on Z/lZ (Note that C → C is
not Galois, as already remarked after Definition 7.10 (cf. [EtTh, Remark 2.1.1])).

Now, we return to the situation where K is a finite extension of Qp.

Definition 7.13. ([EtTh, Definition 2.5]) Assume that the residue characteristic of K is odd,
and that K = K̈. We also make the following two assumptions:

Assumption (4): We assume that the quotient Π
ell

X � Q factors through the natural quotient

ΠX � Ẑ determined by the quotient Πtemp
X � Z discussed when we defined Y .

Assumption (5): We assume that the choice of an element of Sect(Dx � GK) in Assumption

(3) is compatible with the {±1}-structure (See Definition 7.3) of Proposition 7.9 (3).

A smooth log-orbicurve over K is called of type (1,Z/lZ) (resp. of type (1, (Z/lZ)Θ), resp.
of type (1,Z/lZ)± ), if it is isomorphic to X (resp. X, resp. C) (which is constructed under
the Assumptions (0), (1), (2), (3), (4), and (5)).

Note also that the definitions of smooth log-(orbi)curves of type (1, l-tors), of type (1, l-tors)±,
and of type (1, l-torsΘ) are made over any field of characteristic 0, and that the definitions of
smooth log-(orbi)curves of type (1,Z/lZ), of type (1,Z/lZ)± and of type (1, (Z/lZ)Θ) are made
only over finite extensions of Qp.
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Let Y � X (resp. Ÿ � X) be the composite of the covering Y � X (resp. Ÿ � X) with

X � X. Note that the coverings Ÿ � Ÿ and Y � Y are of degree l.
We have the following diagram

Ÿ

µ2

tthhhhh
hhhh

hhhh
hhhh

hhhh
hh

∆Θ(∼=Z/lZ)

&&MM
MMM

MMM
MM

Y
∆Θ(∼=Z/lZ)

//

lZ
��

Y

Z

��

Ÿ
µ2oo

2Z
��

X
∆Θ(∼=Z/lZ)

// X
Q(∼=Z/lZ)

//

{±1}
��

X

{±1}
��

Ẍ
ext of Z/2Z

by µ2

oo

C
non-Galois

deg=l
// C ,

and note that the irreducible components and cusps in the special fibers of X, Ẍ, X, X, Y , Ÿ ,

Y , and Ÿ are described as follows (Note that X � X and Y � Y are totally ramified at each
cusp):

• X: 1 irreducible component (whose noramalisation ∼= P1) and 1 cusp on it.

• Ẍ: 2 irreducible components (∼= P1) and 2 cusps on each,

• X: l irreducible components (∼= P1) and 1 cusp on each,

• X: l irreducible components (6∼= P1) and 1 cusp on each,

• Y : the irreducible components (∼= P1) are parametrised by Z, and 1 cusp on each,

• Ÿ : the irreducible components (∼= P1) are parametrised by Z, and 2 cusps on each,

• Y : the irreducible components (6∼= P1) are parametrised by lZ, and 1 cusp on each,

• Ÿ : the irreducible components (6∼= P1) are parametrised by lZ, and 2 cusps on each.

We have introduced the needed log-curves. Now, we consider étale theta functions. By
Assumption (4), the covering Ÿ � X factors through X. Hence, the class η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ),

which is well-defined up to an O×K-multiple, and its Πtemp
X /Πtemp

Ÿ
∼= Z×µ2-orbit can be regarded

as objects associated to Πtemp
X .

We recall that the element η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ) arises froma an element η̈Θ ∈

H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ) by the first claim of Lemma 7.5 (2), where we use the same symbol

η̈Θ by abuse of notation. The natural map Dx → Πtemp

Ÿ
→ (Πtemp

Ÿ
)Θ induces a homomorphism

H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ) → H1(Dx,∆Θ ⊗ Z/lZ), and the image of η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ ⊗

Z/lZ) in H1(Dx,∆Θ ⊗ Z/lZ) comes from an element η̈Θ ∈ H1(Dx,∆Θ ⊗ Z/lZ), where we use
the same symbol η̈Θ by abuse of notation again, via the natural map H1(Dx,∆Θ ⊗ Z/lZ) →
H1(Dx,∆Θ ⊗ Z/lZ), since we have an exact sequence

0→ H1(Dx,∆Θ ⊗ Z/lZ)→ H1(Dx,∆Θ ⊗ Z/lZ)→ H1(l∆Θ,∆Θ ⊗ Z/lZ),
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and the image of η̈Θ in H1(l∆Θ,∆Θ ⊗ Z/lZ) = Hom(l∆Θ,∆Θ ⊗ Z/lZ) vanishes by the first
claim of Lemma 7.5 (2). On the other hand, for any element s ∈ Sect(Dx � GK), the map
Dx 3 g 7→ g(s(g))−1 gives us a 1-cocycle, hence a cohomology class in H1(Dx,∆Θ ⊗ Z/lZ),
where g denotes the image of g via the natural map Dx � GK . In this way, we obtain a map
Sect(Dx � GK)→ H1(Dx,∆Θ ⊗ Z/lZ). (See the following diagram:

0 // H1(Dx,∆Θ ⊗ Z/lZ) // H1(Dx,∆Θ ⊗ Z/lZ) // Hom(l∆Θ,∆Θ ⊗ Z/lZ)

Sect(Dx � GK)

OO

H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ),

OO

where the horizontal sequence is exact.) We also have a natural exact sequence

0→ H1(GK ,∆Θ ⊗ Z/lZ)→ H1(Dx,∆Θ ⊗ Z/lZ)→ H1(∆Θ ⊗ Z/lZ,∆Θ ⊗ Z/lZ).

The image of η̈Θ ∈ H1(Dx,∆Θ⊗Z/lZ) in H1(∆Θ⊗Z/lZ,∆Θ⊗Z/lZ) = Hom(∆Θ⊗Z/lZ,∆Θ⊗
Z/lZ) is the identity homomorphism by the first claim of Lemma 7.5 (2) again. The image
Im(s) ∈ H1(Dx,∆Θ⊗Z/lZ) of any element s ∈ Sect(Dx � GK) via the above map Sect(Dx �
GK)→ H1(Dx,∆Θ ⊗ Z/lZ) in H1(∆Θ ⊗ Z/lZ,∆Θ ⊗ Z/lZ) = Hom(∆Θ ⊗ Z/lZ,∆Θ ⊗ Z/lZ) is
also the identity homomorphism by the calculation ∆Θ ⊗Z/lZ 3 g 7→ g(s(g))−1 = g(s(1))−1 =
g · 1−1 = g. Hence, any element in Im{Sect(Dx � GK) → H1(Dx,∆Θ ⊗ Z/lZ)} differs from
η̈Θ ∈ H1(Dx,∆Θ ⊗ Z/lZ) by an H1(GK ,∆Θ ⊗ Z/lZ) ∼= K×/(K×)l-mutiple. Now, we consider
the element sA(3) ∈ Sect(Dx � GK) which is chosen in Assumption (3), and let Im(sA(3)) ∈
H1(Dx,∆Θ⊗Z/lZ) denote its image in H1(Dx,∆Θ⊗Z/lZ). By the above discussions, we can
modify η̈Θ ∈ H1(Dx,∆Θ⊗Z/lZ) by aK×-multiple, which is well-defined up to a (K×)l-multiple,
to make it coincide with Im(sA(3)) ∈ H1(Dx,∆Θ ⊗ Z/lZ). Note that stronger claim also holds,
i.e., we can modify η̈Θ by an O×K-multiple, which is well-defined up to an (O×K)

l-multiple, to
make it coincide with Im(sA(3)), since sA(3) ∈ Sect(Dx � GK), is compatible with the canonical
integral structure of Dx by Assumption (5) (Note that now we do not assume that η̈Θ,Z×µ2 is of
standard type, however, the assumption that sA(3) is compatible with the {±1}-structure in the
case where η̈Θ,Z×µ2 is of standard type implies that sA(3) is compatible with the canonical integral
structure of Dx even we do not assume that η̈Θ,Z×µ2 is of standard type). As a conclusion, by
modifying η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ) by an O×K-multiple, which is well-defined up to an

(O×K)
l-multiple, we can and we shall assume that η̈Θ = Im(sA(3)) ∈ H1(Dx,∆Θ⊗Z/lZ), and we

obtain an element η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ), which is well-defined up to an (O×K)

l-multiple

(not an O×K-multiple), i.e., by the choice of X, the indeterminacy on the ratio of sl and τl in

the definition of η̈Θ disappeared. In the above construction, an element Sect(Dx � GK) can
be considered as “modulo l tangential basepoint” at the cusp x, the theta function Θ̈ has a
simple zero at the cusps (i.e., it is a uniformiser at the cusps), and we made choices in such a
way that η̈Θ = Im(sA(3)) holds. Hence, the covering X � X can be regarded as a covering of
“taking a l-th root of the theta function”.
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Note that we have the following diagram

H1(sA(3)(GK),∆Θ ⊗ Z/lZ)

H1(Dx,∆Θ ⊗ Z/lZ)

OO

0 // H1(Dx/s
A(3)(GK),∆Θ ⊗ Z/lZ)

OO

// H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ) // H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ)

0,

OO

where the horizontal sequence and the vertical sequence are exact. Now, the image of η̈Θ =
Im(sA(3)) ∈ H1(Dx,∆Θ ⊗ Z/lZ) in H1(sA(3)(GK),∆Θ ⊗ Z/lZ) vanishes by the calculation

sA(3)(GK) 3 sA(3)(g) 7→ sA(3)(g)(sA(3)(sA(3)(g)))−1 = sA(3)(g)(sA(3)(g))−1 = 1 and the above
vertical sequence. Thus, η̈Θ = Im(sA(3)) comes from an element of H1(Dx/s

A(3)(GK),∆Θ ⊗
Z/lZ). Therefore, the image of η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ⊗Z/lZ) in H1(Πtemp

Ÿ
,∆Θ⊗Z/lZ) vanishes,

since it arises from the element of H1(Dx/s
A(3)(GK),∆Θ ⊗ Z/lZ) and the above horizontal

sequence. As a conclusion, the image of η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ) in H1(Πtemp

Ÿ
,∆Θ) arises from

an element η̈Θ ∈ H1(Πtemp

Ÿ
, l∆Θ), which is well-defined up to O×K . In some sense, η̈Θ can be

considered as an “l-th root of the étale theta function”. Let η̈Θ,lZ×µ2 denote the Πtemp
X /Πtemp

Ÿ
∼=

(lZ× µ2)-orbits of η̈
Θ.

Definition 7.14. ([EtTh, Definition 2.7]) We call η̈Θ,lZ×µ2 of standard type, if η̈Θ,Z×µ2 is of

standard type.

By combining Proposition 7.9 Lemma 7.12, and definitions, we obtain the following:

Corollary 7.15. (Constant Multiple Rigidity of l-th Roots of the Étale Theta Function,
cf. [EtTh, Corollary 2.8]) Let X (resp. †X) be a smooth log-curve of type (1, (Z/lZ)Θ) over

a finite extension K (resp. †K) of Qp. We use the notation †(−) for the associated objects with
†X. Let γ : Πtemp

X

∼→ Πtemp
†X

be an isomorphism of topological groups.

(1) The isomorphism γ preserves the property that η̈Θ,lZ×µ2 is of standard type. Moreover,

this property determines this collection of classes up to a µl-multiple.
(2) Assume that the cusps of X are rational over K, the residue characteristic of K is prime

to l, and that µl ⊂ K. Then the {±1}-structure of Proposition 7.9 (3) determinesa µ2l-
structure (cf. Definition 7.3) at the decomposition groups of the cusps of X. Moreover,
this µ2l-structure is compatible with the canonical integral structure (cf. Definition 7.3)
at the decomposition groups of the cusps of X, and is preserved by γ.

Remark 7.15.1. The statements in Corollary 7.15 are bi-anabelian ones (cf.Remark 3.4.4).
However, we can reconstruct the set η̈Θ,lZ×µ2 in Corollary 7.15 (1) in a mono-anabelian manner,

by a similar way as Remark 7.6.3 and Remark 7.9.1.

Lemma 7.16. ([EtTh, Corollary 2.9]) Assume that µl ⊂ K. We make a labelling on the cusps
of X, which is induced by the labelling of the irreducible components of Y by Z. Then, this
determines a bijection {

Cusps of X
}
/AutK(X) ∼= |Fl|
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(See Section 0.2 for |Fl|), and this bijection is preserved by any isomorphism γ : Πtemp
X

∼→ Πtemp
X

of topological groups.

Proof. The first claim is trivial (See also Remark 7.12.1). The second claim follows from
Remark 6.12.1. �

7.4. Three Rigidities of Mono-Theta Environment. In this subsection, we introduce
the notion of mono-theta environment, and show important three rigidities of mono-theta
environment, that is, the constant multiple rigidity, the cyclotomic rigidity, and the discrete
rigidity.

Definition 7.17. For an integer N ≥ 1, we put

ΠµN ,K := µN oGK .

For a topological group Π with a surjective continuous homomorphism Π� GK , we put

Π[µN ] := Π×GK
ΠµN ,K , ∆[µN ] := ker (Π[µN ]� GK) = ∆× µN ,

where ∆ := ker(Π� GK), and we call Π[µN ] cyclotomic envelope of Π� GK . We also put

µN(Π[µN ]) := ker(Π[µN ]� Π).

and we call µN(Π[µN ]) the (mod N) cyclotome of the cyclotomic envelope Π[µN ]. Note
that we have a tautological section GK → ΠµN ,K of ΠµN ,K � GK , and that it determines a
section

salgΠ : Π→ Π[µN ],

and we call it a mod N tautological section. For any object with Π[µN ]-conjugate action,
we call a µN -orbit a µN -conjugacy class.

Here, the µN in Π[µN ] plays a roll of “µN” which comes from line bundles.

Lemma 7.18. ([EtTh, Proposition 2.11]) Let Π� GK (resp. †Π� G†K) be an open subgroup
of the tempered or profinite fundamental group of hyperbolic orbicurve over a finite extension
K (resp. †K) of Qp, and put ∆ := ker(Π� GK) (resp.

†∆ := ker(†Π� G†K)).

(1) The kernel of the natural surjection ∆[µN ] � ∆ (resp. †∆[µN ] � †∆) is equal to the

center of ∆[µN ] (resp.
†∆[µN ]). In particular, any isomorphism ∆[µN ]

∼→ †∆[µN ] is
compatible with the surjections ∆[µN ]� ∆, †∆[µN ]� †∆.

(2) The kernel of the natural surjection Π[µN ] � Π (resp. †Π[µN ] � †Π) is equal to the
union of the center of the open subgroups of Π[µN ] (resp.

†Π[µN ]). In particular, any

isomorphism Π[µN ]
∼→ †Π[µN ] is compatible with the surjections Π[µN ]� Π, †Π[µN ]�

†Π.

Proof. Lemma follows from the temp-slimness (Lemma 6.4 (5)) or the slimness (Proposition 2.7
(2a), (2b)) of ∆, †∆, Π, †Π. �
Proposition 7.19. ([EtTh, Proposition 2.12])

(1) We have an inclusion

ker
(
(∆temp

X )Θ � (∆temp
X )ell

)
= l∆Θ ⊂

[
(∆temp

X )Θ, (∆temp
X )Θ

]
.

(2) We have an equality[
(∆temp

X )Θ[µN ], (∆
temp
X )Θ[µN ]

]∩
(l∆Θ)[µN ] = Im

(
salg
(∆temp

X )Θ

∣∣
l∆Θ

: l∆Θ → (∆temp
X )Θ[µN ]

)
(
⊂ (l∆Θ)[µN ] ⊂ (∆temp

X )Θ[µN ]
)
,
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where salg
(∆temp

X )Θ

∣∣
l∆Θ

denotes the restriction of the mod N tautological section salg
(∆temp

X )Θ
:

(∆temp
X )Θ → (∆temp

X )Θ[µN ] to l∆Θ (⊂ (∆temp
X )Θ).

Proof. The inclusion of (1) follows from the structure of the theta group (=Heisenberg group)
(∆temp

X )Θ. The equality of (2) follows from (1). �

Remark 7.19.1. (cf. [EtTh, Remark2.12.1]) As a conclusion of Proposition 7.19 the sub-

group Im

(
salg
(∆temp

X )Θ

∣∣
l∆Θ

)
, – i.e., the splitting l∆Θ × µN –, can be group-theoretically re-

constructed, and the cyclotomic rigidity of mono-theta environment (See Theorem 7.23 (1)),
which plays an important role in inter-universal Teichmüller theory, comes from this fact.
Note that the inclusion of Proposition 7.19 (1) does not hold if we use X instead of X, i.e.,

ker
(
(∆temp

X )Θ � (∆temp
X )ell

)
= ∆Θ 6⊂

[
(∆temp

X )Θ, (∆temp
X )Θ

]
.

Let salg
Ÿ

denote the composite

salg
Ÿ

: Πtemp

Ÿ

salg
Π
temp

Ÿ

−→ Πtemp

Ÿ
[µN ] ↪→ Πtemp

Y [µN ],

and we call it a mod N algebraic section. Take the composite η : Πtemp

Ÿ
→ l∆Θ ⊗ Z/NZ ∼=

µN of the reduction modulo N of any element (i.e., a 1-cocycle) of the collection of classes
η̈Θ,lZ×µ2 ⊂ H1(Πtemp

Ÿ
, l∆Θ), and the isomorphism l∆Θ ⊗ Z/NZ ∼= µN , which comes from a

scheme theory (cf.Remark 3.15.1). We put

sΘ
Ÿ
:= η−1 · salg

Ÿ
: Πtemp

Ÿ
→ Πtemp

Y [µN ].

and call sΘ
Ÿ

a mod N theta section. Note that sΘ
Ÿ

is a homomorphism, since sΘ
Ÿ
(gh) =

η(gh)−1salg
Ÿ
(gh) = (g(η(h))η(g))−1salg

Ÿ
(g)salg

Ÿ
(h) = (salg

Ÿ
(g)η(h)salg

Ÿ
(g)−1η(g))−1salg

Ÿ
(g)salg

Ÿ
(h) =

η(g)−1salg
Ÿ
(g)η(h)−1salg

Ÿ
(h) = sΘ

Ÿ
(g)sΘ

Ÿ
(g). Note also that the natural outer action

Gal(Y /X) ∼= Πtemp
X /Πtemp

Y
∼= Πtemp

X [µN ]/Π
temp
Y [µN ] ↪→ Out(Πtemp

Y [µN ])

of Gal(Y /X) on Πtemp
Y [µN ] fixes Im(salg

Ÿ
: Πtemp

Ÿ
→ Πtemp

Y [µN ]) up to a conjugate by µN , since

the mod N algebraic section salg
Ÿ

extends to a mod N tautological section salg
Πtemp

X

: Πtemp
X →

Πtemp
X [µN ]. Hence, sΘ

Ÿ
up to Πtemp

X [µN ]-conjugates is independent of the choice of an element

of η̈Θ,lZ×µ2 ⊂ H1(Πtemp

Ÿ
, l∆Θ) (Recall that Πtemp

X � Gal(Ÿ /X) ∼= lZ × µ2). Note also that

conjugates by µN corresponds to modifying a 1-cocycle by 1-coboundaries.
Note that we have a natural outer action

K× � K×/(K×)N
∼→ H1(GK , µN) ↪→ H1(Πtemp

Y , µN)→ Out(Πtemp
Y [µN ]),

where the isomorphism is the Kummer map, and the last homomorphism is given by sending
a 1-cocycle s to an outer homomorphism salg

Πtemp
Y

(g)a 7→ s(g)salg
Πtemp

Y

(g)a (g ∈ Πtemp
Y , a ∈ µN) (Note

that the last homomorphism is well-defined, since salg
Πtemp

Y

(g)asalg
Πtemp

Y

(g′)a′(= salg
Πtemp

Y

(gg′)salg
Πtemp

Y

(g′)−1(a)a′)
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for g, g′ ∈ Πtemp
Y , a, a′ ∈ µN is sent to

s(gg′)salg
Πtemp

Y

(gg′)salg
Πtemp

Y

(g′)−1(a)a′ = g(s(g′))s(g)salg
Πtemp

Y

(gg′)salg
Πtemp

Y

(g′)−1asalg
Πtemp

Y

(g′)a′

= s(g)g(s(g′))salg
Πtemp

Y

(g)asalg
Πtemp

Y

(g′)a′ = s(g)salg
Πtemp

Y

(g)s(g′)asalg
Πtemp

Y

(g′)a′

by s, and since for a 1-coboundary s(g) = b−1g(b) (b ∈ µN) is sent to

salg
Πtemp

Y

(g)a 7→ s(g)salg
Πtemp

Y

(g)a = b−1g(b)salg
Πtemp

Y

(g)a = b−1salg
Πtemp

Y

(g)bsalg
Πtemp

Y

(g)−1salg
Πtemp

Y

(g)a

= b−1salg
Πtemp

Y

(g)ba = b−1salg
Πtemp

Y

(g)ab,

which is an inner automorphism). Note also any element Im(K×) := Im(K× → Out(Πtemp
Y [µN ]))

lifts to an element of Aut(Πtemp
Y [µN ]) which induces the identity automorphisms of both the

quotient Πtemp
Y [µN ]� Πtemp

Y and the kernel of this quotient. In this natural outer action of K×,

an O×K-multiple on η̈Θ,lZ×µ2 corresponds to an O×K-conjugate of sΘ
Ÿ
.

Definition 7.20. (Mono-Theta Environment, [EtTh, Definition 2.13]) Let

DY := 〈Im(K×),Gal(Y /X)〉 ⊂ Out(Πtemp
Y [µN ])

denote the subgroup of Out(Πtemp
Y [µN ]) generated by Im(K×) and Gal(Y /X) (∼= lZ).

(1) We call the following collection of data a mod N model mono-theta environment:
• the topological group Πtemp

Y [µN ],

• the subgroup DY (⊂ Out(Πtemp
Y [µN ])), and

• the µN -conjugacy class of subgroups in Πtemp
Y [µN ] determined by the image of the

theta section sΘ
Ÿ
.

(2) We call any collection M = (Π,DΠ, s
Θ
Π) of the following data a mod N mono-theta

environment:
• a topological group Π,
• a subgroup DΠ (⊂ Out(Π)), and
• a collection of subgroups sΘΠ of Π,

such that there exists an isomorphism Π
∼→ Πtemp

Y [µN ] of topological groups which maps

DΠ ⊂ Out(Π) to DY , and sΘΠ to the µN -conjugacy class of subgroups in Πtemp
Y [µN ]

determined by the image of the theta section sΘ
Ÿ
.

(3) For two mod N mono-theta environments M = (Π,DΠ, s
Θ
Π),

†M = (†Π,D†Π, s
Θ
†Π), we

define an isomorphism of mod N mono-theta environments M ∼→ †M to be an
isomorphism of topological groups Π

∼→ †Π which maps DΠ to D†Π, and s
Θ
Π to sΘ†Π. For

a mod N mono-theta environment M and a mod M mono-theta environment †M with
M | N , we define a homomorphism of mono-theta environments M→ †M to be

an isomorphism MM
∼→ †M, where MM denotes the mod M mono-theta environment

induced by M.

Remark 7.20.1. We can also consider amod N bi-theta environment B = (Π,DΠ, s
Θ
Π, s

alg
Π ),

which is a mod N mono-theta environment (Π,DΠ, s
Θ
Π) with a datum salgΠ corresponding to

the µN -conjugacy class of the image of mod N algebraic section salg
Ÿ

(cf. [EtTh, Definition 2.13

(iii)]). As shown below in Theorem 7.23, three important rigidities (the cyclotomic reigidity, the
discrete rigidity, and the constant multiple rigidity) hold for mono-theta environments. On the



110 GO YAMASHITA

other hand, the cyclotomic rigidity, and the constant multiple rigidity trivially holds for bi-theta
environments, however, the discrete rigidity does not hold for them (See also Remark 7.23.1).
We omit the details of bi-theta environments, since we will not use bi-theta environments in
inter-universal Teichmüller theory.

Lemma 7.21. ([EtTh, Proposition 2.14])

(1) We have the following group-theoretic chracterisation of the image of the tautological
section of (l∆Θ)[µN ]� l∆Θ as the following subgroup of (∆temp

Ÿ
)Θ[µN ]:

(l∆Θ)[µN ]
∩{

γ(a)a−1 ∈ (∆temp
Y )Θ[µN ]

∣∣ a ∈ (∆temp
Y )Θ[µN ], γ ∈ Aut(Πtemp

Y [µN ]) such that (∗)
}
,

where

(∗) : the image of γ in Out(Πtemp
Y [µN ]) belongs to DY ,

and γ induces the identity on the quotient Πtemp
Y [µN ]� Πtemp

Y � GK.

(2) Let tΘ
Ÿ
: Πtemp

Ÿ
→ Πtemp

Y [µN ] be a section obtained as a conjugate of sΘ
Ÿ

relative to the

actions of K× and lZ. Put δ := (sΘ
Ÿ
)−1tΘ

Ÿ
, which is a 1-cocycle of Πtemp

Ÿ
valued in µN .

Let α̈δ ∈ Aut(Πtemp

Ÿ
[µN ]) denote the automorphism given by salg

Πtemp

Ÿ

(g)a 7→ δ(g)salg
Πtemp

Ÿ

(g)a

(g ∈ Πtemp

Ÿ
, a ∈ µN), which induces the identity homomorphisms on both the quotient

Πtemp

Ÿ
[µN ] � Πtemp

Ÿ
and the kernel of this quotient. Then, α̈δ extends to an automor-

phism αδ ∈ Aut(Πtemp
Y [µN ]), which induces the identity homomorphisms on both the

quotient Πtemp
Y [µN ]� Πtemp

Y and the kernel of this quotient. The conjugate by αδ maps

sΘ
Ÿ
to tΘ

Ÿ
, and preserves the subgroup DY ⊂ Out(Πtemp

Y [µN ]).

(3) Let M = (Πtemp
Y [µN ],DY , sΘŸ ) be the mod N model mono-theta environment. Then, every

automorphism of M induces an automorphism of Πtemp
Y by Lemma 7.18 (2), hence an

automorphism of Πtemp
X = Aut(Πtemp

Y )
out
o Im(DY → Out(Πtemp

Y )) = Aut(Πtemp
Y )×Out(Πtemp

Y )

Im(DY → Out(Πtemp
Y )). It also induces an automorphism of the set of cusps of Y .

Relative to the labelling by Z on these cusps, this induces an automorphism of Z given
by (lZ)o {±1}. This assignment gives us a surjective homomorphism

Aut(M)� (lZ)o {±1}.

Proof. (1): Take a lift γ ∈ Aut((Πtemp
Y )[µN ]) of an element in Im(K×) ⊂ DY (⊂ Out((Πtemp

Y )[µN ]))

such that γ satisfies (*). Then, γ can be written as γ = γ1γ2, where γ1 ∈ Inn(Πtemp
Y [µN ]),

γ2 ∈ Aut(Πtemp
Y [µN ]), the image of γ2 in Out(Πtemp

Y [µN ]) is in Im{K× → H1(GK , µN) →
H1(Πtemp

Y , µN) → Out(Πtemp
Y [µN ])}, and the automorphism induced by γ2 of the quotient

Πtemp
Y [µN ] � Πtemp

Y and the automorphism of its kernel (= µN) are trivial. Since the compos-

ite H1(GK , µN) → H1(Πtemp
Y , µN) → H1(∆temp

Y , µN) is trivial, the composite H1(GK , µN) →
H1(Πtemp

Y , µN) → H1(∆temp
Y , µN) → Out(∆temp

Y [µN ]) is trivial as well. Hence, the automor-

phism induced by γ2 of ∆
temp
Y [µN ] is an inner automorphism. On the other hand, the automor-

phism induced by γ1 of GK is trivial, since the automorphism induced by γ2 of GK is trivial,
and the condition (*). Then, the center-freeness of GK (cf.Proposition 2.7 (1c)) implies that
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γ1 ∈ Inn(Πtemp
Y [µN ]) is in Inn(∆temp

Y [µN ]). Hence, the automorphism induced by γ = γ1γ2 of

∆temp
Y [µN ] is also an inner automorphism. Since (∆temp

Y )Θ[µN ](∼= lZ × Ẑ(1) × µN) is abelian,

the inner automorphism induced by γ of (∆temp
Y )Θ[µN ] is trivial. Then, (1) follows from Propo-

sition 7.19 (2).
(2): By definition, the conjugate by α̈δ maps sΘ

Ÿ
to tΘ

Ÿ
. Since the outer action of Gal(Y /X) ∼=

lZ on ∆temp
Y [µN ] fixes s

alg

Ÿ
up to µN -conjugacy, the cohomology class of δ in H1(Πtemp

Ÿ
, µN) is in

the submodule generated by the Kummer classes of K× and (1/l)2l log(Ü) = 2 log(Ü) by the
first displayed formula of Lemma 7.5 (2) (See Lemma 7.5 (1) for the cohomology class log(Ü)).

Here, note that the cohomology class of δ is in Fil1, since both of (salg
Ÿ
)−1 · sΘ

Ÿ
and salg

Ÿ
· tΘ
Ÿ
maps

to 1 in Fil0/Fil1 = Hom(l∆Θ, l∆Θ) by Lemma 7.5 (2). Note also that “1/l” comes from that
we are working with l-th roots of the theta functions η̈Θ,lZ×µ2 (cf. the proof of Lemma 7.5 (2)),

and that “l” comes from lZ. Thus, δ descends to a 1-cocycle of Πtemp
Y valued in µN , since the

coordinate Ü2 descends to Y . Hence, α̈δ extends to an automorphism αδ ∈ Aut(Πtemp
Y [µN ]),

which induces identity automorphisms on both the quotient Πtemp
Y [µN ]→ Πtemp

Y and the kernel

of this quotient. The conjugate by αδ preserves DY ⊂ Out(Πtemp
Y [µN ]), since the action of

Gal(Y /X) maps 2 log(Ü) to a K×-multiple of 2 log(Ü).
(3) comes from (2). �

Corollary 7.22. (Group-Theoretic Reconstruction of Mono-Theta Environment, [EtTh, Corol-
lary 2.18]) Let N ≥ 1 be an integer, l a prime number and X a smooth log-curve of type

(1, (Z/lZ)Θ) over a finite extension K of Qp. We assume that l and p are odd, and K = K̈.
Let MN be the resulting mod N model mono-theta environment, which is independent of the
choice of a member of η̈Θ,lZ×µ2, up to isomorphism over the identity of Πtemp

Y by Lemma 7.21

(2).

(1) Let †Πtemp
X be a topological group which is isomorphic to Πtemp

X . Then, there exists a

group-theoretic algorithm for constructing
• subquotients

†Πtemp
Y , †Πtemp

Ÿ
, †GK ,

†(l∆Θ),
†(∆temp

X )Θ, †(Πtemp
X )Θ, †(∆temp

Y )Θ, †(Πtemp
Y )Θ

of †Πtemp
X , and

• a collection of subgroups of †Πtemp
X for each element of (Z/lZ)/{±1},

such that any isomorphism †Πtemp
X

∼→ Πtemp
X maps

• the above subquotients to the subquotients

Πtemp
Y ,Πtemp

Ÿ
, GK , l∆Θ, (∆

temp
X )Θ, (Πtemp

X )Θ, (∆temp
Y )Θ, (Πtemp

Y )Θ

of Πtemp
X respectively, and

• the above collection of subgroups to the collection of cuspidal decomposition groups
of Πtemp

X determined by the label in (Z/lZ)/{±1},
in a functorial manner with respect to isomorphisms of topological groups (and no need
of any reference isomorphism to Πtemp

X ).
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(2) “(Π 7→M)”:
There exists a group-theoretic algorithm for constructing a mod N mono-theta environ-
ment †M = (†Π,D†Π, s

Θ
†Π), where

†Π := †Πtemp
Y ×†GK

(
(†(l∆Θ)⊗ Z/NZ)o †GK

)
up to isomorphism in a functorial manner with respect to isomorphisms of topological
groups (and no need of any reference isomorphism to Πtemp

X ). (See also [EtTh, Corollary

2.18 (ii)] for a stronger form).
(3) “(M 7→ Π)”:

Let †M = (†Π,D†Π, s
Θ
†Π) be a mod N mono-theta environment which is isomorphic

to MN . Then, there exists a group-theoretic algorithm for constructing a quotient
†Π� †Πtemp

Y , such that any isomorphism †M ∼→MN maps this quotient to the quotient

Πtemp
Y [µN ]� Πtemp

Y in a functorial manner with respect to isomorphisms of mono-theta

environments (and no need of any reference isomorphism to MN). Furthermore, any

isomorphism †M ∼→MN induces an isomorphism from

†Πtemp
X := Aut(†Πtemp

Y )×Out(†Πtemp
Y ) Im(D†Π → Out(†Πtemp

Y ))

to Πtemp
X , where we set the topology of †Πtemp

X as the topology determined by taking

†Πtemp
Y

∼→ Aut(†Πtemp
Y )×Out(†Πtemp

Y ) {1} ⊂
†Πtemp

X

to be an open subgroup. Finally, if we apply the algorithm of (2) to †Πtemp
Y , then the

resulting mono-theta environment is isomorphic to the original †M, via an isomorphism
which induces the identity on †Πtemp

Y .

(4) Let †M = (†Π,D†Π, s
Θ
†Π), and

‡M = (‡Π,D‡Π, s
Θ
‡Π) be mod N mono-theta environments.

Let †Πtemp
X and ‡Πtemp

X be the topological groups constructed in (3) from †M and ‡M
respectively. Then, the functoriality of the algorithm in (3) gives us a natural map

IsomµN -conj(†M, ‡M)→ Isom(†Πtemp
X , ‡Πtemp

X ),

which is surjective with fibers of cardinality 1 (resp. 2) if N is odd (resp. even), where
IsomµN -conj denotes the set of µN -conjugacy classes of isomorphisms. In particular, for
any positive integerM withM | N , we have a natural homomorphism AutµN -conj(†M)→
AutµM -conj(†MM), where †MM denotes the mod M mono-theta environment induced by
†M such that the kernel and cokernel have the same cardinality (≤ 2) as the kernel and
cokernel of the homomorphism Hom(Z/2Z,Z/NZ) → Hom(Z/2Z,Z/MZ) induced by
the natural surjection Z/NZ� Z/MZ, respectively.

Proof. (1): We can group-theoretically reconstruct a quotient †Πtemp
X � †GK by Lemma 6.2,

other subquotients by Lemma 7.8, Lemma 7.12 and the definitions, and the labels of cuspidal
decomposition groups by Lemma 7.16.
(2) follows from the definitions (Note that we can reconstruct the set †η̈Θ,lZ×µ2 of theta classes

by Remark 7.15.1, thus, the theta section sΘ†Π as well (See the construction of the theta section
sΘ
Ÿ
before Definition 7.20)).

(3): We can group-theoretically reconstruct a quotient †Π� †Πtemp
Y by Lemma 7.18 (2). The

reconstruction of †Πtemp
X comes from the definitions and the temp-slimness of †Πtemp

X (Lemma 6.4

(5)). The last claim of (3) follows from the definitions and the description of the algorithm in
(2).
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(4): The surjectivity of the map comes from the last claim of (3). The fiber of this map is a
ker(AutµN -conj(†M) → Aut(†Πtemp

X ))-torsor. By Theorem 7.23 (1) below (Note that there is no

circular argument), the natural isomorphism †(l∆Θ)⊗Z/NZ ∼→ µN(
†(l∆Θ[µN ])) is preserved by

automorphisms of †M. Note that ker(AutµN -conj(†M)→ Aut(†Πtemp
X )) consists of automorphisms

acting as the identity on †Πtemp
Y , hence, on ker(†Π→ †Πtemp

Y ) by the above natural isomorphism.

Thus, we have

ker(AutµN -conj(†M)→ Aut(†Πtemp
X )) ∼= Hom(†Πtemp

Y /†Πtemp

Ÿ
, ker(†Π→ †Πtemp

Y )),

where †Πtemp
Y /†Πtemp

Ÿ
∼= µ2 and ker(†Π → †Πtemp

Y )) ∼= µN . The cardinality of this group is 1

(resp. 2) is N is odd (resp. even). The last claim follows from this description. �
Theorem 7.23. (Three Rigidities of Mono-Theta Environment, [EtTh, Corollary 2.19]) Let
N ≥ 1 be an integer, l a prime number and X a smooth log-curve of type (1, (Z/lZ)Θ) over

a finite extension K of Qp. We assume that l and p are odd, and K = K̈. Let MN be the
resulting mod N model mono-theta environment (which is independent of the choice of a member
of η̈Θ,lZ×µ2, up to isomorphism over the identity of Πtemp

Y by Lemma 7.21 (2)).

(1) (Cyclotomic Rigidity) Let †M = (†Π,D†Π, s
Θ
†Π) be a mod N mono-theta environment

which is isomorphic to MN . Let †Πtemp
X denote the topological group obtained by apply-

ing Corollary 7.22 (3). Then, there exists a group-theoretic algorithm for constructing
subquotients

†(l∆Θ[µN ]) ⊂ †((∆temp
Y )Θ[µN ]) ⊂ †((Πtemp

Y )Θ[µN ])

of †Π such that any isomorphism †M ∼→MN maps these subquotients to the subquotients

l∆Θ[µN ] ⊂ (∆temp
Y )Θ[µN ] ⊂ (Πtemp

Y )Θ[µN ]

of Πtemp
Y [µN ], in a functorial manner with respect to isomorphisms of mono-theta en-

vironments (no need of any reference isomorphism to MN). Moreover, there exists a
group-theoretic algorithm for constructing two splittings of the natural surjection

†(l∆Θ[µN ])� †(l∆Θ)

such that any isomorphism †M ∼→MN maps these two splittings to the two splittings of
the surjection

l∆Θ[µN ]� l∆Θ

determined by the mod N algebraic section salg
Ÿ

and the mod N theta section sΘ
Ÿ
. in a

functorial manner with respect to isomorphisms of mono-theta environments (no need of
any reference isomorphism to M). Hence, in particular, by taking the difference of these
two splittings, there exists a group-theoretic algorithm for constructing an isomorphism
of cyclotomes

†(l∆Θ)⊗ Z/NZ ∼→ µN(
†(l∆Θ[µN ]))(Cyc.Rig.Mono-Th.)

such that any isomorphism †M ∼→ MN maps this isomorphism of the cyclotomes to the
natural isomorphism of cyclotomes

l∆Θ ⊗ Z/NZ ∼→ µN(l∆Θ[µN ])

in a functorial manner with respect to isomorphisms of mono-theta environments (no
need of any reference isomorphism to MN).
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(2) (Discrete Rigidity) Any projective system (†MN)N≥1 of mono-theta environments
is isomorphic to the natural projective system of the model mono-theta environments
(MN)N≥1.

(3) (Constant Multiple Rigidity) Assume that η̈Θ,lZ×µ2 is of standard type. Let (†MN)N≥1
be a projective system of mono-theta environments. Then, there exists a group-theoretic
algorithm for constructing a collection of classes of H1(†Πtemp

Ÿ
, †(l∆Θ)) such that any

isomorphism (†MN)N≥1
∼→ (MN)N≥1 to the projective systems of the model mono-

theta environments maps the above collection of classes to the collection of classes of
H1(Πtemp

Ÿ
, l∆Θ) given by some multiple of the collection of classes η̈Θ,lZ×µ2 by an ele-

ment of µl in a functorial manner with respect to isomorphisms of projective systems of
mono-theta environments (no need of any reference isomorphism to (MN)N≥1).

We call †(l∆Θ)⊗ Z/NZ the (mod N) internal cyclotome of the mono-theta environ-
ment †M, and µN(

†(l∆Θ[µN ])) the (mod N) external cyclotome of the mono-theta envi-
ronment †M. We call the above isomorphism (Cyc.Rig.Mono-Th.) the cyclotomic rigidity
of mono-theta environment.

Proof. (1): Firstly, note that the restrictions of the algebraic section salg
Ÿ

and the theta sec-

tion sΘ
Ÿ

to ker{Πtemp
Y � (Πtemp

Y )Θ} coincide by Remark 7.2.1 (1). Hence, we can reconstruct

ker{†(Πtemp
Y [µN ]) � †((Πtemp

Y )Θ[µN ])} as the subset of (any µN -conjugacy class of) sΘ†Π whose

elements project to ker{†(Πtemp
Y ) � †((Πtemp

Y )Θ)}, via the projection †(Πtemp
Y [µN ]) � †(Πtemp

Y ),

where †(Πtemp
Y [µN ]) � †(Πtemp

Y ), †(Πtemp
Y ), and †(Πtemp

Y ) � †((Πtemp
Y )Θ are reconstructed by

Lemma 7.18 (2), Corollary 7.22 (3) and Corollary 7.22 (1) respectively. We can also recon-
struct the subquotients †(l∆Θ[µN ]) ⊂ †((∆temp

Y )Θ[µN ]) ⊂ †((Πtemp
Y )Θ[µN ]) as the inverse images

of †(l∆Θ) ⊂ †((∆temp
Y )Θ) ⊂ †((Πtemp

Y )Θ), which are reconstructed by Corollary 7.22 (1) (3), via

the quotient †((Πtemp
Y )Θ[µN ]) � †((Πtemp

Y )Θ). We can reconstruct the splitting of the natural

surjection †(l∆Θ[µN ])� †(l∆Θ) given by the theta section directly as sΘ†Π. On the other hand,
we can reconstruct the splitting of the natural surjection †(l∆Θ[µN ]) � †(l∆Θ) given by the
algebraic section by the algorithm of Lemma 7.21 (1).
(2) follows from Corollary 7.22 (4), since R1 lim←−N Hom(Z/2Z,Z/NZ) = 0 and R1 lim←−N µN =

0. See also Remark 7.23.1 (2).
(3) follows from Lemma 7.21 (3), Corollary 7.15, the cyclotomic rigidity (1), and the discrete

rigidity (2). �

Remark 7.23.1. In this remark, we compare rigidity properties of mono-theta environments
and bi-theta environments (See Remark 7.20.1 for bi-theta environments).

(1) (Cyclotomic Rigidity) The proof of the cyclotimic rigidity for mono-theta environments
comes from the reconstruction of the image of the algebraic section, and this recon-
struction comes from the quadratic structure of theta group (=Heisenberg group) (See
Remark 7.19.1). On the other hand, for a bi-theta environment, the image of the alge-
braic section is included as a datum of a bi-theta environment, hence, the cyclotomic
rigidity trivially holds for bi-theta environment.

(2) (Constant Multiple Rigidity) The proof of the constant multiple rigidity for mono-theta
environments comes from the elliptic cuspidalisation (See Proposition 7.9). On the
other hand, for a bi-theta environment, the image of the algebraic section is included as
a datum of a bi-theta environment. This means that the ratio (i.e., étale theta class)
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determined by the given data of theta section and algebraic section is independent of
the simultaneous constant multiplications on theta section and algebraic section, hence,
the constant multiple rigidity trivially holds for bi-theta environment.

(3) (Discrete Rigidity) A mono-theta environment does not include a datum of algebraic
section, it includes only a datum of theta section. By this reason, a mono-theta en-
vironment has “shifting automorphisms” α̈δ in Lemma 7.21 (2) (which comes from
the “less-than-or-equal-to-quadratic” structure of theta group (=Heisenberg group)).
This means that there is no “basepoint” relative to the lZ action on Y , i.e., no dis-
tinguished irreducible component of the special fiber. If we work with a projective
system of mono-theta environments, then by the compatibility of mod N theta sec-
tions, where N runs through the positive integers, the mod N theta classes determine a
single “discrete” lZ-torsor in the projective limit. The “shifting automorphisms” gives
us a lZ-indeterminacy, which is independent of N (See Lemma 7.21 (3)), and to find
a common basepoint for the lZ/NlZ-torsor in the projective system is the same thing
to trivialise a lim←−N lZ/lZ(= 0)-torsor, which remains discrete. This is the reason that
the discrete rigidity holds for mono-theta environments. On the other hand, a bi-theta
environment includes a datum of algebraic section as well. The basepoint indetermi-
nacy is roughly NlZ-indeterminacy (i.e., the surjectivity of Lemma 7.21 (3) does not
hold for bi-theta environments. for the precise statement, see [EtTh, Proposition 2.14
(iii)]), which depends on N , and to find a common basepoint for the lZ/NlZ-torsor in
the projective system is the same thing to trivialise a lim←−N lZ/NlZ(= lẐ)-torsor, which
does not remain discrete (it is profinite). Hence, the discrete rigidity does not hold for
bi-theta environments.

Note also that a short exact sequence of the projective systems

0→ NlZ→ lZ→ lZ/NlZ→ 0 (resp. 0→ lZ→ lZ→ lZ/lZ→ 0 )

with respect to N ≥ 1, which corresponds to bi-theta environments (resp. mono-theta
environments), induces an exact sequence

0→ lim←−
N

NlZ (= 0)→ lZ→ lẐ→ R1 lim←−
N

NlZ(= lẐ/lZ)→ 0

(resp. 0→ lZ→ lZ→ 0→ R1 lim←−
N

lZ (= 0) ),

and that R1 lim←−N NlZ = lẐ/lZ (resp. R1 lim←−N lZ = 0) exactly corresponds to the non-

discreteness (resp. discreteness) phenomenon of bi-theta environment (resp. mono-theta
environment). See also [EtTh, Remark 2.16.1].

The following diagram is a summary of this remark (See also [EtTh, Introduction]):

cycl. rig. disc. rig. const. mult. rig.

mono-theta env. delicately OK OK delicately OK

(structure of theta group) (elliptic cuspidalisation)

bi-theta env. trivially OK Fails trivially OK
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Remark 7.23.2. If we consider N -th power Θ̈N (N > 1) of the theta function Θ̈ instead
of the first power Θ̈1 = Θ̈, then the cyclotomic rigidity of Theorem 7.23 (1) does not hold,
since it comes from the quadratic structure of the theta group (=Heisenberg group) (See Re-
mark 7.19.1). The cyclotomic rigidity of the mono-theta environment is one of the most im-
portant tools in inter-universal Teichmüller theory, hence, if we use Θ̈N (N > 1) instead of
Θ̈, then inter-universal Teichmüller theory does not work. If it worked, then it would give us
a sharper Diophantine inequality, which would be a contradiction with the results in analytic
number theory (cf. [Mass2]). See also Remark 11.10.1 (the principle of Galois evaluation) and
Remark 13.13.3 (2) (N -th power does not work).

Remark 7.23.3. The cyclotomic rigidity rigidifies the Ẑ× ∼= Aut(Ẑ(1))-indeterminacy of an ob-

ject which is isomorphic to “Ẑ(1)”, hence rigidifies the induced Ẑ× ∼= Aut(Ẑ(1))-indeterminacy

of H1(−, “Ẑ(1)”). As for the cohomology class log(Θ̈) of the theta function Θ̈, it ridigifies

Ẑ× log(Θ̈). The constant multiple rigidity rigidifies log(Θ̈) + Ẑ. Hence, the cyclotomic rigid-

ity and the constant multiple rigidity rigidify the indeterminacy Ẑ× log(Θ̈) + Ẑ of the affine

transformation type. The discrete rigidity rigidifies Ẑ ∼= Hom(“Ẑ(1)”, “Ẑ(1)”). Here the second
“Ẑ(1)” is a coefficient cyclotome, and it is subject to Ẑ× ∼= Aut(Ẑ(1))-indeterminacy which is

rigidified by the cyclotomic rigidity. The first “Ẑ(1)” is a cyclotome which arises as a subquo-
tient of a (tempered) fundamental group. Hence, three rigidities of mono-theta environments
in Theorem 7.23 correspond to the structure of the theta group (=Heisenberg group) (∆temp

X )Θ:cyclotomic rigidity constant multiple rigidity

0 discrete rigidity

 .

See also the filtration of Lemma 7.5 (1).

7.5. Some Objects for Good Places. In inter-unversal Teichüller theory, X is the main

actor for places in Vbad. In this subsection, for the later use, we introduce a counterpart X−→ of

X for places in Vgood and related objects (However, the theory for the places in Vbad is more

important than the one for the places in Vgood).
Let X be a hyperbolic curve of type (1, 1) over a field K of characteristic 0, C a hyperbolic

orbicurve of type (1, l-tors)± (See Definition 7.10) whose K-core C is also the K-core of X.
Then, C determines a hyperbolic orbicurve X := C ×C X of type (1, l-tors). Let ιX be the
non-trivial element in Gal(X/C)(∼= Z/2Z). Let GK denote the absolute Galois group of K for
an algebraic closure K. Let l ≥ 5 be a prime number.

Assumption We assume that GK acts trivially on ∆ab
X ⊗ (Z/lZ).

(In inter-universal Teichmüller theory, we will use for K = Fmod(EFmod
[l]) later.) We write ε0

for the unique zero-cusp of X. We choose a non-zero cusp ε and let ε′ and ε′′ be the cusps of
X over ε, and let ∆X � ∆ab

X ⊗ (Z/lZ)� ∆ε be the quotient of ∆ab
X ⊗ (Z/lZ) by the images of

the inertia subgroups of all non-zero cusps except ε′ and ε′′ of X. Then, we have the natural
exact sequence

0→ Iε′ × Iε′′ → ∆ε → ∆E ⊗ (Z/lZ)→ 0,

with the natural actions of GK and Gal(X/C)(∼= Z/2Z), where E is the genus one compact-
ification of X, and Iε′ , Iε′′ are the images in ∆ε of the inertia subgroups of the cusps ε′, ε′

respectively (we have non-canonically Iε′ ∼= Iε′′ ∼= Z/lZ). Note that ιX induces an isomorphism
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Iε′ ∼= Iε′′ , and that ιX acts on ∆E ⊗ (Z/lZ) via the multiplication by −1. Since l is odd, the
action of ιX on ∆ε induces a decomposition

∆ε
∼→ ∆+

ε ×∆−ε ,

where ιX acts on ∆+
ε and ∆−ε by +1 and −1 respectively. Note that the natural composites

Iε′ ↪→ ∆ε � ∆+
ε and Iε′′ ↪→ ∆ε � ∆+

ε are isomorphisms. We define (ΠX �)JX by pushing the
short exact sequences 1→ ∆X → ΠX → GK → 1 and by ∆X � ∆ε � ∆+

ε :

1 // ∆X
//

����

ΠX
//

����

GK
//

=

��

1

1 // ∆+
ε

// JX // GK
// 1.

Next, we consider the cusps “2ε′” and “2ε′′” ofX corresponding to the points of E obtained by
multiplying ε′ and ε′′ by 2 respectively, relative to the group law of the elliptic curve determined
by the pair (X, ε0). These cusps are not over the cusp ε in C, since 2 6≡ ±1 (mod l) by l ≥ 5.
Hence, the decomposition groups of “2ε′” and “2ε′′” give us sections σ : GK → JX of the natural
surjection JX � GK . The element ιX ∈ Gal(X/C), which interchange Iε′ and Iε′′ , acts trivially

on ∆+
ε (Note also Iε′

∼−→ ∆ε
∼←− Iε′′), hence, these two sections to JX coincides. This section

is only determined by “2ε′” (or “2ε′′”) up to an inner automorphism of JX given by an element
∆+
ε , however, since the natural outer action of GK on ∆+

ε is trivial by Assumption, it follows
that the section completely determined by “2ε′” (or “2ε′′”) and the image of the section is
normal in JX . By taking the quotient by this image, we obtain a surjection (ΠX �)JX � ∆+

ε .
Let

X−→→ X

be the corresponding covering with Gal(X−→/X) ∼= ∆+
ε (
∼= Z/lZ).

Definition 7.24. ([IUTchI, Definition 1.1]) An orbicurve over K is called of type (1, l-tors−−→)

if it is isomorphic to X−→ over K for some l and ε.

The arrow→ in the notation X−→ indicates a direction or an order on the {±1}-orbits (i.e., the
cusps of C) of Q (in Assumption (1) before Definition 7.10) is determined by ε (Remark [IUTchI,
Remark 1.1.1]). We omit the construction of “C−→” (See [IUTchI, §1]), since we do not use it.

This X−→ is the main actor for places in Vgood in inter-universal Teichmüller theory:

local Vbad local Vgood global � global �

main actor X
v

X−→v
XK CK

Lemma 7.25. ([IUTchI, Corollary 1.2]) We assume that K is an NF or an MLF. Then,
from ΠX−→

, there exists a group-theoretic algorithm to reconstruct ΠX and ΠC (as subgroups of

Aut(X−→)) together with the conjugacy classes of the decomposition group(s) determined by the

set(s) of cusps {ε′, ε′′} and {ε} respectively, in a functorial manner with respect to isomorphisms
of topological groups.

See also Lemma 7.8, Lemma 7.12 ([EtTh, Proposition 1.8, Proposition 2.4]).

Proof. First, since ΠX−→
, ΠX and ΠC are slim by Proposition 2.7 (2b), these are naturally embed-

ded into Aut(ΠX−→
) by conjugate actions. By the K-coricity of C, we can also group-theoretically
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reconstruct (ΠX−→
⊂)ΠC (⊂ Aut(ΠX−→

)). By Proposition 2.2 or Corollary 2.4, we can group-

theoretically reconstruct the subgroups ∆C−→
⊂ ΠC−→

and ∆X−→
⊂ ΠX−→

(In particular, we can

reconstruct l by the formula [∆C : ∆X−→
] = 2l2). We can reconstruct ∆X as a unique torsion-free

subgroup of ∆C of index 2. Then, we can reconstruct ΠX (⊂ ΠC) as ΠX = H · ΠX−→
, where

H := ker(∆X � ∆ab
X ⊗ (Z/lZ)). The conjugacy classes of the decomposition groups of ε0, ε′,

and ε′′ in ΠX can be reconstructed as the decomposition groups of cusps (Corollary 2.9 and
Remark 2.9.2) whose image in ΠX/ΠX−→

is non-trivial. Then, we can reconstruct the subgroup

ΠC ⊂ ΠC by constructing a splitting of the natural surjection ΠC/ΠX � ΠC/ΠX determined
by ΠC/ΠX , where the splitting is characterised (since l - 3) as the unique splitting (whose
image ⊂ ΠC/ΠX) stabilising (via the outer action on ΠX) the collection of conjugacy classes
of the decomposition groups in ΠX of ε0, ε′, and ε′′ (Note that if an ivolution of X fixed ε′

and interchanged ε0 and ε′′, then we would have 2 ≡ −1 (mod l), i.e., l | 3). Finally, the
decomposition groups of ε′ and ε′′ in ΠX can be reconstructed as the decomposition group of
cusps (Corollary 2.9 and Remark 2.9.2) whose image in ΠX/ΠX−→

is non-trivial, and is not fixed,

up to conjugacy, by the outer action of ΠC/ΠX (∼= Z/2Z) on ΠX . �
Remark 7.25.1. ([IUTchI, Remark 1.2.1]) By Lemma 7.25, we have

AutK(X−→) = Gal(X−→/C) (
∼= Z/2lZ)

(cf.Remark 7.12.1).

8. Frobenioids.

Roughly speaking, we have the following proportional formula:

Anabelioid (=Galois category) : Frobenioid = coverings : line bundles over coverings,

that is, the theory of Galois categories is a categorical formulation of coverings (i.e., it is formu-
lated in terms of category, and geometric terms never appear), and the theory of Frobenioids
is a categorical formulation of line bundles over coverings (i.e., it is formulated in terms of
category, and geometric terms never appear). In [FrdI] and [FrdII], Mochizuki developed a
general theory of Frobenioids, however, in this survey, we mainly forcus on model Frobenioids,
which mainly used in inter-universal Teichmüller theory. The main theorems of the theory of
Frobenioids are category-theoretic reconstructions of related objects (e.g., the base categories,
the divisor monoids, and so on) under certain conditions, however, we avoid these theorems by
including the objects, which we want to reconstruct, as input data, as suggested in [IUTchI,
Remark 3.2.1 (ii)].

8.1. Elementary Frobenioid and Model Frobenioid. For a category D, we call a con-
travariant functor Φ : D →Mon to the category of commutative monoids Mon a monoid on
D (In [FrdI, Definition 1.1], we put some conditions on Φ. However, this has no problem for
our objects used in inter-universal Teichmüller theory.) If any element in Φ(A) is invertible for
any A ∈ Ob(D), then we call Φ group-like.

Definition 8.1. (Elementary Frobenioid, [FrdI, Definition 1.1 (iii)]) Let Φ be a monoid on a
category D. We consider the following category FΦ:

(1) Ob(FΦ) = Ob(D).
(2) For A,B ∈ Ob(D), we put

HomFΦ
(A,B) := {φ = (Base(φ),Div(φ), degFr(φ)) ∈ HomD(A,B)× Φ(A)× N≥1} .
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We define the composition of φ = (Base(φ),Div(φ), degFr(φ)) : A → B and ψ =
(Base(ψ),Div(ψ), degFr(n)) : B → C as

ψ ◦φ := (Base(ψ) ◦Base(φ),Φ(Base(φ))(Div(ψ))+degFr(ψ)Div(φ), degFr(ψ)degFr(φ)) : A→ C.

We call FΦ an elementary Frobenioid associated to Φ. Note that we have a natural
functor FΦ → D, which sends A ∈ Ob(FΦ) to A ∈ Ob(D), and φ = (Base(φ),Div(φ), degFr(φ))
to Base(φ). We call D the base category of FΦ.

For a category C and an elementary Frobenioid FΦ, we call a covariant functor C → FΦ

a pre-Frobenioid structure on C (In [FrdI, Definition 1.1 (iv)], we need conditions on Φ,
D, and C for the general theory of Frobenioids). We call a category C with a pre-Frobenioid
structure a pre-Frobenioid. For a pre-Frobenioid C, we have a natural functor C → D by the
composing with FΦ → D. In a similar way, we obtain operations Base(−), Div(−), degFr(−)
on C from the ones on FΦ by composing with FΦ → D. We often use the same notation on C as
well, by abuse of notation. We also call Φ and D the divisor monoid and the base category
of the pre-Frobenioid C respectively. We put

O×(A) := {φ ∈ AutC(A) | Base(φ) = id, degFr(φ) = 1} ⊂ AutC(A),

and

O�(A) := {φ ∈ EndC(A) | Base(φ) = id, degFr(φ) = 1} ⊂ EndC(A)

for A ∈ Ob(C). We also put µN(A) := {a ∈ O×(A) | aN = 1} for N ≥ 1.

Definition 8.2. ([IUTchI, Example 3.2 (v)]) When we are given a splitting spl : O�/O× ↪→ O�

(resp. a µN -orbit of a splitting spl : O
�/O× ↪→ O� for fixedN) of O� � O�/O×, i.e., functorial

splittings (resp. functorial µN -orbit of splittings) of O
�(A) � O�(A)/O×(A) with respect to

A ∈ Ob(C) and morphisms with degFr = 1, then we call the pair (C, spl) a split pre-Frobenioid
(resp. a µN -split pre-Frobenioid).

If a pre-Frobenioid satisfies certain technical conditions, then we call it a Frobenioid (See
[FrdI, Definition 1.3]). (Elementary Frobenioids are, in fact, Frobenioids ([FrdI, Proposition
1.5]).) In this survey, we do not recall the definition nor use the general theory of Frobenioids,
and we mainly focus on model Frobenioids.

Definition 8.3. (Model Frobenioid, [FrdI, Theorem 5.2]) Let Φ : D → Mon be a monoid
on a category D. Let B : D → Mon be a group-like monoid on D, and DivB : B → Φgp a
homomorphism. We put Φbirat := Im(DivB) ⊂ Φgp. We consider the following category C:

(1) The objects of C are pairs A = (AD, α), where AD ∈ Ob(D), and α ∈ Φ(AD)
gp. We put

Base(A) := AD, Φ(A) := Φ(AD), and B(A) := B(AD).
(2) For A = (AD, α), B = (BD, β) ∈ Ob(C), we put

HomC(A,B) :=

{
φ = (Base(φ),Div(φ), degFr(φ), uφ) ∈ HomD(AD, BD)× Φ(A)× N≥1 × B(A)
such that degFr(φ)α +Div(φ) = Φ(Base(φ))(β) + DivB(uφ)

}
.

We define the composition of φ = (Base(φ),Div(φ), degFr(φ), uφ) : A → B and ψ =
(Base(ψ),Div(ψ), degFr(ψ), uψ) : B → C as

ψ ◦ φ :=

(
Base(ψ) ◦ Base(φ),Φ(Base(φ))(Div(ψ)) + degFr(ψ)Div(φ),
degFr(ψ)degFr(φ),B(Base(φ))(uψ) + degFr(ψ)uφ

)
.

We equip C with a pre-Frobenioid structure C → FΦ by sending (AD, α) ∈ Ob(C) to AD ∈
Ob(FΦ) and (Base(φ),Div(φ), degFr(φ), uφ) to (Base(φ),Div(φ), degFr(φ)). We call the category
C the model Frobenioid defined by the divisor monoid Φ and the rational function
monoid B (Under some conditions, the model Frobenioid is in fact a Frobenioid).
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The main theorems of the theory of Frobenioids are category-theoretic reconstructions of
related objects (e.g., the base categories, the divisor monoids, and so on), under certain con-
ditions. However, in this survey, we consider isomorphisms between pre-Frobenioids not to be
just category equivalences, but to be category equivalences including pre-Frobenioid structures,
i.e., for pre-Frobenioids F ,F ′ with pre-Frobenioid structures F → FΦ, F ′ → FΦ′ , where FΦ,FΦ′

are defined by D → Φ, D′ → Φ′ respectively, an isomorphism of pre-Frobenioids from F
to F ′ consists of isomorphism classes (See also Definition 6.1 (5)) of equivalences F ′ ∼→ F ,
D′ ∼→ D of categories, and a natural transformation Φ′ → Φ|D′ (where Φ|D′ is the restriction

of Φ via D′ ∼→ D), such that it gives rise to an equivalence FΦ′
∼→ FΦ of categories, and the

diagram

F ′ ∼ //

��

F

��
FΦ′

∼ // FΦ

is 1-commutative (i.e., one way of the composite of functors is isomorphic to the other way of
the composite of functors) (See also [IUTchI, Remark 3.2.1 (ii)]).

Definition 8.4. (1) (Trivial Line Bundle) For a model Frobenioid F with base category
D, we write OA for the trivial line bundle over A ∈ Ob(D), i.e., the object determine
by (A, 0) ∈ Ob(D)×Φ(A)gp (These objects are called “Frobenius-trivial objects” in the
terminology of [FrdI], which can category-theoretically be reconstructed only from F
under some conditions).

(2) (Birationalisation, “Z≥0  Z”) Let C be a model Frebenioid. Let Cbirat be the category
whose objects are the same as in C, and whose morphisms are given by

HomCbirat(A,B) := lim−→
φ:A′→A, Base(φ) : isom, degFr(φ)=1

HomC(A
′, B).

(For general Frobenioids, the definition of the birationalisation is a little more compli-
cated. See [FrdI, Proposition 4.4]). We call Cbirat the birationalisation of the model
Frobenioid C. We have a natural functor C → Cbirat.

(3) (Realification, “Z≥0  R≥0”) Let C be a model Frobenioid whose divisor monoid is
Φ and whose rational function monoid is B. Then, let CR be the model Frobenioid
obtained by replacing the divisor monoid Φ by ΦR := Φ ⊗Z≥0

R≥0, and the rational

function monoid B by BR := R · Im(B→ Φgp) ⊂ (ΦR)gp (We need some conditions on C,
if we want to include more model Frobenioids which we do not treat in this survey. See
[FrdI, Definition 2.4 (i), Proposition 5.2]). We call CR the realification of the model
Frobenioid C. We have a natural functor C → CR.

Definition 8.5. (×-, ×µ-Kummer structure on pre-Frobenioid, [IUTchII, Example 1.8 (iv),
Definition 4.9 (i)])

(1) Let G be a toplogical group isomorphic to the absolute Galois group of an MLF. Then,
we can group-theoretically reconstruct an ind-topological monoid Gy O�(G) with G-
action, by Proposition 5.2 (Step 1). Put O×(G) := (O�(G))×, Oµ(G) := (O�(G))tors
and O×µ(G) := O×(G)/Oµ(G) (We use the notation O×µ(−), not O×(−)/Oµ(−), be-
cause we want to consider the object O×(−)/Oµ(−) as an abstract ind-topological mod-
ule, i.e., without being equipped with the quotient structure O×/Oµ). Put

Isomet(G) =
{
G-equivariant isomorphism O×µ(G)

∼→ O×µ(G) preserving

the integral str. Im(O×(G)H → O×µ(G)H) for any open H ⊂ G
}
.
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We call the compact topological group Isomet(G) the group of G-isometries of
O×µ(G). If there is no confusion, we write just Isomet for Isomet(G).

(2) Let C be a pre-Frobenioid with base category D. We assume that D is equivalent to the
category of connected finite étale coverings of the spectrum of an MLF or a CAF. Let
A∞ be a universal covering pro-object of D. Put G := Aut(A∞), hence, G is isomorphic
to the absolute Galois group of an MLF or a CAF. Then, we have a natural action
Gy O�(A∞). For N ≥ 1, we put

µN(A∞) := {a ∈ O�(A∞) | aN = 1} ⊂ Oµ(A∞) := O�(A∞)tors ⊂ O�(A∞),

and

O×(A∞) � O×µN (A∞) := O×(A∞)/µN(A∞) � O×µ(A∞) := O×(A∞)/O
µ(A∞).

These are equipped with natural G-actions. We assume that G is non-trivial (i.e.,
arising from an MLF). A ×-Kummer structure (resp. ×µ-Kummer structure)

on C is a Ẑ×-orbit (resp. an Isomet-orbit)

κ× : O×(G)
poly
∼→ O×(A∞) (resp. κ×µ : O×µ(G)

poly
∼→ O×µ(A∞) )

of isomorphisms of ind-topological G-modules. Note that the definition of a ×- (resp.
×µ-) Kummer structure is independent of the choice of A∞. Note also that any
×-Kummer structure on C is unique, since ker(Aut(G y O×(G)) � Aut(G)) =

Ẑ×(= Aut(O×(G))) (cf. [IUTchII, Remark 1.11.1 (i) (b)]). We call a pre-Frobenioid
equipped with a ×-Kummer structure (resp. ×µ-Kummer structure) a ×-Kummer
pre-Frobenioid (resp. ×µ-Kummer pre-Frobenioid). We call a split pre-Frobenioid
equipped with a×-Kummer structure (resp. ×µ-Kummer structure) a split-×-Kummer
pre-Frobenioid (resp. split-×µ-Kummer pre-Frobenioid).

Remark 8.5.1. ([IUTchII, Remark 1.8.1]) In the situation of Definition 8.5 (1), no automor-
phism of O×µ(G) induced by an element of Aut(G) is equal to an automorphism of O×µ(G) in-
duced by an element of Isomet(G) which has nontrivial image in Z×p (Here p is the residual char-
acteristic of the MLF under consideration), since the composite with the p-adic logarithm of the
cyclotomic character of G (which can be group-theoretically reconstructed by Proposition 2.1
(6)) determines a natural Aut(G) × Isomet(G)-equivariant surjection O×µ(G) � Qp, where

Aut(G) trivially acts on Qp and Isomet(G) acts on Qp via the natural surjection Ẑ× � Z×p .

8.2. Examples.

Example 8.6. (Geometric Frobenioid, [FrdI, Example 6.1]) Let V be a proper normal geo-
metrically integral variety over a field k, k(V ) the function field of V , and k(V )∼ a (possibly
inifinite) Galois extension. Put G := Gal(k(V )∼/k(V )), and let Dk(V ) be a set of Q-Cartier
prime divisors on V . The connected objects Ob(B(G)0) (See Section 0.2) of the Galois category
(or connected anabelioid) B(G) can be thought of as schemes SpecL, where L ⊂ k(V )∼ is a
finite extension of k(V ). We write VL for the normalisation of V in L, and let DL denote the set
of prime divisors of VL which maps into (possibly subvarieties of codimension≥ 1 of) prime divi-
sors of Dk(V ) We assume that any prime divisor of DL is Q-Cartier for any SpecL ∈ Ob(B(G)0).
We write Φ(L) ⊂ Z≥0[DL] for the monoid of effective Cartier divisors D on VL such that every
prime divisor in the support of D is in DL, and B(L) ⊂ L× for the group of rational functions f
on VL such that every prime divisor, at which f has a zero or a pole, is in DL. Note that we have
a natural homomorphism B(L) → Φ(L)gp which sends f to (f)0 − (f)∞ (Here, (f)0 and (f)∞
denote the zero-divisor and the pole-divisor of f respectively). This is functrial with respect to
L. The data (B(G)0,Φ(−),B(−),B→ Φgp) determines a model Frobenioid CV,k(V )∼,DK

.
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An object of CV,k(V )∼,DK
, which is sent to SpecL ∈ Ob(B(G)0), can be thought of as a

line bundle L on VL, which is representable by a Cartier divisor D with support in DL. For
such line bundles L on SpecL and M on SpecM (L,M ⊂ k(V )∼ are finite extensions of
k(V )), a morphism L → M in CV,k(V )∼,DK

can be thought of as consisting of a morphism
SpecL → SpecM over Spec k(V ), an element d ∈ N≥1, and a morphism of line bundles
L⊗d →M|VL on VL whose zero locus is a Cartier divisor supported in DL.

Example 8.7. (p-adic Frobenioid, [FrdII, Example 1.1], [IUTchI, Example 3.3]) Let Kv be a

finite extension of Qpv (In inter-universal Teichmüller theory, we use v ∈ Vgood ∩ Vnon). Put

Dv := B(X−→v
)0, and D`v := B(Kv)

0,

where X−→v
is a hyperbolic curve of type (1, l-tors−−→) (See Definition 7.24). By pulling back finite

étale coverings via the structure morphism X−→v
→ SpecKv, we regard D`v as a full subcategory

of Dv. We also have a left-adjoint Dv → D`v to this functor, which is obtained by sending a ΠX−→v
-

set E to the GKv -set E/ker(ΠX−→v
→ GKv) := ker(ΠX−→v

→ GKv)-orbits of E ([FrdII, Definition

1.3 (ii)]). Then,

ΦCv : SpecL 7→ ord(O�
L )

pf := (OL/O
×
L )

pf

(See Section 0.2 for the perfection (−)pf) gives us a monoid on D`v . By composing the above

Dv → D`v , it gives us a monoid ΦCv on Dv. Also,

ΦC`v : SpecL 7→ ord(Z�
pv) (⊂ ord(O�

L )
pf)

(See Section 0.2 for the perfection (−)pf) gives us a submonoid ΦC`v ⊂ ΦCv on D`v . These

monoids ΦCv on Dv and ΦC`v on D`v determine pre-Frobenioids (In fact, these are Frobenioid)

C`v ⊂ Cv
whose base categories are D`v and Dv respectively. These are called pv-adic Frobenioids.
These pre-Frobenioid can be regarded as model Frobenioids whose rational function monoids
B are given by Ob(D`v ) 3 SpecL 7→ L× ∈ Mon, and L× 3 f 7→ (f)0 − (f)∞ := image of f ∈
ΦC`v (L) ⊂ ΦCv(L) ([FrdII, Example 1.1]). Note that the element pv ∈ Z�

pv gives us a splitting

spl`v : O�/O× ↪→ O�, hence a split pre-Frobenioid

F`v := (C`v , spl`v ).
We also put

F
v
:= Cv

for later use.

Example 8.8. (Tempered Frobenioid, [EtTh, Definition 3.3, Example 3.9, the beginning of §5],
[IUTchI, Example 3.2]) Let X

v
:= X

Kv
→ Xv := XKv

be a hyperbolic curve of type (1, l-torsΘ)

and a hyperbolic curve of type (1,Z/lZ) respectively (Definition 7.13, Definition 7.11) over a
finite extension Kv of Qpv (As before, we always put the log-structure associated to the cusps,
and consider the log-fundamental groups). Put

Dv := Btemp(X
v
)0, D`v := B(Kv)

0,

and D0 := Btemp(Xv)
0 (See Section 0.2 for (−)0. Note also that we have π1(Dv) ∼= Πtemp

X
v
, and

π1(D`v ) ∼= GKv (See Definition 6.1 (4))). We have a natural functor Dv → D0, which sends
Y → X

v
to the composite Y → X

v
→ Xv.
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For a tempered covering Z → Xv and its stable formal model Z over OL, where L is a
finite extension of Kv, let Z∞ → Z be the universal combinatorial covering (i.e., the covering
determined by the universal covering of the dual graph of the special fiber of Z), and Z∞ the
Raynaud generic fiber of Z∞.

Definition 8.9. ([EtTh, Definition 3.1], [IUTchI, Remark 3.2.4]) Let Div+(Z∞) denote the
monoid of the effective Cartier divisors whose support lie in the union of the special fiber and
the cusps of Z∞. We call such a divisor an effective Cartier log-divisor on Z∞. Also, let
Mero(Z∞) denote the group of meromorphic functions f on Z∞ such that, for any N ≥ 1,f
admits an N -th root over some tempered covering of Z. We call such a function a log-
meromorphic function on Z∞.

Definition 8.10. ([EtTh, Definition 3.3, Example 3.9, the beginning of §5], [IUTchI, Example
3.2])

(1) Let ∆ be a tempered group (Definition 6.1). We call a filtration {∆i}i∈I , (where I is
countable) of ∆ by characteristic open subgroups of finite index a tempred filter, if
the following conditions are satisfied:
(a) We have

∩
i∈I ∆i = ∆.

(b) Every ∆i admits an open characteristic subgroup ∆∞i such that ∆i/∆
∞
i is free,

and, for any open normal subgroup H ⊂ ∆i with free ∆i/H, we have ∆∞i ⊂ H.
(c) For each open subgroup H ⊂ ∆, there exists unique ∆∞iH ⊂ H, and, ∆∞i ⊂ H

implies ∆∞i ⊂ ∆∞iH for every i ∈ I.
(2) Let {∆i}i∈I be a tempered filter of ∆temp

Xv
. Assume that, for any i ∈ I, the covering

detemined by ∆i has a stable model Zi over a ring of integers of a finite extension
of Kv, and all of the nodes and the irreducible components of the special fiber of Zi
are rational (we say that Zi has split stable reduction). For any connected tempered
covering Y → Xv, which corresponds to an open subgroup H ⊂ ∆temp

Xv
, we put

Φ0(Y ) := lim−→
∆∞

i ⊂H
Div+(Z∞)

Gal(Z∞/Y ), B0(Y ) := lim−→
∆∞

i ⊂H
Mero(Z∞)

Gal(Z∞/Y ).

These determine functors Φ0 : D0 → Mon, B0 : D0 → Mon. We also have a natural
functor B0 → Φgp

0 , by taking f 7→ (f)0− (f)∞. We write Bconst
0 ⊂ B0 for the subfunctor

defined by the constant log-meromorphic functions, and Φconst
0 ⊂ Φgp

0 for the image of
Bconst

0 in Φgp
0 .

(3) Let Dell
0 ⊂ D0 denote the full subcategory of tempered coverings which are unramified

over the cusps of Xv (i.e., tempered coverings of the underlying elliptic curve Ev of Xv).

We have a left adjoint D0 → Dell
0 , which is obtained by sending a ΠXv

-set E to the ΠEv
-

set E/ker(ΠXv
→ ΠEv

) := ker(ΠXv
→ ΠEv

)-orbits of E ([FrdII, Definition 1.3 (ii)]).

For Y ∈ Ob(Dv), let Y ell denote the image of Y by the composite Dv → D0 → Dell
0 . We

put, for Y ∈ Ob(Dv),

Φ(Y ) :=

(
lim−→
Z∞

Div+(Z∞)
Gal(Z∞/Y ell)

)pf

⊂ Φ0(the image of Y in D0)
pf ,

where Z∞ range over the connected tempered covering Z∞ → Y ell in Dell
0 such that the

composite Z∞ → Y ell → Xv arises as the generic fiber of the universal combinatorial

covering Z∞ of the stable model Z of some finite étale covering Z → Xv in Dell
0 with

split stable reduction over the ring of integers of a finite extension of Kv (We use
this Φ, not Φ0, to consider only divisors related with the theta function). We write
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(−)|Dv for the restriction, via Dv → D0, of a functor whose domain is D0. We also put

ΦR
0 := Φ0 ⊗Z≥0

R≥0 and ΦR := Φ⊗Z≥0
R≥0. Put

B := B0|Dv ×(ΦR)gp Φ
gp, Φconst := (R · Φconst

0 )|Dv ×(ΦR)gp Φ ⊂ ΦR,

and

Bconst := Bconst
0 |Dv ×(ΦR)gp Φ

gp → (Φconst)gp = (R · Φconst
0 )|Dv ×(ΦR)gp Φ

gp ⊂ (ΦR)gp.

The data (Dv,Φ,B,B → Φgp) and (Dv,Φconst,Bconst,Bconst → (Φconst)gp) determine
model Frobenioids

F
v
, and Cv (= Fbase-field

v
)

respectively (In fact, these are Frobenioids). We have a natural inclusion Cv ⊂ Fv. We

call F
v
a tempered Frobenioid and Cv its base-field-theoretic hull. Note that Cv

is also a pv-adic Frobenioid.
(4) We write Θ

v
∈ O×(Obirat

Ÿ
v

) for the reciprocal (i.e., 1/(−)) of the l-th root of the nor-

malised theta function, which is well-defined up to µ2l and the action of the group of
automorphisms lZ ⊂ Aut(OŸ

v
) (Note that we use the notation Θ̈ in Section 8.3. This

is not the reciprocal (i.e., not 1/(−)) one). We also write qv for the q-parameter of the
elliptic curve Ev over Kv. We consider qv as an element qv ∈ O�(OX

v
) (∼= O�

Kv
). We

assume that any 2l-torsion point of Ev is rational over Kv. Then, qv admits a 2l-root
in O�(OX

v
) (∼= O�

Kv
). Then, we have

Θ
v
(
√
−qv) = q

v
:= q1/2lv ∈ O�(OX

v
),

(which is well-defined up to µ2l), since Θ̈(
√
−q) = −q−1/2

√
−1−2Θ̈(

√
−1) = q−1/2 (in

the notation of Lemma 7.4) by the formula Θ̈(q1/2Ü) = −q−1/2Ü−2Θ̈(Ü) in Lemma 7.4.
The image of q

v
determines a constant section, which is denoted by logΦ(q

v
) of the

monoid ΦCv of Cv. The submonoid

ΦC`v := N logΦ(q
v
)|D`

v
⊂ ΦCv |D`

v

gives us a pv-adic Frobenioid

C`v (⊂ Cv = (F
v
)base-field ⊂ F

v
)

whose base category is D`v . The element q
v
∈ Kv determines a µ2l(−)-orbit spl`v of the

splittings of O� � O�/O× on C`v . Hence,

F`v := (C`v , spl`v )
is a µ2l-split pre-Frobenioid.

Remark 8.10.1. We can category-theoretically reconstruct the base-field-theoretic hull Cv from
F
v
([EtTh, Corollary 3.8]). However, in this survey, we include the base-field-theoretic hull in

the deta of the tempered Frobenioid, i.e., we call a pair F
v
= (F

v
, Cv) a tempered Frobenioid,

by abuse of language/notation, in this survey.

Example 8.11. (Archimedean Frobenioid, [FrdII, Example 3.3], [IUTchI, Example 3.4]) This
example is not a model Frobenioid (In fact, it is not of isotropic type, which any model Frobe-
nioids should be). Let Kv be a complex Archimedean local field (In inter-universal Teichmüller
theory, we use v ∈ Varc). We define a category

Cv
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as follows: The objects of Cv are pairs (V,A) of a one-dimensional Kv-vector space V , and a
subset A = B×C ⊂ V ∼= O×Kv

×ord(K×v ) (Here we put ord(K×v ) := K×v /O
×
Kv

. See Section 0.2 for

OKv), where B ⊂ O×Kv
(∼= S1) is a connected open subset, and C ⊂ ord(K×v )

∼= R>0 is an interval

of the form (0, λ] with λ ∈ R>0 (We call A an angular region). The morphisms φ from (V,A)
to (V ′,A′) in Cv consist of an element degFr(φ) ∈ N≥1 and an isomorphism V ⊗degFr(φ)

∼→ V ′

of Kv-vector spaces which sends A⊗degFr(φ) into A′. We put Div(φ) := log(α) ∈ R≥0 for the
largest α ∈ R>0 such that α · Im(A⊗degFr(φ)) ⊂ A′. Let {SpecKv} be the category of connected
finite étale coverings of SpecKv (Thus, there is only one object, and only one morphism),
and Φ : {SpecKv} → Mon the functor defined by sending SpecKv (the unique object) to

ord(O�
Kv

) ∼= (0, 1]
− log∼= R≥0. Put also Base(V,A) := SpecKv for (V,A) ∈ Ob(Cv). Then, the

triple (Base(−),Φ(−), degFr(−)) gives us a pre-Frobenioid structure Cv → FΦ on Cv (In fact,
this is a Frobenioid). We call Cv an Archimedean Frobenioid (cf. the Archimedean portion
of arithmetic line bundles). Note also that we have a natural isomorphism O�(Cv) ∼= O�

Kv

of topological monoids (We can regarad Cv as a Frobenioid-theoretic representation of the
topological monoid O�

Kv
).

Let X−→v
be a hyperbolic curve of type (1, l-tors−−→) (See Definition 7.24) over Kv, and let X−→v

denote the Aut-holomorphic space (See Section 4) determined by X−→v
, and put

Dv := X−→v
.

Note also that we have a natural isomorphism

Kv
∼→ ADv

of topological fields (See (Step 9) in Proposition 4.5), which determines an inclusion

κv : O
�(Cv) ↪→ ADv

of topological monoids. This gives us a Kummer structure (See Definition 4.6) on Dv. Put
F
v
:= (Cv,Dv, κv),

just as a triple. We define an isomorphism F
v,1

∼→ F
v,2

of triples in an obvious manner.

Next, we consider the mono-analyticisation. Put

C`v := Cv.

Note also that ADv naturally determines a split monoid (See Definition 4.7) by transporting

the natural splitting of Kv via the isomorphism Kv
∼→ ADv of topological fields. This gives us

a splitting spl`v on C`v , hence, a split-Frobenioid (C`v , spl`v ), as well as a split monoid

D`v := (O�(C`v ), spl`v ).
We put

F`v := (C`v ,D`v , spl`v ),
just as a triple. We define an isomorphism F`v,1

∼→ F`v,2 of triples in an obvious manner.

Example 8.12. (Global Realified Frobenioid, [FrdI, Example 6.3], [IUTchI, Example 3.5]) Let
Fmod be a number field. Let {SpecFmod} be the category of connected finite étale coverings of
SpecFmod (Thus, there is only one object, and only one morphism). Put

ΦCmod
(Fmod) :=

⊕
v∈V(Fmod)non

ord(O�
v )⊗Z≥0

R≥0 ⊕
⊕

v∈V(Fmod)arc

ord(O�
v ),
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where ord(O�
v ) := O�

v /O
×
v (See Section 0.2 for Ov and O

�
v , v ∈ V(Fmod)

arc). We call an element
of Φ(Fmod) (resp. Φ(Fmod)

gp) an effective arithmetic divisor (resp. an arithmetic divisor).
Note that ord(O�

v )
∼= Z≥0 for v ∈ V(Fmod)

non, and ord(O�
v )
∼= R≥0 for v ∈ V(Fmod)

arc. We have
a natural homomorphism

B(Fmod) := F×mod → Φ(Fmod)
gp.

Then, the data ({SpecFmod},ΦCmod
,B) determines a model Frobenioid

Cmod.

(In fact, it is a Frobenioid.) We call it a global realified Frobenioid.
We have a natural bijection

Prime(Cmod)
∼→ Vmod

(by abuse of notation, we put Prime(Cmod) := Prime(ΦCmod
(SpecFmod))), where Prime(−) is

defined as follows:

Definition 8.13. Let M be a commutative monoid such that 0 is the only invertible element
in M , the natural homomorphism M → Mgp is injective, and any a ∈ Mgp with na ∈ M for
some n ∈ N≥1 is in the image of M ↪→ Mgp. We define the set Prime(M) of primes of M as
follows ([FrdI, §0]):

(1) For a, b ∈M , we write a ≤ b, if there is c ∈M such that a+ c = b.
(2) For a, b ∈M , we write a 4 b, if there is n ∈ N≥1 such that a ≤ nb.
(3) For 0 6= a ∈M , we say that a is primary, if a 4 b holds for any M 3 b 4 a, b 6= 0.
(4) The relation a 4 b is an equivalence relation among the set of primary elements in M ,

and we call an equivalence class a prime of M (this definition is different from a usual
definition of primes of a monoid). Let Prime(M) denote the set of primes of M .

Note that pv determines an element

log`mod(pv) ∈ ΦCmod,v

for v ∈ Vmod
∼= Prime(Cmod), where ΦCmod,v

(∼= R≥0) denotes the v-portion of ΦCmod
.

8.3. From Tempered Frobenioid to Mono-Theta Environment. Let F
v
be the tempered

Frobenioid constructed in Example 8.8. Recall that it has a base category Dv with π1(Dv) ∼=
Πtemp
X

v
(=: Πv). Let OŸ denote the object in F

v
corresponding to the trivial line bundle on Ÿ

(i.e., OŸ = (Ÿ , 0) ∈ Ob(Dv)× Φ(Ÿ ). See Definition 8.4 (1)). Let ŸlN , ZlN , Z̈lN , LlN , and L̈lN

as in Section 7.1. We can interpret the pull-backs to Z̈lN of

(1) the algebraic section slN ∈ Γ (ZlN ,LlN |ZlN
) of Lemma 7.1, and

(2) the theta trivialisation τlN ∈ Γ
(
ŸlN , L̈lN

)
after Lemma 7.1.

as morphisms

suN , s
t
N : OZ̈lN

→ L̈lN |Z̈lN

in F
v
respectively. For A ∈ Ob(F

v
), let Abirat denote the image of A in the birationalisation

F
v
→ (F

v
)birat (Definition 8.4 (2)). Then, by definition, we have

suN ◦ (stN)−1 = Θ̈
1/N ∈ O×

(
Obirat

Z̈lN

)
for an N -th root of Θ̈, where Θ̈ := Θ̈1/l is a l-th root of the theta function Θ̈ ([EtTh, Propo-

sition 5.2 (i)]), as in Section 7.1 (See also the claim (7.2)). Let H(Z̈lN) (⊂ AutDv(Z̈lN)) de-

note the image of Πtemp

Ÿ
under the surjective outer homomorphism Πtemp

X
v
� AutDv(Z̈lN), and
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H(OZ̈lN
) (⊂ AutF

v
(OZ̈lN

)/O×(OZ̈lN
)) (resp. H(L̈lN |Z̈lN

) (⊂ AutF
v
(L̈lN |Z̈lN

)/O×(L̈lN |Z̈lN
)) ) the

inverse image of H(Z̈lN) of the natural injection AutF
v
(OZ̈lN

)/O×(OZ̈lN
) ↪→ AutDv(Z̈lN) (resp.

AutF
v
(L̈lN |Z̈lN

)/O×(L̈lN |Z̈lN
) ↪→ AutDv(Z̈lN)):

Πtemp
X

v

// // AutDv(Z̈lN) AutF
v
(OZ̈lN

)/O×(OZ̈lN
) (resp. AutF

v
(L̈lN |Z̈lN

)/O×(L̈lN |Z̈lN
) )? _oo

Πtemp

Ÿ
// //

?�

OO

H(Z̈lN)
?�

OO

H(OZ̈lN
) (resp. H(L̈lN |Z̈lN

) ).? _=oo
?�

OO

Note that we have natural isomorphisms H(OZ̈lN
) ∼= H(Z̈lN) ∼= H(L̈lN |Z̈lN

). Choose a section

of AutF
v
(OZ̈lN

)� AutDv(Z̈lN), which gives us a homomorphism

strivN : H(OZ̈lN
)→ AutF

v
(OZ̈lN

).

Then, by taking the group actions of H(L̈lN |Z̈lN
) on suN , and s

t
N (cf. the actions of Πtemp

Ÿ
on sN

and τN in Section 7.1), we have unique groups homomorphisms

su-gpN , st-gpN : H(L̈lN |Z̈lN
)→ AutF

v
(L̈lN |Z̈lN

),

which make diagrams

OZ̈lN

suN //

(strivN |L̈lN )(h)

��

L̈lN |Z̈lN

su-gp
N (h)

��

OZ̈lN

suN // L̈lN |Z̈lN
,

OZ̈lN

stN //

(strivN |L̈lN )(h)

��

L̈lN |Z̈lN

st-gp
N (h)

��

OZ̈lN

stN // L̈lN |Z̈lN
,

commutative for any h ∈ H(L̈lN |Z̈lN
), where strivN |L̈lN is the composite of strivN with the natural

isomorphism H(L̈lN |Z̈lN
) ∼= H(OZ̈lN

). Then, the difference su-gpN ◦ (st-gpN )−1 gives us a 1-cocycle

H(L̈lN |Z̈lN
)→ µN(L̈lN |Z̈lN

), whose cohomology class in

H1(H(L̈lN |Z̈lN
), µN(L̈lN |Z̈lN

)) (⊂ H1(Πtemp

Ÿ
, µN(L̈lN |Z̈lN

)))

is, by construction, equal to the (mod N) Kummer class of an l-th root Θ̈ of the theta function,

and also equal to the η̈Θ modulo N constructed before Definition 7.14 under the natural iso-

morphisms l∆Θ ⊗ (Z/NZ) ∼= lµlN(L̈lN |Z̈lN
) ∼= µN(L̈lN |Z̈lN

) ([EtTh, Proposition 5.2 (iii)]). (See
also Remark 7.2.1.)
Note that the subquotients Πtemp

X � (Πtemp
X )Θ, l∆Θ ⊂ (Πtemp

X )Θ in Section 7.1 determine

subquotients AutDv(S)� AutΘDv
(S), (l∆Θ)S ⊂ AutΘDv

(S) for S ∈ Ob(Dv). As in Remark 7.6.3,

Remark 7.9.1, and Remark 7.15.1, by considering the zero-divisor and the pole-divisor (as
seen in this subsection too) of the normalised theta function Θ̈(

√
−1)−1Θ̈, we can category-

theoretically reconstruct the lZ × µ2-orbit of the theta classes of standard type with µN(−)-
coefficient ([EtTh, Theorem 5.7]). As in the case of the cyclotomic rigidity on mono-theta
environment (Theorem 7.23 (1)), by considering the difference of two splittings of the surjection
(l∆Θ)S[µN(S)] � (l∆Θ)S, we can category-theoretically reconstruct the cyclotomic rigidity
isomorphism

(Cyc.Rig. Frd) (l∆Θ)S ⊗ Z/NZ ∼→ µN(S) (= lµlN(S))
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for an object S of F
v
such that µlN(S) ∼= Z/lNZ, and (l∆Θ)S ⊗ Z/NZ ∼= Z/NZ as abstract

groups ([EtTh, Theorem 5.6]). We call this isomorphism the cyclotomic rigidity in tem-
pered Frobenioid.
Put (H(Z̈lN) ⊂) Im(Πtemp

Y ) (⊂ AutDv(Z̈lN)) to be the image of Πtemp
Y (Note that we used

Πtemp

Ÿ
in the definition of H(Z̈lN)) under the natural surjective outer homomorphism Πtemp

X
v
�

AutDv(Z̈lN), and

EN := su-gpN (Im(Πtemp
Y )) · µN(L̈lN |Z̈lN

) ⊂ AutF
v
(L̈lN |Z̈lN

).

Put also

EΠ
N := EN ×Im(Πtemp

Y ) Π
temp
Y ,

where the homomorphism Πtemp
Y � Im(Πtemp

Y ) is well-defined up to Πtemp
X -conjugate. Then,

the natural inclusions µN(L̈lN |Z̈lN
) ↪→ EN and Im(Πtemp

Y ) ↪→ EN induce an isomorphism of

topological groups

EΠ
N
∼→ Πtemp

Y [µN ].

Let (K×v )
1/N ⊂ O×((L̈lN |Z̈lN

)birat) denote the subgroup of elements whose N -th power is

in the image of the natural inclusion K×v ↪→ O×((L̈lN |Z̈lN
)birat), and we put (O×Kv

)1/N :=

(K×v )
1/N ∩ O×(L̈lN |Z̈lN

). Then, the set of elements of O×(L̈lN |Z̈lN
) which normalise the sub-

group EN ⊂ AutF
v
(L̈lN |Z̈lN

) is equal to the set of elements on which Πtemp
Y acts by multipli-

cation by an element of µN(L̈lN |Z̈lN
), and it is equal to (O×Kv

)1/N . Hence, we have a natural

outer action of (O×Kv
)1/N/µN(L̈lN |Z̈lN

)
∼→ O×Kv

on EN , and it extends to an outer action of

(K×v )
1/N/µN(L̈lN |Z̈lN

)
∼→ K×v on EN ([EtTh, Lemma 5.8]). On the other hand, by composing

the natural outer homomorphism Πtemp
X

v
� AutDv(Z̈lN) with s

u-gp
N , we obtain a natural outer ac-

tion lZ ∼→ Πtemp
X /Πtemp

Y → Out(EN). Let DF := 〈Im(K×v ), lZ〉 ⊂ Out(EΠ
N) denote the subgroup

generated by these outer actions of K×v and lZ.
We also note that st-gpN : H(L̈lN |Z̈lN

) → AutF
v
(L̈lN |Z̈lN

) factors through EN , and let st-ΠN :

Πtemp

Ÿ
→ EΠ

N denote the homomorphism induced by by taking (−) ×Im(Πtemp
Y ) Π

temp
Y to the

homomorphism H(L̈lN |Z̈lN
) → EN . Let sΘF denote the µN(L̈lN |Z̈lN

) -conjugacy classes of the

subgroup given by the image of the homomorphism st-ΠN .
Then, the triple

M(F
v
) := (EΠ

N ,DF , sΘF)

reconstructs a (mod N) mono-theta environment (We omitted the details here to verify that
this is indeed a “category-theoretic” reconstructions. In fact, in inter-universal Teichmüller
theory, for holomorphic Frobenioid theoretic objects, we can use “copies” of the model object
(category), instead of categories which are equivalent to the model object (category), and we
can avoid “category-theoretic reconstructions” See also [IUTchI, Remark 3.2.1 (ii)]). Hence,
we obtain:

Theorem 8.14. ([EtTh, Theorem 5.10], [IUTchII, Proposition 1.2 (ii)]) We have a category-
theoretic algorithm to reconstruct a (mod N) mono-theta environment M(F

v
) from a tempered

Frobenioid F
v
.

Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group (“Π 7→
M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered Frobenioid
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(“F 7→ M”). We relate group-theoretic constructions (étale-like objects) and Frobenioid-
theoretic constructions (Frobenius-like objects) by transforming them into mono-theta envi-
ronments (and by using Kummer theory, which is available by the cyclotomic rigidity of mono-
theta environment), in inter-universal Teichmüller theory, especially, in the construction of
Hodge-Arakelov theoretic evaluation maps:

†Πv 7−→ †M 7−→†F
v
.

See Section 11.2.

9. Preliminaries on NF-Counterpart of Theta Evaluation.

9.1. Pseudo-Monoids.

Definition 9.1. ([IUTchI, §0])
(1) A topological space P with a continuous map P × P ⊃ S → P is called a topological

pseudo-monoid if there exists a topological abelian group M (we write its group
operation multiplicatively) and an embedding ι : P ↪→ M of topological spaces such
that S = {(a, b) ∈ P × P | ι(a) · ι(b) ∈ ι(P ) ⊂ M} and the restriction of the group
operation M ×M →M to S gives us the given map S → P .

(2) If M is equipped with the discrete topology, we call P simply a pseudo-monoid.
(3) A pseudo-monoid is called divisible if there exist M and ι as above such that, for any

n ≥ 1 and a ∈ M , there exists b ∈ M with bn = a, and if, for any n ≥ 1 and a ∈ M ,
a ∈ ι(P ) if and only if an ∈ ι(P ).

(4) A pseudo-monoid is called cyclotomic if there exist M and ι as above such that, the
subgroup µM ⊂ M of torsion elements of M is isomorphic to Q/Z, and if µM ⊂ ι(P ),
µM · ι(P ) ⊂ ι(P ) hold.

(5) For a cyclotomic pseudo-monoid P , put µẐ(P ) := Hom(Q/Z, P ) and call it the cyclo-
tome of a cycltomic pseudo-monoid P .

Definition 9.2. ([IUTchI, Remark 3.1.7]) Let Fmod be a number field, and CFmod
= (EFmod

\
{O})//{±1} a semi-elliptic orbicurve (cf. Section 3.1) over Fmod which is an Fmod-core (Here,
the model EFmod

over Fmod is not unique in general). Let L be Fmod or (Fmod)v for some
place v of Fmod, and put CL := CFmod

×Fmod
L and let |CL| denote the coarse scheme of the

algebraic stack CL (which is isomorphic to the affine line over L), and |CL| the canonical smooth
compactification of |CL|. Let LC denote the function field of CL and take an algebraic closure
LC of LC . Let L be the algebraic closure of L in LC . We put

L• :=

{
Fmod if L = Fmod or L = (Fmod)v for v : non-Archimedean,

(Fmod)v if L = (Fmod)v for v : Archimedean,

and

UL :=

{
L
×

if L = Fmod,

O×
L

if L = (Fmod)v.

(1) A closed point of the proper smooth curve determined by some finite subextension of

LC ⊂ LC is called a critical point if it maps to a closed point of |CL| which arises from
one of the 2-torsion points of EFmod

.
(2) A critical point is called a strictly critical point if it does not map to the closed point

of |CL| which arises from the unique cusp of CL.
(3) A rational function f ∈ LC on LC is called κ-coric (κ stands for “Kummer”), if the

following conditions hold:
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(a) If f 6∈ L, then f has precisely one pole (of any order) and at least two distinct
zeroes over L.

(b) The divisor (f)0 of zeroes and the divisor (f)∞ of poles are defined over a finite
extension of L• and avoid the critical points.

(c) The values of f at any strictly critical point of |CL| are roots of unity.
(4) A rational function f ∈ LC is called ∞κ-coric, if there is a positive integer n ≥ 1 such

that fn is κ-coric.
(5) A rational function f ∈ LC is called ∞κ×-coric, if there is an element c ∈ UL such that

c · f is ∞κ-coric.

Remark 9.2.1. (1) A rational function f ∈ LC is κ-coric if and only if f is ∞κ-coric
(2) An ∞κ×-coric function f ∈ LC is ∞κ-coric if and only if the value at some strictly

critical point of the proper smooth curve determined by some finite subextension of
LC ⊂ LC containing f is a root of unity.

(3) The set of κ-coric functions (⊂ LC) forms a pseudo-monoid. The set of ∞κ-coric func-
tions (⊂ LC) and the set of ∞κ×-coric functions (⊂ LC) form divisible cyclotomic
pseudo-monoids.

9.2. Cyclotomic Rigidity via NF-Structure. Let F be a number field, l ≥ 5 a prime
number, XF = EF \ {O} a once-punctured elliptic curve, and Fmod(⊂ F ) the field of moduli
of XF . Put CF := XF//{±1}, and K := F (EF [l]). Let CK be a smooth log-orbicurve of
type (1, l-tors)± (See Definition 7.10) with K-core given by CK := CF ×F K. Note that CF
admits a unique (up to unique isomorphism) model CFmod

over Fmod, by the definition of Fmod

and K-coricity of CK . Note that CK determines an orbicurve XK of type (1, l-tors) (See
Definition 7.10).
Let †D} be a category, which is equivalent toD} := B(CK)

0. We have an isomorphism †Π} :=
π1(
†D}) ∼= ΠCK

(See Definition 6.1 (4) for π1((−)0)), well-defined up to inner automorphism.

Lemma 9.3. ([IUTchI, Remark 3.1.2] (i)) From †D}, we can group-theoretically reconstruct a
profinite group †Π}±(⊂ †Π}) corresponding to ΠXK

.

Proof. First, we can group-theoretically reconstruct an isomorph †∆} of ∆CK
from †Π}, by

Proposition 2.2 (1). Next, we can group-theoretically reconstruct an isomorph †∆}± of ∆XK

from †∆} as the unique torsion-free subgroup of †∆} of index 2. Thirdly, we can group-
theoretically reconstruct the decomposition subgroups of the non-zero cusps in †∆}± by Re-
mark 2.9.2 (Here, non-zero cusps can be group-theoretically grasped as the cusps whose inertia
subgroups are contained in †∆}±). Finally, we can group-theoretically reconstruct an isomorph
†Π}± of ΠXK

as the subgroup of †Π} generated by any of these decomposition groups and
†∆}±. �
Definition 9.4. ([IUTchI, Remark 3.1.2] (ii)) From †Π}(= π1(

†D})), instead of reconstructing
an isomorph of the function field of CK directly from †Π} by Theorem 3.17, we apply Theo-
rem 3.17 to †Π}± via Lemma 9.3 to reconstruct an isomorph of the function field of XK with
†Π}/†Π}±-action. We call this procedure the Θ-approach. We also write µΘ

Ẑ
(†Π}) to be the

cyclotome defined in Definition 3.13 which we think of as being applied via Θ-approach.

Later, we may also use Θ-approach not only to ΠCK
, but also ΠCv

, ΠX
v
, and ΠX−→v

(See

Section 10.1 for these objects). We will always apply Theorem 3.17 to these objects via Θ-
approach (As for ΠX

v
(resp. ΠX−→v

), see also Lemma 7.12 (resp. Lemma 7.25)).

Remark 9.4.1. ([IUTchI, Remark 3.1.2] (iii)) The extension

1→ ∆Θ → ∆Θ
X → ∆ell

X → 1
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in Section 7.1 gives us an extension class in

H2(∆ell
X ,∆Θ) ∼= H2(∆ell

X , Ẑ)⊗∆Θ
∼= Hom(µẐ(ΠX),∆Θ),

which determines an tautological isomorphism

µẐ(ΠX)
∼→ ∆Θ.

This also gives us

(Cyc.Rig.Ori. &Theta) µẐ(ΠX)
∼→ l∆Θ.

As already seen in Section 7, the cyclotome l∆Θ plays a central role in the theory of étale
theta function. In inter-universal Teichmüller theory, we need to use the above tautological
isormophism in the construction of Hodge-Arakelov theoretic evaluation map (See Section 11).

By applying Theorem 3.17 to †Π}(= π1(
†D})), via the Θ-approach (Definition 9.4), we can

group-theoretically reconstruct an isomorph

M~(†D})

of the field F with †Π}-action. We also put M~(†D}) := M~(†D})×, which is an isomorph of

F
×
. We can also group-theoretically reconstruct a profinite group †Π~(⊃ †Π}) corresponding

to ΠCFmod
, by a similar way (“Loc”) as in (Step 2) of the proof of Theorem 3.7 (We considered

“Π’s over G’s” in (Step 2) of the proof of Theorem 3.7, however, in this case, we consider “Π’s
without surjections to G’s”). Hence, we obtain a morphism

†D} → †D~ := B(†Π~)0,

which corresponding to CK → CFmod
. Then, the action of †Π} on M~(†Π}) naturally extends

to an action of †Π~. In a similar way, by using Theorem 3.17 (especially Belyi cuspidalisations),
we can group-theoretically reconstruct from †Π} an isomorph

(†Π~)rat (� †Π~)

of the absolute Galois group of the function field of CFmod
in a functorial manner. By using

elliptic cuspidalisations as well, we can also group-theoretically reconstruct from †Π} isomorphs

M~κ (†D}), M~∞κ(
†D}), M~∞κ×(

†D})
of the pseudo-monoids of κ-, ∞κ-, and ∞κ×- coric rational functions associated with CFmod

with natural (†Π~)rat-actions (Note that we can group-theoretically reconstruct evaluations at
strictly critical points).

Example 9.5. (Global non-Realified Frobenioid, [IUTchI, Example 5.1 (i), (iii)]) By using the

field structure on M~(†D}), we can group-theoretically reconstruct the set

V(†D})

of valuations on M~(†D}) with †Π~-action, which corresponds to V(F ). Note also that the set
†Vmod := V(†D})/†Π~, (resp. V(†D}) := V(†D})/†Π} )

of †Π~-orbits (resp. †Π}-orbits) of V(†D}) reconstructs Vmod (resp. V(K)), and that we have
a natural bijection

Prime(†F~mod)
∼→ †Vmod

(See Definition 8.13 for Prime(−)). Thus, we can also reconstruct the monoid

Φ~(†D~)(−)
on †D~, which associates to A ∈ Ob(†D~) the monoid Φ~(†D~)(A) of stack-theoretic (i.e.,
we are considering the coverings over the stack-theoretic quotient (SpecOK)//Gal(K/Fmod)(∼=
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SpecOFmod
)) arithmetic divisors on M~(†D})A (⊂ M~(†D})) with the natural homomorphism

M~(†D})A → Φ~(†D~)(A)gp of monoids. Then, these data (†D~,Φ~(†D~),M~(†D})(−) →
Φ~(†D~)(−)gp) determine a model Frobenioid

F~(†D})

whose base category is †D~. We call this a global non-realified Frobenioid.
Let †F~ be a pre-Frobenioid, which is isomorphic to F~(†D}). Suppose that we are given

a morphism †D} → Base(†F~) which is abstractly equivalent (See Section 0.2) to the natural
morphism †D} → †D~. We identify Base(†F~) with †D~ (Note that this identification is
uniquely determined by the Fmod-coricity of CFmod

and Theorem 3.17). Let

†F} := †F~|†D} (→ †F~)

denote the restriction of †F~ to †D} via the natural †D} → †D~. We also call this a global
non-realified Frobenioid. Let also

†F~mod := †F~|terminal object in †D~ (⊂ †F~)

denote the restriction of †F~ to the full subcategory consisting of the terminal object in †D~
(which corresponds to CFmod

). We also call this a global non-realified Frobenioid. Note that
the base category of †Fmod has only one object and only one morphism. We can regard †F~mod

as the Frobenioid of (stack-theoretic) arithmetic line bundles over (SpecOK)//Gal(K/Fmod) (∼=
SpecFmod). In inter-universal Teichmüller theory, we use the global non-realified Frobenioid
for converting �-line bundles into �-line bundles and vice versa (See Section 9.3 and Corol-
lary 13.13).

Definition 9.6. (∞κ-Coric and ∞κ×-Coric Structures, and Cyclotomic Rigidity via Q>0∩Ẑ× =
{1})

(1) (Global case, [IUTchI, Example 5.1 (ii), (iv), (v)]) We consider O×(OA) (which is iso-
morphic to the multiplicative group of non-zero elements of a finite Galois extension of
Fmod), varying Galois objects A ∈ Ob(†D~) (Here OA is a trivial line bundle on A. See
Definition 8.4 (1)). Then, we obtain a pair

†Π~ y †Õ~×

well-defined up to inner automorphisms of the pair arising from conjugation by †Π~.
For each p ∈ Prime(Φ†F~(OA)), where Φ†F~ denotes the divisor monoid of †F~, we
obtain a submonoid

†O�
p ⊂ †O×(Obirat

A ),

by taking the inverse image of p ∪ {0} ⊂ Φ†F~(OA) via the natural homomorphism
O×(Obirat

A ) → Φ†F~(OA)gp (i.e., the submonoid of integral elements of O×(Obirat
A ) with

respect to p). Note that the natural action of Aut†F~(OA) on O×(Obirat
A ) permutes the

O�
p ’s. For each p0 ∈ Prime(Φ†F~(OA0)), where A0 ∈ Ob(†D~) is the terminal object,

we obtain a closed subgroup
†Πp0 ⊂ †Π~

(well-defined up to conjugation) by varying Galois objects A ∈ Ob(†D~), and by con-
sidering the elements of Aut†F~(OA) which fix the submonoid †O�

p for system of p’s
lying over p0 (i.e., a decomposition group for some v ∈ V(Fmod)). Note that p0 is non-
Archimedean if and only if the p-cohomological dimension of †Πp0 is equal to 2 + 1 = 3
for inifinitely many prime numbers p (Here, 2 comes from the absolute Galois group of a
local field, and 1 comes from “∆-portion (or geometric portion)” of †Π~). By taking the
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completion of †O�
p with respect to the corresponding valuation, varying Galois objects

A ∈ Ob(†D~), and considering a system of p’s lying over p0, we also obtain a pair

†Πp0 y †Õ�

p̂0

of a toplogical group acting on an ind-topological monoid, which is well-defined up to
the inner automorphisms of the pair arising from conjugation by †Πp0 (since †Πp0 is
commensurably terminal in †Π~ (Proposition 2.7)).

Let
(†Π~)rat y †M~

denote the above pair (†Π~)rat y †Õ~×. Suppose that we are given isomorphs

(†Π~)rat y †M~∞κ, (†Π~)rat y †M~∞κ×

(Note that these are Frobenius-like object) of

(†Π~)rat y M~∞κ(
†D}) (†Π~)rat y M~∞κ×(

†D})
respectively (Note that these are étale-like object) as cyclotomic pseudo-monoids with
a continuous action of (†Π~)rat. We call such a pair an ∞κ-coric structure, and an

∞κ×-coric structure on †F~ respectively.
We recall that the étale-like objects M~∞κ(

†D}), and M~∞κ×(
†D}) are constructed as

subsets of ∞H
1((†Π~)rat, µΘ

Ẑ
(†Π})) := lim−→H⊂(†Π~)rat : open

H1(H,µΘ
Ẑ
(†Π})):

M~∞κ(
†D}) (resp. M~∞κ×(

†D}) ) ⊂ ∞H1((†Π~)rat, µΘ
Ẑ (
†Π})).

On the other hand, by taking Kummer classes, we also have natural injections
†M~∞κ ⊂ ∞H1((†Π~)rat, µẐ(

†M~∞κ)),
†M~∞κ× ⊂ ∞H1((†Π~)rat, µẐ(

†M~∞κ×)),

where ∞H
1((†Π~)rat,−) := lim−→H⊂(†Π~)rat : open

H1(H,−). (The injectivity follows from

the corresponding injectivity for M~∞κ(
†D}) and M~∞κ×(

†D}) respectively.) Recall that

the isomorphisms between two cyclotomes form a Ẑ×-torsor, and that κ-coric functions
distinguish zeroes and poles (since it has precisely one pole (of any order) and at least

two zeroes). Hence, by (Q⊗ Ẑ ⊃)Q>0 ∩ Ẑ× = {1}, there exist unique isomorphisms

(Cyc.Rig.NF1) µΘ
Ẑ (
†Π})

∼→ µẐ(
†M~∞κ), µΘ

Ẑ (
†Π})

∼→ µẐ(
†M~∞κ×)

characterised as the ones which induce Kummer isomorphisms

†M~∞κ

Kum
∼−→M~∞κ(

†D}), †M~∞κ×

Kum
∼−→M~∞κ×(

†D})

respectively. In a similar manner, for the isomorph †Π} y †M~ of †Π} y Õ~×, there
exists a unique isomorphism

(Cyc.Rig.NF2) µΘ
Ẑ (
†Π})

∼→ µẐ(
†M~)

characterised as the one which induces a Kummer isomorphism

†M~
Kum
∼−→M~(†D})

between the direct limits of cohomology modules described in (Step 4) of Theorem 3.17,
in a fashion which is compatible with the integral submonoids “O�

p ”. We call the isomor-

phism (Cyc.Rig.NF2) the cyclotmoic rigidity via Q>0 ∩ Ẑ× = {1} (See [IUTchI,
Example 5.1 (v)]). By the above discussions, it follows that †F~ always admits an

∞κ-coric and an ∞κ×-coric structures, which are unique up to uniquely determined iso-
morphisms of pseudo-monoids with continuous actions of (†Π~)rat respectively. Thus, we
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regard †F~ as being equipped with these uniquely determined ∞κ-coric and ∞κ×-coric
structures without notice. We also put

M~mod(
†D}) := (M~(†D}))(†Π~)rat , †M~mod := (†M~)(†Π~)rat ,

M~κ (†D}) := (M~∞κ(
†D}))(†Π~)rat , †M~κ := (†M~∞κ)

(†Π~)rat ,

where (−)(†Π~)rat denotes the (†Π~)rat-invariant part.
(2) (Local non-Archimedean case, [IUTchI, Definition 5.2 (v), (vi)]) For v ∈ Vnon, let †Dv

be a category equivalent to Btemp(X
v
)0 (resp. B(X−→v

)0) over a finite extension Kv of Qpv ,

where X
v
(resp. X−→v

) is a hyperbolic orbicurve of type (1, (Z/lZ)Θ) (Definition 7.13)

(resp. of type (1, l-tors−−→) (Definition 7.24)) such that the field of moduli of the hyperbolic

curve “X” of type (1, 1) in the start of the definition of hyperbolic orbicurve of type
(1, (Z/lZ)Θ) (resp. of type (1, l-tors−−→)) is a number field Fmod. By Corollary 3.19, we

can group-theoretically reconstruct an isomorph
†Πv y Mv(

†Dv)
of Πtemp

X
v

y O�

Kv
(resp. ΠX−→v

y O�

Kv
) from †Πv := π1(

†Dv).
Let v ∈ Vmod = V(Fmod) be the valuation lying under v. From †Πv, we can group-

theoretically reconstruct a profinite group †Πv corresponding to C(Fmod)v by a similar

way (“Loc”) as in (Step 2) of the proof of Theorem 3.7. Let
†Dv

denote B(†Πv)
0. We have a natural morphism †Dv → †Dv (This corresponds to X

v
→

C(Fmod)v (resp. X−→v
→ C(Fmod)v)). In a similar way, by using Theorem 3.17 (especially

Belyi cuspidalisations), we can group-theoretically reconstruct from †Πv an isomorph

(†Πv)
rat (� †Πv)

of the absolute Galois group of the function field of C(Fmod)v in a functorial manner. By
using elliptic cuspidalisations as well, we can also group-theoretically reconstruct, from
†Πv, isomorphs

Mκv(
†Dv), M∞κv(

†Dv), M∞κ×v(
†Dv)

of the pseudo-monoids of κ-, ∞κ-, and ∞κ×- coric rational functions associated with
C(Fmod)v with natural (†Πv)

rat-actions (Note that we can group-theoretically reconstruct
evaluations at strictly critical points).

Let †Fv be a pre-Frobenioid isomorphic to the pv-adic Frobenioid Cv = (F
v
)base-field in

Example 8.8 (resp. to the pv-adic Frobenioid Cv in Example 8.7) whose base category
is equal to †Dv. Let

(†Πv)
rat y †Mv

denote an isomorph of (†Πv)
rat y Mv(

†Dv) determined by †Fv. Suppose that we are
given isomorphs

(†Πv)
rat y †M∞κv, (†Πv)

rat y †M∞κ×v

(Note that these are Frobenius-like object) of

(†Πv)
rat y M∞κv(

†Dv), (†Πv)
rat y M∞κ×v(

†Dv)
(Note that these are étale-like objects) as cyclotomic pseudo-monoids with a continuous
action of (†Πv)

rat. We call such pairs an ∞κ-coric structure, and an ∞κ×-coric
structure on †Fv respectively.
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We recall that the étale-like objectsM∞κv(
†Dv), M∞κ×v(

†Dv) is constructed as subsets
of ∞H

1((†Πv)
rat, µΘ

Ẑ
(†Πv)) := lim−→H⊂(†Πv)rat : open

H1(H,µΘ
Ẑ
(†Πv)):

M∞κv(
†Dv) (resp. M∞κ×v(

†Dv) ) ⊂ ∞H1((†Πv)
rat, µΘ

Ẑ (
†Πv)).

On the other hand, by taking Kummer classes, we also have natural injections
†M∞κv ⊂ ∞H1((†Πv)

rat, µẐ(
†M∞κv)),

†M~∞κ× ⊂ ∞H1((†Πv)
rat, µẐ(

†M∞κ×v)).

(The injectivity follows from the corresponding injectivity forM∞κv(
†Dv) andM∞κ×v(

†Dv)
respectively.) Recall that the isomorphisms between two cyclotomes form a Ẑ×-torsor,
and that κ-coric functions distinguish zeroes and poles (since it has precisely one pole

(of any order) and at least two zeroes). Hence, by (Q ⊗ Ẑ ⊃)Q>0 ∩ Ẑ× = {1}, there
exist unique isomorphisms

(Cyc.Rig.NF3) µΘ
Ẑ (
†Πv)

∼→ µẐ(
†M∞κv), µΘ

Ẑ (
†Πv)

∼→ µẐ(
†M∞κ×v)

characterised as the ones which induce Kummer isomorphisms

†M∞κv

Kum
∼−→M∞κv(

†Dv), †M∞κ×v

Kum
∼−→M∞κ×v(

†Dv)
respectively. In a similar manner, for the isomorph †Πv y †Mv of †Πv y Mv(

†Dv),
there exists a unique isomorphism

(Cyc.Rig.NF4) µΘ
Ẑ (
†Πv)

∼→ µẐ(
†Mv)

characterised as the one which induces a Kummer isomorphism

†Mv

Kum
∼−→Mv(

†Dv)
between the direct limits of cohomology modules described in (Step 4) of Theorem 3.17.

We also call the isomorphism (Cyc.Rig.NF4) the cyclotmoic rigidity via Q>0∩Ẑ× =
{1} (See [IUTchI, Definition 5.2 (vi)]). By the above discussions, it follows that †Fv
always admits an ∞κ-coric and ∞κ×-coric structures, which are unique up to uniquely
determined isomorphisms of pseudo-monoids with continuous actions of (†Πv)

rat respec-
tively. Thus, we regard †Fv as being equipped with these uniquely determined ∞κ-coric
and ∞κ×-coric structures without notice. We also put

Mκv(
†Dv) := (M∞κv(

†Dv))(
†Πv)rat , †Mκv := (†M∞κv)

(†Πv)rat ,

where (−)(†Πv)rat denotes the (†Πv)
rat-invariant part.

(3) (Local Archimedean case, [IUTchI, Definition 5.2 (vii), (viii)]) For v ∈ Varc, let †Dv be an
Aut-holomorphic orbispace isomorphic to the Aut-holomorphic orbispace X−→v

associated

to X−→v
, where X−→v

is a hyperbolic orbicurve of type (1, l-tors−−→) (Definition 7.24) such that

the field of moduli of the hyperbolic curve “X” of type (1, 1) in the start of the definition
of hyperbolic orbicurve of type (1, l-tors−−→) is a number field Fmod.

Let v ∈ Vmod = V(Fmod) be the valuation lying under v. By Proposition 4.5, we can
algorithmically reconstruct an isomorph

†Dv
of the Aut-holomorphic orbispace Cv associated with C(Fmod)v from †Dv. We have a
natural morphism †Dv → †Dv (This corresponds to X−→v

→ C(Fmod)v . Note that we have

a natural isomorphism Aut(†Dv)
∼→ Gal(Kv/(Fmod)v) (⊂ Z/2Z), since CK is a K-core.

Put
†Drat

v := lim←−(
†Dv \ Σ) (→ †Dv),
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where we choose a projective system of (†Dv \ Σ)’s which arise as universal covering
spaces of †Dv with Σ ⊃ {strictly critical points}, #Σ < ∞ (See Definition 9.2 for
strictly critical points). Note that †Drat

v is well-defined up to deck transformations over
†Dv. Let

Mv(
†Dv) ⊂ A†Dv

denote the topological submonoid of non-zero elements with norm ≤ 1 (which is an

isomorph of O�
C ) in the topological field A†Dv (See Proposition 4.5 for A†Dv). By using

elliptic cuspidalisations, we can also algorithmically reconstruct, from †Dv, isomorphs

Mκv(
†Dv), M∞κv(

†Dv), M∞κ×v(
†Dv) (⊂ Homco-hol(

†Drat
v ,Mv(

†Dv)gp) )
of the pseudo-monoids of κ-, ∞κ-, and ∞κ×- coric rational functions associated with
C(Fmod)v as sets of morphisms of Aut-holomorphic orbispaces from †Drat

v to Mv(
†Dv)gp(=

A†Dv) which are compatible with the tautological co-holomorphicisation (Recall that

A†Dv has a natural Aut-holomorphic structure and a tautological co-holomorphicisation
(See Definition 4.1 (5) for co-holomorphicisation)).

Let †Fv = (†Cv, †Dv, †κv : O�(†Cv) ↪→ A†Dv) be a triple isomorphic to the triple
(Cv,Dv, κv) in Example 8.11, where the second data is equal to the above †Dv. Put

†Mv := O�(†Cv).
Then, the Kummer structure †κv gives us an isomorphism

†κv :
†Mv

Kum
∼→ Mv(

†Dv)
of topological monoids, which we call a Kummer isomorphism. We can algorithmi-
cally reconstruct the pseudo-monoids

†M∞κv,
†M∞κ×v

of ∞κ-coric and ∞κ×-coric rational functions associated to C(Fmod)v as the sets of maps

†Drat
v −→Mv(

†Dv)gp
∐

†Mgp
v (disjoint union)

which send strictly critical points to †Mgp
v , otherwise to Mv(

†Dv)gp, such that the com-

posite †Drat
v →Mv(

†Dv)gp
∐ †Mgp

v

id
∐

((†κv)gp)−1

−−−−−−−−−→Mv(
†Dv)gp is an element ofM∞κv(

†Dv),
M∞κ×v(

†Dv) respectively. We call them an ∞κ-coric structure, and an ∞κ×-coric
structure on †Fv respectively. Note also that †Mκv(⊂ †M∞κv) can be reconstructed as
the subset of the maps which descend to some †Dv \ Σ in the projective limit of †Drat

v ,

and are equivariant with the unique embedding Aut(†Dv) ↪→ Aut(A†Dv). Hence, the
Kummer structure †κv in

†Fv determines tautologically isomorphisms

†Mκv

Kum
∼−→Mκv(

†Dv), †M∞κv

Kum
∼−→M∞κv(

†Dv), †M∞κ×v

Kum
∼−→M∞κ×v(

†Dv)
of pseudo-monoids, which we also call Kummer isomorphisms.

Remark 9.6.1. (Mono-Anabelian Transport) The technique of mono-anabelian transport
is one of the main tools of reconstructing an alien ring structure in a scheme theory from another
(after admitting mild indeterminacies). In this occasion, we explain it.
Let †Π, ‡Π be profinite groups isomorphic to ΠX , where X is a hyperbolic orbicurve of strictly

Belyi type over non-Archimedean local field k (resp. isomorphic to ΠCK
as in this section).

Then, by Corollary 3.19 (resp. by Theorem 3.17 as mentioned in this subsection), we can group-
theoretically construct isomorphs O�(†Π), O�(‡Π) (resp. M~(†Π), M~(‡Π)) of O�

k
(resp. F )
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with †Π-, ‡Π-action from the abstract topological groups †Π, ‡Π respectively (These are étale-
like objects). Suppose that we are given isomorphs †O�, ‡O� (resp. †M~, ‡M~) of O�(†Π),
O�(‡Π) (resp. M~(†Π), M~(‡Π)) respectively (This is a Frobenius-like object), and that an
isomorphism †Π ∼= ‡Π of topological groups. The topological monoids †O� and ‡O� (resp. the
multiplicative groups †M~ and ‡M~ of fields) are a priori have no relation to each other, since
an “isomorph” only means an isomorphic object, and an isomorphism is not specified. However,
we can canonically relate them, by using the Kummer theory (cf. the Kummer isomorphism in
Remark 3.19.2), which is available by relating two kinds of cyclotomes (i.e., cyclotomes arisen
from Frobenius-like object and étale-like object) via the cyclotomic rigidity via LCFT (resp.

via Q>0 ∩ Ẑ× = {1}):

(†Π y †O�)
Kummer
∼−→ (†Π y O�(†Π))

induced by∼=
†Π∼=‡Π

(‡Π y O�(‡Π))
Kummer
∼←− (‡Π y †O�)

Frobenius-like étale-like étale-like Frobenius-like

(resp.

(†Π y †M~)
Kummer
∼−→ (†Π y M~(†Π))

induced by∼=
†Π∼=‡Π

(‡Π y M~(‡Π))
Kummer
∼←− (‡Π y †M~)

Frobenius-like étale-like étale-like Frobenius-like).

In short,

†Π ∼= ‡Π, (†Π y †M~) no relation←→
a priori

(‡Π y ‡M~)

mono-anabelian⇒
transport

(†Π y †M~)
canonically∼= (‡Π y ‡M~),

cyclotomic rigidity
makes available⇒ Kummer theory

applied⇒ mono-anabelian transport.

This technique is called the mono-anabelian transport.

Remark 9.6.2. (differences between three cyclotomic rigidities) We already met three kinds
of cyclotomic rigidities: the cyclotomic rigidity via LCFT (Cyc.Rig. LCFT2) in Remark 3.19.2,

of mono-theta environment (Cyc.Rig.Mono-Th.) in Theorem 7.23 (1), and via Q>0 ∩ Ẑ× =
{1} (Cyc.Rig.NF2) in Definition 9.6:

µẐ(Gk)
∼→ µẐ(M), †(l∆Θ)⊗ Z/NZ ∼→ µN(

†(l∆Θ[µN ])), µΘ
Ẑ (
†Π})

∼→ µẐ(
†M~).

In inter-universal Teichmüller theory, we use these three kinds of cyclotomic rigidities to three
kinds of Kummer theory respectively, and they correspond to three portions of Θ-links, i.e.,

(1) we use the cyclotomic rigidity via LCFT (Cyc.Rig. LCFT2) for the constant monoids
at local places in Vgood ∩ Vnon, which is related with the unit (modulo torsion) portion
of the Θ-links,

(2) we use the cyclotomic rigidity of mono-theta environment (Cyc.Rig.Mono-Th.) for the
theta functions and their evaluations at local places in Vbad, which is related with the
value group portion of the Θ-links, and

(3) we use the cyclotomic rigidity of via Q>0∩Ẑ× = {1} (Cyc.Rig.NF2) for the non-realified
global Frobenioids, which is related with the global realified portion of the Θ-links.

We explain more.



138 GO YAMASHITA

(1) In Remark 9.6.1, we used †O�(∼= O�

k
) and as examples to explain the technique of

mono-anabelian transport. However, in inter-universal Teichmüller theory, the mono-
anabelian transport using the cyclotomic rigidity via LCFT is useless in the important
situation i.e., at local places in Vbad (However, we use it in the less important situation
i.e., at local places in Vgood ∩ Vnon), because the cyclotomic rigidity via LCFT uses
essentially the value group portion in the construction, and, at places in Vbad in inter-
universal Teichmüller theory, we deform the value group portion in Θ-links! Since the
value group portion is not shared under Θ-links, if we use the cyclotomic rigidity via
LCFT for the Kummer theory for theta functions/theta values at places in Vbad in
a Hodge theatre, then the algorithm is only valid with in the same Hodge theatre,
and we cannot see it from another Hodge theatre (i.e., the algorithm is uniradial.
(See Remark 11.4.1, Proposition 11.15 (2), and Remark 11.17.2 (2)). Therefore, the
cyclotomic rigidity via LCFT is not suitable at local places in Vbad, which deforms the
value group portion.

(2) Instead, we use the cyclotomic rigidity via LCFT at local places in Vgood∩Vnon. In this
case too, only the unit portion is shared in Θ-links, and the value group portion is not
shared (even though the value group portion is not deformed in the case of Vgood∩Vnon),

thus, we ultimately admit Ẑ×-indeterminacy to make an algorithm multiradial (See
Definition 11.1 (2), Example 11.2, and Appendix A.4. See also Remark 11.4.1, and
Proposition 11.5). Mono-analytic containers, or local log-volumes in algorithms have no

effect by this Ẑ×-indeterminacy.
(3) In Vbad, we use the cyclotomic rigidity of mono-theta environment for the Kummer

theory of theta functions (See Proposition 11.14, and Theorem 12.7). The cyclotomic
rigidity of mono-theta environment only uses µN -portion, and does not use the value
group portion! Hence, the Kummer theory using the cyclotomic rigidity of mono-theta
environment in a Hodge theatre does not harm/affect the ones in other Hodge theatres.
Therefore, these things make algorithms using the cyclotomic rigidity of mono-theta
environment multiradial (See also Remark 11.4.1).

(4) In Remark 9.6.1, we used †M~(∼= F
×
) and as examples to explain the technique of

mono-anabelian transport. However, in inter-universal Teichmüller theory, we cannot

transport †M~(∼= F
×
) by the technique of the mono-anabelian transport by the following

reason (See also [IUTchII, Remark 4.7.6]): In inter-universal Teichmüller theory, we
consider ΠCF

as an abstract topological group. This means that the subgroups ΠCK
,

ΠXK
are only well-defined up to ΠCF

-conjugacy, i.e., the subgroups ΠCK
, ΠXK

are only
well-defined up to automorphisms arising from their normalisers in ΠCF

. Therefore,
we need to consider these groups ΠCK

, ΠXK
as being subject to indeterminacies of

F>
l -poly-actions (See Definition 10.16). However, F>

l non-trivially acts on †M~(∼= F
×
).

Therefore, †M~(∼= F
×
) is inevitablyy subject to F>

l -indeterminacies. Instead of †M~(∼=
F
×
), we can transport the †Π~-invariant part †Mmod := (†M~)†Π~

(∼= F×mod), since F>
l

trivially poly-acts on it, and there is no F>
l -indeterminacies (See also Remark 11.22.1).

(5) Another important difference is as follows: The cyclotomic rigidity via LCFT and of
mono-theta environment are compatible with the profinite topology, i.e., it is the pro-
jective limit of the “mod N” levels. On the other hand, the cyclotomic rigidity via

Q>0 ∩ Ẑ× = {1} is not compatible with the profinite topology, i.e., it has no such “mod

N” levels. In the Kummer tower (k̂× =) lim←−(k
× ← k× ← · · · ), we have the field struc-

tures on each finite levels k×(∪{0}), however, we have no field structure on the limit

level k̂×. On the other hand, the logarithm “
∑

n
xn

n
” needs field structure. Hence, we

need to work in “mod N” levels to construct log-links, and the Kummer theory using the
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cyclotomic rigidity via Q>0 ∩ Ẑ× = {1} is not compatible with the log-links. Therefore,
we cannot transport global non-realified Frobenioids under log-links. On the realified
Frobenioids, we have the compatibility of the log-volumes with log-links (i.e., the for-
mulae (5.1) and (5.2) in Proposition 5.2 and Proposition 5.4 respectively). (Note that
N -th power maps are not compatible with addtions, hence, we caanot work in a single
scheme theoretic basepoint over both the domain and the codomain of Kummer N -th
power map. This means that we should work with different scheme theoretic basepoints
over both the domain and the codomain of Kummer N -th power map, hence the “iso-
morphism class compatibility” i.e., the compatibility with the convention that various
objects of the tempered Frobenioids are known only up to isomorphism, is crucial here
(cf. [IUTchII, Remark 3.6.4 (i)], [IUTchIII, Remark 2.1.1 (ii)]) (This is also related to
Remark 13.13.3 (2b))).

Cyclotomic rigidity via LCFT of mono-theta env. via Q>0 ∩ Ẑ× = {1}

Related Component units value group global realified

of Θ-links modulo torsion (theta values) component

Radiality uniradial or multiradial multiradial

multiradial up to Ẑ×-indet.

Compatibility with compatible compatible incompatible

profinite top.

9.3. �-line bundles, and �-line bundles. We continue to use the notation in the previous
section. Moreover, we assume that we are given a subset V ⊂ V(K) such that the natural

surjection V(K) � V(Fmod) induces a bijection V ∼→ V(Fmod) (Note that, as we will see
in the following definitions, we are regarding V as an “analytic section” of the morphism
SpecOK � SpecOFmod

). Put Vnon := V ∩ V(K)non and Varc := V ∩ V(K)arc.

Definition 9.7. ([IUTchIII, Example 3.6]) Let F~mod (i.e., without “†”) denote the global non-
realified Frobenioid which is constructed by the model D(CK)

0 (i.e., without “†”).

(1) (�-line bundle) A�-line bundle on (SpecOK)//Gal(K/Fmod) is a data L� = (T, {tv}v∈V),
where
(a) T is an F×mod-torsor, and
(b) tv is a trivialisation of the torsor Tv := T ⊗F×

mod
(K×v /O

×
Kv

) for each v ∈ V, where
F×mod → K×v /O

×
Kv

is the natural group homomorphism,

satisfying the condition that there is an element t ∈ T such that tv is equal to the
trivialisation determined by t for all but finitely many v ∈ V. We can define a tensor
product (L�)⊗n of a �-line bundle L� for n ∈ Z in an obvious manner.

(2) (morphism of �-line bundles) Let L�1 = (T1, {t1,v}v∈V), L�2 = (T2, {t2,v}v∈V) be �-line
bundles. An elementary morphism L�1 → L�2 of �-line bundles is an isomorphism
T1

∼→ T2 of F
×
mod-torsors which sends the trivialisation t1,v to an element of the O�

Kv
-orbit

of t2,v (i.e., the morphism is integral at v) for each v ∈ V. A morphism of �-line
bundles from L�1 to L�2 is a pair of a positive integer n ∈ Z>0 and an elementary
morphism (L�1 )⊗n → L�2 . We can define a composite of morphisms in an obvious
manner. Then, the �-line bundles on (SpecOK)//Gal(K/Fmod) and the morphisms
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between them form a category (in fact, a Frobenioid)

F~MOD.

We have a natural isomorphism

F~mod
∼→ F~MOD

of (pre-)Frobenioids, which induces the identity morphism F×mod → F×mod on Φ((−)birat).
Note that the category F~MOD is defined by using only the multiplicative (�) structure.

(3) (�-line bundle) A �-line bundle on (SpecOK)//Gal(K/Fmod) is a data L� = {Jv}v∈V,
where Jv ⊂ Kv is a fractional ideal for each v ∈ V (i.e., a finitely generated non-zero
OKv -submodule of Kv for v ∈ Vnon, and a positive real multiple of OKv for v ∈ Varc

(See Section 0.2 for OKv)) such that Jv = OKv for finitely many v ∈ V. We can define

a tensor product (L�)⊗n of a �-line bundle L� for n ∈ Z in an obvious manner.
(4) (morphism of �-line bundles) Let L�1 = {J1,v}v∈V, L�2 = {J2,v}v∈V be �-line bundles.

An elementary morphism L�1 → L�2 of �-line bundles is an element f ∈ F×mod such
that f · J1,v ⊂ J2,v (i.e., f is integral at v) for each v ∈ V. A morphism of �-line
bundles from L�1 to L�2 is a pair of a positive integer n ∈ Z>0 and an elementary
morphism (L�1 )⊗n → L�2 . We can define a composite of morphisms in an obvious
manner. Then, the �-line bundles on (SpecOK)//Gal(K/Fmod) and the morphisms
between them form a category (in fact, a Frobenioid)

F~mod.

We have a natural isomorphism

F~mod
∼→ F~mod

of (pre-)Frobenioids, which induces the identity morphism F×mod → F×mod on Φ((−)birat).
Note that the category F~mod is defined by using both of the multiplicative (�) and the
additive (�) structures.

Hence, by combining the isomorphisms, we have a natural isomorphism

(Convert) F~mod
∼→ F~MOD

of (pre-)Frobenioids, which induces the identity morphism F×mod → F×mod on Φ((−)birat).

10. Hodge Theatres.

In this section, we construct Hodge theatres after fixing an initial Θ-data (Section 10.1).
More precisely, we construct Θ±ellNF-Hodge theatres (In this survey, we call them ��-Hodge
theatres). We can consider Z/lZ as a finite approximation of Z for l >> 0 (Note also that
we take l >> 0 approximately of order of a value of height function. See Section ). Then,
we can consider F>

l and Fo±
l as a “multiplicative finite approximation” and an “additive finite

approximation” of Z respectively. Moreover, it is important that two operations (multiplication
and addition) are separated in “these finite approximations” (See Remark 10.29.2). Like Z/lZ
is a finite approximation of Z (Recall that Z = Gal(Y/X)), a Hodge theatre, which consists
of various data involved by X

v
, X−→v

, CK and so on, can be seen as a finite approximation of

upper half plane.
Before preceeding to the detailed constructions, we briefly explain the structure of a Θ±ellNF-

Hodge theatre (or ��-Hodge theatre). A Θ±ellNF-Hodge theatre (or a ��-Hodge theatre) will
be obtained by “gluing” (Section 10.6)

• a ΘNF-Hodge theatre, which has a F>
l -symmetry, is related to a number field, of arith-

metic nature, and is used to Kummer theory for NF (In this survey, we call it a �-Hodge
theatre, Section 10.4) and
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• a Θ±ell-Hodge theatre, which has a Fo±
l -symmetry, is related to an elliptic curve, of

geometric nature, and is used to Kummer theory for Θ (In this survey, we call it a
�-Hodge theatre, Section 10.5).

Separating the multiplicative (�) symmetry and the additive (�) symmetry is also important
(See ****[IUTchII, Remark 4.7.3, Remark 4.7.6]).

ΘNF-Hodge theatre F>
l -symmetry (�) arithmetic nature Kummer theory for NF

Θ±ell-Hodge theatre Fo±
l -symmetry (�) geometric nature Kummer theory for Θ

As for the analogy with upper half plane, the multiplicative symmetry (resp. the additive
symmetry) corresponds to supersingular points of the reduction modulo p of modular curves
(resp. the cusps of the modular curves). See the following tables ([IUTchI, Fig. 6.4]):

�-symmetry Basepoint Functions

(cf.Remark 10.29.1) (cf.Corollary 11.23)

upper half plane z 7→ z cos(t)−sin(t)
z sin(t)+cos(t)

, z 7→ z cos(t)+sin(t)
z sin(t)−cos(t) supersingular pts. rat. fct. w = z−i

z+i

Hodge theatre F>
l -symm. F>

l y VBor elements of Fmod

�-symmetry Basepoint Functions

(cf.Remark 10.29.1) (cf.Corollary 11.21)

upper half plane z 7→ z + a, z 7→ −z + a cusp trans. fct. q = e2πi

Hodge theatre Fo±
l -symm. V± theta values {qj2

v
}1≤j≤l>

Coric symmetry (cf.Proposition 10.34 (3))

upper half plane z 7→ z,−z

Hodge theatre {±1}

These three kinds of Hodge theatres have base-Hodge theatres (like Frobenioids) respectively,
i.e., a Θ±ellNF-Hodge theatre (or a ��-Hodge theatre) has a base-Θ±ellNF-Hodge theatre (or
D-Θ±ellNF-Hodge theatre, or D-��-Hodge theatre), which is obtained by “gluing”

• a base-ΘNF-Hodge theatre (or D-ΘNF-Hodge theatre, or D-�-Hodge theatre) and
• a base-Θ±ell-Hodge theatre (or D-Θ±ell-Hodge theatre, or D-�-Hodge theatre).

A D-ΘNF-Hodge theatre (or D-�-Hodge theatre) consists

• of three portions
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– (local object) a holomorphic base-(or D-)prime-strip †D> = {†D>,v}v∈V, where
†D>,v is a category equivalent to B(X−→v

)0 for v ∈ Vgood ∩Vnon, or a category equiv-

alent to Btemp(X
v
)0 for v ∈ Vbad, or an Aut-holomorphic orbispace isomorphic to

X−→v
for v ∈ Varc (Section 10.3),

– (local object) a capsule †DJ = {†Dj}j∈J of D-prime-strips indexed by J (∼= F>
l )

(See Section 0.2 for the term “capsule”), and
– (global object) a category †D} equivalent to B(CK)

0,
• and of two base-bridges

– a base-(or D-)Θ-bridge †φΘ
>, which connects the capsule †DJ of D-prime-strips to

the D-prime-strip †D>, and
– a base-(or D-)NF-bridge †φNF

> , which connects the capsule †DJ of D-prime-strips
to the global object †D}.

Here, for a holomorphic base-(or D-)prime-strip †D = {†Dv}v∈V, we can associate its mono-
analyticisation (cf. Section 3.5) †D` = {†D`v }v∈V, which is a mono-analytic base-(or D`-)prime-
strip.
On the other hand, a D-Θ±ell-Hodge theatre (or D-�-Hodge theatre) similarly consists

• of three portions
– (local object) a D-prime-strip †D� = {†D�,v}v∈V,
– (local object) a capsule †DT = {†Dt}t∈T of D-prime-strips indexed by T (∼= Fl),
and

– (global object) a category †D}± equivalent to B(XK)
0,

• and of two base-bridges
– a base-(or D-)Θ±-bridge †φΘ±

± , which connects the capsule †DT of D-prime-strips
to the D-prime-strip †D�, and

– a base-(or D-)Θell-bridge †φΘell

± , which connects the capsule †DT of D-prime-strips
to the global object †D}±.

Hence, the structure of a D-Θ±ellNF-Hodge theatre (or D-��-Hodge theatre) is as follows (For
the torsor structures, Aut, and gluing see Proposition 10.20, Proposition 10.34, Lemma 10.38,
and Definition 10.39):

D-Θ±ellNF-HT

(Aut = {±1}) D-Θ±ell-HT †D�
gluing (>={0,�})

// †D> D-ΘNF-HT (Aut = {1})

�-Symm. (t ∈ T (∼= Fl)) †DT

gluing (J=(T\{0})/{±1})
//

D-Θ±-bridge †φΘ
±

± ({±1}×{±1}V -torsor)

OO

D-Θell-bridge †φΘ
ell

± (F±
l -torsor)

��

†DJ

†φΘ> D-Θ-bridge(rigid)

OO

†φNF
> D-NF-bridge(F>

l -torsor)

��

(j ∈ J (∼= F>
l )) �-Symm.

Geometric (XK  ) †D}± †D} (  CK) Arithmetic
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We can also draw a picture as follows (cf. [IUTchI, Fig. 6.5]):

D� = /±
>={0,�}⇒ D> = />

{±1}y DT = /±−l> · · · /
±
−1/

±
0 /
±
1 · · · /±l>

φΘ
±

±

OO

φΘ
ell

±
��

J=(T\{0})/{±1}⇒ DJ = />1 /
> · · · />l>

φΘ>

OO

φNF
>

��

Fo±
l y

±→±
↑ ↓
±←±

D}± = B(XK)
0 F>

l y
>→>
↑ ↓
>←>

D} = B(CK)
0,

where /’s express prime-strips.

These are base Hodge theatres, and the structure of the total space of Hodge theatres is as
follows: A ΘNF-Hodge theatre (or �-Hodge theatre) consists

• of five portions
– (local and global realified object) a Θ-Hodge theatre †HT Θ = ({†F

v
}v∈V, †Fmod),

which consists of
∗ (local object) a pre-Frobenioid †F

v
isomorphic to the pv-adic Frobenioid F

v

(Example 8.7) for v ∈ Vgood ∩ Vnon, or a pre-Frobenioid isomorphic to the
tempered Frobenioid F

v
for v ∈ Vbad (Example 8.8), or a triple †F

v
=

(†Cv, †Dv, †κv), isomorphic to the triple F
v
= (Cv,Dv, κv) (Example 8.11) of

the Archimedean Frobenioid Cv, the Aut-holomorphic orbispace Dv = X−→v

and its Kummer structure κv : O
�(Cv) ↪→ ADv for v ∈ Varc, and

∗ (global realified object with localisations) a quadruple
†Fmod = (†Cmod, Prime(†Cmod)

∼→ V, {†F`v }v∈V, {†ρ`v}v∈V) of a pre-Frobenioid

isomorphic to the global realified Frobenioid Cmod (Example 8.12), a bi-

jection Prime(†Cmod)
∼→ V, a mono-analytic Frobenioid-(or F`-)prime-strip

{†F`v }v∈V (See below), and global-to-local homomorphisms {†ρ`v}v∈V.
– (local object) a holomorphic Frobenioid-(or F-)prime-strip †F> = {†F>,v}v∈V, where
†F>,v is equalto the †Fv’s in the above Θ-Hodge theatre †HT Θ.

– (local object) a capsule †FJ = {†Fj}j∈J of F-prime-strips indexed by J (∼= F>
l ) (See

Section 0.2 for the term “capsule”),
– (global object) a pre-Frobenioid †F} isomorphic to the global non-realified Frobe-
nioid F}(†D}) (Example 9.5), and

– (global object) a pre-Frobenioid †F~ isomorphic to the global non-realified Frobe-
nioid F~(†D}) (Example 9.5).

• and of two bridges
– a Θ-bridge †ψΘ

> , which connects the capsule †FJ of prime-strips to the prime-strip
†F>, and to the Θ-Hodge theatre †F> 99K †HT Θ, and

– an NF-bridge †ψNF
> , which connects the capsule †FJ of prime-strips to the global

objects †F} 99K †F~.

and these objects are “lying over” the corresponding base objects.
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Here, for a holomorphic Frobenioid-(or F -)prime-strip †F = {†Fv}v∈V, we can algorithmically
associate its mono-analyticisation (cf. Section 3.5) †F` = {†F`v }v∈V, which is a mono-analytic

Frobenioid-(or F`-)prime-strip.
On the other hand, a Θ±ell-Hodge theatre (or �-Hodge theatre) similarly consists

• of three portions
– (local object) an F-prime-strip †F� = {†F�,v}v∈V,
– (local object) a capsule †FT = {†Ft}t∈T of F-prime-strips indexed by T (∼= Fl), and
– (global object) the same global object †D}± as in the D-�-Hodge theatre,

• and of two bridges
– a Θ±-bridge †ψΘ±

± , which connects the capsule †FT of prime-strips to the prime-strip
†F�, and

– a Θell-bridge †ψΘell

± is equal to the D-Θell-bridge †φΘell

± ,

and these objects are “lying over” the corresponding base objects.
Hence, the structure of a Θ±ellNF-Hodge theatre (or ��-Hodge theatre) is as follows (For

the torsor structures, Aut, and gluing see Lemma 10.25, Lemma 10.37, Lemma 10.38, and
Definition 10.39):

Θ±ellNF-HT †HT Θ

(Aut = {±1}) Θ±ell-HT †F�
gluing (>={0,�})

// †F>

F-prime-strip

OO

ΘNF-HT (Aut = {1})

�-Symm. (t ∈ T (∼= Fl)) †FT
gluing (J=(T\{0})/{±1})

//

Θ±-bridge †ψΘ±
± ({±1}×{±1}V -torsor)

OO

(†φΘ
ell

± :†DT→†D}±) Θell-bridge †ψΘell

± (F±
l -torsor)

��

†FJ

†ψΘ
> Θ-bridge(rigid)

OO

†ψNF
> NF-bridge(F>

l -torsor)

��

(j ∈ J (∼= F>
l )) �-Symm.

Geometric †D}± †F}

†D}→†D~
��

Arithmetic

Kummer for Θ †F~ Kummer for NF

10.1. Initial Θ-data.

Definition 10.1. We call a collection of data

(F/F, XF , l, CK , V, Vbad
mod, ε)

an initial Θ-data, if it satisfies the following conditions:

(1) F is a number field such that
√
−1 ∈ F , and F is an algebraic closure of F . We write

GF := Gal(F/F ).
(2) XF is a once-punctured elliptic curve over F , which admits stable reduction over all

v ∈ V(F )non. We write EF (⊃ XF ) for the elliptic curve over F obtaine by the smooth
compactification of XF . We also put CF := XF//{±1}, where “//” denotes the stack-
theoretic quotient, and −1 is the F -involution determined by the multiplication by −1
on EF . Let Fmod be the field of moduli (i.e., the field generated by the j-invariant of
EF over Q). We assume that F is Galois over Fmod of degree prime to l, and that
2 · 3-torsion points of EF are rational over F .
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(3) Vbad
mod ⊂ Vmod := V(Fmod) is a non-empty subset of Vnon

mod \ {v ∈ Vnon
mod | v | 2} such

that XF has bad (multiplicative in this case by the condition above) reduction at the

places of V(F ) lying over Vbad
mod. Put Vgood

mod := Vmod \ Vbad
mod (Note that XF may have

bad reduction at some places V(F ) lying over Vgood
mod ), V(F )bad := Vbad

mod×Vmod
V(F ), and

V(F )good := Vgood
mod ×Vmod

V(F ). We also put ΠXF
:= π1(XF ) ⊂ ΠCF

:= π1(CF ), and
∆XF

:= π1(XF ×F F ) ⊂ ∆CF
:= π1(CF ×F F ).

(4) l is a prime number ≥ 5 such that the image of the outer homomorphism GF → GL2(Fl)
determined by the l-torsion points of EF contains the subgroup SL2(Fl) ⊂ GL2(Fl). Put
K := F (EF [l]), which corresponds to the kernel of the above homomorphism (Thus,
since 3-torsion points of EF are rational, K is Galois over Fmod by Lemma 1.7 (4). We
also assume that l is not divisible by any place in Vbad

mod, and that l does not divide the
order (normalised as being 1 for a uniformiser) of the q-parameters of EF at places in
V(F )bad.

(5) CF is a hyperbolic orbicurve of type (1, l-tors)± (See Definition 7.10) overK withK-core
given by CK := CF ×F K (Thus, CK is determined, up to K-isomorphism, by CF by the
above (4)). Let XK be a hyperbolic curve of type (1, l-tors) (See Definition 7.10) over
K determined, up to K-isomorphism, by CK . Recall that we have uniquely determined
open subgroup ∆X ⊂ ∆C corresponding to the hyperbolic curve X

F
of type (1, l-torsΘ)

(See Definition 7.11), which is a finite étale covering of CF := CF×FF (See the argument

after Assumption (2) in Section 7.3, where the decomposition ∆X
∼= ∆

ell

X ×∆Θ does not
depend on the choice of ειX ).

(6) V ⊂ V(K) is a subset such that the composite V ⊂ V(K) � Vmod is a bijection, i.e.,
V is a section of the surjection V(K) � Vmod. Put Vnon := V ∩ V(K)non, Varc :=
V ∩ V(K)arc, Vgood := V ∩ V(K)good, and Vbad := V ∩ V(K)bad. For a place v ∈ V,
put (−)v := (−)F ×F Kv or (−)v := (−)K ×K Kv for the base change of a hyperbolic

orbicurve over F and K respectively. For v ∈ Vbad, we assume that the hyperbolic
orbicurve Cv is of type (1,Z/lZ)± (See Definition 7.13) (Note that we have “K = K̈”,

since 2-torsion points of EF are rational). For a place v ∈ V, it follows that X
F
×F F v

admits a natural model X
v
over Kv, which is hyperbolic curve of type (1, (Z/lZ)Θ) (See

Definition 7.13), where v is a place of F lying over v (Roughly speaking, X
v
is defined

by taking “l-root of the theta function”). For v ∈ Vbad, we write Πv := Πtemp
X

v
.

(7) ε is a non-zero cusp of the hyperbolic orbicurve CK . For v ∈ V, we write εv for the

cusp of Cv determined by ε. If v ∈ Vbad, we assume that εv is the cusp, which arises

from the canonical generator (up to sign) of Ẑ via the surjection ΠX � Ẑ determined
by the natural surjection Πtemp

X � Z (See Section 7.1 and Definition 7.13). Thus, the
data (XK := XF ×F K,CK , ε) determines a hyperbolic curve X−→K

of type (1, l-tors−−→) (See

Definition 7.24). For v ∈ Vgood, we write Πv := ΠX−→v
.

Note that CK and ε can be regarded as “a global multiplicative subspace and a canonical
generator up to {±1}”, which was one of main interests in Hodge-Arakelov theory (See Appen-
dix A). At first glance, they do not seem to be a global multiplicative subspace and a canonical
generator up to {±1}, however, by going outside the scheme theory (Recall we cannot obtain
(with finitely many exceptions) a global multiplicative subspace within a scheme theory), and
using mono-anabelian reconstructions, they behave as though they are a global multiplicative
subspace and a canonical generator up to {±1}.
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From now on, we take an initial Θ-data (F/F,XF , l, CK ,V,Vbad
mod, ε), and fix it until the end

of Section 13.

10.2. Model Objects. From now on, we often use the convention (cf. [IUTchI, §0]) that,
for categories C,D, we call any isomorphism class of equivalences C → D of categories an
isomorphism C → D (Note that this termniology differs from the standard terminology of
category theory).

Definition 10.2. (Local Model Objects, [IUTchI, Example 3.2, Example 3.3, Example 3.4])
For the fixed initial Θ-data, we define model objects (i.e., without “†”) as follows:

(1) (Dv : holomorphic, base) Let Dv denote the category Btemp(X
v
)0 of connected objects

of the connected temperoid Btemp(X
v
) for v ∈ Vbad, the category B(X−→v

)0 of connected

objects of the connected anabelioid B(X−→v
) for v ∈ Vgood∩Vnon, and the Aut-holomorphic

orbispace X−→v
associated with X−→v

for v ∈ Varc (See Section 4).

(2) (D`v :mono-analytic, base) Let D`v denote the category B(Kv)
0 of connected objects of

the connected anabelioid B(Kv) for v ∈ Vnon, and the split monoid (O�(C`v ), spl`v ) in

Example 8.11. We also put Gv := π1(D`v ) for v ∈ Vnon.

(3) (Cv : holomorphic, Frobenioid-theoretic) Let Cv denote the base-field-theoretic hull (Fv)
base-field

(with base category Dv) of the tempered Frobenioid F
v
in Example 8.8 for v ∈ Vbad,

the pv-adic Frobenioid Cv (with base category Dv) in Example 8.7 for v ∈ Vgood ∩Vnon,
and the Archimedean Frobenioid Cv (whose base category has only one object SpecKv

and only one morphism) in Example 8.11 for v ∈ Varc.
(4) (F

v
: holomorphic, Frobenioid-theoretic) Let F

v
denote the tempered Frobenioid F

v

(with base category Dv) in Example 8.8 for v ∈ Vbad, the pv-adic Frobenioid Cv (with

base category Dv) in Example 8.7 for v ∈ Vgood ∩Vnon, and the triple (Cv,Dv, κv) of the
Archimedean Frobenioid, the Aut-holomorphic orbispace, and the Kummer structure
κv : O

�(Cv) ↪→ ADv in Example 8.11 for v ∈ Varc.
(5) (C`v :mono-analytic, Frobenioid-theoretic) Let C`v denote the pv-adic Frobenioid C`v (with

base category D`v ) in Example 8.8 for v ∈ Vbad, the pv-adic Frobenioid C`v (with base

category D`v ) in Example 8.7 for v ∈ Vgood ∩ Vnon, and the Archimedean Frobenioid Cv
(whose base category has only one object SpecKv and only one morphism) in Exam-
ple 8.11 for v ∈ Varc.

(6) (F`v :mono-analytic, Frobenioid-theoretic) Let F`v denote the µ2l-split pre-Frobenioid

(C`v , spl`v ) (with base category D`v ) in Example 8.8 for v ∈ Vbad, the split pre-Frobenioid

(C`v , spl`v ) (with base category D`v ) in Example 8.7 for v ∈ Vgood ∩ Vnon, and the

triple (C`v ,D`v , spl`v ), where (C`v , spl`v ) is the split Archimedean Frobenioid, and D`v =

(O�(C`v ), spl`v ) is the split monoid (as above) in Example 8.11 for v ∈ Varc.

See the following table (We use Dv’s (resp. D`v ’s, resp. F`v ’s) with v ∈ V for D-prime-strips

(resp. D`-prime-strips, F`-prime-strips) later (See Definition 10.9 (1) (2)). However, we use
Cv (not F

v
) with v ∈ Vnon and F

v
with v ∈ Varc for F -prime-strips (See Definition 10.9 (3)),

and F
v
’s with v ∈ V for Θ-Hodge theatres later (See Definition 10.7)):
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Vbad (Example 8.8) Vgood ∩ Vnon (Example 8.7) Varc (Example 8.11)

Dv Btemp(X
v
)0 (Πv) B(X−→v

)0 (Πv) X−→v

D`v B(Kv)
0 (Gv) B(Kv)

0 (Gv) (O�(C`v ), spl`v )

Cv (F
v
)base-field (Πv y (O�

Fv
)pf) Πv y (O�

Fv
)pf Arch. Fr’d Cv (  ang. region)

F
v

temp. Fr’d F
v
(  Θ-fct.) equal to Cv (Cv,Dv, κv)

C`v Gv y O×
Fv
· qN

v
Gv y O×

Fv
· pNv equal to Cv

F`v (C`v , spl`v ) (C`v , spl`v ) (C`v ,D`v , spl`v )

We continue to define model objects.

Definition 10.3. (Model Global Objects, [IUTchI, Definition 4.1 (v), Definition 6.1 (v)]) We
put

D} := B(CK)
0, D}± := B(XK)

0.

Isomorphs of the global objects will be used in Proposition 10.19 and Proposition 10.33 to
put “labels” on each local objects in a consistent manner (See also Remark 6.11.1). We will use
D} for (D-)�-Hodge theatre (Section 10.4), and D}± for (D-)�-Hodge theatre (Section 10.5).

Definition 10.4. (Model Global Realified Frobenioid with Localisations, [IUTchI, Example
3.5]) Let Cmod be the global realified Frobenioid in Example 8.12. Note that we have the

natural bijection Prime(Cmod)
∼→ Vmod, and an element log`mod(pv) ∈ ΦCv ,v for each v ∈ Vmod.

For v ∈ Vmod, let v ∈ V denote the corresponding element under the bijection V ∼→ Vmod. For
each v ∈ V, we also have the (pre-)Frobenioid C`v (See Definition 10.2 (5)). Let C`Rv denote the

realification of C`v (Definition 8.4 (3)) for v ∈ Vnon, and Cv itself for v ∈ Varc. Let logΦ(pv) ∈ ΦR
C`v

denote the element determined by pv, where ΦR
C`v

denotes the divisor monoid of C`Rv . We have

the natural restriction functor
Cmod → C`Rv

for each v ∈ V. This is determined, up to isomorphism, by the isomorphism

ρv : ΦCmod,v

gl. to loc.
∼−→ ΦR

C`v log`mod(pv) 7→
1

[Kv : (Fmod)v]
logΦ(pv)

of topological monoids (For the assignment, consider the volume interpretations of the arith-
metic divisors, i.e., logpv #(O(Fmod)v/pv) =

1
[Kv :(Fmod)v ]

logpv #(OKv/pv)). Recall also the point

of view of regarding V(⊂ V(K)) as an “analytic section” of SpecOK � SpecOFmod
(The left

hand side ΦCmod,v
is an object on (Fmod)v, and the right hand side ΦR

C`v
is an object on Kv). Let

Fmod denote the quadruple

Fmod := (Cmod, Prime(Cmod)
∼→ V, {F`v }v∈V, {ρv}v∈V)

of the global realified Frobenioid, the bijection of primes, the model objects F`v ’s in Defini-

tion 10.2 (6), and the localisation homomorphisms. We define an isomorphism Fmod,1
∼→ Fmod,2

of quadruples in an obvious manner.
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Isomorphs of the global realified Frobenioids are used to consider log-volume functions.

Definition 10.5. (Θ-version, [IUTchI, Example 3.2 (v), Example 3.3 (ii), Example 3.4 (iii),
Example 3.5 (ii)])

(1) (Vbad) Take v ∈ Vbad. Let DΘ
v (⊂ Dv) denote the category whose objects are AΘ :=

A× Ÿ
v
for A ∈ Ob(D`v ), where × is the product in Dv, and morphisms are morphisms

over Ÿ
v
in Dv (Note also that Ÿ

v
∈ Ob(Dv) is defined over Kv). Taking “(−) × Ÿ

v
”

induces an equivalenc D`v
∼→ DΘ

v of categories. The assignment

Ob(DΘ
v ) 3 AΘ 7→ O×(OAΘ) · (ΘN

v
|O

AΘ
) ⊂ O×(Obirat

AΘ )

determines a monoid O�
CΘv
(−) on DΘ

v (See Example 8.8 for Θ
v
∈ O×(Obirat

Ÿ
v

), and O(−)

for Definition 8.4 (1)). Under the above equivalence D`v
∼→ DΘ

v of categories, we have

natural isomorphism O�

C`v
(−) ∼→ O�

CΘv
(−). These are compatible with the assignment

q
v
|OA
7→ Θ

v
|O

AΘ

and a natural isomorphism O×(OA)
∼→ O×(OAΘ) induced by the projection AΘ = A×

Ÿ
v
→ A (See Example 8.8 for q

v
∈ O�(OX

v
)). Hence, the monoid O�

CΘv
(−) determines

a pv-adic Frobenioid

CΘv (⊂ Fbirat

v
)

whose base category is DΘ
v . Note also Θ

v
determines a µ2l(−)-orbit of splittings splΘv of

CΘv . We have a natural equivalence C`v
∼→ CΘv of categories, which sends spl`v to splΘv ,

hence, we have an isomorphism

F`v (= (C`v , spl`v ))
∼→ FΘ

v := (CΘv , splΘv )
of µ2l-split pre-Frobenioids.

(2) (Vgood∩Vnon) Take v ∈ Vgood∩Vnon. Recall that the divisor monoid of C`v is of the form

O�

C`v
(−) = O×C`v

(−) × N log(pv), where we write log(pv) for the element pv considered

additively. We put

O�
CΘv
(−) := O×CΘv

(−)× N log(pv) log(Θ),

where log(pv) log(Θ) is just a formal symbol. We have a natural isomorphism O�

C`v
(−) ∼→

O�
CΘv
(−). Then, the monoid O�

CΘv
(−) determines a pv-adic Frobenioid

CΘv
whose base category is DΘ

v := D`v . Note also that log(pv) log(Θ) determines a splitting

splΘv of CΘv . We have a natural equivalence C`v
∼→ CΘv of categories, which sends spl`v to

splΘv , hence, we have an isomorphism

F`v (= (C`v , spl`v ))
∼→ FΘ

v := (CΘv , splΘv )
of split pre-Frobenioids.

(3) (Varc) Take v ∈ Varc. Recall that the image ΦC`v of spl`v of the split monoid (O�

C`v
, spl`v )

is isomorphic to R≥0. We write log(pv) ∈ ΦC`v for the element pv considered additively

(See Section 0.2 for pv with Archimedean v). We put

ΦCΘv := R≥0 log(pv) log(Θ),
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where log(pv) log(Θ) is just a formal symbol. We also put O×C`v
:= (O�

C`v
)×, and O×CΘv

:=

O×C`v
. Then, we obtain a split pre-Frobenioid

(CΘv , splΘv ),

such that O�(CΘv ) = O×CΘv
×ΦCΘv . We have a natural equivalence C`v

∼→ CΘv of categories,

which sends spl`v to splΘv , hence, we have an isomorphism (C`v , spl`v )
∼→ (CΘv , splΘv ) of split

pre-Frobenioids, and an isomorphism

F`v (= (C`v ,D`v , spl`v ))
∼→ FΘ

v := (CΘv ,DΘ
v , spl

Θ
v )

of triples, where we put DΘ
v := D`v .

(4) (Global Realified with Localisations) Let Cmod be the global realified Frobenioid con-
sidered in Definition 10.4. For each v ∈ Vmod, let v denote the corresponding element
under the bijection V ∼→ Vmod. Put

ΦCtheta := ΦCmod
· log(Θ),

where log(Θ) is just a formal symbol. This monoid ΦCtheta determines a global realified
Frobenioid

Ctheta
with a natural equivalence Cmod

∼→ Ctheta of categories and a natural bijection Prime(Ctheta)
∼→

Vmod. For each v ∈ Vmod, the element log`mod(pv) ∈ ΦCmod,v
⊂ ΦCmod

determines an el-

ement log`mod(pv) log(Θ) ∈ ΦCtheta,v ⊂ ΦCtheta . As in the case where Cmod, We have the
natural restriction functor

Ctheta → CΘR
v

for each v ∈ V. This is determined, up to isomorphism, by the isomorphism

ρΘv : ΦCtheta,v

gl. to loc.
∼−→ ΦR

CΘv log`mod(pv) log(Θ) 7→


1

[Kv :(Fmod)v ]
logΦ(pv) log(Θ) v ∈ Vgood,

logΦ(pv)

[Kv :(Fmod)v ]

logΦ(Θv
)

logΦ(q
v
)

v ∈ Vbad

of topological monoids, where logΦ(pv) log(Θ) ∈ ΦR
CΘv

denotes the element determined

by logΦ(pv) for v ∈ Vgood, and logΦ(Θv
), logΦ(pv), and logΦ(q

v
) denote the element

determined by Θ
v
, pv, and q

v
respectively for v ∈ Vbad (Note that logΦ(Θv

) is not a

formal symbol). Note that for any v ∈ V, the localisation homomorphisms ρv and ρΘv
are compatible with the natural equivalences Cmod

∼→ Ctheta, and C`v
∼→ CΘv :

log`mod(pv)
� “mod→theta” //

_

ρv

��

log`mod(pv) log(Θ)
_

ρΘv
��

1
[Kv :(Fmod)v ]

logΦ(pv)
�
“`→Θ”

// 1
[Kv :(Fmod)v ]

logΦ(pv) log(Θ)

for v ∈ Vgood, and

log`mod(pv)
� “mod→theta” //

_

ρv

��

log`mod(pv) log(Θ)
_

ρΘv
��

1
[Kv :(Fmod)v ]

logΦ(pv)
�
“`→Θ”

// logΦ(pv)

[Kv :(Fmod)v ]

logΦ(Θv
)

logΦ(q
v
)
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for v ∈ Vbad. Let Ftheta denote the quadruple

Ftheta := (Ctheta, Prime(Ctheta)
∼→ V, {FΘ

v }v∈V, {ρΘv }v∈V)
of the global realified Frobenioid, the bijection of primes, the Θ-version of model objects
FΘ
v ’s in (1), (2), and (3), and the localisation homomorphisms.

Note that we have group-theoretic or category-theoretic reconstruction algorithms such as
reconstructingD`v fromDv. We summarise these as follows ([IUTchI, Example 3.2 (vi), Example
3.3 (iii)]):

F
v

� //
I

up to lZ-indet.
on Θ

v
for v∈Vbad

��

Cv � except

Varc
//

?

����
��
��
��

Dv
_

��

w

��

F`v
� // C`v

� // D`v

FΘ
v

� // CΘv
� // DΘ

v .

(Note also the remark given just before Theorem 8.14.)

Definition 10.6. (D-version or “log-shell version”, [IUTchI, Example 3.5 (ii), (iii)]) Let

Dmod

denotes a copy of Cmod. Let ΦD
mod

, Prime(Dmod)
∼→ Vmod, log

D
mod(pv) ∈ ΦD

mod,v
⊂ ΦD

mod
be the

corresponding objects under the tautological equivalence Cmod
∼→ Dmod. For each v ∈ Vmod, let

v denote the corresponding element under the bijection V ∼→ Vmod.
For v ∈ Vnon, we can group-theoretically reconstruct from D`v

(R`≥0)v := Rnon(Gv) (∼= R≥0)

and Frobenius element F(Gv) ∈ (R`≥0)v by (Step 3) in Proposition 5.2 (Recall that Gv =

π1(D`v )). Put also
logDΦ(pv) := evF(Gv) ∈ (R`≥0)v,

where ev denotes the absolute ramification index of Kv.
For v ∈ Varc, we can also group-theoretically reconstruct from the split monoid D`v =

(O�

C`v
, spl`v )

(R`≥0)v := Rarc(D`v ) (∼= R≥0)
and Frobenius element F(D`v ) ∈ (R`≥0)v by (Step 4) in Proposition 5.4. Put also

logDΦ(pv) :=
F(D`v )
2π

∈ (R`≥0)v,

where 2π ∈ R× is the length of the perimeter of the unit circle (Note that (R`≥0)v has a natural
R×-module structure).
Hence, for any v ∈ V, we obtain a uniquely determined isomorphism

ρDv : ΦD
mod,v

gl. to loc.
∼−→ (R`≥0)v logDmod(pv) 7→

1

[Kv : (Fmod)v]
logDΦ(pv)

of topological monoids.
Let FD denote the quadruple

FD := (Dmod, Prime(Dmod)
∼→ V, {D`v }v∈V, {ρDv }v∈V)
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of the global realified Frobenioid, the bijection of primes, the D`-version of model objects D`v ’s,
and the localisation homomorphisms.

10.3. Θ-Hodge Theatre, and Prime-Strips.

Definition 10.7. (Θ-Hodge theatre, [IUTchI, Definition 3.6]) A Θ-Hodge theatre is a col-
lection

†HT Θ = ({†F
v
}v∈V, †Fmod),

where

(1) (local object) †F
v
is a pre-Frobenioid (resp. a triple (†Cv, †Dv, †κv)) isomorphic to the

model F
v
(resp. isomorphic to the model triple F

v
= (Cv,Dv, κv)) in Definition 10.2 (4)

for v ∈ Vnon (resp. for v ∈ Varc). We write †Dv, †D`v , †DΘ
v ,
†F`v , †FΘ

v (resp. †D`v , †DΘ
v ,

†F`v ,†FΘ
v ) for the objects algorithmically reconstructed from †F

v
corresponding to the

model objects (i.e., the objects without †).
(2) (global realified object with localisations) †Fmod is a quadruple

(†C`mod, Prime(†Cmod)
∼→ V, {†F`v }v∈V, {†ρv}v∈V),

where †C`mod is a category equivalent to the model C`mod in Definition 10.4, Prime(†Cmod)
∼→

V is a bijection of sets, †F`v is the reconstructed object from the above local data †F
v
,

and †ρv : Φ†Cv ,v

gl. to loc.
∼−→ ΦR

†C`v
is an isomorphism of topological monoids (Here †C`v is

the reconstructed object from the above local data †F
v
), such that there exists an iso-

morphism of quadruples †Fmod
∼→ Fmod. We write †Ftheta,

†FD for the algorithmically
reconstructed object from †Fmod corresponding to the model objects (i.e., the objects
without †).

Definition 10.8. (Θ-link, [IUTchI, Corollary 3.7 (i)]) Let †HT Θ = ({†F
v
}v∈V, †Fmod),

‡HT Θ =

({‡F
v
}v∈V, ‡Fmod) be Θ-Hodge theatres (with respect to the fixed initial Θ-data). We call the

full poly-isomorphism (See Section 0.2)

†Ftheta

full poly
∼−→ ‡Fmod

the Θ-link from †HT to ‡HT (Note that the full poly-isomorphism is non-empty), and we
write it as

†HT Θ Θ−→ ‡HT Θ,

and we call this diagram the Frobenius-picture of Θ-Hodge theatres ([IUTchI, Corollary
3.8]). Note that the essential meaning of the above link is

“ ΘN
v

∼−→ qN
v
”

for v ∈ Vbad.

Remark 10.8.1. ([IUTchI, Corollary 3.7 (ii), (iii)])

(1) (Preservation of D`) For each v ∈ V, we have a natural composite full poly-isomorphism

†D`v
∼→ †DΘ

v

full poly
∼−→ ‡D`v ,

where the first isomorphism is the natural one (Recall that it is tautological for v ∈ Vgood,
and that it is induced by (−)× Ÿ

v
for v ∈ Vbad), and the second full poly-isomorphism

is the full poly-isomorphism of the Θ-link. Hence, the mono-analytic base “D`v ” is
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preserved (or “shared”) under the Θ-link (i.e., D`v is horizontally coric). Note that the
holomorphic base “Dv” is not shared under the Θ-link (i.e., Θ-link shares the underlying
mono-analytic base structures, but not the arithmetically holomorphic base structures).

(2) (Preservation of O×) For each v ∈ V, we have a natural composite full poly-isomorphism

O×†C`v
∼→ O×†CΘv

full poly
∼−→ O×‡C`v

,

where the first isomorphism is the natural one (Recall that it is tautological for v ∈ Vgood,
and that it is induced by (−)× Ÿ

v
for v ∈ Vbad), and the second full poly-isomorphism

is induced by the full poly-isomorphism of the Θ-link. Hence, “O×C`v
” is preserved (or

“shared”) under the Θ-link (i.e., O×C`v
is horizontally coric). Note also that the value

group portion is not shared under the Θ-link.

We can visualise the “shared” and “non-shared” relation as follows:

†Dv −− >
(
†D`v y O×†C`v

)
∼=
(
‡D`v y O×‡C`v

)
>−− ‡Dv

We call this diagram the étale-picture of Θ-Hodge theatres ([IUTchI, Corollary 3.9]). Note
that, there is the notion of the order in the Frobenius-picture (i.e., †(−) is on the left, and ‡(−)
is on the right), on the other hand, there is no such an order and it has a permutation symmetry
in the étale-picture (See also the last table in Section 4.3).

This Θ-link is the primitive one. We will update the Θ-link to Θ×µ-link, Θ×µgau-link (See

Corollary 11.24), and Θ×µLGP-link (resp. Θ×µlgp -link) (See Definition 13.9 (2)) in inter-universal
Teichmüller theory:

Θ-link
“Hodge-Arakelov theoretic eval.” 

“theta fct.7→theta values”

and O× 7→O×/µ

Θ×µgau-link
“ log -link” Θ×µLGP-link (resp. Θ×µlgp -link).

Definition 10.9. ([IUTchI, Definition 4.1 (i), (iii), (iv) Definition 5.2 (i), (ii), (iii), (iv)])

(1) (D : holomorphic, base) A holomorphic base-prime-strip, or D-prime-strip is a
collection

†D = {†Dv}v∈V
of data such that †Dv is a category equivalent to the model Dv in Definition 10.2 (1)
for v ∈ Vnon, and †Dv is an Aut-holomorphic orbispace isomorphic to the model Dv
in Definition 10.2 (1). A morphism of D-prime-strips is a collection of morphisms
indexed by V between each component.

(2) (D` :mono-analytic, base) A mono-analytic base-prime-strip, or D`-prime-strip
is a collection

†D` = {†D`v }v∈V
of data such that †D`v is a category equivalent to the model D`v in Definition 10.2 (2) for

v ∈ Vnon, and †D`v is a split monoid isomorphic to the model D`v in Definition 10.2 (2).

A morphism of D`-prime-strips is a collection of morphisms indexed by V between
each component.

(3) (F : holomorphic, Frobenioid-theoretic) A holomorphic Frobenioid-prime-strip, or
F-prime-strip is a collection

†F = {†Fv}v∈V
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of data such that †Fv is a pre-Frobenioid isomorphic to the model Cv (not F
v
) in

Definition 10.2 (3) for v ∈ Vnon, and †Fv = (†Cv, †Dv, †κv) is a triple of a category,
an Aut-holomorphic orbispace, and a Kummer structure, which is isomorphic to the
model F

v
in Definition 10.2 (3). An isomorphism of F-prime-strips is a collection

of isomorphisms indexed by V between each component.
(4) (F` :mono-analytic, Frobenioid-theoretic) Amono-analytic Frobenioid-prime-strip,

or F`-prime-strip is a collection
†F` = {†F`v }v∈V

of data such that †F`v is a µ2l-split pre-Frobenioid (resp. split pre-Frobenioid) isomorphic

to the model F`v in Definition 10.2 (6) for v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon), and
†F`v = (†C`v , †D`v , †spl`v ) is a triple of a category, a split monoid, and a splitting of †Cv,
which is isomorphic to the model F`v in Definition 10.2 (6). An isomorphism of F`-
prime-strips is a collection of isomorphisms indexed by V between each component.

(5) (F : global realified with localisations) A global realified mono-analytic Frobenioid-
prime-strip, or F-prime-strip is a quadruple

†F = (†C, Prime(†C) ∼→ V, †F`, {†ρv}v∈V),
where †C is a pre-Frobenioid isomorphic to the model C`mod in Definition 10.4, Prime(†C)
∼→ V is a bijection of sets, †F` is an F`-prime-strip, and †ρv : Φ†C,v

gl. to loc.
∼−→ ΦR

†C`v
is an

isomorphism of topological monoids (Here, †C`v is the object reconstructed from †F`v ),
such that the quadruple †F is isomorphic to the model Fmod in Definition 10.4. An
isomorphism of F-prime-strips is an isomorphism of quadruples.

(6) Let AutD(−), IsomD(−,−) (resp. AutD`(−), IsomD`(−,−) resp. AutF(−), IsomF(−,−)
resp. AutF`(−), IsomF`(−,−) resp. AutF(−), IsomF(−,−)) be the group of auto-
morphisms of a D-(resp. D`-, resp. F -, resp. F`-, resp. F-)prime-strip, and the set
of isomorphisms between D-(resp. D`-, resp. F -, resp. F`-, resp. F-)prime-strips.

Remark 10.9.1. We use global realified prime-strips with localisations for calculating (group-
theoretically reconstructed) local log-volumes (See Section 5) with the global product formula.
Another necessity of global realified prime-strips with localisations is as follows: If we were
working only with the various local Frobenioids for v ∈ V (which are directly related to com-
putations of the log-volumes), then we could not distinguish, for example, pmv OKv from OKv

with m ∈ Z for v ∈ Vnon, since the isomorphism of these Frobenioids arising from (the updated
version of) Θ-link preserves only the isomorphism classes of objects of these Frobenioids. By
using global realified prime-strips with localisations, we can distinguish them (cf. [IUTchIII,
(xii) of the proof of Corollary 3.12]).

Note that we can algorithmically associate D`-prime-strip †D` to any D-prime-strip †D and
so on. We summarise this as follows (See also [IUTchI, Remark 5.2.1 (i), (ii)]):

†HT Θ � //
_

��

†F � //
_

��

8

{{xx
xx
xx
xx
x

†D_

��
†F � // †F` � // †D`.

Lemma 10.10. ([IUTchI, Corollary 5.3, Corollary 5.6 (i)])

(1) Let 1F~, 2F~ (resp. 1F}, 2F}) be pre-Frobenioids isomorphic to the global non-realifed
Frobenioid †F~ (resp. †F}) in Example 9.5 , then the natural map

Isom(1F~, 2F~)→ Isom(Base(1F~),Base(2F~))
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(resp. Isom(1F}, 2F})→ Isom(Base(1F}),Base(2F})) )

is bijective.
(2) For F-prime-strips 1F, 2F, whose associated D-prime-strips are 1D, 2D respectively, the

natural map

IsomF(
1F, 2F)→ IsomD(

1D, 2D)

is bijective.
(3) For F`-prime-strips 1F`, 2F`, whose associated D`-prime-strips are 1D`, 2D` respec-

tively, the natural map

IsomF`(1F`, 2F`)→ IsomD`(1D`, 2D`)

is bijective.
(4) For v ∈ Vbad, let F

v
be the tempered Frobenioid in Example 8.8, whose base category is

Dv then the natural map

Aut(F
v
)→ Aut(Dv)

is bijective.
(5) For Th-Hodge theatres 1HT Θ, 2HT Θ, whose associated D-prime-strips are 1D>,

2D>

respectively, the natural map

Isom(1HT Θ, 2HT Θ)→ IsomD(
1D>,

2D>)

is bijective.

Proof. (1) follows from the category-theoretic construction of the isomorphism M~(†D}) ∼→
†M~ in Example 9.5. (2) follows from the mono-anabelian reconstruction algorithms via Belyi
cuspidalisation (Corollary 3.19), and the Kummer isomorphism in Remak 3.19.2) for v ∈ Vnon,
and the definition of the Kummer structure for Aut-holomorphis orbispaces (Definition 4.6) for
v ∈ Varc. (3) follows from Proposition 5.2 and Proposition 5.4. We show (4). By Theorem 3.17,
automorphisms of Dv arises from automorphisms of X

v
, thus, the surjectivity of (4) holds. To

show the injectivity of (4), let α be in the kernel. Then, it suffices to show that α induces
the identity on the rational functions and divisor monoids of F

v
. By the category-theoretic

reconstruction of cyclotomic rigidity (See isomorphism (Cyc.Rig. Frd)) and the naturality of
Kummer map, (which is injective), it follows that α induces the identity on the rational functions
of F

v
. Since α preserves the base-field-theoretic hull, α also preserves the non-cuspidal portion

of the divisor of the Frobenioid theoretic theta function and its conjugate (these are preserved
by α, since we already show that α preserves the rational function monoid of F

v
), hence α

induces the identity on the non-cuspidal elements of the divisor monoid of F
v
. Similary, since

any divisor of degree 0 on an elliptic curve supported on the torsion points admits a positive
multiple which is principal, it follows that α induces the identityo on the cuspidal elements of
the divisor monoid of F

v
as well. by considering the cuspidal portions of divisor of a suitable

rational functions (these are preserved by α, since we already show that α preserves the rational
function monoid of F

v
). (Note that we can simplify the proof by suitably adding F

v
more data,

and considering the isomorphisms preserving these data. See also the remark given just before
Theorem 8.14 and [IUTchI, Remark 3.2.1 (ii)]). (5) follows from (4). �

Remark 10.10.1. ([IUTchI, Remark 5.3.1]) Let 1F, 2F be F -prime-strips, whose associated
D-prime-strips are 1D, 2D respectively. Let

φ : 1D→ 2D
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be a morphism of D-prime-strips, which is not necessarily an isomorphism, such that all of the
v(∈ Vgood)-components are isomorphisms, and the induced morphism φ` : 1D` → 2D` on the
associated D`-prime-strips is also an isomorphism. Then, φ uniquely lifts to an “arrow”

ψ : 1F→ 2F,

which we say that ψ is lying over φ, as follows: By pulling-back (or making categorical fiber
products) of the (pre-)Frobenioids in 2F via the various v(∈ V)-components of φ, we obtain the
pulled-back F -prime-strip φ∗(2F) whose associated D-prime-strip is tautologically equal to 1D.

Then, this tautological equality uniquely lifts to an isomorphism 1F
∼→ φ∗(2F) by Lemma 10.10

(2):

1F
�

""F
FF

FF
FF

FF
∼ // φ∗(2F)

pull back//
_

��

2F_

��
1D

φ // 2D.

Definition 10.11. ([IUTchI, Definition 4.1 (v), (vi), Definition 6.1 (vii)]) Let †D} (resp. †D}±)
is a category equivalent to the model global object D} (resp. D}±) in Definition 10.3.

(1) Recall that, from †D} (resp. †D}±), we can group-theoretically reconstruct a set V(†D})
(resp. V(†D}±)) of valuations corresponding to V(K) by Example 9.5 (resp. in a slim-
ilar way as in Example 9.5, i.e., firstly group-theoretically reconstructing an isomorph
of the field F from π1(

†D}±) by Theorem 3.17 via the Θ-approach (Definition 9.4), sec-
ondly group-theoretically reconstructing an isomorph V(†D}±) of V(F ) with π1(†D}±)-
action, by the valuations on the field, and finally consider the set of π1(

†D}±)-orbits of
V(†D}±)).

For w ∈ V(†D})arc (resp. w ∈ V(†D}±)arc), by Proposition 4.8 and Lemma 4.9,
we can group-theoretically reconstruct, from †D} (resp. †D}±), an Aut-holomorphic
orbispace

C(†D}, w) (resp. X(†D}±, w) )

corresponding to Cw (resp. Xw). For an Aut-holomorphic orbispace U, a morphism

U→ †D} (resp. U→ †D}± )

is a morphism of Aut-holomorphic orbispaces U→ C(†D}, w) (resp. U→ X(†D}±, w))
for some w ∈ V(†D})arc (resp. w ∈ V(†D}±)arc).

(2) For a D-prime-strip †D = {†Dv}v∈V, a poly-morphism

†D
poly−→ †D} (resp. †D

poly−→ †D}± )

is a collection of poly-morphisms {†Dv
poly−→ †D}}v∈V (resp. {†Dv

poly−→ †D}±}v∈V) indexed
by v ∈ V (See Definition 6.1 (5) for v ∈ Vnon, and the above definition in (1) for v ∈ Varc).

(3) For a capsule ED = {eD}e∈E of D-prime-strips and a D-prime-strip †D, a poly-
morphism

ED
poly−→ †D} (resp. ED

poly−→ †D}±, resp. ED
poly−→ †D )

is a collection of poly-morphisms {eD poly−→ †D}}e∈E (resp. {eD poly−→ †D}±}e∈E, resp.
{eD poly−→ †D}e∈E).

Definition 10.12. ([IUTchII, Definition 4.9 (ii), (iii), (iv), (v), (vi), (vii), (viii)]) Let ‡F` =
{‡F`v }v∈V be an F`-prime-strip with associated D`-prime-strip ‡D` = {‡D`v }v∈V.
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(1) Recall that ‡F`v is a µ2l-split pre-Frobenioid (resp. a split pre-Frobenioid, resp. a triple

(‡C`v , ‡D`v , ‡spl`v )) for v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon, resp. v ∈ Varc). Let ‡A∞ be a

universal covering pro-object of ‡D`v , and put ‡G := Aut(‡A∞) (hence,
‡G is a profinite

group isomorphic to Gv). For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon), let

O⊥(‡A∞) (⊂ O�(‡A∞))

denote the submonoid generated by µ2l(
‡A∞) and the image of the splittings on ‡F`v

(resp. the submonoid determined by the image of the splittings on ‡F`v ), and put

OI(‡A∞) := O⊥(‡A∞)/µ2l(
‡A∞) (resp. OI(‡A∞) := O⊥(‡A∞) ),

and

OI×µ(‡A∞) := OI(‡A∞)×O×µ(‡A∞) (resp. OI×µ(‡A∞) := OI(‡A∞)×O×µ(‡A∞) ).

These are equipped with natural ‡G-actions.
Next, for v ∈ Vnon, we can group-theoretically reconstruct, from ‡G, ind-topological

modules ‡G y O×(‡G), ‡G y O×µ(‡G) with G-action, by Proposition 5.2 (Step 1)

(See Definition 8.5 (1)). Then, by Definition 8.5 (2), there exists a unique Ẑ×-orbit of
isomorphisms

‡κ`×v : O×(‡G)
poly
∼→ O×(‡A∞)

of ind-topological modules with ‡G-actions. Moreover, ‡κ`×v induces an Isomet-orbit

‡κ`×µv : O×µ(‡G)
poly
∼→ O×µ(‡A∞)

of isomorphisms.
For v ∈ Vnon, the rational function monoid determined by OI×µ(‡A∞)

gp with ‡G-
action and the divisor monoid of ‡F`v determine a model Frobenioid with a splitting. The

Isomet-orbit of isomorphisms ‡κ`×µv determines a ×µ-Kummer structure (Definition 8.5
(2)) on this model Frobenioid. For v ∈ Vnon (resp. v ∈ Varc), let

‡F`I×µv

denote the resulting split-×µ-Kummer pre-Frobenioid (resp. the collection of data ob-
tained by replacing the split pre-Frobenioid ‡Cv in ‡F`v = (‡C`v , ‡D`v , ‡spl`v ) by the in-
ductive system, indexed by the multiplicative monoid N≥1, of split pre-Frobenioids ob-
tained from ‡C`v by taking the quotients by the N -torsions for N ∈ N≥1. Thus, the units
of the split pre-Frobenioids of this inductive system give rise to an inductive system
· · ·� O×µN (A∞)� · · ·� O×µNM (A∞)� · · · , and a system of compatible surjections
{(‡D`v )× � O×µN (A∞)}N∈N≥1

(which can be regard as a kind of Kummer structure on
‡F`I×µv ) for the split monoid ‡D`v ), and, by abuse of notation,

‡F`v
for the split-×-Kummer pre-Frobenioid determined by the split pre-Frobenioid ‡F`v with

the ×-Kummer structure determined by ‡κ`×v .
(2) Put

‡F`I×µ := {‡F`I×µv }v∈V.
Let also

‡F`× = {‡F`×v }v∈V (resp. ‡F`×µ := {‡F`×µv }v∈V )

denote the collection of data obtained by replacing the various split pre-Frobenioids of
‡F` (resp. ‡F`I×µ) by the split Frobenioid with trivial splittings obtained by considering
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the subcategories determined by morphisms φ with Div(φ) = 0 (i.e., the “units” for
v ∈ Vnon) in the pre-Frobenioid structure. Note that ‡F`×v (resp. ‡F`×µv ) is a split-×-
Kummer pre-Frobenioid (resp. a split-×µ-Kummer pre-Frobenioid).

(3) An F`×-prime-strip (resp. an F`×µ-prime-strip, resp. an F`I×µ-prime-strip) is
a collection

∗F`× = {∗F`×v }v∈V (resp. ∗F`×µ = {∗F`×µv }v∈V, resp. ∗F`I×µ = {∗F`I×µv }v∈V )

of data such that ∗F`×v (resp. ∗F`×µv , resp. ∗F`I×µv ) is isomorphic to ‡F`×v (resp. ‡F`×µv ,

resp. ‡F`I×µv ) for each v ∈ V. An isomorphism of F`×-prime-strips (resp. F`×-

prime-strips, resp. F`×-prime-strips) is a collection of isomorphisms indexed by V
between each component.

(4) An FI×µ-prime-strip is a quadruple

∗FI×µ = (∗C, Prime(∗C) ∼→ V, ∗F`I×µ, {∗ρv}v∈V)

where ∗C is a pre-Frobenioid isomorphic to the model C`mod in Definition 10.4, Prime(∗C)
∼→ V is a bijection of sets, ∗F`I×µ is an F`I×µ-prime-strip, and ∗ρv : Φ∗C,v

gl. to loc.
∼−→ ΦR

∗C`v
is an isomorphism of topological monoids (Here, ∗C`v is the object reconstructed from
∗F`I×µv ), such that the quadruple ∗F is isomorphic to the model Fmod in Definition 10.4.

An isomorphism of FI×µ-prime-strips is a collection of isomorphisms indexed by
V between each component.

(5) Let AutF`×(−), IsomF`×(−,−) (resp. AutF`×µ(−), IsomF`×µ(−,−) resp. AutF`I×µ(−),
IsomF`I×µ(−,−) resp. AutFI×µ(−), IsomFI×µ(−,−)) be the group of automorphisms
of an F`×-(resp. F`×µ-, resp. F`I×µ-, resp. FI×µ-)prime-strip, and the set of isomor-
phisms between F`×-(resp. F`×µ-, resp. F`I×µ-, resp. FI×µ-)prime-strips.

Remark 10.12.1. In the definition of ‡F`I×µv for v ∈ Varc in Definition 10.12, we consider an
inductive system. We use this as follows: For the crucial non-interference property for v ∈ Vnon,
we use the fact that the pv-adic logarithm kills the torsion µ(−) ⊂ O×(−). However, for v ∈
Varc, the Archimedean logarithm does not kill the torsion. Instead, in the notation of Section 5.2,
we replace a part of log-link by k∼ � (O�

k )
gp � (O�

k )
gp/µN(k) and consider k∼ as being

reconstructed from (O�
k )

gp/µN(k), not from (O�
k )

gp, and put weight N on the corrsponding
log-volume. Then, there is no problem. See also Definition 12.1 (2), (4), Proposition 12.2 (2)
(cf. [IUTchIII, Remark 1.2.1]), Proposition 13.7, and Proposition 13.11.

Definition 10.13. ([IUTchIII, Definition 2.4])

(1) Let
‡F` = {‡F`v }v∈V

be an F`-prime-strip. Then, by Definition 10.12 (1), for each w ∈ Vbad, the splittings
of the µ2l-split-Frobenioid

‡F`w determine submonoids O⊥(−) ⊂ O�(−) and quotient

monoids O⊥(−)� OI(−) = O⊥(−)/Oµ(−). Similarly, for each w ∈ Vgood, the splitting
of the split Frobenioid ‡F`w determines a submonoid O⊥(−) ⊂ O�(−). In this case, we

put OI(−) := O⊥(−). Let
‡F`⊥ = {‡F`⊥v }v∈V, ‡F`I = {‡F`Iv }v∈V

denote the collection of data obtained by replacing the µ2l-split/split Frobenioid portion
of each ‡F`v by the pre-Frobenioids determined by the subquotient monoids O⊥(−) ⊂
O�(−) and OI(−), respectively.
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(2) An F`⊥-prime-strip (resp. an F`I-prime-strip) is a collection
∗F`⊥ = {∗F`⊥v }v∈V (resp. ∗F`I = {∗F`Iv }v∈V )

of data such that ∗F`⊥v (resp. ∗F`Iv ) is isomorphic to ‡F`⊥v (resp. ‡F`Iv ) for each v ∈ V.
An isomorphism of F`⊥-prime-strips (resp. F`I-prime-strips) is a collection of
isomorphisms indexed by V between each component.

(3) An F⊥-prime-strip (resp. FI-prime-strip) is a quadruple

∗F⊥ = (∗C, Prime(∗C) ∼→ V, ∗F`⊥, {∗ρv}v∈V)

(resp. ∗FI = (∗C, Prime(∗C) ∼→ V, ∗F`I, {∗ρv}v∈V) )

where ∗C is a pre-Frobenioid isomorphic to the model C`mod in Definition 10.4, Prime(∗C)
∼→ V is a bijection of sets, ∗F`⊥ (resp. ∗F`I) is an F`⊥-prime-strip (resp. F`I-prime-

strip), and ∗ρv : Φ∗C,v

gl. to loc.
∼−→ ΦR

∗C`v
is an isomorphism of topological monoids (Here,

∗C`v is the object reconstructed from ∗F`⊥v (resp. ∗F`Iv )), such that the quadruple ∗F⊥

(resp. ∗FI) is isomorphic to the model Fmod in Definition 10.4. An isomorphism of
F⊥-prime-strips (resp. FI-prime-strips) is a collection of isomorphisms indexed
by V between each component.

10.4. Multiplicative Symmetry � : ΘNF-Hodge Theatres and NF-, Θ-Bridges. We
begin constructing the multiplicative portion of full Hodge theatres.

Definition 10.14. ([IUTchI, Definition 4.1 (i), (ii), (v)]) Let †D = {†Dv}v∈V be a D-prime-
strip.

(1) For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon), we can group-theoretically reconstruct in a
functorial manner, from π1(

†Dv), a tempered group (resp. a profinite group) (⊃ π1(
†Dv))

corresponding to Cv by Lemma 7.12 (resp. by Lemma 7.25). Let

†Dv
denote its B(−)0. We have a natural morphism †Dv → †Dv (This corresponds to Xv

→
Cv (resp. X−→v

→ Cv)). Similarly, for v ∈ Varc, we can algorithmically reconstruct, in

a functorial manner, from †Dv, an Aut-holomorphic orbispace †Dv corresponding to Cv

by translating Lemma 7.25 into the theory of Aut-holomorphic spaces (since X−→v
admits

a Kv-core) with a natural morphism †Dv → †Dv. Put
†D := {†Dv}v∈V.

(2) Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspidal
decomposition groups of π1(

†Dv) or π1(†Dv) by Corollary 6.12 for v ∈ Vbad, by Corol-

lary 2.9 for v ∈ Vgood ∩ Vnon, and by considering π0(−) of a cofinal collection of the
complements of compact subsets of the underlying topological space of †Dv or †Dv for

v ∈ Varc. We say them the set of cusps of †Dv or †Dv.

For v ∈ V, a label class of cusps of †Dv is the set of cusps of †Dv lying over a
single non-zero cusp of †Dv (Note that each label class of cusps consists of two cusps).
We write

LabCusp(†Dv)
for the set of label classes of cusps of †Dv. Note that LabCusp(†Dv) has a natural
F>
l -torsor structure (which comes from the action of F×l on Q in the definition of X



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 159

in Section 7.1). Note also that, for any v ∈ V, we can algorithmically reconstruct a
canonical element

†η
v
∈ LabCusp(†Dv)

corresponding to εv in the initial Θ-data, by Lemma 7.16 for v ∈ Vbad, Lemma 7.25 for

v ∈ Vgood ∩ Vnon, and a translation of Lemma 7.25 into the theory of Aut-holomorphic
spaces for v ∈ Varc.

(Note that, if we used †Dv (i.e., “Cv”) instead of †Dv (i.e., “X−→v
”) for v ∈ Vgood ∩

Vnon, then we could not reconstruct †η
v
. In fact, we could make the action of the

automorphism group of †Dv on LabCusp transitive for some v ∈ Vgood ∩Vnon, by using
Chebotarev density theorem (i.e., by making a decomposition group in Gal(K/F ) ↪→
GL2(Fl) to be the subgroup of diagonal matrices with determinant 1). See [IUTchI,
Remark 4.2.1].)

(3) Let †D} is a category equivalent to the model global object D} in Definition 10.3. Then,
by Remark 2.9.2, similarly we can define the set of cusps of †D} and the set of label
classes of cusps

LabCusp(†D}),
which has a natural F>

l -torsor structure.

From the definitions, we immediately obtain the following proposition:

Proposition 10.15. ([IUTchI, Proposition 4.2]) Let †D = {†Dv}v∈V be a D-prime-strip. Then
for any v, w ∈ V, there exist unique bijections

LabCusp(†Dv)
∼→ LabCusp(†Dw)

which are compatible with the F>
l -torsor structures and send the canonical element †η

v
to the

canonical element †η
w
. By these identifications, we can write

LabCusp(†D)

for them. Note that it has a canonical element which comes from †η
v
’s. The F>

l -torsor structure

and the canonical element give us a natural bijection

LabCusp(†D)
∼→ F>

l .

Definition 10.16. (Model D-NF-Bridge, [IUTchI, Example 4.3]) Let

Autε(CK) ⊂ Aut(CK)
∼= Out(ΠCK

) ∼= Aut(D})
denote the subgroup of elements which fix the cusp ε (The firs isomorphisms follows from
Theorem 3.17). By Theorem 3.7, we can group-theoretically reconstruct ∆X from ΠCK

. We
obtain a natural homomorphism

Out(ΠCK
)→ Aut(∆ab

X ⊗ Fl)/{±1},
since inner automorphisms of ΠCK

act by multiplication by ±1 on EF [l]. By choosing a suitable

basis of ∆ab
X ⊗ Fl, which induces an isomorphism Aut(∆ab

X ⊗ Fl)/{±1}
∼→ GL2(Fl)/{±1}, the

images of Autε(CK) and Aut(CK) are identified with the following subgroups{(
∗ ∗
0 ±1

)}
⊂
{(
∗ ∗
0 ∗

)}
⊂ Im(GFmod

) (⊃ SL2(Fl)/{±1})

of GL2(Fl)/{±1}, where Im(GFmod
) ⊂ GL2(Fl)/{±1} is the image of the natural action of

GFmod
:= Gal(F/Fmod) on EF [l]. Put also

V±un := Autε(CK) · V ⊂ VBor := Aut(CK) · V ⊂ V(K).
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Hence, we have a natural isomorphism

Aut(CK)/Autε(CK)
∼→ F>

l ,

thus, VBor is the F>
l -orbit of V±un. By the above discussions, from π1(D}), we can group-

theoretically reconstruct

Autε(D}) ⊂ Aut(D})
corresponding to Autε(CK) ⊂ Aut(CK) (See also Definition 10.11 (1), (2)).

For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon, resp. v ∈ Varc), let

φNF
•,v : Dv → D}

denote the natural morphism correponding to X
v
→ Cv → CK (resp. X−→v

→ Cv → CK , resp.

a tautological morphism Dv = X−→v
→ Cv

∼→ C(D}, v)) (See Definition 10.11 (1)). Put

φNF
v := Autε(D}) ◦ φNF

•,v ◦ Aut(Dv) : Dv
poly−→ D}.

Let Dj = {Dvj}v∈V be a copy of the tautological D-prime-strip {Dv}v∈V for each j ∈ F>
l

(Here, vj denotes the pair (j, v)). Put

φNF
1 := {φNF

v }v∈V : D1
poly−→ D}

(See Definition 10.11 (2)). Since φNF
1 is stable under the action of Autε(D}), we obtain a

poly-morphism

φNF
j := (action of j) ◦ φNF

1 : Dj
poly−→ D},

by post-composing a lift of j ∈ F>
l
∼= Aut(D})/Autε(D}) to Aut(D}). Hence, we obtain a

poly-morphism

φNF
> := {φNF

j }j∈F>
l
: D> := {Dj}j∈F>

l

poly−→ D}

from a capsule of D-prime-strip to the global object D} (See Definition 10.11 (3)). This is
called the model base-(or D-)NF-bridge. Note that φNF

> is equivariant with the natural
poly-action (See Section 0.2) of F>

l on D} and the natural permutation poly-action of F>
l (via

capsule-full poly-automorphisms (See Section 0.2)) on the components of the cupsule D>. In
particular, we obtain a poly-action of F>

l on (D>,D}, φNF
> ).

Definition 10.17. (Model D-Θ-Bridge, [IUTchI, Example 4.4]) Let v ∈ Vbad. Recall that we
have a natural bijection between the set of cusps of Cv and |Fl| by Lemma 7.16. Thus, we can
put labels (∈ |Fl|) on the collections of cusps of Xv, Xv

by considering fibers over Cv. Let

µ− ∈ Xv(Kv)

denote the unique torsion point of order 2 such that the closures of the cusp labelled 0 ∈ |Fl|
and µ− in the stable model of Xv over OKv intersect the same irreducible component of the

special fiber (i.e., “−1” in Grig
m /q

Z
Xv

). We call the points obtained by translating the cusps

labelled by j ∈ |Fl| by µ− with respect to the group scheme structure of Ev(⊃ Xv) (Recall that
the origin of Ev is the cusp labelled by 0 ∈ |Fl|) the evaluation points of Xv labelled by

j. Note that the value of Θ
v
in Example 8.8 at a point of Ÿ

v
lying over an evaluation point

labelled by j ∈ |Fl| is in the µ2l-orbit of{
q
j2

v

}
j∈Z such that j≡j in |Fl|
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by calculation Θ̈

(√
−q

j

v

)
= (−1)jq

−j2/2
v

√
−1−2jΘ̈(

√
−1) = q

−j2/2
v in the notation of Lemma 7.4

(See the formula Θ̈(q
j/2
Ü) = (−1)jq−1/2Ü−2Θ̈(Ü) in Lemma 7.4). In particular, the points of

X
v
lying over evaluation points of Xv are all defined over Kv, by the definition of X

v
→ Xv

(Note that the image of a point in the domain of Ÿ
(covering map,Θ̈)

↪→ Ÿ ×A1 is rational overKv, then
the point is rational over Kv. See also Assumption (5) of Definition 7.13). We call the points in
X(Kv) lying over the evaluation points of Xv (labelled by j ∈ |Fl|) the evaluation points of
X

v
(labelled by j ∈ |Fl|). We also call the sections Gv ↪→ Πv(= ΠX

v
) given by the evaluation

points (labelled by j ∈ |Fl|) the evaluation section of Πv � Gv (labelled by j ∈ |Fl|).
Note that, by using Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together with
Lemma 7.16, Lemma 7.12), we can group-theoretically reconstruct the evaluation sections from
(an isomorph of) Πv.
Let D> = {D>,w}w∈V be a copy of the tautological D-prime-strip {Dw}w∈V. Put

φΘ
vj

:=Aut(D>,v) ◦ (Btemp(Πv)
0 natural−→ B(Kv)

0 eval. section−→
labelled by j

Btemp(Πv)
0) ◦ Aut(Dvj)

: Dvj
poly−→ D>,v.

Note that the homomorphism π1(Dvj) → π1(D>,v) induced by any constituent of the poly-

morphism φΘ
vj

(which is well-defined up to inner automorphisms) is compatible with the re-

spective outer actions on πgeo
1 (Dvj) and π

geo
1 (D>,v) (Here πgeo

1 denotes the geometric portion of

π1, which can be group-theoretically reconstructed by Lemma 6.2) for some outer isomorphism

πgeo
1 (Dvj)

∼→ πgeo
1 (D>,v) (which is determined up to finite ambiguity by Remark 6.10.1). We

say this fact, in short, as φΘ
vj

is compatible with the outer actions on the respective geometric

tempered fundamental groups.
Let v ∈ Vgood. Put

φΘ
vj

: Dvj
full poly
∼→ D>,v

to be the full poly-isomorphism for each j ∈ F>
l ,

φΘ
j := {φΘ

vj
}v∈V : Dj

poly−→ D>,

and

φΘ
> := {φΘ

j }j∈F>
l
: D>

poly−→ D>.

This is called the model base-(or D-)Θ-bridge (Note that this is not a poly-isomorphism).
Note that D> has a natural permutation poly-action by F>

l , and that, on the other hand, the
labels ∈ |Fl| (or ∈ LabCusp(D>)) determined by the evaluation sections corresponding to a
given j ∈ F>

l are fixed by any automorphisms of D>.

Definition 10.18. (D-NF-Bridge, D-Θ-Bridge, and D-�-Hodge Theatre, [IUTchI, Definition
4.6])

(1) A base-(or D-)NF-bridge is a poly-morphism

†φNF
> : †DJ

poly−→ †D},
where †D} is a category equivalent to the model global objectD}, and †DJ is a cupsule of
D-prime-strips indexed by a finite set J , such that there exist isomorphisms D} ∼→ †D},
D>

∼→ †DJ , conjugation by which sends φNF
> 7→ †φNF

> . An isomorphism of D-NF-

bridges
(
†φNF

> : †DJ
poly−→ †D}

)
∼→
(
‡φNF

> : ‡DJ ′
poly−→ ‡D}

)
is a pair of a capsule-full
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poly-isomorphism †DJ

capsule-full poly
∼−→ ‡DJ ′ and an Autε(

†D})-orbit (or, equivalently, an

Autε(
‡D})-orbit) †D}

poly
∼→ ‡D} of isomorphisms, which are compatible with †φNF

> , ‡φNF
> .

We define compositions of them in an obvious manner.
(2) A base-(or D-)Θ-bridge is a poly-morphism

†φΘ
> : †DJ

poly−→ †D>,

where †D> is a D-prime-strip, and †DJ is a cupsule of D-prime-strips indexed by a
finite set J , such that there exist isomorphisms D>

∼→ †D>, D>
∼→ †DJ , conjugation by

which sends φΘ
> 7→ †φΘ

>. An isomorphism of D-Θ-bridges
(
†φΘ

> : †DJ
poly−→ †D>

)
∼→(

‡φΘ
> : ‡DJ ′

poly−→ ‡D>

)
is a pair of a capsule-full poly-isomorphism †DJ

capsule-full poly
∼−→

‡DJ ′ and the full-poly isomorphism †D>

full poly
∼→ ‡D>, which are compatible with †φΘ

>,
‡φΘ

>. We define compositions of them in an obvious manner.
(3) A base-(or D-)ΘNF-Hodge theatre (or a D-�-Hodge theatre) is a collection

†HT D-� =

(
†D}

†φNF
>←− †DJ

†φΘ>−→ †D>

)
,

where †φNF
> is a D-NF-bridge, and †φΘ

> is a D-Θ-bridge, such that there exist isomor-

phisms D} ∼→ †D}, D>
∼→ †DJ , D>

∼→ †D>, conjugation by which sends φNF
> 7→ †φNF

> ,
φΘ
> 7→ †φΘ

>. An isomorphism of D-�-Hodge theatres is a pair of isomorphisms of
D-NF-bridges and D-Θ-bridges such that they induce the same bijection between the
index sets of the respective capsules of D-prime-strips. We define compositions of them
in an obvious manner.

Proposition 10.19. (Transport of Label Classes of Cusps via Base-Bridges, [IUTchI, Propo-

sition 4.7]) Let †HT D-� = (†D}
†φNF

>←− †DJ

†φΘ>−→ †D>) be a D-�-Hodge theatre.

(1) The structure of D-Θ-bridge †φΘ
> at v ∈ Vbad involving the evaluation sections deter-

mines a bijection
†χ : J

∼→ F>
l .

(2) For j ∈ J , v ∈ Vnon (resp. v ∈ Varc), we consider the various outer homomorphisms
π1(
†Dvj)→ π1(

†D}) induced by the (v, j)-portion †φNF
vj

: †Dvj →
†D} of the D-NF-bridge

†φNF
> . By considering cuspidal inertia subgroups of π1(

†D}) whose unique subgroup of
index l is contained in the image of this homomorphism (resp. the closures in π1(

†D})
of the images of cuspidal inertia subgroups of π1(

†Dvj) (See Definition 10.14 (2) for

the group-theoretic reconstruction of cuspidal inertia subgroups for v ∈ Varc), these
homomorphisms induce a natural isomorphism

LabCusp(†D}) ∼→ LabCusp(†Dvj)

of F>
l -torsors. These isomorphisms are compatible with the isomorphism LabCusp(†Dvj)

∼→
LabCusp(†Dwj

) of F>
l -torsors in Proposition 10.15 when we vary v ∈ V. Hence, we ob-

taine a natural isomorphism

LabCusp(†D}) ∼→ LabCusp(†Dj)

of F>
l -torsors.
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Next, for each j ∈ J , the various v(∈ V)-portions of the j-portion †φΘ
j : †Dj → †D>

of the D-Θ-bridge †φΘ
> determine an isomorphism

LabCusp(†Dj)
∼→ LabCusp(†D>)

of F>
l -torsors. Therefore, for each j ∈ J , by composing isomorphisms of F>

l -torsors
obtained via †φNF

j , †φΘ
j , we get an isomorphism

†φLC
j : LabCusp(†D}) ∼→ LabCusp(†D>)

of F>
l -torsors, such that †φLC

j is obtained from †φLC
1 by the action by †χ(j) ∈ F>

l .

(3) By considering the canonical elements †η
v
∈ LabCusp(†Dv) for v’s, we obtain a unique

element

[†ε] ∈ LabCusp(†D})
such that, for each j ∈ J , the natural bijection LabCusp(†D>)

∼→ F>
l in Proposi-

tion 10.15 sends †φLC
j ([†ε]) = †φLC

1 (†χ(j) · [†ε]) 7→ †χ(j). In particular, the element

[†ε] determines an isomorphism

†ζ> : LabCusp(†D}) ∼→ J (
∼→ F>

l )

of F>
l -torsors.

Remark 10.19.1. (cf. [IUTchI, Remark 4.5.1]) We consider the group-theoretic algorithm in
Proposition 10.19 (2) for v ∈ V. Here, the morphism π1(

†Dvj)→ π1(
†D}) is only known up to

π1(
†D})-conjugacy, and a cuspidal inertia subgroup labelled by an element ∈ LabCusp(†D})

is also well-defined up to π1(
†D})-conjugacy. We have no natural way to synchronise these

indeterminacies. Let J be the unique open subgroup of index l of a cuspidal inertia subgroup.
A non-trivial fact is that, if we use Theorem 6.11, then we can factorise J ↪→ π1(

†D}) up to
π1(
†D})-conjugacy into J ↪→ π1(

†Dvj) up to π1(
†Dvj)-conjugacy and π1(

†Dvj) ↪→ π1(
†D}) up

to π1(
†D})-conjugacy (i.e., factorise J

out
↪→ π1(

†D}) as J out
↪→ π1(

†Dvj)
out
↪→ π1(

†D})). This can be
regarded as a partial synchronisation of the indeterminacies.

Proof. The proposition immediately follows from the described algorithms. �
The following proposition follows from the definitions:

Proposition 10.20. (Properties ofD-NF-Brideges, D-Θ-Bridges, D-�-Hodge theatres, [IUTchI,
Proposition 4.8])

(1) For D-NF-bridges †φNF
> , ‡φNF

> , the set Isom(†φNF
> , ‡φNF

> ) is an F>
l -torsor.

(2) For D-Θ-bridges †φΘ
>,
‡φΘ

>, we have #Isom(†φNF
> , ‡φNF

> ) = 1.

(3) For D-�-Hodge theatres †HT D-�, ‡HT D-�, we have #Isom(†HT D-�, ‡HT D-�) = 1.
(4) For a D-NF-bridge †φNF

> and a D-Θ-bridge †φΘ
>, the set{

capsule-full poly-isom.
capsule-full poly
†DJ

∼−→ †DJ ′ by which †φNF
> , †φΘ

> form a D-� -Hodge theatre

}
is an F>

l -torsor.
(5) For a D-NF-bridge †φNF

> , we have a functorial algorithm to construct, up to F>
l -indeterminacy,

a D-�-Hodge theatre whose D-NF-bridge is †φNF
> .

Definition 10.21. ([IUTchI, Corollary 4.12]) Let †HT D-�, ‡HT D-� be D-�-Hodge theatres.
the base-(or D-)ΘNF-link (or D-�-link)

†HT D-� D−→ ‡HT D-�
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is the full poly-isomorphism

†D`>

full poly
∼−→ ‡D`>

between the mono-analyticisations of the codomains of the D-Θ-bridges.

Remark 10.21.1. In D-�-link, the D`-prime-strips are shared, but not the arithmetically
holomorphic structures. We can visualise the “shared” and “non-shared” relation as follows:

†HT D-� −− > †D`> ∼= ‡D`> >−− ‡HT D-�

We call this diagram the étale-picture of D-�-Hodge theatres. Note that we have a
permutation symmetry in the étale-picture.

We constructed D-�-Hodge theatres. These are base objects. Now, we begin constructing
the total spaces, i.e., �-Hodge theatres, by putting Frobenioids on them.

We start with the following situation: Let †HT D-� = (†D}
†φNF

>←− †DJ

†φΘ>−→ †D>) be a D-�-
Hodge theatre (with respect to the fixed initial Θ-data). Let †HT Θ = ({†F

v
}v∈V, †Fmod) be

a Θ-Hodge theatre, whose associseted D-prime strip is equal to †D> in the given D-�-Hodge
theatre. Let †F> denote the F -prime-strip tautologically associated to (the {†F

v
}v∈V -portion

of) the Θ-Hodge theatre †HT Θ. Note that †D> can ben identified with the D-prime-strip
associated to †F>:

†HT Θ � // †F>_

��
†HT D-� � // †D>.

Definition 10.22. ([IUTchI, Example 5.4 (iii), (iv)]) Let †F~ be a pre-Frobenioid isomorphic
to F~(†D}) as in Example 9.5, where †D} is the data in the given D-�-Hodge theatre †HT D-�.
We put †F} := †F~|†D} , and †F~mod := †F~|terminal object in †D~ , as in Example 9.5.

(1) For δ ∈ LabCusp(†D}), a δ-valuation ∈ V(†D}) is a valuation which lies in the “im-
age” (in the obvious sense) via †φNF

> of the unique D-prime-strip †Dj of the capsule
†DJ

such that the bijection LabCusp(†D}) ∼→ LabCusp(†Dj) induced by †φNF
j sends δ to

the element of LabCusp(†Dj)
∼→ F>

l (See Proposition 10.15) labelled by 1 ∈ F>
l (Note

that, if we allow ourselves to use the model object D}, then a δ-valuation ∈ V(†D})
is an element, which is sent to an elemento of V±un ⊂ V(K) under the bijection

LabCusp(†D}) ∼→ LabCusp(D}) induced by a unique Autε(
†D})-orbit of isomorphisms

†D} ∼→ D} sending δ 7→ [ε] ∈ LabCusp(D})).
(2) For δ ∈ LabCusp(†D}), by localising at each of the δ-valuations ∈ V(†D}), from †F}

(or, from ((†Π~)rat y †M~) = (π1(
†D}) y Õ~×) in Definition 9.6), we can construct an

F -prime-strip
†F}|δ

which is well-defined up to isomorphism (Note that the natural projection V±un � Vmod

is not injective, hence, it is necessary to think that †F|δ is well-defined only up to iso-
morphism, since there is no canonical choice of an element of a fiber of the natural
projection V±un � Vmod) as follows: For a non-Archimedean δ-valuation v, it is the pv-
adic Frobenioid associated to the restrictions to “the open subgroup” of †Πp0 ∩ π1(†D})
determined by δ ∈ LabCusp(†D}) (i.e., corresponding to “X” or “X−→”) (See Defini-

tion 9.6 for †Πp0). Here, if v lies over an element of Vbad
mod, then we have to replace



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 165

the above “open subgroup” by its tempered analogue, which can be done by recon-
structing, from the open subgroup of †Πp0 ∩ π1(†D}), the semi-graph of anabelioids by
Remark 6.12.1 (See also [SemiAnbd, Theorem 6.6]). For an Archimedean δ-valuation v,

this follows from Proposition 4.8, Lemma 4.9, and the isomorphism M~(†D}) ∼→ †M~
in Example 9.5.

(3) For an F -prime-strip ‡F whose associated D-prime-strip is ‡D, a poly-morphism

‡F
poly−→ †F}

is a full poly-isomorphism ‡F
full poly
∼−→ †F}|δ for some δ ∈ LabCusp(†D}) (Note that the

fact that †F}|δ is well-defined only up to isomorphism is harmless here). We regard such

a poly-morphism ‡F
poly−→ †F} is lying over an induced poly-morphism ‡D

poly−→ †D}. Note
also that such a poly-morphism ‡F

poly−→ †F} is compatible with the local and global ∞κ-
coric structures (See Definition 9.6) in the following sense: The restriction of associated
Kummer classes determines a collection of poly-morphisms of pseudo-monoids{

(†Π~)rat y †M~∞κ

poly−→ ‡M∞κv ⊂ ‡M∞κ×v

}
v∈V

indexed by V, where the left hand side (†Π~)rat y †M~∞κ is well-defined up to auto-
morphisms induced by the inner automorphisms of (†Π~)rat, and the right hand side
‡M∞κv ⊂ ‡M∞κ×v is well-defined up to automorphisms induced by the automorphisms
of the F -prime strip ‡F. For v ∈ Vnon, the above poly-morphism is equivariant with
respect to the homomorphisms (‡Πv)

rat → (†Π~)rat (See Definition 9.6 (2) for (‡Πv)
rat)

induced by the given poly-morphism ‡F
poly−→ †F}.

(4) For a capsule EF = {eF} of F -prime-strips, whose associated capsule of D-prime-strips is
ED, and an F -prime-strip †F whose associated D-prime-strip is †D, a poly-morphism

EF
poly−→ †F} (resp. EF

poly−→ †F )

is a collection of poly-morphisms {eF poly−→ †F}}e∈E (resp. {eF poly−→ †F}e∈E). We consider

a poly-morphism EF
poly−→ †F} (resp. EF

poly−→ †F) as lying over the induced poly-

morphism ED
poly−→ †D} (resp. ED

poly−→ †D).

We return to the situation of
†HT Θ � // †F>_

��
†HT D-� � // †D>.

Definition 10.23. (Model Θ-Bridge, Model NF-Bridge, Diagonal F -Objects, Localisation
Functors, [IUTchI, Example 5.4 (ii), (v), (i), (vi), Example 5.1 (vii)]) For j ∈ J , let †Fj =
{†Fvj}j∈J be an F -prime-strip whose associated D-prime-strip is equal to †Dj. We also put
†FJ := {†Fj}j∈J (i.e., a capsule indexed by j ∈ J).
Let †F~ be a pre-Frobenioid isomorphic to F~(†D}) as in Example 9.5, where †D} is

the data in the given D-�-Hodge theatre †HT D-�. We put †F} := †F~|†D} , and †F~mod :=
†F~|terminal object in †D~ , as in Example 9.5.

(1) For j ∈ J , let
†ψΘ

j : †Fj
poly−→ †F>
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denote the poly-morphism (See Definition 10.22 (4)) uniquely determined by †φj by
Remark 10.10.1. Put

†ψΘ
> := {†ψΘ

j }j∈F>
l
: †FJ

poly−→ †F>.

We regard †ψΘ
> as lying over †φΘ

>. We call †ψΘ
> the model Θ-bridge. See also the

following diagram:

†Fj,
†FJ_

��

†ψΘ
j ,

†ψΘ
>

''
†HT Θ � // †F>_

��
†Dj,

†DJ

†φΘj ,
†φΘ>

77
†HT D-��oo � // †D>.

(2) For j ∈ J , let
†ψNF

j : †Fj
poly−→ †F}

denote the poly-morphism (See Definition 10.22 (3)) uniquely determined by †φj by
Lemma 10.10 (2). Put

†ψNF
> := {†ψNF

j }j∈F>
l
: †FJ

poly−→ †F}.

We regard †ψNF
> as lying over †φNF

> . We call †ψNF
> the model NF-bridge. See also the

following diagram:

†Fj,
†FJ_

��

†ψNF
j , †ψNF

>

''
†F}_

��
†Dj,

†DJ

†φNF
j , †φNF

>

88
†HT D-��oo � // †D}.

(3) Take also an F -prime-strip †F〈J〉 = {†Fv〈J〉
}v〈J〉∈V〈J〉

. We write †D〈J〉 for the associated

D-prime-strip to †F〈J〉. We write Vj := {vj}v∈V. We have a natural bijection Vj
∼→ V :

vj 7→ v. These bijections determine the diagonal subset

V〈J〉 ⊂ VJ :=
∏
j∈J

Vj,

which admits a natural bijection V〈J〉
∼→ V. Hence, we obtain a natural bijection

V〈J〉
∼→ Vj for j ∈ J .

We have the full poly-isomorphism

†F〈J〉

full poly
∼−→ †F>

and the “diagonal arrow”
†F〈J〉 −→ †FJ ,
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which is the collection of the full poly-isomorphisms †F〈J〉

full poly
∼−→ †Fj indexed by j ∈ J .

We regard †Fj (resp.
†F〈J〉) as a copy of †F> “situated on” the constituent labelled by

j ∈ J (resp. “situated in a diagonal fashion on” all the consitutents) of the capsule †DJ .
We have natural bijections

V〈J〉
∼→ Vj

∼→ Prime(†F~mod)
∼→ Vmod

for j ∈ J . Put
†F~〈J〉 := {

†F~mod, V〈J〉
∼→ Prime(†F~mod)},

†F~j := {†F~mod, Vj
∼→ Prime(†F~mod)}

for j ∈ J . We regard †F~j (resp. †F~〈J〉) as a copy of †F~mod “situated on” the constituent

labelled by j ∈ J (resp. “situated in a diagonal fashion on” all the consitutents) of the
capsule †DJ . When we write †F~〈J〉 for the underlying category (i.e., †F~mod) of

†F~〈J〉 by
abuse of notation, we have a natural embedding of categories

†F~〈J〉 ↪→
†F~J :=

∏
j∈J

†F~j .

Note that we do not regard the category †F~J as being a (pre-)Frobenioid. We write
†F~Rj , †F~R〈J〉 for the realifications (Definition 8.4) of †F~〈J〉, †F

~
〈J〉 respectively, and put

†F~RJ :=
∏

j∈J
†F~Rj .

Since †F~mod is defined by the restriction to the terminal object of †D~, any poly-

morphism †F〈J〉
poly−→ †F} (resp. †Fj

poly−→ †F}) (See Definition 10.22 (3)) induces, via
restriction (in the obvious sense), the same isomorphism class

(†F} → †F~ ⊃ )†F~mod
∼−→ †F~〈J〉

gl. to loc.−→ †Fv〈J〉

(resp. (†F} → †F~ ⊃ )†F~mod
∼−→ †F~j

gl. to loc.−→ †Fvj )

of restriction functors, for each v〈J〉 ∈ V〈J〉 (resp. vj ∈ Vj) (Here, for v〈J〉 ∈ Varc
〈J〉 (resp.

vj ∈ Varc
j ), we write †Fv〈J〉 (resp. †Fvj) for the category component of the triple, by

abuse of notation), i.e., it is independent of the choice (among its F>
l -conjugates) of

the poly-morphism †F〈J〉 → †F} (resp. †Fj → †F}). See also Remark 11.22.1 and
Remark 9.6.2 (4) (in the second numeration). Let

(†F} → †F~ ⊃ )†F~mod
∼−→ †F~〈J〉

gl. to loc.−→ †F〈J〉

(resp. (†F} → †F~ ⊃ )†F~mod
∼−→ †F~j

gl. to loc.−→ †Fj )

denote the collection of the above isomorphism classes of restriction functors, as v〈J〉
(resp. vj) ranges over the elements of V〈J〉 (resp. Vj). By combining j ∈ J , we also
obtain a natural isomorphism classes

†F~J
gl. to loc.−→ †FJ

of restriction functors. We also obtain their natural realifications

†F~R〈J〉
gl. to loc.−→ †FR

〈J〉,
†F~RJ

gl. to loc.−→ †FR
J ,

†F~Rj
gl. to loc.−→ †FR

j .

Definition 10.24. (NF-Bridge, Θ-Bridge, �-Hodge Theatre, [IUTchI, Definition 5.5])
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(1) an NF-bridge is a collection(
‡FJ

‡ψNF
>−→ ‡F} 99K ‡F~

)
as follows:
(a) ‡FJ = {‡Fj}j∈J is a capsule of F -prime-strip indexed by J . We write ‡DJ =
{‡Dj}j∈J for the associated capsule of D-prime-strips.

(b) ‡F}, ‡F~ are pre-Frobenioids isomorphic toy ‡F}, ‡F~ in the definition of the
model NF-bridge (Definition 10.23), respectively. We write ‡D}, ‡D~ for the base
categories of ‡F}, ‡F~ respectively.

(c) The arrow 99K consists of a morphism ‡D} → ‡D~, which is abstractly equivalent
(See Section 0.2) to the morphism †D} → †D~ definition of the model NF-bridge

(Definition 10.23), and an isomorphism ‡F} ∼→ ‡F~|‡D} .

(d) ‡ψNF
> is a poly-morphism which is a unique lift of a poly-morphism ‡φNF

> : ‡DJ
poly−→

‡D} such that ‡φNF
> forms a D-NF-bridge.

Note that we can associate an D-NF-bridge ‡φNF
> to any NF-bridge ‡ψNF

> . An isomor-
phism of NF-bridges(

1FJ1
1ψNF

>−→ 1F} 99K 1F~
)
∼→
(

2FJ2
2ψNF

>−→ 2F} 99K 2F~
)

is a triple

1FJ1

capsule-full poly
∼−→ 2FJ2 ,

1F}
poly
∼−→ 2F}, 1F~ ∼−→ 2F~

of a capsule-full poly-isomorphism 1FJ1

capsule-full poly
∼−→ 2FJ2 (We write 1DJ1

poly
∼−→ 2DJ2 for

the induced poly-isomorphism), a poly-isomorphism 1F}
poly
∼−→ 2F} (We write 1D}

poly
∼−→

2D} for the induced poly-isomorphism) such that the pair 1DJ1

poly
∼−→ 2DJ2 and 1D}

poly
∼−→

2D} forms a morphism of the associated D-NF-bridges, and an isomoprhism 1F~ ∼−→
2F~, such that this triple is compatible (in the obvious sense) with 1ψNF

> , 2ψNF
> , and the

respective 99K’s. Note that we can associate an isomorphism of D-NF-bridges to any
isomorphism of NF-bridges.

(2) A Θ-bridge is a collection(
‡FJ

‡ψΘ
>−→ ‡F> 99K ‡HT Θ

)
as follows:
(a) ‡FJ = {‡Fj}j∈J is a capsule of F -prime-strips indexed by J We write ‡DJ =
{‡Dj}j∈J for the associated capsule of D-prime-strips.

(b) ‡HT Θ is a Θ-Hodge theatre.
(c) ‡F> is the F -prime-strip tautologically associated to ‡HT Θ. We use the notation
99K to denote this relationship between ‡F> and ‡HT Θ. We write ‡D> for the
D-prime-strip associated to ‡F>.

(d) ‡ψΘ
> = {‡ψΘ

j }j∈F>
l
is the collection of poly-morphisms ‡ψΘ

j : ‡Fj
poly−→ ‡F> determined

by a D-Θ-bridge ‡φΘ
> = {‡φΘ

j }j∈F>
l
by Remark 10.10.1.
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Note that we can associate an D-Θ-bridge ‡φΘ
> to any Θ-bridge ‡ψΘ

> . An isomorphism
of Θ-bridges(

1FJ1
1ψΘ

>−→ 1F> 99K ‡HT Θ

)
∼→
(

2FJ2
2ψΘ

>−→ 2F> 99K 2HT Θ

)
is a triple

1FJ1

capsule-full poly
∼−→ 2FJ2 ,

1F>

full poly
∼−→ 2F>,

1HT Θ ∼−→ 2HT Θ

of a capsule-full poly-isomorphism 1FJ1

capsule-full poly
∼−→ 2FJ2 the full poly-isomorphism

1F}
poly
∼−→ 2F} and an isomoprhism 1F~ ∼−→ 2F~ of HT -Hodge theatres, such that this

triple is compatible (in the obvious sense) with 1ψΘ
> ,

2ψΘ
> , and the respective 99K’s. Note

that we can associate an isomorphism of D-Θ-bridges to any isomorphism of Θ-bridges.
(3) A ΘNF-Hodge theatre (or �-Hodge theatre) is a collection

‡HT � =

(
‡F~ L99 ‡F}

‡ψNF
>←− ‡FJ

‡ψΘ
>−→ ‡F> 99K ‡HT Θ

)
,

where

(
‡F~ L99 ‡F}

‡ψNF
>←− ‡FJ

)
forms an NF-bridge, and

(
‡FJ

‡ψΘ
>−→ ‡F> 99K ‡HT Θ

)
forms a Θ-bridge, such that the associated D-NF-bridge ‡φNF

> and the associated D-Θ-
bridge ‡φΘ

> form a D-�-Hodge theatre. An isomorphism of �-Hodge theatres is a
pair of a morphism of NF-bridge and a morphism of Θ-bridge, which induce the same
bijection between the index sets of the respective capsules of F -prime-strips. We define
compositions of them in an obvious manner.

Lemma 10.25. (Properties of NF-Brideges, Θ-Bridges, �-Hodge theatres, [IUTchI, Corollary
5.6])

(1) For NF-bridges 1ψNF
> , 2ψNF

> (resp. Θ-bridges 1ψΘ
> ,

2ψΘ
> , resp. �-Hodge theatres 1HT �,

2HT �) whose associated D-NF-bridges (resp. D-Θ-bridges, resp. D-�-Hodge theatres)
are 1φNF

> , 2φNF
> (resp. 1φΘ

>,
2φΘ

>, resp.
1HT D-�, 2HT D-�) respectively, the natural map

Isom(1ψNF
> , 2ψNF

> )→ Isom(1φNF
> , 2φNF

> )

(resp. Isom(1ψΘ
> ,

2ψΘ
>)→ Isom(1φΘ

>,
2φΘ

>),

resp. Isom(1HT �, 2HT �)→ Isom(1HT D-�, 2HT D-�) )

is bijective.
(2) For an NF-bridge ‡ψNF

> and a Θ-bridge ‡ψΘ
> , the set{

capsule-full poly-isom.
capsule-full poly
‡FJ

∼−→ ‡FJ ′ by which ‡ψNF
> , ‡ψΘ

> form a �-Hodge theatre

}
is an F>

l -torsor.

Proof. By using Lemma 10.10 (5), the claim (1) (resp. (2)) follows from Lemma 10.10 (1) (resp.
(2)). �

10.5. Additive Symmetry � : Θ±ell-Hodge Theatres and Θell-, Θ±-Bridges. We begin
constructing the additive portion of full Hodge theatres.

Definition 10.26. ([IUTchI, Definition 6.1 (i)]) We call an element of Fo±
l positive (resp.

negative) if it is sent to +1 (resp. −1) by the natural surjction Fo±
l � {±1}.
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(1) An F±
l -group is a set E with a {±1}-orbit of bijections E ∼→ Fl. Hence, any F±l -group

has a natural Fl-module structure.
(2) An F±

l -torsor is a set T with an Fo±
l -orbit of bijections T

∼→ Fl (Here, F±l 3 (λ,±1) is
actingg on z ∈ Fl via z 7→ ±z+ λ). For an F±l -torsor T , take an bijection f : T

∼→ Fl in
the given Fo±

l -orbit, then we obtain a subgroup

Aut+(T ) (resp. Aut±(T ) )

of Aut(Sets)(T ) by transporting the subgroup Fl ∼= {z 7→ z+λ for λ ∈ Fl} ⊂ Aut(Sets)(Fl)
(resp. Fo±

l
∼= {z 7→ ±z + λ for λ ∈ Fl} ⊂ Aut(Sets)(Fl)) via f . Note that this subgroup

is independent of the choice of f in its Fo±
l -orbit. Moreover, any element of Aut+(T ) is

independent of the choice of f in its Fl-orbit, hence, if we consider f up to Fo±
l -orbit,

then it gives us a {±1}-orbit of bijections Aut+(T )
∼→ Fl, i.e., Aut+(T ) has a natural

F±l -group structure. We call Aut+(T ) the F±l -group of positive automorphisms of
T . Note that we have [Aut±(T ); Aut+(T )] = 2.

The following is an additive counterpart of Definition 10.14

Definition 10.27. ([IUTchI, Definition 6.1 (ii), (iii), (vi)]) Let †D = {†Dv}v∈V be a D-prime-
strip.

(1) For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon), we can group-theoretically reconstruct in a
functorial manner, from π1(

†Dv), a tempered group (resp. a profinite group) (⊃ π1(
†Dv))

corresponding to Xv by Lemma 7.12 (resp. by Lemma 7.25). Let

†D±v
denote its B(−)0. We have a natural morphism †Dv → †D±v (This corresponds to X

v
→

Xv (resp. X−→v
→ Xv)). Similarly, for v ∈ Varc, we can algorithmically reconstruct, in a

functorial manner, from †Dv, an Aut-holomorphic orbispace †D±v corresponding to Xv

by translating Lemma 7.25 into the theory of Aut-holomorphic spaces (since X−→v
admits

a Kv-core) with a natural morphism †Dv → †D±v . Put
†D± := {†D±v }v∈V.

(2) Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspidal
decomposition groups of π1(

†Dv) or π1(†D±v ) by Corollary 6.12 for v ∈ Vbad, by Corol-

lary 2.9 for v ∈ Vgood ∩ Vnon, and by considering π0(−) of a cofinal collection of the
complements of compact subsets of the underlying topological space of †Dv or †D±v for

v ∈ Varc. We say them the set of cusps of †Dv or †D±
v .

For v ∈ V, a ±-label class of cusps of †Dv is the set of cusps of †Dv lying over a
single (not necessarily non-zero) cusp of †D±v . We write

LabCusp±(†Dv)

for the set of ±-label classes of cusps of †Dv. Note that LabCusp(†Dv) has a natural
F×l -action. Note also that, for any v ∈ V, we can algorithmically reconstruct a zero
element

†η0
v
∈ LabCusp±(†Dv),

and a canonical element
†η±
v
∈ LabCusp±(†Dv)
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which is well-defined up to multiplication by ±1, such that we have †η±
v
7→ †η

v
under

the natural bijection{
LabCusp±(†Dv) \ {†η0v}

}
/{±1} ∼→ LabCusp(†Dv).

Hence, we have a natural bijection

LabCusp±(†Dv)
∼→ Fl,

which is well-defined up to multiplication by ±1, and compatible with the bijection
LabCusp(†Dv)

∼→ F>
l in Proposition 10.15, i.e., LabCusp±(†Dv) has a natural F±l -group

structure. This structure F±l -group gives us a natural surjection

Aut(†Dv)� {±1}

by considering the induced automorphism of LabCusp±(†Dv). Let

Aut+(
†Dv) ⊂ Aut(†Dv)

denote the kernel of the above surjection, and we call it the subgroup of positive
automorphisms Put Aut−(

†Dv) := Aut(†Dv) \ Aut+(†Dv),and we call it the set of
negative automorphisms. Similarly, for α ∈ {±1}V, let

Aut+(
†D) ⊂ Aut+(

†D) (resp. Autα(
†D) ⊂ Aut+(

†D) )

denote the subgroup of automorphisms such that any v(∈ V)-component is positive
(resp. v(∈ V)-component is positive if α(v) = +1 and negetive if α(v) = −1), and we
call it the subgroup of positive automorphisms (resp. the subgroup of α-signed
automorphisms).

(3) Let †D}± is a category equivalent to the model global object D}± in Definition 10.3.
Then, by Remark 2.9.2, similarly we can define the set of cusps of †D}± and the set
of ±-label classes of cusps

LabCusp±(†D}±),

which can be identified with the set of cusps of †D}±.

Definition 10.28. ([IUTchI, Definition 6.1 (iv)]) Let †D = {†Dv}v∈V, ‡D = {‡Dv}v∈V be D-

prime-strips. For any v ∈ V, a +-full poly-isomorphism †Dv
+-full poly

∼−→ ‡Dv (resp. †D
+-full poly

∼−→
‡D) is a poly-isomorphism obtained as the Aut+(

†Dv)-orbit (resp. Aut+(
†D)-orbit) (or equiv-

alently, Aut+(
‡Dv)-orbit (resp. Aut+(

‡D)-orbit)) of an isomorphism †Dv
∼→ ‡Dv (resp. †D

∼→

‡D). If †D = ‡D, then there are precisely two +-full poly-isomorphisms †Dv
+-full poly

∼−→ †Dv
(resp. the set of +-full poly-isomorphisms †Dv

∼→ †Dv has a natural bijection with {±1}V).
We call the +-full poly-isomorphism determined by the identity automorphism positive, and
the other one negative (resp. the +-full poly-isomorphism corresponding to α ∈ {±1}V an α-
signed +-full poly-automorphism). A capsule-+-full poly-morphism between capsules
of D-prime-strips

{†Dt}t∈T
capsule-+-full poly

∼−→ {‡Dt′}t′∈T ′

is a collection of +-full poly-isomorphisms †Dt

+-full poly
∼−→ ‡Dι(t), relative to some injection ι :

T ↪→ T ′.
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Definition 10.29. ([IUTchI, Definition 6.1 (v)]) As in Definition 10.16, we can group-theoretically
construct, from the model global object D}± in Definition 10.3, the outer homomorphism

(Aut(XK)
∼=)Aut(D}±)→ GL2(Fl)/{±1}

determined by EF [l], by considering the Galois action on ∆ab
X ⊗ Fl (The first isomorphism

follows from Theorem 3.17). Note that the image of the above outer homomorphism contains

the Borel subgroup

{(
∗ ∗
0 ∗

)}
of SL2(Fl)/{±1}, since the covering XK � XK corresponds to

the rank one quotient ∆ab
X ⊗ Fl � Q. This rank one quotient determines a natural surjective

homomorphism
Aut(D}±)� F>

l ,

which can be reconstructed group-theoretically from D}±. Let Aut±(D}±) ⊂ Aut(D}±) ∼→
Aut(XK) denote the kernel of the above homomorphism. Note that the subgroup Aut±(D}±) ⊂
Aut(D}±) ∼→ Aut(XK) contains AutK(XK), and acts transitively on the cusps of XK . Next,
let Autcusp(D}±) ⊂ Aut(D}±) denote the subgroup of automorphisms which fix the cusps of
XK (Note that we can group-theoretically reconstruct this subgroup by Remark 2.9.2). Then,
we obtain natural outer isomorphisms

AutK(XK)
∼→ Aut±(D}±)/Autcusp(D}±)

∼→ Fo±
l ,

where the second isomorphism depends on the choice of the cusp ε of CK . See also the following
diagram:

Aut(XK)
∼ // Aut(D}±) // // F>

l

AutK(XK)
?�

OO

� � //

∼

FF
Aut±(D}±) // //

?�

F>
l  

( ∗ ∗
0 ~

)
⊂ SL2(Fl)/{±1}

OO

Fo±
l

Autcusp(D}±).
?�

Fo±
l  

(
1 ~
0 ±

)OO

If we write Aut+(D}±) ⊂ Aut±(D}±) for the unique subgroup of index 2 containing Autcusp(D}±),
then the cusp ε determines a natural F±l -group structure on the subgroup

Aut+(D}±)/Autcusp(D}±) ⊂ Aut±(D}±)/Autcusp(D}±)
(corresponding to Gal(XK/XK) ⊂ AutK(XK)), and a natural F±l -torsor structure on LabCusp±(D}±).
Put also

V± := Aut±(D}±) · V = Autcusp(D}±) · V ⊂ V(K).

Note also that the subgoup Aut±(D}±) ⊂ Aut(D}±) ∼= Aut(XK) can be identified with the
subgroup of Aut(XK) which stabilises V±, and also that we can easily show that V± = V±un
(Definition 10.16) (cf. [IUTchI, Remark 6.1.1]).

Remark 10.29.1. Note that Fo±
l -symmetry permutes the cusps of XK without permuting

V± (⊂ V(K)), and is of geometric nature, which is suited to construct Hodge-Arakelov theoretic
evaluation map (Section 11).
On the other hand, F>

l is a subquotient of Gal(K/F ) and F>
l -symmetry permutes various F>

l -
translates of V± = V±un ⊂ VBor (⊂ V(K)), and is of arithmetic nature (cf. [IUTchI, Remark
6.12.6 (i)]), which is suite to the situation where we have to consider descend from K to
Fmod. Such a situation induces global Galois permutations of various copies of Gv (v ∈ Vnon)
associated to distinct labels ∈ F>

l which are only well-defined up to conjugacy indeterminacies,
hence, F>

l -symmetry is ill-suited to construct Hodge-Arakelov theoretic evaluation map.
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Remark 10.29.2. (cf. [IUTchII, Remark 4.7.6]) One of the important differences of F>
l -symmetry

and Fo±
l -symmetry is that F>

l -symmetry does not permute the label 0 with the other labels, on
the other hand, Fo±

l -symmetry does.
We need to permute the label 0 with the other labels in Fo±

l -symmetry to perform the con-
jugate synchronisation (See Corollary 11.16 (1)), which is used to construct “diagonal objects”
or “horizontally coric objects” (See Corollary 11.16, Corollary 11.17, and Corollary 11.24) or
“mono-analytic cores” (In this sense, label 0 is closely related to the units and additive symme-
try. cf. [IUTchII, Remark 4.7.3]),
On the other hand, we need to separate the label 0 from the other labels in F>

l -symmetry,
since the simultaneous excutions of the final algorithms on objects in each non-zero labels are
compatible with each other by separating from mono-analytic cores (objects in the label 0), i.e.,
the algorithm is multiradial (See Section 11.1, and Appendix A.4), and we perform Kummer
theory for NF (Corollary 11.23) with F>

l -symmetry (since F>
l -symmetry is of arithmetic nature,

and suited to the situation involved Galois group Gal(K/Fmod)) in the NF portion of the final
algorithm. Note also that the value group portion of the final algorithm, which involves theta
values arising from non-zero labels, need to be separated from 0-labelled objects (i.e., mono-
analytic cores, or units). In this sense, the non-zero labels are closely related to the value groups
and multiplicative symmetry.

Definition 10.30. (Model D-Θ±-Bridge, [IUTchI, Example 6.2]) In this definition, we regard
Fl as an F±l -group. Let D� = {D�,v}v∈V, Dt = {Dvt}v∈V be copies of the tautological D-prime-
strip {Dv}v∈V for each t ∈ Fl (Here, vt denotes the pair (t, v)). For each t ∈ Fl, let

φΘ±

vt
: Dvt

+-full poly
∼−→ D�,v, φΘ±

t : Dvt
+-full poly

∼−→ D�,v

be the positive +-full poly-isomorphisms respectively, with respect to the identifications with
the tautological D-prime-strip {Dv}v∈V. Then, we put

φΘ±

± := {φΘ±

t }t∈Fl
: D± := {Dt}t∈Fl

poly−→ D�.

We call φΘ±
± model base-(or D-)Θ±-bridge.

We have a natural poly-automorphism −1Fl
of order 2 on the triple (D±,D�, φ

Θ±
± ) as fol-

lows: The poly-automorphism −1Fl
acts on Fl as multiplication by −1, and induces the

poly-morphisms Dt

poly
∼−→ D−t (t ∈ Fl) and D�

+-full poly
∼−→ D� determined by the +-full poly-

automorphism whose sign at every v ∈ V is negative, with respect to the identifications with
the tautological D-prime-strip {Dv}v∈V. This −1Fl

is compatible with φΘ±
± in the obvious

sense. Similarly, each α ∈ {±1}V determines a natural poly-automorphism αΘ±
of order 1 or

2 as follows: The poly-automorphism αΘ±
acts on Fl as the identity and the α-signed +-full

poly-automorphism on Dt (t ∈ Fl) and D�. This αΘ±
is compatible with φΘ±

± in the obvious
sense.

Definition 10.31. (Model D-Θell-Bridge, [IUTchI, Example 6.3]) In this definition, we regard
Fl as an F±l -torsor. Let Dt = {Dvt}v∈V be a copy of the tautological D-prime-strip {Dv}v∈V for
each t ∈ Fl, and put D± := {Dt}t∈Fl

as in Definition 10.30. Let D}± be the model global object

in Definition 10.3. In the following, fix an isomorphism LabCusp±(D}±) ∼→ Fl of F±l -torsor (See
Definition 10.29). This identification induces an isomorphism Aut±(D}±/Autcusp(D}±)

∼→ Fo±
l

of groups For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon, resp. v ∈ Varc), let

φΘell

•,v : Dv −→ D}±
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denote the natural morphism correpsonding to X
v
→ Xv → XK (resp. X−→v

→ Xv → XK , resp.

a tautological morphism Dv = X−→v
→ Xv

∼→ X(D}±, v) (See also Definition 10.11 (1), (2)).

Put

φΘell

v0
:= Autcusp(D}±) ◦ φΘell

•,v ◦ Aut+(Dv0) : Dv0
poly−→ D}±,

and

φΘell

0 := {φΘell

v0
}v∈V : D0

poly−→ D}±.
Since φΘell

0 is stable under the action of Autcusp(D}±), we obtain a poly-morphism

φΘell

t := (action of t) ◦ φΘell

0 : Dt
poly−→ D}±,

by post-composing a lift of t ∈ Fl ∼= Aut+(D}±)/Autcusp(D}±) (⊂ Fo±
l
∼= Aut±(D}±)/Autcusp(D}±))

to Aut+(D}±). Hence, we obtain a poly-morphism

φΘell

± := {φΘell

t }t∈Fl
: D±

poly−→ D}±

from a capsule of D-prime-strip to the global object D}± (See Definition 10.11 (3)). This is
called the model base-(or D-)Θell-bridge.
Note that each γ ∈ Fo±

l gives us a natural poly-automorphism γ± of D± as follows: The
automorphism γ± acts on Fl via the usual action of Fo±

l on Fl, and induces the +-full poly-

isomorphism Dt

+-full poly
∼−→ Dγ(t) whose sign at every v ∈ V is equal to the sign of γ. In this

way, we obtain a natural poly-action of Fo±
l on D±. On the other hand, the isomorphism

Aut±(D}±)/Autcusp(D}±)
∼→ Fo±

l determines a natural poly-action of Fo±
l on D}±. Note that

φΘell

± is equivariant with respect to these natural poly-actions of Fo±
l on D± and D}±. Hence,

we obtain a natural poly-action of Fo±
l on (D±,D}±, φΘell

± ).

Definition 10.32. (D-Θ±-Bridge, D-Θell-Bridge, D-�-Hodge Theatre, [IUTchI, Definition
6.4])

(1) A base-(or D-)Θ±-bridge is a poly-morphism

†φΘ±

± : †DT
poly−→ †D�,

where †D� is a D-prime-strip, and †DT is a cupsule of D-prime-strips indexed by an
F±l -group T , such that there exist isomorphisms D�

∼→ †D�, D±
∼→ †DT , whose in-

duced morphism Fl
∼→ T on the index sets is an isomorphism of F±l -groups, and

conjugation by which sends φΘ±
± 7→ †φΘ±

± . An isomorphism of D-Θ±-bridges(
†φΘ±
± : †DT

poly−→ †D�

)
∼→
(
‡φΘ±
± : ‡DT ′

poly−→ ‡D�

)
is a pair of a capsule-+-full poly-

isomorphism
capsule-+full poly
†DT

∼−→ ‡DT ′ whose induced morphism T
∼→ T ′ on the index sets is an

isomorphism of F±l -groups, and a +-full-poly isomorphism †D�

+-full poly
∼→ ‡D�, which are

compatible with †φΘ±
± , ‡φΘ±

± . We define compositions of them in an obvious manner.
(2) A base-(or D-)Θell-bridge is a poly-morphism

†φΘell

± : †DT
poly−→ †D}±,

where †D}± is a category equivalent to the model global object D}±, and †DT is a cup-
sule of D-prime-strips indexed by an F±l -torsor T , such that there exist isomorphisms

D}± ∼→ †D}±, D±
∼→ †DT , whose induced morphism Fl

∼→ T on the index sets is an
isomorphism of F±l -torsors, and conjugation by which sends φΘell

± 7→ †φΘell

± . An iso-

morphism of D-Θell-bridges
(
†φΘell

± : †DT
poly−→ †D}±

)
∼→
(
‡φΘell

± : ‡DT ′
poly−→ ‡D}±

)
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is a pair of a capsule-+-full poly-isomorphism
capsule-+-full poly
†DT

∼−→ ‡DT ′ whose induced morphism
T
∼→ T ′ on the index sets is an isomorphism of F±l -torsors, and an Autcusp(

†D}±)-orbit

(or, equivalently, an Autcusp(
‡D}±)-orbit) †D}±

poly
∼→ ‡D}± of isomorphisms, which are

compatible with †φΘell

± , ‡φΘell

± . We define compositions of them in an obvious manner.
(3) A base-(or D-)Θ±ell-Hodge theatre (or a D-�-Hodge theatre) is a collection

†HT D-� =

(
†D�

†φΘ
±

±←− †DT

†φΘ
ell

±−→ †D}±
)
,

where T is an F±l -group, †φΘell

± is a D-Θell-bridge, and †φΘ±
± is a D-Θ±-bridge, such that

there exist isomorphisms D}± ∼→ †D}±, D±
∼→ †DT , D�

∼→ †D�, conjugation by which
sends φΘell

± 7→ †φΘell

± , φΘ±
± 7→ †φΘ±

± . An isomorphism of D-�-Hodge theatres is a
pair of isomorphisms of D-Θell-bridges and D-Θ±-bridges such that they induce the same
poly-isomorphism of the respective capsules of D-prime-strips. We define compositions
of them in an obvious manner.

The following proposition is an additive analogue of Proposition 10.33, and follows by the
same manner as Proposition 10.33:

Proposition 10.33. (Transport of ±-Label Classes of Cusps via Base-Bridges, [IUTchI, Propo-

sition 6.5]) Let †HT D-� = (†D�
†φΘ

±
±←− †DT

†φΘ
ell

±−→ †D}±) be a D-�-Hodge theatre.

(1) The D-Θell-bridge †φΘell

± induces an isomorphism

†ζΘ
ell

vt
: LabCusp±(†Dvt)

∼→ LabCusp±(†D}±)

of F±l -torsors of ±-label classes of cusps for each v ∈ V, t ∈ T . Moreover, the composite

†ξΘ
ell

vt,wt
:= (†ζΘ

ell

wt
)−1 ◦ (†ζΘell

vt
) : LabCusp±(†Dvt)

∼→ LabCusp±(†Dwt
)

is an isomorphism of F±l -groups for w ∈ V. By these identifications †ξΘ
ell

vt,wt
of F±l -groups

LabCusp±(†Dvt) when we vary v ∈ V, we can write

LabCusp±(†Dt)

for them, and we can write the above isomorphism as an isomorphism

†ζΘ
ell

t : LabCusp±(†Dt)
∼→ LabCusp±(†D}±)

of F±l -torsors.
(2) The D-Θ±-bridge †φΘ±

± induces an isomorphism

†ζΘ
±

vt
: LabCusp±(†Dvt)

∼→ LabCusp±(†D�,v)

of F±l -groups of ±-label classes of cusps for each v ∈ V, t ∈ T . Moreover, the composites

†ξΘ
±

�,v,w := (†ζΘ
±

w0
) ◦ †ξΘell

v0,w0
◦ (†ζΘ±

v0
)−1 : LabCusp±(†D�,v)

∼→ LabCusp±(†D�,w),

†ξΘ
±

�,vt,wt
:= (†ζΘ

±

wt
)−1 ◦ †ξΘ±

�,v,w ◦ (†ζΘ
±

vt
) : LabCusp±(†Dvt)

∼→ LabCusp±(†Dwt
)

(Here 0 denotes the zero element of the F±l -group T ) are isomorphisms of F±l -groups for
w ∈ V, and we also have †ξΘ

±
vt,wt

= †ξΘ
ell

vt,wt
. By these identifications †ξΘ

±
�,v,w of F±l -groups

LabCusp±(†D�,v) when we vary v ∈ V, we can write

LabCusp±(†D�)



176 GO YAMASHITA

for them, and the various †ζΘ
±

vt
’s, and †ζΘ

ell

vt
’s determine a single (well-defined) isomor-

phism
†ζΘ

ell

t : LabCusp±(†Dt)
∼→ LabCusp±(†D�)

of F±l -groups.
(3) We have a natural isomorphism

†ζ± : LabCusp±(†D}±) ∼→ T

of F±l -torsors, by considering the inverse of the map T 3 t 7→ †ζΘ
ell

t (0) ∈ LabCusp±(†D}±),
where 0 denotes the zero element of the F±l -group LabCusp±(†Dt). Moreover, the com-
posite

(†ζΘ
ell

0 )−1 ◦ (†ζΘell

t ) ◦ (†ζΘ±

t )−1 ◦ (†ζΘ±

0 ) : LabCusp±(†D0)
∼→ LabCusp±(†D0)

is equal to the action of (†ζΘ
ell

0 )−1((†ζ±)
−1(t)).

(4) For α ∈ Aut±(
†D}±)/Autcusp(†D}±), if we replece †φΘell

± by α ◦ †φΘell

± , then the resulting

“†ζΘ
ell

t ” is related to the original †ζΘ
ell

t by post-composing with the image of α via the
natural bijection

Aut±(
†D}±)/Autcusp(†D}±)

∼→ Aut±(LabCusp
±(†D}±))(∼= Fo±

l )

(See also Definition 10.29).

The following is an additive analogue of Proposition 10.20, and it follows from the definitions:

Proposition 10.34. (Properties ofD-Θ±-Brideges, D-Θell-Bridges, D-�-Hodge theatres, [IUTchI,
Proposition 6.6])

(1) For D-Θ±-bridges †φΘ±
± , ‡φΘ±

± , the set Isom(†φΘ±
± , ‡φΘ±

± ) is a {±1} × {±1}V -torsor,
where the first factor {±1} (resp. the second factor {±1}V) corresponds to the poly-

automorphism −1Fl
(resp. αΘ±

) in Definition 10.30.

(2) For D-Θell-bridges †φΘell

± , ‡φΘell

± , the set Isom(†φNF
> , ‡φNF

> ) is an Fo±
l -torsor, and we have

a natural isomorphism Isom(†φNF
> , ‡φNF

> ) ∼= IsomF±
l -torsors(T, T

′) of Fo±
l -torsors.

(3) For D-�-Hodge theatres †HT D-�, ‡HT D-�, the set Isom(†HT D-�, ‡HT D-�) is an {±1}-
torsor, and we have a natural isomorphism Isom(†HT D-�, ‡HT D-�) ∼= IsomF±

l -groups(T, T
′)

of {±1}-torsors.
(4) For a D-Θ±-bridge †φΘ±

± and a D-Θell-bridge †φΘell

± , the set{
capsule-+-full poly-isom.

capsule-+-full poly
†DT

∼−→ †DT ′ by which †φΘ±

± , †φΘell

± form a D-�-Hodge theatre

}
is an Fo±

l ×{±1}V -torsor, where the first factor F
o±
l (resp. the subgroup {±1}×{±1}V)

corresponds to the Fo±
l in (2) (resp. to the {±1} × {±1}V in (1)). Moreover, the

first factor can be regarded as corresponding to the structure group of the Fo±
l -torsor

IsomF±
l -torsors(T, T

′).

(5) For a D-Θell-bridge †φΘell

± , we have a functorial algorithm to construct, up to Fo±
l -

indeterminacy, a D-�-Hodge theatre whose D-Θell-bridge is †φΘell

± .

Definition 10.35. ([IUTchI, Corollary 6.10]) Let †HT D-�, ‡HT D-� be D-�-Hodge theatres.
the base-(or D-)Θ±ell-link (or D-�-link)

†HT D-� D−→ ‡HT D-�

is the full poly-isomorphism

†D`>

full poly
∼−→ ‡D`>
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between the mono-analyticisations of the D-prime-strips constructed in Lemma 10.38 in the
next subsection.

Remark 10.35.1. In D-�-link, the D`-prime-strips are shared, but not the arithmetically
holomorphic structures. We can visualise the “shared” and “non-shared” relation as follows:

†HT D-� −− > †D`> ∼= ‡D`> >−− ‡HT D-�

We call this diagram the étale-picture of D-�-Hodge theatres. Note that we have a
permutation symmetry in the étale-picture.

Definition 10.36. (Θ±-Bridge, Θell-Bridge, �-Hodge Theatre, [IUTchI, Deifinition 6.11])

(1) A Θ±-bridge is a poly-morphism

†ψΘ±

± : †FT
poly−→ ‡F�,

where †F� is an F -prime-strip, and †FT is a cupsule of F -prime-strips indexed by an

F±l -group T , which lifts (See Lemma 10.10 (2)) a D-Θ±-bridge †φΘ±
± : †DT

poly−→ †D�.

An isomorphism of Θ±-bridges
(
†ψΘ±
± : †FT

poly−→ †F�

)
∼→
(
‡ψΘ±
± : ‡FT ′

poly−→ ‡F�

)
is a pair of poly-isomorphisms †FT

poly
∼−→ ‡FT ′ and †F�

poly
∼−→ ‡F�, which lifts a morphism

between the associated D-Θ±-bridges †φΘ±
± , ‡φΘ±

± . We define compositions of them in
an obvious manner.

(2) A Θell-bridge

†ψΘell

± : †FT
poly−→ †D}±,

where †D}± is a category equivalent to the model global object D}± in Definition 10.3,
and †FT is a capsule of F -prime-strips indexed by an F±l -torsor T , is a D-Θell-bridge
†φΘell

± : †DT
poly−→ †D}±, where †DT is the associated capsule of D-prime-strips to †FT . An

isomorphism of Θell-bridges
(
†ψΘell

± : †FT
poly−→ †D}±

)
∼→
(
‡ψΘell

± : ‡FT ′
poly−→ ‡D}±

)
is a pair of poly-isomorphisms †FT

poly
∼−→ ‡FT ′ and †D}±

poly
∼−→ ‡D}±, which determines a

morphism between the associated D-Θell-bridges †φΘell

± , ‡φΘell

± . We define compositions
of them in an obvious manner.

(3) A Θ±ell-Hodge theatre (or a �-Hodge theatre) is a collection

†HT � =

(
†F�

†ψΘ±
±←− †FT

†ψΘell

±−→ †D}±
)
,

where †ψΘ±
± is a Θ±-bridge, and †ψΘell

± is a Θell-bridge, such that the associated D-Θ±-
bridge †φΘ±

± and the associated D-Θell-bridge †φΘell

± form a D-�-Hodge theatre. An
isomorphism of �-Hodge theatres is a pair of a morphism of Θ±-bridge and a mor-
phism of Θell-bridge, which induce the same bijection between the respective capsules
of F -prime-strips. We define compositions of them in an obvious manner.

The following lemma follows from the definitions:

Lemma 10.37. (Properties of Θ±-Brideges, Θell-Bridges, �-Hodge theatres, [IUTchI, Corol-
lary 6.12])
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(1) For Θ±-bridges 1ψΘ±
± , 2ψΘ±

± (resp. Θell-bridges 1ψΘell

± , 2ψΘell

± , resp. �-Hodge theatres
1HT �, 2HT �) whose associated D-Θ±-bridges (resp. D-Θell-bridges, resp. D-�-Hodge
theatres) are 1φΘ±

± , 2φΘ±
± (resp. 1φΘell

± , 2φΘell

± , resp. 1HT D-�, 2HT D-�) respectively, the
natural map

Isom(1ψΘ±

± , 2ψΘ±

± )→ Isom(1φΘ±

± , 2φΘ±

± )

(resp. Isom(1ψΘell

± , 2ψΘell

± )→ Isom(1φΘell

± , 2φΘell

± ),

resp. Isom(1HT �, 2HT �)→ Isom(1HT D-�, 2HT D-�) )

is bijective.
(2) For a Θ±-bridge ‡ψΘ±

± and a Θell-bridge ‡ψΘell

± , the set{
capsule-+-full poly-isom.

capsule-+-full poly
‡FT

∼−→ ‡FT ′ by which ‡ψΘ±

± , ‡ψΘell

± form a �-Hodge theatre

}
is an Fo±

l × {±1}V -torsor. Moreover, the first factor can be regarded as corresponding
to the structure group of the Fo±

l -torsor IsomF±
l -torsors(T, T

′).

10.6. Θ±ellNF-Hodge Theatres —Arithmetic Upper Half Plane. In this subsection, we
combine the multiplicative portion of Hodge theatre and the additive portion of Hodge theature
to obtain full Hodge theatre.

Lemma 10.38. (From (D-)Θ±-Bridge To (D-)Θ-Bridge, [IUTchI, Definition 6.4 (i), Proposi-

tion 6.7, Definition 6.11 (i), Remark 6.12 (i)]) Let †φΘ±
± : †DT

poly−→ †D� (resp. †ψΘ±
± : †FT

poly−→
†F�) be a D-Θ±-bridge (resp. Θ±-bridge). Let

†D|T | (resp. †F|T | )

denote the l±-capsule (See Section 0.2 for l±) of D-prime-strips (resp. F-prime-strips) obtained
from l-capsule †DT (resp. †FT ) of D-prime-strips (resp. F-prime-strips) by forming the quotient
|T | of the index set T by {±1}, and identifying the components of the cupsule †DT (resp. †FT )
in the same fibers of T � |T | via the components of the poly-morphism †φΘ±

± = {†φΘ±
t }t∈T

(resp. †ψΘ±
± = {†ψΘ±

t }t∈T ) (Hence, each component of †D|T | (resp.
†F|T |) is only well-defined

up to a positive automorphism). Let also
†DT> (resp. †FT> )

denote the l>-capsule determined by the subset T> := |T | \ {0} of non-zero elements of |T |.
We identify †D0 (resp. †F0) with †D� (resp. †F�) via †φΘ±

0 (resp. †ψΘ±
0 ), and let †D>

(resp. †F>) denote the resulting D-prime-strip (resp. F-prime-strip) (i.e., >= {0,�}). For

v ∈ Vgood, we replace the +-full poly-morphism at v-component of †φΘ±
± (resp. †ψΘ±

± ) by the

full poly-morphism. For v ∈ Vbad, we replace the +-full poly-morphism at v-component of †φΘ±
±

(resp. †ψΘ±
± ) by the poly-morphism determined by (group-theoretically reconstructed) evaluation

section as in Definition 10.17 (resp. by the poly-morphism lying over (See Definition 10.23 (1),
(2), and Remark 10.10.1) the poly-morphism determined by (group-theoretically reconstructed)
evaluation section as in Definition 10.17). Then, we algorithmically obtain a D-Θ-bridge (resp.
a potion of Θ-bridge)

†φΘ
> : †DT>

poly−→ †D> (resp. †ψΘ
> : †FT>

poly−→ †F> )

in a functorial manner. See also the following:
†D0,

†D� 7→ †D>,
†F0,

†F� 7→ †F>,
†Dt,

†D−t (t 6= 0) 7→ †D|t|,
†Ft,

†F−t (t 6= 0) 7→ †F|t|
†DT |T\{0} 7→ †DT> , †FT |T\{0} 7→ †FT> ,
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where |t| denotes the image of t ∈ T under the surjection T � |T |.

Definition 10.39. ([IUTchI, Remark 6.12.2]) Let †FT
poly−→ †F� be a Θ±-bridge, whose associ-

ated D-Θ±-bridge is †DT
poly−→ †D�. Then, we have a group-theoretically functorial algorithm for

constructing aD-Θ-bridge †DT>
poly−→ †D> from theD-Θ±-bridge †DT

poly−→ †D� by Lemma 10.38.

Suppose that this D-Θ-bridge †DT>
poly−→ †D> arises as the D-Θ-bridge associated to a Θ-bridge

‡FJ
poly−→ ‡D> 99K ‡HT Θ, where J = T>:

†FT
poly−→ †F�_

��

‡FJ
poly−→ ‡D> 99K ‡HT Θ

_

��
†DT

poly−→ †D�
� // †DT>

poly−→ †D>.

Then, the poly-morphism ‡FJ
poly−→ ‡F> lying over †DT>

poly−→ †D> is completely determined (See

Definition 10.23 (1), (2), and Remark 10.10.1). Hence, we can regard this portion ‡FJ
poly−→

‡F> of the Θ-bridge as having been constructed via the functorial algorithm of Lemma 10.38.
Moreover, by Lemma 10.25 (1), the isomorphisms between Θ-bridges have a natural bijection

with the the isomorphisms between the “‡FJ
poly−→ ‡F>”-portion of Θ-bridges.

In this situation, we say that the Θ-bridge ‡FJ
poly−→ ‡D> 99K ‡HT Θ (resp. D-Θ-bridge

†DT>
poly−→ †D>) is glued to the Θ±-bridge †FT

poly−→ †F� (resp. D-Θ±-bridge †DT
poly−→ †D�) via

the functorial algorithm in Lemma 10.38. Note that, by Proposition 10.20 (2) and Lemma 10.25
(1), the gluing isomorphism is unique.

Definition 10.40. (D-��-Hodge Theatre, ��-Hodge Theatre, [IUTchI, Definition 6.13])

(1) A base-(or D-)Θ±ellNF-Hodge theatre †HT D-�� is a tripe of a D-�-Hodge theatre
†HT D-�, aD-�-Hodge theatre †HT D-�, and the (necessarily unique) gluing isomorphism
between †HT D-� and †HT D-�. We define an isomorphism of D-��-Hodge theatres
in an obvious manner.

(2) A Θ±ellNF-Hodge theatre †HT �� is a tripe of a �-Hodge theatre †HT �, a �-Hodge
theatre †HT �, and the (necessarily unique) gluing isomorphism between †HT � and
†HT �. We define an isomorphism of ��-Hodge theatres in an obvious manner.

11. Hodge-Arakelov Theoretic Evaluation Maps.

11.1. Radial Environment. In inter-universal Teichmüller theory, not only the existence of
functorial group-theoretic algorithms, but also the contents of algorithms are important. In
this subsection, we introduce important notions of coricity, uniradiality, and multiradiality for
the contents of algorithms.

Definition 11.1. (Radial Environment, [IUTchII, Example 1.7, Example 1.9])

(1) A radial environment is a triple (R, C,Φ), where R, C are groupoids (i.e., categories
in which all morphisms are isomorphisms) such that all objects are isomorphic, and
Φ : R → C is an essentially surjective functor (In fact, in our mind, we expect that
R and C are collections of certain “type of mathematical data” (i.e., species), and
Φ is “algorithmically defined” functor (i.e., mutations). In this survey, we avoid the
rigorous formulation of the language of species and mutations (See [IUTchIV, §3]), and
we just assume that R, C to be as above, and Φ to be a functor. See also Remark 3.4.4
(2)). We call C a coric category an object of C a coric data, R a radial category
an object of R a radial data, and Φ a radial algorithm.
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(2) We call Φmultiradial, if Φ is full. We call Φ uniradial, if Φ is not full. We call (R, C,Φ)
multiradial environment (resp. uniradial environment), if Φ is multiradial (resp.
uniradial).

Note that, if Φ is uniradial, then an isomoprhism in C does not come from an isomor-
phism in R, which means that an object of R loses a portion of rigidity by Φ, i.e., might
be subject to an additional indeterminacy (From another point of view, the liftability of
isomorphism, i.e., multiradiality, makes possible doing a kind of parallel transport from
another radial data via the associated coric data. See [IUTchII, Remark 1.7.1]).

(3) Let (R, C,Φ) be a radial environment. Let †R be another groupoid in which all objects
are isomorphic, †Φ : †R → C an essentially surjective functor, and ΨR : R → †R
a functor. We call ΨR multiradially defined) or multiradial (resp. uniradially
defined) or uniradial if Φ is multiradial (resp. uniradial) and if the diagram

R ΨR //

Φ
��

†R

†Φ~~}}
}}
}}
}}
}

C

is 1-commutative. We call ΨR corically defined (or coric), if ΨR has a factorisation
ΞR ◦ Φ, where ΞR : C → †R is a functor, and if the above diagram is 1-commutative.

(4) Let (R, C,Φ) be a radial environment. Let E be another groupoid in which all objects
are isomorphic, and Ξ : R→ E a functor. Let

Graph(Ξ)

denote the category whose objects are pairs (R,Ξ(R)) for R ∈ Ob(R), and whose
morphisms are the pairs of morphisms (f : R → R′,Ξ(f) : Ξ(R) → Ξ(R′)). We call
Graph(Ξ) the graph of Ξ. We have a commutative diagram

R
Φ

��

ΨΞ // Graph(Ξ)

ΦGraph(Ξ)zzuuu
uu
uu
uu
u

C,

of natural functors, where ΨΞ : R 7→ (R,Ξ(R)) and ΦGraph(Ξ) : (R,Ξ(R)) 7→ Φ(R).

Remark 11.1.1. ([IUTchII, Example 1.7 (iii)]) A crucial fact on the consequence of the mul-
tiradiality is the following: For a radial environment (R, C,Φ), let R ×C R denote the cate-
gory whose objects are triple (R1, R2, α), where R1, R2 ∈ Ob(R), and α is an isomorphism

Φ(R1)
∼→ Φ(R2), and whose morphisms are morphisms of triples defined in an obvious manner.

Then, the switching functor

R×C R→ R×C R : (R1, R2, α) 7→ (R2, R1, α
−1)

preserves the isomorphism class of objects of R ×C R, if Φ is multiradial, since any object
(R1, R2, α) inR×CR is isomorphic to the object (R1, R1, id : Φ(R1)

∼→ Φ(R1)). This means that,
if the radial algorithm is multiradial, then we can switch two radial data up to isomorphism.
Ultimately, in the final multiradial algorithm, we can “switch”, up to isomorphism, the theta

values (more precisely, Θ-pilot object, up to mild indeterminacies) “{‡qj2
v
}1≤j≤l>” on the right

hand side of (the final update of) Θ-link to the theta values (more precisely, Θ-pilot object, up

to mild indeterminacies) “{†qj2
v
}1≤j≤l>” on the left hand side of (the final update of) Θ-link,

which is isomorphic to ‡q
v
(more precisely, q-pilot object, up to mild indeterminacies) by using
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the Θ-link compatibility of the final multiradial algorithm (Theorem 13.12 (3)):

{‡qj2
v
}N1≤j≤l>

!!! {†qj2
v
}N1≤j≤l> ∼= ‡qN

v

Then, we cannot distinguish {‡qj2
v
}1≤j≤l> from ‡q

v
up to mild indeterminacies (i.e., (Indet

↑), (Indet →), and (Indet xy)), which gives us a upper bound of height function (See also
Appendix A).

Example 11.2. (1) A classical example is holomorphic structures on R2:

†C_
forget

��
R2 ‡C,�

forget
oo

where R is the category of 1-dimensional C-vector spaces and isomorphisms of C-vector
spaces, C is the category of 2-dimensional R-vector spaces and isomorphisms of R-vector
spaces, and Φ sends 1-dimensional C-vector spaces to the underlying R-vector spaces.
Then, the radial environment (R, C,Φ) is uniradial. Note that the underlying R2 is
shared (i.e., coric), and that we cannot see one holomorphic structure †C from another
holomorphic structure ‡C.

Next, we replace R by the category of 1-dimensional C-vector spaces †C equipped
with the GL2(R)-orbit of an isomorphism †C ∼→ R2 (for a fixed R2). Then, the resulting
radial environment (R, C,Φ) is tautologically multiradial:

(†C ∼→ R2 x GL2(R))_

forget

��
R2 (‡C ∼→ R2 x GL2(R)).�

forget
oo

Note that the underlying R2 is shared (i.e., coric), and that we can describe the difference
between one holomorphic structure †C and another holomorphic structure ‡C in terms
of the underlying analytic structure R2.

(2) An arithmetic analogue of the above example is as follows: As already explained in
Section 3.5, the absolute Galois group Gk of an MLF k has an automorphism which
does not come from any automorphism of fields (at least in the case where the residue
characteristic is 6= 2), and one “dimension” is rigid, and the other “dimension” is not
rigid, hence, we consider Gk as a mono-analytic structure. On the other hand, from
the arithmetic fundamental group ΠX of hyperbolic orbicurve X of strictly Belyi type
over k, we can reconstruct the field k (Theorem 3.17), hence, we consider ΠX as an
arithmetically holomorphic structure, and the quotient (ΠX �)Gk (group-theoretically
reconstructable by Corollary 2.4) as the underlying mono-analytic structure. For a fixed
hyperbolic orbicurve X of strictly Belyi type over an MLF k, let R be the category of
topological groups isomorphic to ΠX and isomorphisms of topological groups, and C
the category of topological groups isomorphic to Gk and isomorphisms of topological
groups, and Φ be the functor which sends Π to the group-theoretically reconstructed
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quotien (Π�)G. Then, the radial environment (R, C,Φ) is uniradial:

†Π_

��

†G
∃∼= Gk

∃∼= ‡G ‡Π.�oo

Next, we replace R by the category of topological groups isomorphic to ΠX equipped
with the full-poly isomorphism G

∼→ Gk, where (Π �)G is the group-theoretic recon-
structed quotient. Then, the resulting radial environment (R, C,Φ) is tautologically
multiradial:

(†Π� †G
full poly
∼→ Gk)_

��

†G
full poly∼= Gk

full poly∼= ‡G (‡Π� †G
full poly
∼→ Gk).

�oo

See also the following table (cf. [Pano, Fig. 2.2, Fig. 2.3]):

coric underlying analytic str. R2 G

uniradial holomorphic str. C Π

multiradial holomorphic str. described C ∼→ R2 x GL2(R2) Π/∆
full poly
∼−→ G

in terms of underlying coric str.

In the final multiradial algorithm (Theorem 13.12), which admits mild indeterminacies, we
describe the arithmetically holomorphic structure on one side of (the final update of) Θ-link
from the one on the other side, in terms of shared mono-analytic structure.

Definition 11.3. ([IUTchII, Definition 1.1, Proposition 1.5 (i), (ii)]) Let MΘ
∗ = (· · · ←MΘ

M ←
MΘ

M ′ ← · · · ), be a projective system of mono-theta environments determined by X
v
(v ∈ Vbad),

where MΘ
M = (ΠMΘ

M
,DMΘ

M
, sΘMΘ

M
). For each N , by Corollary 7.22 (3) and Lemma 7.12, we can

functorially group-theoretically reconstruct, from MΘ
N , a commutative diagram

Gv(MΘ
N)

Πtemp

MΘ
N

// // Πtemp
Y (MΘ

N)
� � //

77 77ppppppppppp

Πtemp
X (MΘ

N)
� � //

OOOO

Πtemp
X (MΘ

N)
� � //

ggggNNNNNNNNNNN

Πtemp
C (MΘ

N)

kkkkWWWWWWWWWWWWWWWWWWWWWWWWW

µN(MΘ
N)

� � //
, �

;;vvvvvvvvv
∆temp

MΘ
N

// //
?�

OO

∆temp
Y (MΘ

N)
?�

OO

� � // ∆temp
X (MΘ

N)
� � //

?�

OO

∆temp
X (MΘ

N)
� � //

?�

OO

∆temp
C (MΘ

N)
?�

OO
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of topological groups, which is an isomorph of

Gv

Πtemp
Y [µN ] // // Πtemp

Y
� � //

;; ;;wwwwwwwww

Πtemp
X

� � //

OOOO

Πtemp
X

� � //

ccccGGGGGGGGG

Πtemp
C

iiiiSSSSSSSSSSSSSSSSSSSSS

µN
� � //
- 

;;wwwwwwwwww
∆temp
Y [µN ] // //

?�

OO

∆temp
Y

?�

OO

� � // ∆temp
X

� � //
?�

OO

∆temp
X

� � //
?�

OO

∆temp
C .
?�

OO

For each N , by Theorem 7.23 (1), we can also functorially group-theoretically reconstruct an
isomorph (l∆Θ)(MΘ

N) of the internal cyclotome and the cyclotomic rigidity isomorphism

(l∆Θ)(MΘ
N)⊗ (Z/NZ) ∼→ µN(MΘ

N).

The transition morphisms of the resulting projective system {· · · ← Πtemp
X (MΘ

M)← Πtemp
X (MΘ

M ′)←
· · · } are all isomorphism. We identify these topological groups via these transition mor-
phisms, and let Πtemp

X (MΘ
∗ ) denote the resulting topological group. Similarly, we define Gv(MΘ

∗ ),

Πtemp
Y (MΘ

∗ ), Π
temp
X (MΘ

∗ ), Π
temp
C (MΘ

∗ ), ∆
temp
Y (MΘ

∗ ), ∆
temp
X (MΘ

∗ ), ∆
temp
X (MΘ

∗ ), ∆
temp
C (MΘ

∗ ), (l∆Θ)(MΘ
∗ )

fromGv(MΘ
∗ ), Π

temp
Y (MΘ

N), ∆
temp
Y (MΘ

N), ∆
temp
X (MΘ

N), (l∆Θ)(MΘ
N) respectively. We put µẐ(M

Θ
∗ ) :=

lim←−N µN(M
Θ
N), then we obtain a cyclotomic rigidity isomorphism

(l∆Θ)(MΘ
∗ )

∼→ µẐ(M
Θ
∗ ).

Proposition 11.4. (Multiradial Mono-Theta Cyclotomic Rigidity, [IUTchII, Corollary 1.10])
Let Πv be the tempered fundamental group of the local model objects X

v
for v ∈ Vbad in Defi-

nition 10.2 (1), and (Πv �)Gv the quotient group-theoretically reconstructed by Lemma 6.2.

(1) Let C` be the category whose objects are

Gy O×µ(G),

where G is a topological group isomorphic to Gv, O
×µ(G) is the group-theoretically

reconstructed monoid by Proposition 5.2 (Step 1) and Definition 8.5 (1), and whose

morphisms (G y O×µ(G))
∼→ (G′ y O×µ(G′)) are pairs of the isomorphism G

∼→ G′

of topological groups, and an Isomet(G)-multiple of the functorially group-theoretically

reconstructed isomorphism O×µ(G)
∼→ O×µ(G′) from the isomorphism G

∼→ G′.
(2) Let RΘ be the category whose objects are triples(

Π y µẐ(M
Θ
∗ (Π))⊗Q/Z , Gy O×µ(G) , αµ,×µ : (Π y µẐ(M

Θ
∗ (Π))⊗Q/Z) poly−→ (Gy O×µ(G))|Π

)
,

where Π is a topological group isomorphic to Πv, the topological group (Π �)G is the
quotient group-theoretically reconstructed by Lemma 6.2, the notation (−)|Π denotes the
restriction via Π� G, the notation µẐ(M

Θ
∗ (Π)) denotes the external cyclotome (See just

after Theorem 7.23) of the projective system of mono-theta environment MΘ
∗ (Π) group-

theoretically reconstructed from Π by Corollary 7.22 (2) (Note that such a projective
system is uniquely determined, up to isomorphism, by the discrete rigidity (Theorem 7.23
(2))), and αµ,×µ is the composite

µẐ(M
Θ
∗ (Π))⊗Q/Z ↪→ O×(Π)� O×µ(Π)

poly
∼→ O×µ(G)

of ind-topological modules equipped with topological group actions, where the first ar-
row is given by the composite of the tautological Kummer map for MΘ

∗ (Π) and the in-
verse of the isomorphism induced by the cyclotomic rigidity isomorphism of mono-theta
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environment (cf. the diagrams in Proposition 11.7 (1), (4)), the second arrow is the
natural surjection and the last arrow is the poly-isomorphism induced by the full poly-

isomorphism Π/∆
full poly
∼→ G (Note that the composite of the above diagram is equal to 0),

and whose morphisms are pairs (fΠ, fG) of the isomorphism fΠ : (Π y µẐ(M
Θ
∗ (Π)) ⊗

Q/Z) ∼→ (Π′ y µẐ(M
Θ
∗ (Π

′)) ⊗ Q/Z) of ind-topological modules equipped with topo-

logical group actions induced by an isomorphism Π
∼→ Π′ of topological groups with

an Isomet(G)-multiple of the functorially group-theoretically reconstructed isomorphism

µẐ(M
Θ
∗ (Π))⊗Q/Z ∼→ µẐ(M

Θ
∗ (Π

′))⊗Q/Z, and the isomorphism fG : (Gy O×µ(G))
∼→

(G′ y O×µ(G′)) of ind-topological modules equipped with topological group actions in-

duced by an isomorphism G
∼→ G′ of topological groups with an Isomet(G)-multiple

of the functorially group-theoretically reconstructed isomorphism O×µ(G)
∼→ O×µ(G′)

(Note that these isomorphisms are automatically compatible αµ,×µ and α′µ,×µ in an ob-
vious sense).

(3) Let ΦΘ : RΘ → C` be the essentially surjective functor, which sends (Π y µẐ(M
Θ
∗ (Π))⊗

Q/Z, Gy O×µ(G), αµ,×µ) to Gy O×µ(G), and (fΠ, fG) to fG.
(4) Let EΘ be the category whose objects are the cyclotomic rigidity isomorphisms of

mono-theta environments

(l∆Θ)(Π)
∼→ µẐ(M

Θ
∗ (Π))

reconstructed group-theoretically by Theorem 7.23 (1), where Π is a topological group iso-
morphic to Πv, the cyclomotmes (l∆Θ)(Π) and µẐ(M

Θ
∗ (Π)) are the internal and external

cyclotomes respectively group-theoretically reconstructed from Π by Corollary 7.22 (1),

and whose morphisms are pair of isomorphisms (l∆Θ)(Π)
∼→ (l∆Θ)(Π

′) and µẐ(M
Θ
∗ (Π))

∼→
µẐ(M

Θ
∗ (Π

′)) which are induced functorially group-theoretically reconstructed from an iso-

morphism of topological groups Π
∼→ Π′.

(5) Let ΞΘ : RΘ → EΘ be the functor, which sends (Π y µẐ(M
Θ
∗ (Π)) ⊗ Q/Z, G y

O×µ(G), αµ,×µ) to the cyclotomic rigidity isomorphisms of mono-theta environments

(l∆Θ)(Π)
∼→ µẐ(M

Θ
∗ (Π)) reconstructed group-theoretically by Theorem 7.23 (1), and

(fΠ, fG) to the isomorphism functorially group-theoretically reconstructed from Π
∼→ Π′.

Then, the radial environment (RΘ, C`,ΦΘ) is multiradial, and ΨΞΘ is multiradially defined,
where ΨΞΘ the naturally defined functor

RΘ
Ψ

ΞΘ //

ΦΘ

��

Graph(ΞΘ)

Φ
Graph(ΞΘ)yysss

sss
sss

ss

C`

by the construction of the graph of ΞΘ.

Proof. By noting that the composition in the definition of αµ,×µ is 0, and that we are considering

the full poly-isomorphism Π/∆
full poly
∼−→ G, not the tautological single isomorphism Π/∆

∼→ G,
the proposition immediately from the definitions. �
Remark 11.4.1. Let see the diagram

†Π y µẐ(M
Θ
∗ (
†Π))⊗Q/Z

_

��
(†Gy O×µ(†G)) ∼= (‡Gy O×µ(‡G)) ‡Π y µẐ(M

Θ
∗ (
‡Π))⊗Q/Z,�oo
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by dividing into two portions:

†Π_

†Π/†∆
full poly

∼−→ G
��
G ‡Π.�

‡Π/‡∆
full poly

∼−→ G

oo

†µ

0
��

O×µ ‡µ,
0

oo

On the left hand side, by “loosening” (cf. taking GL2(R)-obit in Exapmle 11.2) the natural single

isomorphisms †Π/†∆
∼→ G, ‡Π/‡∆

∼→ G by the full poly-isomorphisms (This means that the
rigidification on the underlying mono-analytic structure G by the arithmetically holomorphic
structure Π is resolved), we make the topological group portion of the functor Φ full (i.e.,
multiradial).
On the right hand side, the fact that the map µ → O×µ is equal to zero makes the ind-

topological module portion of the functor Φ full (i.e., multiradial). This means that it makes
possible to “simultaneously perform” the algorithm of the cyclotomic rigidity isomorphism
of mono-theta environment without making harmfull effects on other radial data, since the
algorithm of the cyclotomic rigidity of mono-theta environment uses only µ-portion (unlike the
one via LCFT uses the value group portion as well), and the µ-portion is separated from the
relation with the coric data, by the fact that tha homomorphism µ→ O×µ is zero.

For the cyclotomic rigidity via LCFT, a similarly defined radial environment is uniradial,
since the cyclotomic rigidity via LCFT uses the value group portion as well, and the value
group portion is not separated from the coric data, and makes harmfull effects on other radial

data. Even in this case, we replace O�(−) by O×(−), and we admit Ẑ×-indeterminacy on the
cyclotomic rigidity, then it is tautologically multiradial as seen in the following proposition:

Proposition 11.5. (Multiradial LCFT Cyclotomic Rigidity with Indeterminacies, [IUTchII,
Corollary 1.11]) Let Πv be the tempered fundamental group of the local model objects X

v
for

v ∈ Vbad in Definition 10.2 (1), and (Πv �)Gv the quotient group-theoretically reconstructed
by Lemma 6.2.

(1) Let C` be the same category as in Proposition 11.4.
(2) Let RLCFT be the category whose objects are triples(

Π y O�(Π) , Gy Oĝp(G) , α�,×µ,
)
,

where Π is a topological group isomorphic to Πv, the topological group (Π �)G is the
quotient group-theoretically reconstructed by Lemma 6.2, O�(Π) is the ind-topological
monoid determined by the ind-topological field group-theoretically reconstructed from Π
by Corollary 3.19 and αµ,×µ is the following diagram:

(Π y O�(Π)) ↪→ (Π y Oĝp(Π))

Ẑ×-orbit
poly
∼→ (Gy Oĝp(G))|Π ←↩ (Gy O×(G))|Π � (Gy O×µ(G))|Π

of ind-topological monoids equipped with topological group actions determined by the Ẑ×-

orbit of the poly-morphism determined by the full poly-morphism Π/∆
full poly
∼−→ G, where

∆ := ker(Π� G) and the natural homomorphisms, where Oĝp(Π) := lim−→J⊂Π : open
(O�(Π)gp)J

(resp. Oĝp(G) := lim−→J⊂G : open
(O�(G)gp)J), and whose morphisms are pairs (fΠ, fG) of

the isomorphism fΠ : (Π y O�(Π))
∼→ (Π′ y O�(Π′)) of ind-topological monoids

equipped with topological group actions induced by an isomorphism Π
∼→ Π′ of topological

groups with an Isomet(G)-multiple of the functorially group-theoretically reconstructed
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isomorphism O�(Π)
∼→ O�(Π′), and the isomorphism fG : (G y Oĝp(G))

∼→ (G′ y
Oĝp(G′)) of ind-topological groups equipped with topological group actions induced by an

isomorphism G
∼→ G′ of topological groups with an Isomet(G)-multiple of the functori-

ally group-theoretically reconstructed isomorphism Oĝp(G)
∼→ Oĝp(G′) (Note that these

isomorphisms are automatically compatible α�,×µ and α′�,×µ in an obvious sense).

(3) Let ΦLCFT : RLCFT → C` be the essentially surjective functor, which sends (Π y
O�(Π), G y Oĝp(G), α�,×µ) to G y O×µ(G), and (fΠ, fG) to the functorially group-

theoretically reconstructed isomorphism (Gy O×µ(G))
∼→ (G′ y O×µ(G′)).

(4) Let ELCFT be the category whose objects are the pairs of the Ẑ×-orbit (= the full poly-
isomorphism, cf. Remark 3.19.2 in the case of O×)

µẐ(G)
poly
∼→ µẐ(O

×(G))

of cyclotomic rigidity isomorphisms via LCFT reconstructed group-theoretically
by Remark 3.19.2 (for M = O×(G)), and the Aut(G)-orbit (which comes from the

full poly-isomorphism Π/∆
full poly
∼−→ G)

µẐ(G)
poly
∼→ (l∆Θ)(Π)

of the isomorphism obtained as the composite of the cyclotomic rigidity isomorphism
via positive rational structure and LCFT µẐ(G)

∼→ µẐ(Π) group-theoretically recon-

structed by Remark 6.12.2 and the cyclotomic rigidity isomorphism µẐ(Π)
∼→ (l∆Θ)(Π)

group-theoretically reconstructed by Remark 9.4.1, where Π is a topological group iso-
morphic to Πv, the topological group (Π �)G is the quotient group-theoretically re-
constructed by Lemma 6.2, and (l∆Θ)(Π) is the internal cyclotome group-theoretically
reconstructed from Π by Corollary 7.22 (1), and whose morphisms are triple of iso-

morphisms µẐ(G)
∼→ µẐ(G

′), µẐ(O
×(G))

∼→ µẐ(O
×(G′)) and (l∆Θ)(Π)

∼→ (l∆Θ)(Π
′)

which are induced functorially group-theoretically reconstructed from an isomorphism of
topological groups Π

∼→ Π′.
(5) Let ΞLCFT : RLCFT → ELCFT be the functor, which sends (Π y O�(Π), Gy Oĝp(G), α�,×µ)

to the pair of group-theoretically reconstructed isomorphisms, and (fΠ, fG) to the iso-

morphism functorially group-theoretically reconstructed from Π
∼→ Π′.

Then, the radial environment (RLCFT, C`,ΦLCFT) is multiradial, and ΨΞLCFT is multiradially
defined, where ΨΞLCFT the naturally defined functor

RLCFT
Ψ

ΞLCFT//

ΦLCFT

��

Graph(ΞLCFT)

Φ
Graph(ΞLCFT)wwooo

ooo
ooo

ooo
o

C`

by the construction of the graph of ΞLCFT.

Definition 11.6. ([IUTchII, Remark 1.4.1 (ii)]) Recall that we have hyperbolic orbicurves
X
v
� Xv � Cv for v ∈ Vbad, and a rational point

µ− ∈ Xv(Kv)

(i.e., “−1” in Grig
m /q

Z
Xv

. See Definition 10.17). The unique automorphism ιX of X
v
of order

2 lying over ιX (See Section 7.3 and Section 7.5) corresponds to the unique ∆temp
X

v
-outer auto-

morphism of Πtemp
X

v
over Gv of order 2. Let also ιX denote the latter automorphism by abuse
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of notation. We also have tempered coverings Ÿ
v
� Y

v
� X

v
. Note that we can group-

theoretically reconstruct Πtemp

Ÿ
v

, Πtemp
Y

v
from ΠX

v
by Corollary 7.22 (1) and the description of

Ÿ � Y . Let Πtemp

Ÿ
v

(Π), Πtemp
Y

v
(Π) denote the reconstructed ones from a topological group Π

isomorphic to ΠẌ
v
, respectively. Since Kv contains µ4l, there exist rational points

(µ−)Ÿ ∈ Ÿ v
(Kv), (µ−)X ∈ Xv

(Kv),

such that (µ−)Ÿ 7→ (µ−)X → µ−. Note that ιX fixes the Gal(X
v
/Xv)-orbit of (µ−)X , since

ιX fixes µ−, hence ιX fixes (µ−)X , since Aut(X
v
) ∼= µl × {±1} by Remark 7.12.1 (Here, ιX

corresponds to the second factor of µl × {±1}, since l 6= 2). Then, it follows that there exists
an automorphism

ιŸ

of Ÿ of order 2 lifting ιX , which is uniquely determined up to lZ-conjugacy and composition with

an element ∈ Gal(Ÿ
v
/Y

v
) ∼= µ2, by the condition that it fixes the Gal(Ÿ

v
/Y

v
)-orbit of some

element (“(µ−)Ÿ ” by abuse of nonation) of the Gal(Ÿ
v
/Xv)(

∼= lZ× µ2)-orbit of (µ−)Ÿ . Let ιŸ

also denote the corresponding ∆temp

Ÿ
v

-outer automorphism of Πtemp

Ÿ
v

by abuse of notation. We

call ιŸ an inversion automorphism as well. Let ιŸ denote the automorphism of Ÿv induced

by ιŸ .

Let

Dµ− ⊂ Πtemp

Ÿ
v

denote the decomposition group of (µ−)Ÿ , which is well-defined up to ∆temp

Ÿ
v

-conjugacy. Hence,

Dµ− is determined by ιŸ up to ∆temp
Yv

-conjugacy. We call the pairs(
ιŸ ∈ Aut(Ÿ

v
) , (µ−)Ÿ

)
, or

(
ιŸ ∈ Aut(Πtemp

Ÿ
v

)/Inn(∆temp

Ÿ
v

) , Dµ−

)
a pointed inversion automorphism. Recall that an étale theta function of standard type is
defined by the condition on the restriction to Dµ− is in µ2l (Definition 7.7 and Definition 7.14).

Proposition 11.7. (Multiradial Constant Multiple Rigidity, [IUTchII, Corollary 1.12]) Let
(RΘ, C`,ΦΘ) be the multiradial environment defined in Proposition 11.4.

(1) There is a functorial group-theoretic algorithm to reconstruct, from a topological group
Π isomorphic to Πtemp

X
v

(v ∈ Vbad), the following commutative diagram:

O×(Π) ∪O×(Π) · ∞θ(Π)

∼=
��

� � // ∞H
1(Πtemp

Ÿ
(Π), (l∆Θ)(Π))

∼= Cycl. Rig. Mono-Th. in Prop.11.4

��

O×(MΘ
∗ (Π)) ∪O×(MΘ

∗ (Π)) · ∞θenv(M
Θ
∗ (Π))

� � // ∞H
1(Πtemp

Ÿ
(MΘ
∗ (Π)), µẐ(M

Θ
∗ (Π))),

where we put, for a topological group Π isomorphic to Πtemp
X

v
(resp. for a projective system

MΘ
∗ of mono-theta environments determined by X

v
), Πtemp

Ÿ
(Π) (resp. Πtemp

Ÿ
(MΘ
∗ )) to

be the isomorph of Πtemp

Ÿ
reconstructed from Πtemp

Ÿ
(Π) by Definition 11.6 (resp. from
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Πtemp

Ÿ
(MΘ
∗ ) by Definition 11.3 and the descrption of Ÿ � Y ), and

∞H
1(Πtemp

Ÿ
(Π), (l∆Θ)(Π)) := lim−→

J⊂Π : open, of fin. index

H1(Πtemp

Ÿ
(Π)×Π J, (l∆Θ)(Π)),

∞H
1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) := lim−→

J⊂Π : open, of fin. index

H1(Πtemp

Ÿ
(MΘ
∗ )×Π J, µẐ(M

Θ
∗ )),

and

∞θ(Π) (⊂ ∞H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π)) (resp. ∞θenv(M

Θ
∗ ) (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) )

denotes the subset of elements for which some positive integer multiple (if we consider
multiplicatively, some positive integer power) is, up to torsion, equal to an element of
the subset

θ(Π) (⊂ H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π)) (resp. θ

env
(MΘ
∗ ) (⊂ H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) )

of the µl-orbit of the reciprocal of lZ×µ2-orbit η̈
Θ,lZ×µ2 of an l-th root of the étale theta

function of standard type in Section 7.3 (resp. corresponding to the µl-orbit of the recip-
rocal of (lZ×µ2)-orbit η̈

Θ,lZ×µ2 of an l-th root of the étale theta function of standard type

in Section 7.3, via the cyclotomic rigidity isomorphism (l∆Θ)(MΘ
∗ )

∼→ µẐ(M
Θ
∗ ) group-

theoretically reconstructed by Theorem 7.23 (1), where (l∆Θ)(MΘ
∗ ) denotes the internal

cyclotome of the projective system MΘ
∗ of mono-theta environments group-theoretically

reconstructd by Theorem 7.23 (1)) (Note that these can functorially group-theoretically
reconstructed by the constant multiple rigidity (Proposition 11.7)), and we define

O×(MΘ
∗ (Π))

to be the submodule such that the left vertical arrow is an isomorphism. We also put

O×∞θ(Π) := O×(Π) · ∞θ(Π), O×∞θenv(M
Θ
∗ (Π)) := O×(MΘ

∗ (Π)) · ∞θenv(M
Θ
∗ (Π)).

(2) There is a functorial group-theoretic algorithm

Π 7→ {(ι,D)}(Π),

which construct, from a topological group Π isomorphic to Πtemp
X

v
, a collection of pairs

(ι,D), where ι is a ∆temp

Ÿ
(Π)(:= Πtemp

Ÿ
(Π) ∩ ∆)-outer automorphism of Πtemp

Ÿ
(Π), and

D ⊂ Πtemp

Ÿ
(Π) is a ∆temp

Ÿ
(Π)-conjgacy class of closed subgroups corresponding to the

pointed inversion automorphisms in Definition 11.6. We call each (ι,D) a pointed
inversion automorphism as well. For a pointed inversion automorphism (ι,D), and
a subset S of an abelian group A, if ι acts on Im(S → A/Ators), then we put Sι := {s ∈
S | ι(smodAtors) = smodAtors}.

(3) Let (ι,D) be a pointed inversion automorphism reconstructed in (1). Then, the restric-
tion to the subgroup D ⊂ Πtemp

Ÿ
(Π) gives us the following commutative diagram:

{O×∞θ(Π)}ι //

��

O×(Π)

Cycl. Rig. Mono-Th. in Prop.11.4∼=
��

(⊂ ∞H1(Π, (l∆Θ)(Π)))

{O×∞θenv(M
Θ
∗ (Π))}ι // O×(MΘ

∗ (Π))
(
⊂ ∞H1(Π, µẐ(M

Θ
∗ (Π))

)
,
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where we put

∞H
1(Π, (l∆Θ)(Π)) := lim−→

J⊂Π : open, of fin. index

H1(J, (l∆Θ)(Π)),

∞H
1(Π, µẐ(M

Θ
∗ (Π))) := lim−→

J⊂Π : open, of fin. index

H1(J, µẐ(M
Θ
∗ (Π))).

Note that the inverse image of the torsion elements via the upper (resp. lower) horizontal
arrow in the above commutative diagram is equal to ∞θ(Π)

ι (resp. ∞θenv(M
Θ
∗ (Π))

ι). In
particular, we obtain a functorial algorithm of constructing splittings

O×µ(Π)× {∞θ(Π)ι/Oµ(Π)}, O×µ(MΘ
∗ (Π))× {∞θenv(M

Θ
∗ (Π))

ι/Oµ(MΘ
∗ (Π))}

of {O×∞θ(Π)}ι/Oµ(Π) (resp. {O×∞θenv(M
Θ
∗ (Π))}ι/Oµ(MΘ

∗ (Π)) ).

(4) For an object (Π y µẐ(M
Θ
∗ (Π))⊗Q/Z, Gy O×µ(G), αµ,×µ) of the radial category RΘ,

we assign
• the projective system MΘ

∗ (Π) of mono-theta environments,
• the subsets O×(Π) ∪O×∞θ(Π) (⊂ ∞H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π))), and

O×(MΘ
∗ (Π)) ∪O×∞θenv(M

Θ
∗ (Π)) (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ (Π)), µẐ(M

Θ
∗ (Π)))) in (1),

• the splittings O×µ(Π)× {∞θ(Π)ι/Oµ(Π)}, and
O×µ(MΘ

∗ (Π))× {∞θenv(M
Θ
∗ (Π))

ι/Oµ(MΘ
∗ (Π))} in (3), and

• the diagram

µẐ(M
Θ
∗ (Π))⊗Q/Z ∼→ Oµ(MΘ

∗ (Π))
∼→ Oµ(Π) ↪→ O×(Π)� O×µ(Π)

poly
∼→ O×µ(G),

where the first arrow is induced by the tautological Kummer map for MΘ
∗ (Π), the

second arrow is induced by the vertical arrow in (1), the third and the fourth arrow
are the natural injection and surjection respectively (Note that the composite is
equal to 0), and the last arrow is the poly-isomorphism induced by the full poly-

isomorphism Π/∆
full poly
∼→ G.

Then, this assignment determines a functor Ξenv : RΘ → Eenv, and the natural functor
ΨΞenv : RΘ → Graph(Ξenv) is multiradially defined.

Proof. Proposition immediately follows from the described algorithms. �

Remark 11.7.1. See also the following étale-pictures of étale theta functions:

∞θ(
†Π) −− > Gy O×µ(G) x Isomet(G) >−− ∞θ(‡Π)

∞θenv(M
Θ
∗ (
†Π)) −− > Gy O×µ(G) x Isomet(G) >−− ∞θenv(M

Θ
∗ (
‡Π))

Note that the object in the center is a mono-analytic object, and the objects in the left and
in the right are holomorphic objects, and that we have a permutation symmetry in the étale-
picture, by the multiradiality of the algorithm in Proposition 11.7 (See also Remark 11.1.1).

Remark 11.7.2. ([IUTchII, Proposition 2.2 (ii)]) The subset

θι(Π) ⊂ θ(Π) (resp. ∞θ
ι(Π) ⊂ ∞θ(Π) )

determines a specific µ2l(O(Π))-orbit (resp. Oµ(Π)-orbit) within the unique (lZ × µ2l)-orbit
(resp. each (lZ× µ)-orbit) in the set θ(Π) (resp. ∞θ(Π)).
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11.2. Hodge-Arakelov Theoretic Evaluation and Gaussian Monoids in Bad Places.
In this subsection, we perform the Hodge-Arakelov theoretic evaluation, and construct Gaussian
monoids for v ∈ Vbad (Note that the case for v ∈ Vbad plays a central role). Recall that
Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group (“Π 7→
M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered Frobenioid
(“F 7→M”). First, we transport theta classes θ and the theta evaluations from a group theoretic
situation to a mono-theta environment theoretic situation via (“Π 7→ M”) and the cyclotomic
rigidity for mono-theta environments, then, via (“F 7→ M”), a Frobenioid theoretic situation
can access to the theta evaluation (See also [IUTchII, Fig. 3.1]):

Π � // M F�oo

θ, eval � // θ
env
, evalenv,

F -Theoretic Theta Monoids
Kummer // M-Theoretic Theta Monoids

Galois Evaluation
��

F -Theoretic Gaussian Monoids M-Theoretic Gaussian Monoids.
(Kummer)−1, or forget

oo

Note also that, from the view point of the scheme theoretic Hodge-Arakelov theory and
p-adic Hodge theory (See Section A), the evaluation maps correspond, in some sense, to the
comparison map, which sends Galois representations to filtered ϕ-modules in the p-adic Hodge
theory.

Definition 11.8. ([IUTchII, Remark 2.1.1, Proposition 2.2, Definition 2.3])

(1) For a hyperbolic orbicurve (−)v over Kv, let Γ(−) denote the dual graph of the special
fiber of a stable model. Note that each of maps

ΓŸ
//

��

ΓY

��

ΓX

��
ΓŸ

// ΓY , ΓX

induces a bijection on vertices, since the covering X
v
� Xv is totally ramified at the

cusps. Let
ΓIX ⊂ ΓX

denote the unique connected subgraph of ΓX , which is a tree and is stabilised by ιX
(See Section 7.3, Section 7.5, and Definition 11.6), and contains all vertices of ΓX . Let

Γ•X ⊂ ΓIX

denote the unique connected subgraph of ΓX , which is stabilised by ιX and contains pre-
cisely one vertex and no edges. Hence, if we put labels on ΓX by {−l>, . . . ,−1, 0, 1, . . . , l>},
where 0 is fixed by ιX , then ΓIX is obtained by removing, from ΓX , the edge connect-

ing the vertices labelled by ±l>, and Γ•X consists only the vertex labelled by 0. From
Γ•X ⊂ ΓIX (⊂ ΓX), by taking suitable connected components of inverse images, we obtain
finite connected subgraphs

Γ•X ⊂ ΓIX ⊂ ΓX , Γ•
Ÿ
⊂ ΓI

Ÿ
⊂ ΓŸ , Γ•

Ÿ
⊂ ΓI

Ÿ
⊂ ΓŸ ,

which are stabilised by respective inversion automorphisms ιX , ιŸ , ιŸ (See Section 7.3,

Section 7.5, and Definition 11.6). Note that each ΓI(−) maps isomorphically to ΓIX .



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 191

(2) Put

Πv• := Πtemp
X

v
,Γ•

X
⊂ ΠvI := Πtemp

X
v
,ΓI

X
⊂ Πv (= Πtemp

X
v
)

for Σ := {l} in the notation of Corollary 6.9 (i.e., H = ΓIX), Note that we have

ΠvI ⊂ Πtemp
Yv
∩ Πv = Πtemp

Y
v

. Note also that ΠvI is well-defined up to Πv-conjugacy,

and after fixing ΠvI, the subgroup Πv• ⊂ ΠvI is well-defined up to ΠvI-conjugacy.
Moreover, note that we may assume that Πv•, ΠvI and ιŸ have been chosen so that

some representative of ιŸ stabilises Πv• and ΠvI. Finally, note also that, from Πv, we

can functorially group-theoretically reconstruct the data (Πv• ⊂ ΠvI ⊂ Πv, ιŸ ) up to

Πv-conjugacy, by Remark 6.12.1.
(3) We put

∆v := ∆temp
X

v
, ∆±v := ∆temp

Xv
, ∆cor

v := ∆temp
Cv

, Π±v := Πtemp
Xv

, Πcor
v := Πtemp

Cv

(Note also that we can group-theoretically reconstruct these groups from Πv by Lemma 7.12).

We also use the notation (̂−) for the profinite completion in this subsection. We also
put

Π±v• := NΠ±
v
(Πv•) ⊂ Π±vI := NΠ±

v
(ΠvI) ⊂ Π±v .

Note that we have

Π±v•/Πv•
∼→ Π±vI/ΠvI

∼→ Π±v /Πv
∼→ ∆±v /∆v

∼→ Gal(X
v
/Xv)

∼= Z/lZ,

and

Π±v• ∩ Πv = Πv•, Π±vI ∩ Πv = ΠvI,

since Πv• and ΠvI are normally terminal in Πv, by Corollary 6.9 (6).

(4) A ±-label class of cusps of Πv (resp. of Π±
v , resp. of Π̂v, resp. of Π̂±

v ) is the set

of Πv-conjugacy (resp. Π±v -conjugacy, resp. Π̂v-conjugacy, resp. Π̂±v -conjugacy) classes

of cuspidal inertia subgroups of Πv (resp. of Π±v , resp. of Π̂v, resp. of Π̂±v ) whose

commensurators in Π±v (resp. in Π±v , resp. in Π̂±v , resp. in Π̂±v ) determine a single

Π±v -conjugacy (resp. Π±v -conjugacy, resp. Π̂±v -conjugacy, resp. Π̂±v -conjugacy) class of

subgroups in Π±v (resp. in Π±v , resp. in Π̂±v , resp. in Π̂±v ). (Note that this is group-
theoretic condition. Note also that such a set of Πv-conjugacy (resp. Π±v -conjugacy,

resp. Π̂v-conjugacy, resp. Π̂±v -conjugacy) class is of cardinality 1, since the covering
X
v
� Xv is totally ramified at cusps (or the covering X

v
� X

v
is trivial).) Let

LabCusp±(Πv) (resp. LabCusp
±(Π±v ), resp. LabCusp

±(Π̂v), resp. LabCusp
±(Π̂±v ) )

denote the set of ±-label classes of cusps of Πv (resp. of Π±v , resp. of Π̂v, resp.

of Π̂±v ). Note that LabCusp±(Πv) can be naturally identified with LabCusp±(†Dv)
in Definition 10.27 (2) for †Dv := Btemp(Πv)

0, and admits a group-theoretically re-
constructable natural action of F×l , a group-theoretically reconstructable zero element
†η0
v
∈ LabCusp±(Πv) = LabCusp±(†Dv), and a group-theoretically reconstructable ±-

canonical element †η±
v
∈ LabCusp±(Πv) = LabCusp±(†Dv) well defined up to multipli-

cation by ±1.
(5) An element t ∈ LabCusp±(Πv) determines a unique vertex of ΓIX (cf.Corollary 6.9 (4)).

Let Γ•tX ⊂ ΓIX denote the connected subgraph with no edges whose unique vertex is the
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vertex determined by t. Then, by a functorial group-theoretic algorithm, Γ•tX gives us a

decomposition group

Πv•t ⊂ ΠvI ⊂ Πv

well-defined up to ΠvI-conjugacy. We also put

Π±v•t := NΠ±
v
(Πv•t).

(Note that we have a natural isomorphism Π±v•t/Πv•t
∼→ Gal(X

v
/Xv) by Corollary 6.9

(6)).

(6) The images in LabCusp±(Π±v ) (resp. LabCusp
±(Π̂±v )) of the F×l -action, the zero element

†η0
v
, and ±-canonical element †η±

v
of LabCusp±(Πv) in the above (4), via the natural

outer injection Πv ↪→ Π±v (resp. Πv ↪→ Π̂±v ), determine a natural F±l -torsor structure (See
Definition 10.26 (2)) on LabCusp±(Π±v ) (resp. LabCusp

±(Π̂±v )). Moreover, the natural

action of Πcor
v /Π±v (resp. Π̂cor

v /Π̂±v ) on Π±v (resp. Π̂±v ) preserves this F±l -torosr structure,
thus, determines a natural outer isomorphism Πcor

v /Π±v
∼= Fo±

l (resp. Π̂cor
v /Π̂±v

∼= Fo±
l ).

Here, note that, even though Πv (resp. Π̂v) is not normal in Πcor
v (resp. Π̂cor

v ), the

cuspidal inertia subgroups of Πv (resp. Π̂v) are permuted by the conjugate action of

Πcor
v (resp. Π̂cor

v ), since, for a cuspidal inertia subgroup I in Π±v (resp. Π̂±v ), we have

I ∩Πv = I l (resp. I ∩ Π̂v = I l) (Here, we write multiplicatively in the notation I l), and

Π±v (resp. Π̂±v ) is normal in Πcor
v (resp. Π̂cor

v ) ([IUTchII, Remark 2.3.1]).

Lemma 11.9. ([IUTchII, Corollary 2.4]) Take t ∈ LabCusp±(Πv). Put

∆v•t := ∆v ∩ Πv•t, ∆±v•t := ∆±v ∩ Π±v•t, Πv•̈t := Πv•t ∩ Πtemp

Ÿ
v

, ∆v•̈t := ∆v ∩ Πv•̈t,

∆vI := ∆v ∩ ΠvI, ∆±vI := ∆±v ∩ Π±vI, ΠvÏ := ΠvI ∩ Πtemp

Ÿ
v

, ∆vÏ := ∆v ∩ ΠvÏ.

Note that we have

[Πv•t : Πv•̈t] = [ΠvI : ΠvÏ] = [∆v•t : ∆v•̈t] = [∆vI : ∆vÏ] = 2,

[Π±v•t : Πv•t] = [Π±vI : ΠvI] = [∆±v•t : ∆v•t] = [∆±vI : ∆vI] = l.

(1) Let It ⊂ Πv be a cuspidal inertia subgroup which belongs to the ±-label class t such that

It ⊂ ∆v•t (resp. It ⊂ ∆vI). For γ ∈ ∆̂±v , let (−)γ denote the conjugation γ(−)γ−1 by

γ. Then, for γ′ ∈ ∆̂±v , the following are equivalent:

(a) γ′ ∈ ∆±v•t (resp. γ′ ∈ ∆±vI),

(b) Iγγ
′

t ⊂ Πγ
v•t (resp. Iγγ

′

t ⊂ Πγ
vI),

(c) Iγγ
′

t ⊂ (Π±v•t)
γ (resp. Iγγ

′

t ⊂ (Π±vI)
γ).

(2) In the situation of (1), put δ := γγ′ ∈ ∆̂±v , then any inclusion

Iδt = Iγγ
′

t ⊂ Πγ
v•t = Πδ

v•t (resp. I
δ
t = Iγγ

′

t ⊂ Πγ
vI = Πδ

vI )

as in (1) completely determines the following data:
(a) a decomposition group Dδ

t := NΠδ
v
(Iδt ) ⊂ Πδ

v•̈t (resp. Dδ
t := NΠδ

v
(Iδt ) ⊂ Πδ

vÏ),

(b) a decomposition group Dδ
µ− ⊂ Πδ

vÏ, well-defined up to (Π±vI)
δ-conjugacy (or, equiva-

lently (∆±vI)
δ-conjugacy), corresponding to the torsion point µ− in Definition 11.6.
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(c) a decomposition group Dδ
t,µ− ⊂ Πδ

v•̈t (resp. D
δ
t,µ− ⊂ Πδ

vÏ), well-defined up to (Π±v•t)
δ-

conjugacy (resp. (Π±vI)
δ-conjugacy) (or equivalently, (∆±v•t)

δ-conjugacy (resp. (∆±vI)
δ-

conjugacy)), that is, the image of an evaluation section corresponding to µ−-translate
of the cusp which gives rise to Iδt .

Moreover, the construction of the above data is compatible with conjugation by arbitrary

δ ∈ ∆̂±v as well as with tha natural inclusion Πv•t ⊂ ΠvI, as we vary the non-resp’d case
and resp’d case.

(3) (Fo±
l -symmetry) The construction of the data (2a), (2c) is compatible with conjugation

by arbitrary δ ∈ Π̂cor
v , hence we have a ∆̂cor

v /∆̂±v
∼→ Π̂cor

v /Π̂±v
∼→ Fo±

l -symmetry on the
construction.

Proof. We show (1). The implications (a) ⇒ (b) ⇒ (c) are immediately follow from the
definitions. We show the implication (c) ⇒ (a). We may assume γ = 1 without loss of

generality. Then, the condition Iγ
′

t ⊂ Π±v•t ⊂ Π±v (resp. Iγ
′

t ⊂ Π±vI ⊂ Π±v ) implies γ′ ∈ ∆±v
by Theorem 6.11 (“profinite conjugate vs tempered conjugate”). By Corollary 6.9 (4), we

obtain γ′ ∈ ∆̂±v•t (resp. γ′ ∈ ∆̂±vI), where (̂−) denotes the closure in ∆̂±v (which is equal to

the profinite completion, by Corollary 6.9 (2)). Then, we obtain γ′ ∈ ∆̂±v•t ∩∆±v = ∆±v•t (resp.

γ′ ∈ ∆̂±vI ∩∆±v = ∆±vI) by Corollary 6.9 (3).
(2) follows from Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together with

Lemma 7.16, Lemma 7.12) (See also Definition 10.17). (3) follows immediately from the de-
scribed algorithms. �
Let

(l∆Θ)(ΠvÏ)

denote the subquotient of ΠvÏ determined by the subquotient (l∆Θ)(Πv) of Πv (Note that the

inclusion ΠvÏ ↪→ Πv induces an isomorphism (l∆Θ)(ΠvÏ)
∼→ (l∆Θ)(Πv)). Let

Πv � Gv(Πv), ΠvÏ � Gv(ΠvÏ)

denote the quotients determined by the natural surjection Πv � Gv (Note that we can functo-
rially group-theoretically reconstruct these quotients by Lemma 6.2 and Definition 11.8 (2)).

Proposition 11.10. (Π-theoretic Theta Evaluation, [IUTchII, Corollary 2.5, Corollary 2.6])

(1) Let Iδt = Iγγ
′

t ⊂ Πδ
vÏ ⊂ Πγ

vI = Πδ
vI be as in Lemma 11.9 (2). Then, the restriction of the

ιγ-invariant sets θι(Πγ
v), ∞θ

ι(Πγ
v) of Remark 11.7.2 to the subgroup Πγ

vÏ ⊂ Πtemp

Ÿ
(Πv)(⊂

Πv) gives us µ2l-, µ-orbits of elements

θι(Πγ
vÏ) ⊂ ∞θ

ι(Πγ
vÏ) ⊂ ∞H

1(Πγ
vÏ, (l∆Θ)(Π

γ
vÏ)) := lim−→

Ĵ⊂Π̂v : open

H1(Πγ
vÏ ×Π̂v

Ĵ , (l∆Θ)(Π
γ
vÏ)).

The further restriction of the decomposition groups Dδ
t,µ− in Lemma 11.9 (2) gives us

µ2l-, µ-orbits of elements

θt(Πγ
vÏ) ⊂ ∞θ

t(Πγ
vÏ) ⊂ ∞H

1(Gv(Π
γ
vÏ), (l∆Θ)(Π

γ
vÏ)) := lim−→

JG⊂Gv(Π
γ
vÏ) : open

H1(JG, (l∆Θ)(Π
γ
vÏ)),

for each t ∈ LabCusp±(Πγ
v)

conj. by γ
∼−→ LabCusp±(Πv). Since the sets θt(Πγ

vÏ), ∞θ
t(Πγ

vÏ)

depend only on the label |t| ∈ |Fl|, we write

θ|t|(Πγ
vÏ) := θt(Πγ

vÏ), ∞θ
|t|(Πγ

vÏ) := ∞θ
t(Πγ

vÏ).
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(2) If we start with an arbitrary ∆̂±v -conjugate Π
γ
vÏ of ΠvÏ, and we consider the resulting µ2l-

, µ-orbits θ|t|(Πγ
vÏ), ∞θ

|t|(Πγ
vÏ) arising from an arbitrary ∆̂±v -conjugate I

δ
t of It contained

in Πγ
vÏ, as t runs over LabCusp±(Πγ

v)
conj. by γ
∼−→ LabCusp±(Πv), then we obtain a group-

theoretic algorithm to construct the collections of µ2l-, µ-orbits{
θ|t|(Πγ

vÏ)
}
|t|∈|Fl|

,
{
∞θ
|t|(Πγ

vÏ)
}
|t|∈|Fl|

,

which is functorial with respect to the isomorphisms of topological groups Πv, and

compatible with the independent conjugacy actions of ∆̂±v on the sets {Iγ1t }γ1∈Π̂±
v

=

{Iγ1t }γ1∈∆̂±
v
and {Πγ2

vÏ}γ2∈Π̂±
v
= {Πγ2

vÏ}γ2∈∆̂±
v

(3) The γ-conjugate of the quotient ΠvÏ � Gv(ΠvÏ) determines subsets

(∞H
1(Gv(Π

γ
vÏ), (l∆Θ)(Π

γ
vÏ)) ⊃) O×(Πγ

vÏ) ⊂ ∞H
1(Πγ

vÏ, (l∆Θ)(Π
γ
vÏ)),

O×θι(Πγ
vÏ) := O×(Πγ

vÏ)θ
ι(Πγ

vÏ) ⊂ O×∞θ
ι(Πγ

vÏ) := O×(Πγ
vÏ)∞θ

ι(Πγ
vÏ) ⊂ ∞H

1(Πγ
vÏ, (l∆Θ)(Π

γ
vÏ)),

which are compatible with O×(−), O×∞θι(−) in Proposition 11.7, respectively, relative
to the first restriction operation in (1). We put

O×µ(Πγ
vÏ) := O×(Πγ

vÏ)/O
µ(Πγ

vÏ).

(4) In the situation of (1), we take t to be the zero element. Then, the set θt(Πγ
vÏ) (resp.

∞θ
t(Πγ

vÏ)) is equal to µ2l (resp. µ). In particular, by taking quotietn by Oµ(Πγ
vÏ),

the restriction to the decomposition group Dδ
t,µ− (where t is the zero element) gives us

splittings
O×µ(Πγ

vÏ)× {∞θ
ι(Πγ

vÏ)/O
µ(Πγ

vÏ)}
of O×∞θ

ι(Πγ
vÏ)/O

µ(Πγ
vÏ), which are compatible with the splittings of Proposition 11.7

(3), relative to the first restriction operation in (1):

0 // O×µ(Πγ
vÏ)

// O×∞θ
ι(Πγ

vÏ)/O
µ(Πγ

vÏ)
//

label 0

ww

∞θ
ι(Πγ

vÏ)/O
µ(Πγ

vÏ)
// 0.

Remark 11.10.1. (principle of Galois evaluation) Let us consider some “mysterious evaluation
algorithm” which constructs theta values from an abstract theta function, in general. It is
natural to require that this algorithm is compatible with taking Kummer classes of the “abstract
theta function” and the “theta values”, and that this algorithm extend to coverings on both
input and output data. Then, by the natural requirement of functoriality with respect to the
Galois groups on either side, we can conclude that the “mysterious evaluation algorithm” in fact
arises from a section G→ ΠŸ (Π) of the natural surjection ΠŸ (Π)� G, as in Proposition 11.10.

We call this the principle of Galois evaluation. Moreover, from the point of view of Section
Conjecture, we expect that this sections arise from geometric points (as in Proposition 11.10).

Remark 11.10.2. ([IUTchII, Remark 2.6.1, Remark 2.6.2]) It is important that we perform
the evaluation algorithm in Proposition 11.10 (1) by using single base point, i.e., connected
subgraph ΓIX ⊂ ΓX , and that the theta values

θ|t|(ΠvÏγ) ⊂ H1(Gv(ΠvÏγ), (l∆Θ)(ΠvÏγ))

live in the cohomology of single Galois group Gv(ΠvÏγ) with single cyclotome (l∆Θ)(Π
γ
vÏ)

coefficient for various |t| ∈ |Fl|, since we want to consider the collection of the theta values
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for |t| ∈ |Fl|, not as separated objects, but as “connected single object”, by synchronising
indeterminacies via Fo±

l -symmetry, when we construct Gaussian monoids via Kummer theory
(See Corollary 11.17).

Remark 11.10.3. ([IUTchII, Remark 2.5.2]) Put

Π}± := ΠXK
, ∆}± := ∆XK

.

Recall that, using the global data ∆}±(∼= ∆̂±v ), we put ±-labels on local objects in a consistent
manner (Proposition 10.33), where the labels are defined in the form of conjugacy classes of

It. Note that ∆}±(∼= ∆̂±v ) is a kind of “ambient container” of ∆̂±v -conjugates of both It and
∆vÏ. On the other hand, when we want to vary v, the topological group ΠvÏ is purely local
(unlike the label t, or conjugacy classes of It), and cannot be globalised, hence, we have the

independence of the ∆}±(∼= ∆̂±v )-conjugacy indeterminacies which act on the conjugates of It

and ∆vÏ. Moreover, since the natural surjection ∆̂cor
v � ∆̂cor

v /∆̂±v
∼= Fo±

l deos not have a

splitting, the ∆̂cor
v -outer action of ∆̂cor

v /∆̂±v
∼= Fo±

l in Lemma 11.9 (3) induces independent

∆}± ∼= ∆̂±v -conjugacy indeterminacies on the subgroups It for distinct t.

Remark 11.10.4. ([IUTchII, Remark 2.6.3]) We explain the choice of ΓI
Ÿ
⊂ ΓŸ . Take a finite

subgraph Γ′ ⊂ ΓŸ . Then,

(1) For the purpose of getting single base point as explained in Remark 11.10.2, the subgraph
Γ′ should be connected.

(2) For the purpose of getting the crucial splitting in Proposition 11.10 (4), the subgraph
Γ′ should contain the vertex of label 0.

(3) For the purpose of making the final height inequality sharpest (cf. the calculations in
the proof of Lemma 1.10), we want to maximise the value

1

#Γ′

∑
j∈F>

l

minj∈Γ′, j≡j in |Fl|

{
j2
}
,

where we identified ΓŸ with Z. Then, we obtain #Γ′ ≥ l>, since the above function is
non-decreasing when #Γ′ grows, and constant for #Γ′ ≥ l>.

(4) For the purpose of globalising the monoids determined by theta values, via global re-
alified Frobenioids (See Section 11.4), such a manner that the product formula should
be satisfied, the set {j ∈ Γ′, j ≡ j in |Fl|} should consist of only one element for each

j ∈ F>
l , because the independent conjugacy indeterminacies explained in Remark 11.10.3

are incompatible with the product formula, if the set has more than two elements.

Then, the only subgraph satisfying (1), (2), (3), (4) is ΓI
Ÿ
.

For a projective system MΘ
∗ = (· · · ←MΘ

M ←MΘ
M ′ ← · · · ) of mono-theta environments such

that Πtemp
X (MΘ

∗ )
∼= Πv, where MΘ

M = (ΠMΘ
M
,DMΘ

M
, sΘMΘ

M
), put

ΠMΘ
∗
:= lim←−

M

ΠMΘ
M
.

Note that we have a natural homomorphism ΠMΘ
∗
→ Πtemp

X (MΘ
∗ ) of topological groups whose

kernel is equal to the external cyclotome µẐ(M
Θ
∗ ), and whose image correpsonds to Πtemp

Y
v

. Let

ΠMΘ
∗Ï
⊂ ΠMΘ

∗I ⊂ ΠMΘ
∗

denote the inverse image of ΠvÏ ⊂ ΠvI ⊂ Πv
∼= Πtemp

X (MΘ
∗ ) in ΠMΘ

∗
respectively, and

µẐ(M
Θ
∗Ï), (l∆Θ)(MΘ

∗Ï), ΠvÏ(MΘ
∗Ï), Gv(MΘ

∗Ï)
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denote the subquotients of ΠMΘ
∗
determined by the subquotient µẐ(M

Θ
∗ ) of ΠMΘ

∗
and the subquo-

tients (l∆Θ)(Π
temp
X (MΘ

∗ )), ΠvÏ, and Gv(Π
temp
X (MΘ

∗ )) of Πv
∼= Πtemp

X (MΘ
∗ ). Note that we obtain

a cyclotomic rigidity isomorphism of mono-theta environment

(l∆Θ)(MΘ
∗Ï)

∼→ µẐ(M
Θ
∗Ï)

by restricting the cyclotomic rigidity isomorphism of mono-theta environment (l∆Θ)(MΘ
∗ )

∼→
µẐ(M

Θ
∗ ) in Proposition 11.4 to ΠMΘ

∗Ï
(Definition [IUTchII, Definition 2.7]).

Corollary 11.11. (M-theoretic Theta Evaluation, [IUTchII, Corollary 2.8]) Let MΘ
∗ be a pro-

jective system of mono-theta environments with Πtemp
X (MΘ

∗ ) = Πv. Let

(MΘ
∗ )

γ

denote the projective system of mono-theta environments obtained via transport of structure
from the isomorphism Πv

∼→ Πγ
v given by the conjugation by γ.

(1) Let Iδt = Iγγ
′

t ⊂ Πδ
vÏ ⊂ Πγ

vI = Πδ
vI be as in Lemma 11.9 (2). Then, by using the

cyclomotic rigidity isomorphisms of mono-theta environment

(l∆Θ)((MΘ
∗Ï)

γ)
∼→ µẐ((M

Θ
∗Ï)

γ), (l∆Θ)((MΘ
∗ )

γ)
∼→ µẐ((M

Θ
∗ )

γ)

(See just before Corollary 11.11), we replace H1(−, (l∆Θ)(−)) by H1(−, µẐ(−)) in
Proposition 11.10. Then, the ιγ-invariant subsets θι(Πγ

v) ⊂ θ(Πγ
v), ∞θ

ι(Πγ
v) ⊂ ∞θ(Πγ

v)
determines ιγ-invariant subsets

θι
env

((MΘ
∗ )

γ) ⊂ θ
env

((MΘ
∗ )

γ), ∞θ
ι

env
((MΘ

∗ )
γ) ⊂ ∞θenv((M

Θ
∗ )

γ).

The restriction of these subsets to ΠvÏ((MΘ
∗Ï)

γ) gives us µ2l-, µ-orbits of elements

θι
env

((MΘ
∗Ï)

γ) ⊂ ∞θιenv((M
Θ
∗Ï)

γ) ⊂ ∞H1(ΠvÏ((MΘ
∗Ï)

γ), µẐ((M
Θ
∗Ï)

γ)),

where ∞H
1(ΠvÏ((MΘ

∗Ï)
γ),−) := lim−→Ĵ⊂Π̂v ; open

H1(ΠvÏ((MΘ
∗Ï)

γ) ×Π̂v
Ĵ ,−). The further

restriction to the decomposition groups Dδ
t,µ− in Lemma 11.9 (2) gives us µ2l-, µ-orbits

of elements

θt
env

((MΘ
∗Ï)

γ) ⊂ ∞θtenv((M
Θ
∗Ï)

γ) ⊂ ∞H1(Gv((MΘ
∗Ï)

γ), µẐ((M
Θ
∗Ï)

γ)),

where ∞H
1(Gv((MΘ

∗Ï)
γ),−) := lim−→JG⊂Gv((MΘ

∗Ï)γ) : open
H1(JG,−), for each t ∈ LabCusp±(Πγ

v)

conj. by γ
∼−→ LabCusp±(Πv). Since the sets θt

env
((MΘ

∗Ï)
γ), ∞θ

t

env
((MΘ

∗Ï)
γ) depend only on the

label |t| ∈ |Fl|, we write

θ|t|
env

((MΘ
∗Ï)

γ) := θt
env

((MΘ
∗Ï)

γ), ∞θ
|t|
env

((MΘ
∗Ï)

γ) := ∞θ
t

env
((MΘ

∗Ï)
γ).

(2) If we start with an arbitrary ∆̂±v -conjugate ΠvÏ((MΘ
∗Ï)

γ) of ΠvÏ(MΘ
∗Ï), and we consider

the resulting µ2l-, µ-orbits θ
|t|
env

((MΘ
∗Ï)

γ), ∞θ
|t|
env

((MΘ
∗Ï)

γ) arising from an arbitrary ∆̂±v -

conjugate Iδt of It contained in ΠvÏ((MΘ
∗Ï)

γ), as t runs over LabCusp±(Πγ
v)

conj. by γ
∼−→

LabCusp±(Πv), then we obtain a group-theoretic algorithm to construct the collections
of µ2l-, µ-orbits{

θ|t|
env

((MΘ
∗Ï)

γ)
}
|t|∈|Fl|

,
{
∞θ
|t|
env

((MΘ
∗Ï)

γ)
}
|t|∈|Fl|

,
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which is functorial with respect to the projective system MΘ
∗ of mono-theta environments,

and compatible with the independent conjugacy actions of ∆̂±v on the sets {Iγ1t }γ1∈Π̂±
v
=

{Iγ1t }γ1∈∆̂±
v
and {ΠvÏ((MΘ

∗Ï)
γ2)}γ2∈Π̂±

v
= {ΠvÏ((MΘ

∗Ï)
γ2)}γ2∈∆̂±

v

(3) In the situation of (1), we take t to be the zero element. By using the cyclomotic rigidity
isomorphisms in (1) we replace (l∆Θ)(−) by µẐ(−) in Proposition 11.10, then we obtain
splittings

O×µ((MΘ
∗Ï)

γ)× {∞θιenv((M
Θ
∗Ï)

γ)/Oµ((MΘ
∗Ï)

γ)}

of O×∞θ
ι

env
((MΘ

∗Ï)
γ)/Oµ((MΘ

∗Ï)
γ), which are compatible with the splittings of Proposi-

tion 11.7 (3) (with respect to any isomorphism MΘ
∗
∼→ MΘ

∗ (Πv)), relative to the first
restriction operation in (1):

0 // O×µ((MΘ
∗Ï)

γ) // O×∞θ
ι

env
((MΘ

∗Ï)
γ)/Oµ((MΘ

∗Ï)
γ) //

label 0

uu

∞θ
ι

env
((MΘ

∗Ï)
γ)/Oµ((MΘ

∗Ï)
γ) // 0.

Remark 11.11.1. (Theta Evaluation via Base-field-theoretic Cyclotomes, [IUTchII, Corollary
2.9, Remark2.9.1]) If we use the cyclotomic rigidity isomorphisms

µẐ(Gv(Πv))
∼→ (l∆Θ)(Πv), µẐ(Gv(Π

γ
vÏ))

∼→ (l∆Θ)(Π
γ
vÏ)

determined by the composites of the cyclotomic rigidity isomorphism via positive ra-
tional structure and LCFT “µẐ(G)

∼→ µẐ(Π)” group-theoretically reconstructed by Re-

mark 6.12.2 and the cyclotomic rigidity isomorphism “µẐ(Π)
∼→ (l∆Θ)(Π)” group-theoretically

reconstructed by Remark 9.4.1 and its restriction to Πγ
vÏ (like Proposition 11.5, however, we al-

low indeterminacies in Proposition 11.5), instead of using the cyclomotic rigidity isomorphisms

of mono-theta environment (l∆Θ)((MΘ
∗Ï)

γ)
∼→ µẐ((M

Θ
∗Ï)

γ), (l∆Θ)((MΘ
∗ )

γ)
∼→ µẐ((M

Θ
∗ )

γ), then
we functorially group-theoretically obtain the following similar objects with similar compati-
bility as in Corollary 11.11: ιγ-invariant subsets

θι
bs
(Πγ

v) ⊂ θ
bs
(Πγ

v), ∞θ
ι

bs
(Πγ

v) ⊂ ∞θbs(Π
γ
v).

The restriction of these subsets to Πγ
vÏ gives us µ2l-, µ-orbits of elements

θι
bs
(Πγ
∗Ï) ⊂ ∞θ

ι

bs
(Πγ
∗Ï) ⊂ ∞H

1(Πγ
vÏ, µẐ(Gv(Π

γ
∗Ï))),

where ∞H
1(Πγ

vÏ,−) := lim−→Ĵ⊂Π̂v : open
H1(Πγ

vÏ ×Π̂v
Ĵ ,−). The further restriction to the decom-

position groups Dδ
t,µ− in Lemma 11.9 (2) gives us µ2l-, µ-orbits of elements

θt
bs
(Πγ

vÏ) ⊂ ∞θ
t

bs
(Πγ

vÏ) ⊂ ∞H
1(Gv(Π

γ
vÏ), µẐ(Gv(Π

γ
vÏ))),

where ∞H
1(Gv(Π

γ
vÏ),−) := lim−→JG⊂Gv(Π

γ
vÏ) : open

H1(JG,−), for each t ∈ LabCusp±(Πγ
v)

conj. by γ
∼−→

LabCusp±(Πv). Since the sets θ
t

bs
(Πγ

vÏ), ∞θ
t

bs
(Πγ

vÏ) depend only on the label |t| ∈ |Fl|, we write

θ|t|
bs
(Πγ

vÏ) := θt
bs
(Πγ

vÏ), ∞θ
|t|
bs
(Πγ

vÏ) := ∞θ
t

bs
(Πγ

vÏ).

Hence, the collections of µ2l-, µ-orbits{
θ|t|
bs
(Πγ

vÏ)
}
|t|∈|Fl|

,
{
∞θ
|t|
bs
(Πγ

vÏ)
}
|t|∈|Fl|

,

and splittings

O×µ(Πγ
vÏ)bs × {∞θ

ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs}
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of O×∞θ
ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs (Here, O
×µ(−)bs, O×(−)bs, Oµ(−)bs denote the objects correspond-

ing to O×µ(−), O×(−), Oµ(−), respectively, via the cyclotomic rigidity isomorphism):

0 // O×µ(Πγ
vÏ)bs

// O×∞θ
ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs
//

label 0

vv

∞θ
ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs
// 0.

Note that we use the value group portion in the construction of the cyclotomic rigidity iso-
morphism via positive rational structure and LCFT (cf. the final remark in Remark 6.12.2).
Therefore, the algorithm in this remark (unlike Corollary 11.11) is only uniradially defined
(cf.Proposition 11.5 and Remark 11.4.1).
On the other hand, the cyclotomic rigidity isomorphism via positive rational structure and

LCFT has an advantage of having the natural surjection

H1(Gv(−), µẐ(Gv(−)))� Ẑ

in (the proof of) Corollary 3.19 (cf.Remark 6.12.2), and we use this surjection to construct
some constant monoids (See Definition 11.12 (2)).

Definition 11.12. (M-theoretic Theta Monoids, [IUTchII, Proposition 3.1]) Let MΘ
∗ be a

projective system of mono-theta environments with Πtemp
X (MΘ

∗ )
∼= Πv.

(1) (Split Theta Monoids) We put

Ψenv(MΘ
∗ ) :=

{
Ψι

env(MΘ
∗ ) := O×(MΘ

∗ ) · θιenv(M
Θ
∗ )

N (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )))

}
ι
,

∞Ψenv(MΘ
∗ ) :=

{
∞Ψ

ι
env(MΘ

∗ ) := O×(MΘ
∗ ) · ∞θιenv(M

Θ
∗ )

N (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )))

}
ι
.

These are functorially group-theoretically reconstructed collections of submonoids of

∞H
1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) equipped with natrural conjugation actions of Πtemp

X (MΘ
∗ ),

together with the splittings up to torsion determined by Corollary 11.11 (3). We call
each of Ψι

env(MΘ
∗ ), ∞Ψ

ι
env(MΘ

∗ ) a mono-theta-theoretic theta monoid.
(2) (Constant Monoids) By using the cyclotomic rigidity isomorphism via positive ra-

tional structure and LCFT, and taking the inverse image of Z ⊂ Ẑ via the surjection

H1(Gv(−), µẐ(Gv(−))) � Ẑ (See Remark 11.11.1) for Gv(MΘ
∗ ) := Gv(Π

temp
X (MΘ

∗ )), we

obtain a functorial group-theoretic reconstruction

Ψcns(MΘ
∗ ) ⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ ))

of an isomorph of O�

F v
, equipped with a natural conjugate action by Πtemp

X (MΘ
∗ ). We

call Ψcns(MΘ
∗ ) a mono-theta-theoretic constant monoid.

Definition 11.13. ([IUTchII, Example 3.2])

(1) (Split Theta Monoids) Recall that, for the tempered Frobenioid F
v
(See Exam-

ple 8.8), the choice of a Frobenioid-theoretic theta function Θ
v
∈ O×(Obirat

Ÿ
v

) (See

Example 8.8) among the µ2l(Obirat
Ÿ

v

)-multiples of the AutDv(Ÿ v
)-conjugates of Θ

v
de-

termines a monoid O�
CΘv
(−) on DΘ

v (See Definition 10.5 (1)) Suppose, for simplicity, the

topological group Πv arises from a universal covering pro-object A∞ of Dv. Then, for

AΘ
∞ := A∞ × Ÿ v

∈ pro-Ob(DΘ
v ) (See Definition 10.5 (1)), we obtain submonoids

ΨFΘ
v ,id

:= O�
CΘv
(AΘ
∞) = O×CΘv

(AΘ
∞) ·ΘN

v
|AΘ

∞
⊂ ∞ΨFΘ

v ,id
:= O×CΘv

(AΘ
∞) ·ΘQ≥0

v
|AΘ

∞
⊂ O×(Obirat

AΘ
∞

).
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For the various conjugates Θα

v
of Θ

v
for α ∈ AutDv(Ÿ v

), we also similarly obtain sub-

monoids
ΨFΘ

v ,α
⊂ ∞ΨFΘ

v ,α
⊂ O×(Obirat

AΘ
∞

).

Put

ΨFΘ
v
:=
{
ΨFΘ

v ,α

}
α∈Πv

, ∞ΨFΘ
v ,α

:=
{
∞ΨFΘ

v ,α

}
α∈Πv

,

where we use the same notation α, by abuse of notation, for the image of α via the
surjection Πv � AutDv(Ÿ v

). Note that we have a natural conjugation action of Πv

on the above collections of submonoids. Note also that ΘQ≥0

v
|AΘ

∞
gives us splittings

up to torsion of the monoids ΨFΘ
v ,α

, ∞ΨFΘ
v ,α

(cf. splΘv in Definition 10.5 (1)), which

are compatible with the Πv-action. Note that, from F
v
, we can reconstruct these

collections of submonoids with Πv-actions together with the splittings up to torsion
up to an indeterminacy arising from the inner automorphismsof Πv (cf. Section 8.3. See
also the remark given just before Theorem 8.14). We call each of ΨFΘ

v ,α
, ∞ΨFΘ

v ,α
a

Frobenioid-theoretic theta monoid.
(2) (Constant Monoids) Similarly, the pre-Frobenioid structure on Cv = (F

v
)base-field ⊂

F
v
gives us a monoid O�

Cv(−) on Dv. We put

ΨCv := O�
Cv(A

Θ
∞),

which is equipped with a natural Πv-action. Note that, from F
v
, we can reconstruct

Πv y ΨCv , up to an indeterminacy arising from the inner automorphisms of Πv. We
call ΨCv a Frobenioid-theoretic constant monoid.

Proposition 11.14. (F -theoretic Theta Monoids, [IUTchII, Proposition 3.3]) Let MΘ
∗ be a pro-

jective system of mono-theta environments with Πtemp
X (MΘ

∗ )
∼= Πv. Suppose that MΘ

∗ arises from

a tempered Frobenioid †F
v
in a Θ-Hodge theatre †HT Θ = ({†F

w
}w∈V, †Fmod) by Theorem 8.14

(“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).

(1) (Split Theta Monoids) Note that, for an object S of F
v
such that µlN(S) ∼= Z/lNZ,

and (l∆Θ)S ⊗ Z/NZ ∼= Z/NZ as abstract groups, the exterior cyclotome µẐ(M
Θ
∗ (
†F

v
))

corresponds to the cyclotome µẐ(S) = lim←−N µN(S), where µN(S) ⊂ O×(S) ⊂ Aut†F
v
(S)

(cf. [IUTchII, Proposition 1.3 (i)]). Then, by the Kummer maps, we obtain collections
of Kummer isomorphisms

Ψ†FΘ
v ,α

Kum
∼→ Ψι

env(MΘ
∗ ), ∞Ψ†FΘ

v ,α

Kum
∼→ ∞Ψ

ι
env(MΘ

∗ ),

of monoids, which is well-defined up to an inner automorphism and compatible with both
the respective conjugation action of Πtemp

X (MΘ
∗ ), and the splittings up to torsion on the

monoids, under a suitable bijection of lZ-torsors between “ι” in Definition 11.8, and the
images of “α” via the natural surjection Πv � lZ:

“ ι”s
∼←→ “ Im(α)”s.

(2) (Constant Monoids) Similary, using the correspondence between the exterior cyclo-
tome µẐ(M

Θ
∗ (
†F

v
)) and the cyclotome µẐ(S) = lim←−N µN(S), we obtain Kummer iso-

morphisms

Ψ†Cv

Kum
∼→ Ψcns(MΘ

∗ )
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for constant monoids, where †Cv := (†F
v
)base-field, which is well-defined up to an inner

automorphism, and compatible with the respective conjugation actions of Πtemp
X (MΘ

∗ ).

Proof. Proposition follows from the definitions. �

In the following, we often use the abbreviation (∞)(−) for a description like both of (−) and
∞(−).

Proposition 11.15. (Π-theoretic Theta Monoids, [IUTchII, Proposition 3.4]) Let MΘ
∗ be a pro-

jective system of mono-theta environments with Πtemp
X (MΘ

∗ )
∼= Πv. Suppose that MΘ

∗ arises from

a tempered Frobenioid †F
v
in a Θ-Hodge theatre †HT Θ = ({†F

w
}w∈V, †Fmod) by Theorem 8.14

(“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).

We consider the full poly-isomorphism

MΘ
∗ (Πv)

full poly
∼→ MΘ

∗ (
†F

v
)

of projective systems of mono-theta environments.

(1) (Multiradiality of Split Theta Monoids) Each isomorphism β : MΘ
∗ (Πv)

∼→MΘ
∗ (
†F

v
)

of projective system of mono-theta environmens induces compatible collections of iso-
morphisms

Πv
∼→ Πtemp

X (MΘ
∗ (Πv))

β
∼→ Πtemp

X (MΘ
∗ (
†F

v
)) = Πtemp

X (MΘ
∗ (
†F

v
))

y y y

(∞)Ψenv(MΘ
∗ (Πv))

β
∼→ (∞)Ψenv(MΘ

∗ (
†F

v
))

Kum−1

∼→ (∞)Ψ†FΘ
v
,

which are compatible with the respective splittings up to torsion, and

Gv
∼→ Gv(MΘ

∗ (Πv))
β
∼→ Gv(MΘ

∗ (
†F

v
)) = Gv(MΘ

∗ (
†F

v
))

y y y

Ψenv(MΘ
∗ (Πv))

×
β
∼→ Ψenv(MΘ

∗ (
†F

v
))×

Kum−1

∼→ Ψ×†FΘ
v
.

Moreover, the functorial algorithm

Πv 7→ (Πv y (∞)Ψenv(MΘ
∗ (Πv)) with splittings up to torsion),

which is compatible with arbitrary automorphisms of the pair

Gv(MΘ
∗ (
†F

v
)) y (Ψ†FΘ

v
)×µ := (Ψ†FΘ

v
)×/torsions

arisen as Isomet-multiples of automorphisms induced by automorphisms of the pair
Gv(MΘ

∗ (
†F

v
)) y (Ψ†FΘ

v
)×, relative to the above displayed diagrams, is multiradi-

ally defined in the sense of the natural functor “ΨGraph(Ξ)” of Proposition 11.7.
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(2) (Uniradiality of Constant Monoids) Each isomorphism β : MΘ
∗ (Πv)

∼→MΘ
∗ (
†F

v
) of

projective system of mono-theta environmens induces compatible collections of isomor-
phisms

Πv
∼→ Πtemp

X (MΘ
∗ (Πv))

β
∼→ Πtemp

X (MΘ
∗ (
†F

v
)) = Πtemp

X (MΘ
∗ (
†F

v
))

y y y

Ψcns(MΘ
∗ (Πv))

β
∼→ Ψcns(MΘ

∗ (
†F

v
))

Kum−1

∼→ Ψ†Cv ,

and

Gv
∼→ Gv(MΘ

∗ (Πv))
β
∼→ Gv(MΘ

∗ (
†F

v
)) = Gv(MΘ

∗ (
†F

v
))

y y y

Ψcns(MΘ
∗ (Πv))

×
β
∼→ Ψcns(MΘ

∗ (
†F

v
))×

Kum−1

∼→ Ψ×†Cv .

Moreover, the functorial algorithm

Πv 7→ (Πv y Ψcns(MΘ
∗ (Πv))),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via

rational positive structure and LCFT and the surjection H1(Gv(−), µẐ(Gv(−)))� Ẑ to
construct the constant monoid, which use the value group portion as well) with auto-
morphisms of the pair

Gv(MΘ
∗ (
†F

v
)) y (Ψ†Cv)

×µ := (Ψ†Cv)
×/torsions

induced by automorphisms of the pair Gv(MΘ
∗ (
†F

v
)) y (Ψ†Cv)

×, relative to the above

displayed diagrams, is uniradially defined.

Proof. Proposition follows from the definitions. �

Corollary 11.16. (M-theoretic Gaussian Monoids, [IUTchII, Corollary 3.5]) Let MΘ
∗ be a pro-

jective system of mono-theta environments with Πtemp
X (MΘ

∗ )
∼= Πv. For t ∈ LabCusp±(Πtemp

X (MΘ
∗ )),

let (−)t denote copies labelled by t of various objects functorially constructed from MΘ
∗ (We use

this convention after this corollary as well).

(1) (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups ⊂ Πtemp
X (MΘ

∗ )

corresponding to t as subgroups of cuspidal inertia subgroups of Πtemp
X (MΘ

∗ ), then the

∆temp
X (MΘ

∗ )-outer action of Fo±
l
∼= ∆temp

C (MΘ
∗ )/∆

temp
X (MΘ

∗ ) on Πtemp
X (MΘ

∗ ) induces iso-
morphisms between the pairs

Gv(MΘ
∗ )t y Ψcns(MΘ

∗ )t

of a labelled ind-topological monoid equipped with the action of a labelled topologi-
cal group for distinct t ∈ LabCusp±(Πtemp

X (MΘ
∗ )). We call these isomorphisms Fo±

l -

symmetrising isomorphisms.When we identify these objects labelled by t and −t via
a suitable Fo±

l -symmetrising isomorphism, we write (−)|t| for the resulting object labelled
by |t| ∈ |Fl|. Let

(−)〈|Fl|〉

denote the object determined by the diagonal embedding in
∏
|t|∈Fl

(−)|t| via suitable Fo±
l -

symmetrising isomorphisms (Note that, thanks to the Fo±
l -symmetrising isomorphisms,
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we can construct the diagonal objects). Then, by Corollary 11.11, we obtain a collection
of compatible morphisms

(Πtemp
X (MΘ

∗ )←↩) ΠvÏ(MΘ
∗Ï) � Gv(MΘ

∗Ï)〈|Fl|〉

y y

Ψcns(MΘ
∗ )

diag
∼→ Ψcns(MΘ

∗ )〈|Fl|〉,

which are compatible with Fo±
l -symmetrising isomorphisms and well-defined up to an

inner automorphism of Πtemp
X (MΘ

∗ ) (i.e., this inner automorphism indeterminacy, which

a priori depends on |t| ∈ |Fl|, is independent of |t| ∈ |Fl|).
(2) (Gaussian Monoids) We call an element of the set

θF
>
l

env
:=

∏
|t|∈F>

l

θ|t|
env
⊂
∏
|t|∈F>

l

Ψcns(MΘ
∗ )|t|

a value-profile (Note that this set has of cardinality (2l)l
>
). Then, by using Fo±

l -
symmetrising isomorphisms and Corollary 11.11, we obtain a functorial algorithm to
construct, from MΘ

∗ , two collections of submonoids

Ψgau(MΘ
∗ ) :=

Ψξ(MΘ
∗ ) := Ψcns(MΘ

∗ )
×
〈F>

l 〉
· ξN ⊂

∏
|t|∈F>

l

Ψcns(MΘ
∗ )|t|


ξ : value profile

,

∞Ψgau(MΘ
∗ ) :=

∞Ψξ(MΘ
∗ ) := Ψcns(MΘ

∗ )
×
〈F>

l 〉
· ξQ≥0 ⊂

∏
|t|∈F>

l

Ψcns(MΘ
∗ )|t|


ξ : value profile

,

where each Πξ(MΘ
∗ ) is equipped with a natural Gv(MΘ

∗Ï)〈F>
l 〉
-action. We call each of

Ψξ(MΘ
∗ ), ∞Ψξ(MΘ

∗ ) a mono-theta-theoretic Gaussian monoid. The restriction
operations in Corollary 11.11 give us a collection of compatible evaluation isomor-
phisms

(Πtemp
X (MΘ

∗ )←↩) ΠvÏ(MΘ
∗Ï)

Dδ
t,µ− ’s

L99 {Gv(MΘ
∗Ï)|t|}|t|∈F>

l

y y

(∞)Ψ
ι
env(MΘ

∗ )
eval
∼→ (∞)Ψξ(MΘ

∗ ),

which is well-defined up to an inner automorphism of Πtemp
X (MΘ

∗ ) (Note that up to sin-

gle inner automorphism by Fo±
l -symmetrising isomorphisms), where L99 denotes the

compatibility of the action of Gv(MΘ
∗Ï)|t| on the factor labelled by |t| of the ∞Ψξ(MΘ

∗ ).
Let

(∞)Ψenv(MΘ
∗ )

eval
∼→ (∞)Ψgau(MΘ

∗ )

denote these collections of compatible evaluation morphisms induced by restriction.
(3) (Constant Monoids and Splittings) The diagonal-in-|Fl| submonoid Ψcns(MΘ

∗ )〈|Fl|〉
can be seen as a grpah between the constant monoid Ψcns(MΘ

∗ )0 labelled by the zero
element 0 ∈ |Fl| and the diagonal-in-F>

l submonoid Ψcns(MΘ
∗ )〈F>

l 〉
, hence determines an

isomorphism

Ψcns(MΘ
∗ )0

diag
∼→ Ψcns(MΘ

∗ )〈F>
l 〉
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of monoids, which is compatible with respective labelled Gv(MΘ
∗Ï)-actions. Moreover, the

restriction operations to zero-labelled evaluation points (See Corollary 11.11) give us a
splitting up to torsion

Ψξ(MΘ
∗ ) = Ψ×cns(MΘ

∗ )〈F>
l 〉
· ξN, ∞Ψξ(MΘ

∗ ) = Ψ×cns(MΘ
∗ )〈F>

l 〉
· ξQ≥0

of each of the Gaussian monoids, which is compatible with the splitting up to torsion of
Definition 11.12 (1), with respect to the restriction isomorphisms in the third display of
(2).

Proof. Corollary follows from the definitions. �

Corollary 11.17. (F -theoretic Gaussian Monoids, [IUTchII, Corollary 3.6]) Let MΘ
∗ be a pro-

jective system of mono-theta environments with Πtemp
X (MΘ

∗ )
∼= Πv. Suppose that MΘ

∗ arises from

a tempered Frobenioid †F
v
in a Θ-Hodge theatre †HT Θ = ({†F

w
}w∈V, †Fmod) by Theorem 8.14

(“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).

(1) (Conjugate Synchronisation) For each t ∈ LabCusp±(Πtemp
X (MΘ

∗ )) the Kummer iso-

morphism in Proposition 11.14 (2) determines a collection of compatible morphisms

(Πtemp
X (MΘ

∗ )�) Gv(MΘ
∗ )t � Gv(MΘ

∗Ï)t
y y

(Ψ†Cv)t

Kum
∼→ Ψcns(MΘ

∗ )t,

which are well-defined up to an inner automorphism (which is independent of t ∈
LabCusp±(Πtemp

X (MΘ
∗ ))) of Πtemp

X (MΘ
∗ ), and Fo±

l -symmetrising isomorphisms between

distinct t ∈ LabCusp±(Πtemp
X (MΘ

∗ )) induced by the ∆X(MΘ
∗ )-outer action of Fo±

l
∼=

∆C(MΘ
∗ )/∆X(MΘ

∗ ) on ΠX(MΘ
∗ ).

(2) (Gaussian Monoids) For each value-profile ξ, let

ΨFξ
(†F

v
) ⊂ ∞ΨFξ

(†F
v
) ⊂

∏
|t|∈F>

l

(Ψ†Cv)|t|

denote the submonoid determined by the monoids Ψξ(MΘ
∗ ), ∞Ψξ(MΘ

∗ ) in Corollary 11.16

(2), respectively, via the Kummer isomorphism (Ψ†Cv)|t|

Kum
∼→ Ψcns(MΘ

∗ )|t| in (1). Put

ΨFgau(
†F

v
) :=

{
ΨFξ

(†F
v
)
}
ξ : value profile

, ∞ΨFgau(
†F

v
) :=

{
∞ΨFξ

(†F
v
)
}
ξ : value profile

,

where each ΠFξ
(†F

v
) is equipped with a natural Gv(MΘ

∗ )〈F>
l 〉
-action. We call each of

ΠFξ
(†F

v
), ∞ΠFξ

(†F
v
) a Frobenioid-theoretic Gaussian monoid. Then, by compos-

ing the Kummer isomorphism in (1) and Proposition 11.14 (1), (2) with the restriction
isomorphism of Corollary 11.16 (2), we obtain a diagram of compatible evaluation
ismorphisms

ΠvÏ(MΘ
∗Ï) = ΠvÏ(MΘ

∗Ï)
Dδ

t,µ− ’s

L99 {Gv(MΘ
∗Ï)|t|}|t|∈F>

l

∼→ {Gv(MΘ
∗ )|t|}|t|∈F>

l

y y y y

(∞)Ψ†FΘ
v,α

Kum
∼→ (∞)Ψ

ι
env(MΘ

∗ )
eval
∼→ (∞)Ψξ(MΘ

∗ )
Kum−1

∼→ (∞)ΨFξ
(†F

v
),
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which is well-defined up to an inner automorphism of Πtemp
X (MΘ

∗ ) (Note that up to sin-

gle inner automorphism by Fo±
l -symmetrising isomorphisms), where L99 is the same

meaning as in Corollary 11.16 (2). Let

(∞)Ψ†FΘ
v

Kum
∼→ (∞)Ψenv(MΘ

∗ )
eval
∼→ (∞)Ψgau(MΘ

∗ )
Kum−1

∼→ (∞)ΨFgau(
†F

v
)

denote these collections of compatible evaluation morphisms.
(3) (Constant Monoids and Splittings) By the same manner as in Corollary 11.16 (3),

the diagonal submonoid (Ψ†Cv)〈|Fl|〉 determines an isomorphism

(Ψ†Cv)0

diag
∼→ (Ψ†Cv)〈F>

l 〉

of monoids, which is compatible with respective labelled Gv(MΘ
∗ )-actions. Moreover, the

splittings in Corollary 11.16 (3) give us splittings up to torsion

ΨFξ
(†F

v
) = (Ψ×†Cv)〈F>

l 〉
· Im(ξ)N, ∞ΨFξ

(†F
v
) = (Ψ×†Cv)〈F>

l 〉
· Im(ξ)Q≥0

(Here Im(−) denotes the image of Kum−1 ◦ eval ◦Kum in (2)) of each of the Gaussian
monoids, which is compatible with the splitting up to torsion of Definition 11.12 (1),
with respect to the restriction isomorphisms in the third display of (2).

Proof. Corollary follows from the definitions. �
Remark 11.17.1. ([IUTchIII, Remark 2.3.3 (iv)]) It seems interesting to note that the cyclo-
tomic rigidity of mono-theta environments admits Fo±

l -symmetry, contrary to the fact that

the theta functions, or the theta values qj
2

v
’s do not admit Fo±

l -symmetry. This is because the

construction of the cyclotomic rigidity of mono-theta environments only uses the commutator
structure [ , ] (in other words, “curvature”) of the theta group (i.e., Heisenberg group), not
the theta function itself.

Remark 11.17.2. (Π-theoretic Gaussian Monoids, [IUTchII, Corollary 3.7, Remark 3.7.1]) If
we formulate a “Gaussian analogue” of Proposition 11.15, then the resulting algorithm is only
uniradially defined, since we use the cyclotomic rigidity isomorphism via rational positive struc-
ture and LCFT (cf.Remark 11.11.1 Proposition 11.15 (2)) to construct constant monoids. In the
theta functions level (i.e., “env”-labelled objects), it admits multiradially defined algorithms,
however, in the theta values level (i.e., “gau”-labelled objects), it only admits uniradially de-
fined algorithms, since we need constant monoids as containers of theta values (Note also that
this container is holomorphic container, since we need the holomorphic structures for the labels
and Fo±

l -synchronising isomorphisms). Later, by using the theory of log-shells, we will modify
such a “Gaussian analogue” algorithm (See below) of Proposition 11.15 into a multiradially
defined algorithm after admitting mild indeterminacies (i.e., (Indet ↑), (Indet →), and (Indet
xy)) (See Theorem 13.12 (1), (2)).
A precise formulation of a “Gaussian analogue” of Proposition 11.15 is as follows: Let MΘ

∗
be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv. Suppose that MΘ

∗

arises from a tempered Frobenioid †F
v
in a Θ-Hodge theatre †HT Θ = ({†F

w
}w∈V, †Fmod) by

Theorem 8.14 (“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).

We consider the full poly-isomorphism

MΘ
∗ (Πv)

full poly
∼→ MΘ

∗ (
†F

v
)
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of projective systems of mono-theta environments. Let MΘ
∗Ï(
†F

v
) denote MΘ

∗Ï for MΘ
∗ =

MΘ
∗ (
†F

v
). For MΘ

∗ = MΘ
∗ (Πv), we identify ΠvÏ(MΘ

∗Ï) and Gv(MΘ
∗Ï) with ΠvÏ and Gv(ΠvÏ)

respectively, via the tautological isomorphisms ΠvÏ(MΘ
∗Ï)

∼→ ΠvÏ, Gv(MΘ
∗Ï)

∼→ Gv(ΠvÏ).

(1) Each isomorphism β : MΘ
∗ (Πv)

∼→MΘ
∗ (
†F

v
) of projective system of mono-theta environ-

ments induces compatible collections of evaluation isomorphisms

ΠvÏ
Dδ

t,µ−
’s

L99 {Gv(ΠvÏ)|t|}|t|∈F>
l

β
∼→ {Gv(MΘ

∗Ï(†F
v
))|t|}|t|∈F>

l

∼→ {Gv(MΘ
∗ (†F

v
))|t|}|t|∈F>

l

y y y y

(∞)Ψ
ι
env(MΘ

∗ (Πv))
eval
∼→ (∞)Ψξ(MΘ

∗ (Πv))

β
∼→ (∞)Ψξ(MΘ

∗ (†F
v
))

Kum−1

∼→ (∞)ΨFξ
(†F

v
),

and

Gv(ΠvÏ)
diag
∼→ Gv(ΠvÏ)〈F>

l 〉

β
∼→ Gv(MΘ

∗Ï(
†F

v
))〈F>

l 〉
∼→ Gv(MΘ

∗ (
†F

v
))〈F>

l 〉

y y y y

Ψι
env(MΘ

∗ (Πv))
×

eval
∼→ Ψξ(MΘ

∗ (Πv))
×

β
∼→ Ψξ(MΘ

∗ (
†F

v
))×

Kum−1

∼→ ΨFξ
(†F

v
)×,

where L99 is the same meaning as in Corollary 11.16 (2).
(2) (Uniradiality of Gaussian Monoids) The functorial algorithms

Πv 7→ (Gv(ΠvÏ) y Ψgau(MΘ
∗ (Πv)) with splittings up to torsion),

Πv 7→ (∞Ψgau(MΘ
∗ (Πv)) with splittings up to torsion),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via

rational positive structure and LCFT and the surjection H1(Gv(−), µẐ(Gv(−))) � Ẑ
to construct the constant monoid, which use the value group portion as well) with
automorphisms of the pair

Gv(MΘ
∗ (
†F

v
))〈F>

l 〉
y ΨFξ

(†F
v
)×µ := ΨFξ

(†F
v
)×/torsions

induced by automorphisms of the pair Gv(MΘ
∗ (
†F

v
)) y ΨFξ

(†F
v
)×, relative to the

above displayed diagrams in (1), is uniradially defined.

11.3. Hodge-Arakelov Theoretic Evaluation and Gaussian Monoids in Good Places.
In this subsection, we perform analogues of the Hodge-Arakelov theoretic evaluation, and con-
struction of Gaussian monoids for v ∈ Vgood.
Let v ∈ Vgood. For v ∈ Vgood ∩ Vnon (resp. v ∈ Varc), put

Πv := ΠX−→v
⊂ Π±v := ΠXv

⊂ Πcor
v := ΠCv

(resp. Uv := X−→v
⊂ U±v := Xv ⊂ Ucor

v := Cv ),

where X−→v
, Xv, and Cv are Aut-holomorphic orbispaces (See Section 4) associated to X−→v

, Xv,

and Cv, respectively. Note that we have Π
cor
v /Π±v

∼= Fo±
l (resp. Gal(U±v /Ucor

v ) ∼= Fo±
l ). We also

write
∆v ⊂ Πv � Gv(Πv), ∆

±
v ⊂ Π±v � Gv(Π

±
v ), ∆

cor
v ⊂ Πcor

v � Gv(Π
cor
v )

(resp. D`v (Uv) )

the natural quotients and their kernels (resp. the split monod), which can be group-theoretically
reconstructed by Corollary 2.4 (resp. which can be algorithmically reconstructed by Proposi-

tion 4.5). Note that we have natural isomorphisms Gv(Πv)
∼→ Gv(Π

±
v )

∼→ Gv(Π
cor
v )

∼→ Gv.



206 GO YAMASHITA

Proposition 11.18. (Π-theoretic (resp. Aut-hol.-theoretic) Gaussian Monoids at v ∈ Vgood ∩
Vnon (resp. at v ∈ Varc), [IUTchII, Proposition 4.1, Proposition 4.3])

(1) (Constant Monoids) By Corollary 3.19 (resp. by definitions), we have a functorial
group-theoretic algorithm to construct, from the topological group Gv (resp. from the
split monoid D`v ), the ind-topological submonoid equipped with Gv-action (resp. the
topological monoid)

Gv y Ψcns(Gv) ⊂ ∞H
1(Gv, µẐ(Gv)) := lim−→

J⊂Gv : open

H1(J, µẐ(Gv))

(resp. Ψcns(D`v ) := O�(C`v ) ),

which is an isomorph of (Gv y O�

F v
), (resp. an isomorph of O�

F v
). Thus, we ob-

tain a functroial group-theoretic algorithm to construct, from the topological group Πv

(resp. from the Aut-holomorphic space Uv), the ind-topological submonoid equipped with
Gv(Πv)-action (resp. the topological monoid)

Gv(Πv) y Ψcns(Πv) := Ψcns(Gv(Πv)) ⊂ ∞H
1(Gv(Πv), µẐ(Gv(Πv)))

⊂ ∞H1(Π±v , µẐ(Gv(Πv))) ⊂ ∞H1(Πv, µẐ(Gv(Πv)))

(resp. Ψcns(Uv) := Ψcns(D`v (Uv)) ),

where ∞H
1(Gv(Πv),−) := lim−→J⊂Gv(Πv) : open

H1(J,−), ∞H1(Π±v ,−) := lim−→J⊂Gv(Πv) : open

H1(Π±v ×Gv(Πv) J,−), and ∞H1(Πv,−) := lim−→J⊂Gv(Πv) : open
H1(Πv ×Gv(Πv) J,−).

(2) (Mono-analytic Semi-simplifications) By Definition 10.6, we have the functorial
algorithm to construct, from the topological group Gv (resp. from the split monoid D`v ),
the topological monoid equipped with the distinguished element

logGv(pv) ∈ R≥0(Gv) := (R`≥0)v, (resp. logD
`
(pv) ∈ R≥0(D`v ) := (R`≥0)v, )

(See “logDΦ(pv)” in Definition 10.6) and a natural isomorphism

ΨR
cns(Gv) := (Ψcns(Gv)/Ψcns(Gv)

×)R
∼→ (R`≥0)v

(resp. ΨR
cns(D`v ) := (Ψcns(D`v )/Ψcns(D`v )×)R

∼→ (R`≥0)v )

of the monoids (See Proposition 5.2 (resp. Proposition 5.4)). Put

Ψss
cns(Gv) := Ψcns(Gv)

× × (R`≥0)v (resp. Ψss
cns(D`v ) := Ψcns(D`v )× × (R`≥0)v ),

which we consider as semisimplified version of Ψcns(Gv) (resp. Ψcns(D`v )). We also put

Ψss
cns(Πv) := Ψss

cns(Gv(Πv)), Ψcns(Πv)
× := Ψcns(Gv(Πv))

×, R≥0(Πv) := R≥0(Gv(Πv))

(resp. Ψss
cns(Uv) := Ψss

cns(D`v (Uv)), Ψcns(Uv)
× := Ψcns(D`v (Uv))

×, R≥0(Uv) := R≥0(D`v (Uv)) ),

just as in (1).
(3) (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups ⊂ Πv cor-

responding to t as subgroups of cuspidal inertia subgroups of Π±v , then the ∆±v -outer

action of Fo±
l
∼= ∆cor

v /∆±v on Π±v (resp. the action of Fo±
l
∼= Gal(U±v /Ucor

v ) on the var-
ious Gal(Uv/U±v )-orbits of cusps of Uv) induces isomorphisms between the pairs (resp.
between the labelled topological monoids)

Gv(Πv)t y Ψcns(Πv)t (resp. Ψcns(Uv)t )
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of the labelled ind-topological monoid equipped with the action of the labelled topological
group for distinct t ∈ LabCusp±(Πv) := LabCusp±(B(Πv)

0) (resp. t ∈ LabCusp±(Uv))
(See Definition 10.27 (1) (resp. Definition 10.27 (2)) for the definition of LabCusp±(−)).
We call these isomorphisms Fo±

l -symmetrising isomorphisms. These symmetrising
isomorphisms determine diagonal submonoids

Ψcns(Πv)〈|Fl|〉 ⊂
∏
|t|∈|Fl|

Ψcns(Πv)|t|, Ψcns(Πv)〈F>
l 〉
⊂
∏
|t|∈F>

l

Ψcns(Πv)|t|,

which are compatible with the respective labelled Gv(Πv)-actions

(resp. Ψcns(Uv)〈|Fl|〉 ⊂
∏
|t|∈|Fl|

Ψcns(Uv)|t|, Ψcns(Uv)〈F>
l 〉
⊂
∏
|t|∈F>

l

Ψcns(Uv)|t| ),

and an isomorphism

Ψcns(Πv)0

diag
∼→ Ψcns(Πv)〈F>

l 〉
(resp. Ψcns(Uv)0

diag
∼→ Ψcns(Uv)〈F>

l 〉
)

of ind-topological monoids, which is compatible with the respective labelled Gv(Πv)-
actions (resp. of topological monoids).

(4) (Theta and Gaussian Monoids) Put

Ψenv(Πv) := Ψcns(Πv)
× ×

{
R≥0 · logΠv(pv) · logΠv(Θ)

}
(resp. Ψenv(Uv) := Ψcns(Uv)

× ×
{
R≥0 · logUv(pv) · logUv(Θ)

}
),

where logΠv(pv) · logΠv(Θ) (resp. logUv(pv) · logUv(Θ)) is just a formal symbol, and

Ψgau(Πv) := Ψcns(Πv)
×
〈F>

l 〉
×
{
R≥0 ·

(
j2 · logΠv(pv)

)
j

}
⊂
∏
j∈F>

l

Ψss
cns(Πv)j =

∏
j∈F>

l

Ψcns(Πv)
×
j × R≥0(Πv)j

(resp. Ψgau(Uv) := Ψcns(Uv)
×
〈F>

l 〉
×
{
R≥0 ·

(
j2 · logUv(pv)

)
j

}
⊂
∏
j∈F>

l

Ψss
cns(Uv)j =

∏
j∈F>

l

Ψcns(Uv)
×
j × R≥0(Uv)j )

where logΠv(pv) (resp. log
Uv(pv)) is just a formal symbol, and R≥0 · (−) is defined by the

R≥0-module structures of R≥0(Πv)j’s (resp. R≥0(Uv)j’s). Note that we need the holo-
morphic structures for the labels and Fo±

l -synchronising isomorphisms. In particular, we
obtain a functorial group-theoretically algorithm to construct, from the topological group
Πv (from the Aut-holomorphic space Uv), the theta monoid Ψenv(Πv) (resp. Ψenv(Uv)),
the Gaussian monoid Ψgau(Πv) (resp. Ψgau(Uv)) equipped with natural Gv(Πv)-actions
and splittings (resp. equipped with natural splittings), and the formal evaluation
isomorphism

Ψenv(Πv)
eval
∼→ Ψgau(Πv) : logΠv(pv) · logΠv(Θ) 7→ (j2 · logΠv(pv))j

(resp. Ψenv(Uv)
eval
∼→ Ψgau(Uv) : logUv(pv) · logUv(Θ) 7→ (j2 · logUv(pv))j ),

which restricts to the identity on the respective copies of Ψcns(Πv)
× (resp. Ψcns(Uv)

×),
and is compatible with the respective Gv(Πv)-actions and the natural splittings (resp.
compatible with the natural splittings).
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Remark 11.18.1. ([IUTchII, Remark 4.1.1 (iii)]) Similarly as in Proposition 11.15 and Re-
mark 11.17.2, the construction of the monoids Ψcns(Πv) (resp. Ψcns(Uv)) is uniradial, and the
constructions of the monoids Ψss

cns(Πv), Ψenv(Πv), and Ψgau(Πv) (resp. Ψ
ss
cns(Uv), Ψenv(Uv), and

Ψgau(Uv)), and the formal evaluation isomorphism Ψenv(Πv)
eval
∼→ Ψgau(Πv) (resp. Ψenv(Uv)

eval
∼→

Ψgau(Uv)) are multiradial. Note that, the latter ones are constructed by using holomorphic
structures, however, these can be described via the underlying mono-analytic structures (See
also the table after Example 11.2).

Proof. Proposition follows from the definitions and described algorithms. �

Proposition 11.19. (F -theoretic Gaussian Monoids at v ∈ Vgood ∩ Vnon (resp. at v ∈ Varc),
[IUTchII, Proposition 4.2, Proposition 4.4]) For v ∈ Vgood∩Vnon (resp. v ∈ Varc), let †F

v
= †Cv

(resp. †F
v
= (†Cv, †Dv = †Uv,

†κv)) be a pv-adic Frobenioid (resp. a triple) in a Θ-Hodge theatre
†HT Θ = ({†F

w
}w∈V, †Fmod). We assume (for simplicity) that the base category of †F

v
is equal

to Btemp(†Πv)
0). Let

Gv(
†Πv) y Ψ†F

v
(resp. Ψ†F

v
:= O�(†Cv) )

denote the ind-topological monoid equipped with Gv(
†Πv)-action (resp. the topological monoid)

determined, up to inner automorphism arising from an element of †Πv by †F
v
, and

†Gv y Ψ†F`
v

(resp. Ψ†F`
v
:= O�(†C`v ) )

denote the ind-topological monoid equipped with †Gv-action (resp. the topological monoid) de-
termined, up to inner automorphism arising from an element of †Gv by the v-component †F`v
of F`-prime-strip {†F`w}w∈V determined by the Θ-Hodge theatre †HT Θ.

(1) (Constant Monoids) By Remark 3.19.2 (resp. by the Kummer structure †κv), we
have a unique Kummer isomorphism

Ψ†F
v

Kum
∼→ Ψcns(

†Πv) (resp. Ψ†F
v

Kum
∼→ Ψcns(

†Uv) )

of ind-topological monoids with Gv(
†Πv)-action (resp. of topological monoids).

(2) (Mono-analytic Semi-simplifications) We have a unique Ẑ×-orbit (resp. a unique
{±1}-orbit)

Ψ×†F`
v

“Kum”

Ẑ×-orbit,poly
∼→ Ψcns(

†Gv)
× (resp. Ψ†F`

v

“Kum”
{±1}-orbit, poly

∼→ Ψcns(
†D`v )× )

of isomorphisms of ind-topological groups with †Gv-action (resp. of topological groups),
and a unique isomorphism

ΨR
†F`

v
:= (Ψ†F`

v
/Ψ×†F`

v
)R

“Kum”
∼→ ΨR

cns(
†Gv) (resp. ΨR

†F`
v
:= (Ψ†F`

v
/Ψ×†F`

v
)R

“Kum”
∼→ ΨR

cns(
†D`v ) )

of monoids, which sends the distinguished element of ΨR
†F`

v
determined by the unique gen-

erator (resp. by pv = e = 2.71828 · · · , i.e., the element of the complex Archimedean field
which gives rise to Ψ†F

v
whose natural logarithm is equal to 1) of Ψ†F`

v
/Ψ×†F`

v
to the dis-

tinguished element of ΨR
cns(
†Gv) (resp. ΨR

cns(
†D`v )) determined by logGv(pv) ∈ R≥0(†Gv)
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(resp. logD
`
v (pv) ∈ R≥0(†D`v )). In particular, we have a natural poly-isomorphism

Ψss
†F`

v
:= Ψ×†F`

v
×ΨR

†F`
v

“Kum”
poly
∼→ Ψss

cns(
†Gv) (resp. Ψss

†F`
v
:= Ψ×†F`

v
×ΨR

†F`
v

“Kum”
poly
∼→ Ψss

cns(
†D`v ) )

of ind-topological monoids (resp. topological monoids) which is compatible with the nat-
ural splittings (We can regard these poly-isomorphisms as analogues of Kummer iso-
morphism). We put Ψss

†F
v

:= Ψss
†F`

v
(resp. Ψss

†F
v

:= Ψss
†F`

v
), hence we have a tautological

isomorphism

Ψss
†F

v

tauto
∼→ Ψss

†F`
v

(resp. Ψss
†F

v

tauto
∼→ Ψss

†F`
v

).

(3) (Conjugate Synchronisation) The Kummer isomorphism in (1) determines a col-
lection of compatible Kummer isomorphisms

(Ψ†F
v
)t

Kum
∼→ Ψcns(

†Πv)t (resp. (Ψ†F
v
)t

Kum
∼→ Ψcns(

†Uv)t ),

which are well-defined up to an inner automorphism of †Πv (which is independent of
t ∈ LabCusp±(†Πv)) for t ∈ LabCusp±(†Πv) (resp. t ∈ LabCusp±(†Uv)), and Fo±

l -
symmetrising isomorphisms between distinct t ∈ LabCusp±(†Πv) (resp. t ∈ LabCusp±(†Uv))
induced by the †∆±v -outer action of Fo±

l
∼= †∆cor

v /†∆±v on †Π±v (resp. the action of

Fo±
l
∼= Gal(†U±v /†Ucor

v ) on the various Gal(†Uv/
†U±v )-orbits of cusps of †Uv). These

symmetrising isomorphisms determine an isomorphism

(Ψ†F
v
)0

diag
∼→ (Ψ†F

v
)〈F>

l 〉
(resp. (Ψ†F

v
)0

diag
∼→ (Ψ†F

v
)〈F>

l 〉
)

of ind-topological monoids (resp. topological monoids), which are compatible with the
respective labelled Gv(

†Πv)-actions.
(4) (Theta and Gaussian Monoids) Let

Ψ†FΘ
v
, ΨFgau(

†F
v
) (resp. Ψ†FΘ

v
, ΨFgau(

†F
v
) )

denote the monoids with Gv(
†Πv)-actions and natural splittings, determined by Ψenv(

†Πv),
Ψgau(

†Πv) in Proposition 11.18 (4) respectviely, via the isomorphisms in (1), (2), and
(3). Then, the formal evaluation isomorphism of Proposition 11.18 (4) gives us a col-
lection of evaluation isomorphisms

Ψ†FΘ
v

Kum
∼→ Ψenv(

†Πv)
eval
∼→ Ψgau(

†Πv)
Kum−1

∼→ ΨFgau(
†F

v
)

(resp. Ψ†FΘ
v

Kum
∼→ Ψenv(

†Πv)
eval
∼→ Ψgau(

†Πv)
Kum−1

∼→ ΨFgau(
†F

v
) ),

which restrict to the identity or the isomorphism of (1) or the inverse of the isomorphism
of (1) on the various copies of Ψ×†F

v

, Ψcns(
†Πv)

×, and are compatible with the various

natural actions of Gv(
†Πv) and natural splittings.
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11.4. Hodge-Arakelov Theoretic Evaluation and Gaussian Monoids in Global Case.
In this subsection, we globalise the constructions in Section 11.2 (v ∈ Vbad) and in Section 11.3
(v ∈ Vgood) via global realified Frobenioids (See also Remark 10.9.1). We can globalise the local
Fo±
l -symmetries to a global Fo±

l -symmetry, thanks to the global{±1}-synchronisation in
Proposition 10.33 (See also Proposition 10.34 (3)). This is a �-portion of constructions in
��-Hodge theatres. In the final multiradial algorithm, we use this �-portion to construct
Θ-pilot object (See Proposition 13.7 and Definition 13.9 (1)), which gives us a �-line bundle
(See Definition 9.7) (of negative large degree) through an action on mono-analytic log-shells
(See Corollary 13.13).
Next, we also perform NF-counterpart (cf.Section 9) of Hodge-Arakelov theoretic evaluation.

This is a �-portion of constructions in ��-Hodge theatres. In the final multiradial algorithm,
we use this �-portion to construct actions of copies of “F×mod” on mono-analytic log-shells (See
Proposition 13.11 (2)), through which we convert �-line bundles into �-line bundles (See the
category equivalence (Convert) just after Definition 9.7) and vice versa (See Corollary 13.13).

Corollary 11.20. (Π-theoretic Monoids associated to D-�-Hodge Theatres, [IUTchII, Corol-
lary 4.5]) Let

†HT D-� = (†D�
†φΘ

±
±←− †DT

†φΘ
ell

±−→ †D}±)
be a D-�-Hodge theatre, and

‡D = {‡Dv}v∈V
a D-prime-strip. We assume, for simplicity, that ‡Dv = Btemp(‡Πv)

0 for v ∈ Vnon. Let ‡D` =
{‡D`v }v∈V denote the associated D`-prime-strip to ‡D, and ssume that ‡D`v = Btemp(‡Gv)

0 for
v ∈ Vnon.

(1) (Constant Monoids) By Definition 11.12 (2) for v ∈ Vbad and Proposition 11.18 (1)
for v ∈ Vgood, we obtain a functorial algorithm, with respect to the D-prime-strip ‡D,
to construct the assignment

Ψcns(
‡D) : V 3 v 7→ Ψcns(

‡D)v :=


{
Gv(MΘ

∗ (
‡Πv)) y Ψcns(MΘ

∗ (
‡Πv))

}
v ∈ Vbad,{

Gv(
‡Πv) y Ψcns(

‡Πv)
}

v ∈ Vgood ∩ Vnon,

Ψcns(
‡Dv) v ∈ Varc,

where Ψcns(
‡D)v is well-defined only up to a ‡Πv-conjugacy indeterminacy for v ∈ Vnon.

(2) (Mono-analytic Semi-simplifications) By Proposition 11.18 (2) for v ∈ Vgood and
the same group-theoretic algorithm for v ∈ Vbad (Here, we put Ψcns(Πv) := Ψcns(MΘ

∗ (Πv))),
we obtain a functorial algorithm, with respect to the D`-prime-strip ‡D`, to construct
the assignment

Ψss
cns(
‡D`) : V 3 v 7→ Ψss

cns(
‡D`)v :=

{{‡Gv y Ψss
cns(
‡Gv)

}
v ∈ Vnon,

Ψss
cns(
‡D`v ) v ∈ Varc,

where Ψss
cns(
‡D`)v is well-defined only up to a ‡Gv-conjugacy indeterminacy for v ∈ Vnon.

Each Ψss
cns(
‡D`)v is equipped with a splitting

Ψss
cns(
‡D`)v = Ψss

cns(
‡D`)×v × R≥0(‡D`)v

and each R≥0(‡D`)v is equipped with a distinguished element

log
‡D`

(pv) ∈ R≥0(‡D`)v.
If we regard ‡D` as constructed from ‡D, then we have a functorial algorithm, with
respect to the D-prime-strip ‡D, to construct isomorphisms

Ψcns(
‡D)×v

∼→ Ψss
cns(
‡D`)×v
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for each v ∈ V, which are compatible with Gv(
‡Πv)

∼→ ‡Gv-actions for v ∈ Vnon.
By Definition 10.6 (“D-version”), we also obtain a functorial algorithm, with respect

to D`-prime-strip ‡D`, to construct a (pre-)Frobenioid

D(‡D`)
isomorphism to the model object Cmod in Definition 10.4, equipped with a bijection

Prime(D(‡D`)) ∼→ V,
and localisation isomorphisms

‡ρD,v : ΦD(‡D`),v

gl. to loc.
∼−→ R≥0(‡D`)v

of topological monoids.
(3) (Conjugate Synchronisation) We put

†ζ� := †ζ± ◦ †ζΘ
ell

0 ◦ (ζΘ±

0 )−1 : LabCusp±(†D�)
∼→ T

(See Proposition 10.33). The various local Fo±
l -actions in Corollary 11.16 (1) and

Proposition 11.18 (3) induce isomorphisms between the labelled data

Ψcns(
†D�)t

for distinct t ∈ LabCusp±(†D�). We call these isomorphisms Fo±
l -symmetrising

isomorphisms (Note that the global {±1}-synchronisation established by Proposi-
tion 10.33 is crucial here). These Fo±

l -symmetrising isomorphisms are compatible with

the (doubly transitive) Fo±
l -action on the index set T of the D-Θell-bridge †φΘell

± with
respect to †ζ, hence, determine diagonal submonoids

Ψcns(
†D�)〈|Fl|〉 ⊂

∏
|t|∈|Fl|

Ψcns(
†D�)|t|, Ψcns(

†D�)〈F>
l 〉
⊂

∏
|t|∈F>

l

Ψcns(
†D�)|t|,

and an isomorphism

Ψcns(
†D�)0

diag
∼→ Ψcns(

†D�)〈F>
l 〉

consisting of the local isomorphisms in Corollary 11.16 (3) and Proposition 11.18 (3).
(4) (Local Theta and Gaussian Monoids) By Corollary 11.16 (2), (3) and Proposi-

tion 11.18 (4), we obtain a functorial algorithm, with respect to the D-prime-strip †D�,
to construct the assignments

(∞)Ψenv(
†D�) : V 3 v 7→

(∞)Ψenv(
†D�)v :=


{Gv(MΘ

∗ (
†Πv))}j∈F>

l
y (∞)Ψenv(MΘ

∗ (
†Πv)) v ∈ Vbad ∩ Vnon,

{Gv(
†Πv)}j∈F>

l
y (∞)Ψenv(

†Πv) v ∈ Vgood ∩ Vnon,

(∞)Ψenv(
‡Uv) v ∈ Varc,

and

(∞)Ψgau(
†D�) : V 3 v 7→

(∞)Ψgau(
†D�)v :=


{Gv(MΘ

∗ (
†Πv))}j∈F>

l
y (∞)Ψgau(MΘ

∗ (
†Πv)) v ∈ Vbad ∩ Vnon,

{Gv(
†Πv)}j∈F>

l
y (∞)Ψgau(

†Πv) v ∈ Vgood ∩ Vnon,

(∞)Ψgau(
‡Uv) v ∈ Varc,

where we put ∞Ψenv(
†Πv) := Ψenv(

†Πv) (resp. ∞Ψenv(
†Uv) := Ψenv(

†Uv)) and ∞Ψgau(
†Πv)

:= Ψgau(
†Πv) (resp. ∞Ψgau(

†Uv) := Ψgau(
†Uv)) for v ∈ Vgood∩Vnon (resp. v ∈ Varc) and



212 GO YAMASHITA

(∞)Ψenv(
†D�)v’s, (∞)Ψgau(

†D�)v’s are equipped with natural splittings, and compatible
evaluation isomorphisms

(∞)Ψenv(
†D�)

eval
∼→ (∞)Ψgau(

†D�)

constructed by Corollary 11.16 (2) and Proposition 11.18 (4).
(5) (Global Realified Theta and Gaussian Monoids) We have a functorial algorithm,

with respect to the D`-prime-strip †D`�, to construct a (pre-)Frobenioid

Denv(†D`�)

as a coply of the Frobenioid D(†D`�) of (2) above, multiplied a formal symbol log
†D`

�(Θ),
equipped with a bijection

Prime(Denv(†D`�))
∼→ V,

and localisation isomorphisms

ΦD
env(

†D`
�),v

gl. to loc.
∼−→ Ψenv(

†D`�)
R
v

of topological monoids. We have a functorial algorithm, with respect to the D`-prime-
strip †D`� to construct a (pre-)Frobenioid

Dgau(†D`�) ⊂
∏
j∈F>

l

D(†D`�)j

whose divisor and rational function monoids are determined by the weighted diagonal
( j2 )j∈F>

l
, equipped with a bijection

Prime(Dgau(†D`�))
∼→ V,

and localisation isomorphisms

ΦD
gau(

†D`
�),v

gl. to loc.
∼−→ Ψgau(

†D`�)
R
v

of topological monoids for each v ∈ V. We also have a functorial algorithm, with respect
to the D`-prime-strip †D`� to construct a global formal evaluation isomorphism

Denv(†D`�)
eval
∼→ Dgau(†D`�)

of (pre-)Frobenioids, which is compatible with local evaluation isomorphisms of (4), with

respect to the localisation isomorphisms for each v ∈ V and the bijections Prime(−) ∼→
V.

Proof. Corollary follows from the definitions. �
Corollary 11.21. (F -theoretic Monoids associated to �-Hodge Theatres, [IUTchII, Corollary
4.6]) Let

†HT � =

(
†F�

†ψΘ±
±←− †FT

†ψΘell

±−→ †D}±
)

be a �-Hodge theatre, and
‡F = {‡Fv}v∈V

an F-prime-strip. We assume, for simplicity, that the D-�-Hodge theatre associated to †HT �
is equal to †HT D-� in Corollary 11.20, and that the D-prime-strip associated to ‡F is equal to
‡D in Corollary 11.20. Let ‡F` = {‡F`v }v∈V denote the associated F`-prime-strip to ‡F.
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(1) (Constant Monoids) By Proposition 11.19 (1) for Vgood, and the same group-theoretic
algorithm for v ∈ Vbad, we have a functorial algorithm, with respect to the F-prime-strip
‡F, to construct the assignment

Ψcns(
‡F) : V 3 v 7→ Ψcns(

‡F)v :=

{{
Gv(

‡Πv) y Ψ‡Fv

}
v ∈ Vnon,

Ψ‡Fv
v ∈ Varc,

where Ψcns(
‡F)v is well-defined only up to a ‡Πv-conjugacy indeterminacy for v ∈ Vnon.

By Proposition 11.14 (2) for v ∈ Vbad (where we take “†Cv” to be ‡Fv) and Proposi-

tion 11.19 (1) for v ∈ Vgood, we obtain a collection of Kummer isomorphism

Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D).

(2) (Mono-analytic Semi-simplifications) By Proposition 11.19 (2) for Vgood, and the
same group-theoretic algorithm for v ∈ Vbad, we have a functorial algorithm, with respect
to the F`-prime-strip ‡F`, to construct the assignment

Ψss
cns(
‡F`) : V 3 v 7→ Ψss

cns(
‡F`)v := Ψss

‡F`
v

where Ψss
cns(
‡F`)v is well-defined only up to a ‡Gv-conjugacy indeterminacy for v ∈ Vnon.

Each Ψss
cns(
‡F`)v is equipped with its natural splitting, and for v ∈ Vnon, with a dis-

tinguished element (Note that the distinguished element in Ψss
†F`

v
for v ∈ Varc is not

preserved by automorphism of †F`v . See also the first table in Section 4.3 cf. [IUTchII,

Remark 4.6.1]). By Proposition 11.19 (2) for v ∈ Vgood and the same group-theoretic al-
gorithm for v ∈ Vbad, we have a functorial algorithm, with respect to F`-prime-strip ‡F`,
to construct the collection of poly-isomorphisms (analogues of Kummer isomorphism)

Ψss
cns(
‡F`)

“Kum”
poly
∼−→ Ψss

cns(
‡D`).

Let
‡F = (‡C, Prime(‡C) ∼→ V, ‡F`, {‡ρv}v∈V)

be the F-prime-strip associated to ‡F. We also have a functorial algorithm, with respect
to F-prime-strip ‡F, to construct an isomorphism

‡C
“Kum”
∼−→ D(‡D`)

(We can regard this isomorphism as an analogue of Kummer isomorphism), where
D(‡D`) is constructed in Corollary 11.20 (2), which is uniquely determined by the

condition that it is compatible with the respective bijections Prime(−) ∼→ V and the lo-
calisation isomorphisms of topological monoids for each v ∈ V, with respect to the above

collection of poly-isomorphisms Ψss
cns(
‡F`)

“Kum”
poly
∼→ Ψss

cns(
‡D`) (Note that, if we reconstruct

both Ψss
cns(
‡F`)

“Kum”
poly
∼→ Ψss

cns(
‡D`) and ‡C

“Kum”
∼→ D(‡D`) in a compatible manner, then

the distinguished elements in Ψss
†F`

v
at v ∈ Varc can be computed from the distinguished

elements at v ∈ Vnon and the structure (e.g.. using rational function monoids) of the
global realified Frobenioids ‡C, D(‡D`). cf. [IUTchII, Remark 4.6.1]).
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(3) (Conjugate Synchronisation) For each t ∈ LabCusp±(†D�), the collection of iso-
morphisms in (1) determine a collection of compatible Kummer isomorphisms

Ψcns(
†F�)t

Kum
∼→ Ψcns(

†D�)t,

where Ψcns(
†D�)t is the labelled data constructed in Corollary 11.20 (3), and the †Πv-

conjugacy indeterminacy at each v ∈ V is independent of t ∈ LabCusp±(†D�), and Fo±
l -

symmerising isomorphisms induced by the various local Fo±
l -actions in Corollary 11.17

(1) and Proposition 11.19 (3) between the data labelled by distinct t ∈ LabCusp±(†D�).
These Fo±

l -symmetrising isomorphisms are compatible with the (doubly transitive) Fo±
l -

action on the index set T of the D-Θell-bridge †φΘell

± with respect to †ζ in Corollary 11.20
(3), hence, determine (diagonal submonoids and) an isomorphism

Ψcns(
†F�)0

diag
∼→ Ψcns(

†F�)〈F>
l 〉

consisting of the local isomorphisms in Corollary 11.17 (3) and Proposition 11.19 (3).
(4) (Local Theta and Gaussian Monoids) Let

†FJ
†ψΘ

>−→ †D> 99K †HT Θ

be a Θ-bridge which is glued to the Θ±-bridge associate to the �-Hodge theatre †HT �
via the algorithm in Lemma 10.38 (Hence, J = T>). By Corollary 11.17 (2), (3) and
Proposition 11.19 (4), we have a functorial algorithm, with respect to the above Θ-bridge
with its gluing to the Θ±-bridge associated to †HT �, to construct assignments

(∞)ΨFenv(
†HT Θ) : V 3 v 7→

(∞)ΨFenv(
†HT Θ)v :=

{
{Gv(

†Πv)}j∈F>
l
y (∞)Ψ†FΘ

v
v ∈ Vnon,

(∞)Ψ†FΘ
v

v ∈ Varc,

and

(∞)ΨFgau(
†HT Θ) : V 3 v 7→

(∞)ΨFgau(
†HT Θ)v :=

{
{Gv(

†Πv)}j∈F>
l
y (∞)ΨFgau(

†F
v
) v ∈ Vnon

(∞)ΨFgau(
†F

v
) v ∈ Varc

(Here the notation (−)(†HT Θ) is slightly abuse of notation), where we put ∞ΨFenv(
†HT Θ)v

:= ΨFenv(
†HT Θ)v, ∞ΨFgau(

†HT Θ)v := ΨFgau(
†HT Θ)v for v ∈ Vgood, and (∞)ΨFenv(

†HT Θ)v’s,

(∞)ΨFgau(
†HT Θ)v’s are equipped with natural splittings, and compatible evaluation iso-

morphisms

(∞)ΨFenv(
†HT Θ)

Kum
∼→ (∞)Ψenv(

†D�)
eval
∼→ (∞)Ψgau(

†D�)
Kum−1

∼→ (∞)ΨFgau(
†HT Θ)

constructed by Corollary 11.17 (2) and Proposition 11.19 (4).
(5) (Global Realified Theta and Gaussian Monoids) By Proposition 11.19 (4) for

labelled and non-labelled versions of the isomorphism ‡C
“Kum”
∼→ D(‡D`) of (2) to the

global realified Frobenioids Denv(†D`�), Dgau(†D`�) constructed in Corollary 11.20 (5),
we obtain a functorial algorithm, with respect to the above Θ-bridge, to construct (pre-
)Frobenioids

Cenv(†HT Θ), Cgau(†HT Θ)
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(Here the notation (−)(†HT Θ) is slightly abuse of notation. Note also that the construc-
tion of Cenv(†HT Θ) is similar to the one of Ctheta in Definition 10.5 (4)) with equipped
with bijections

Prime(Cenv(†HT Θ))
∼→ V, Prime(Cgau(†HT Θ))

∼→ V,

localisation isomorphisms

ΦCenv(†HT Θ),v

gl. to loc.
∼−→ ΨFenv(

†HT Θ)Rv , ΦCgau(†HT Θ),v

gl. to loc.
∼−→ ΨFgau(

†HT Θ)Rv

of topological monoids for each v ∈ V, and evaluation isomrphisms

Cenv(†HT Θ)
“Kum”
∼→ Denv(†D`�)

eval
∼→ Dgau(†D`�)

“Kum−1”
∼→ Cgau(†HT Θ)

of (pre-)Frobenioids constructed by Proposition 11.19 (4) and Corollary 11.20 (5), which
are compatible with local evaluation isomorphisms of (4), with respect to the localisation

isomorphisms for each v ∈ V and the bijections Prime(−) ∼→ V.

Proof. Corollary follows from the definitions. �

Next, we consider �-portion.

Corollary 11.22. (Π-theoretic Monoids associated to D-�-Hodge Theatres, [IUTchII, Corol-
lary 4.7]) Let

†HT D-� = (†D}
†φNF

>←− †DJ

†φΘ>−→ †D>)

be a D-�-Hodge theatre, which is glued to the D-�-Hodge theatre †HT D-� of Corollary 11.20
via the algorithm in Lemma 10.38 (Hence, J = T>).

(1) (Global Non-realified Structures) By Example 9.5, we have a functorial algorithm,
with respect to the category †D}, to construct the morphism

†D} → †D~,

the monoid/field/pseudo-monoid

π1(
†D~) y M~(†D}), π1(†D~) y M~(†D}), πrat

1 (†D~) y M~∞κ(
†D})

with π1(
†D~)-/πrat

1 (†D~)-actions (Here, we use the notation π1(†D}), π1(†D~) and πrat
1 (†D~),

not †Π}, †Π~, (†Π~)rat in Example 9.5, respectively, for making clear the dependence of
objects), which is well-defined up to π1(

†D~)-/πrat
1 (†D~)-conjugay indeterminacies, the

submooid/subfield/subset

M~mod(
†D}) ⊂M~(†D}), M~mod(

†D}) ⊂M~(†D}), M~κ (†D}) ⊂M~∞κ(
†D}),

of π1(
†D~)-/πrat

1 (†D~)-invariant parts, the Frobeniods

F~mod(
†D}) ⊂ F~(†D}) ⊃ F}(†D})

(Here, we write F~mod(
†D}), F}(†D}) for †F~mod,

†F} in Example 9.5, respectively) with
a natural bijection (by abuse of notation)

Prime(F~mod(
†D})) ∼→ V,

and the natural realification functor

F~mod(
†D})→ F~Rmod(

†D}).
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(2) (F>
l -symmetry) By Definition 10.22, for j ∈ LabCusp(†D}), we have a functorial

algorithm, with respect to the category †D}, to construct an F-prime-strip

F}(†D})|j,
which is only well-defined up to isomorphism, Moreover, the natural poly-action
of F>

l on †D} induces isomorphisms between the labelled data

F}(†D})|j, M~mod(
†D})j, M~mod(

†D})j,

{πrat
1 (†D~) y M~∞κ(

†D})}j, F~mod(
†D})j → F~Rmod(

†D})j
for distinct j ∈ LabCusp(†D}). We call these isomorphisms F>

l -symmetrising iso-
morphisms. These F>

l -symmetrising isomorphisms are compatbile with the (simply
transitive) F>

l -action on the index set J of the D-NF-bridge †φNF
> with respect to †ζ> :

LabCusp(†D}) ∼→ J(
∼→ F>

l ) in Proposition 10.19 (3), and determine diagonal objects

M~mod(
†D})〈F>

l 〉
⊂
∏
j∈F>

l

M~mod(
†D})j, M~mod(

†D})〈F>
l 〉
⊂
∏
j∈F>

l

M~mod(
†D})j.

Let also

F}(†D})|〈F>
l 〉
, {πrat

1 (†D~) y M~∞κ(
†D})}〈F>

l 〉
, F~mod(

†D})〈F>
l 〉
→ F~Rmod(

†D})〈F>
l 〉

denote a purely formal notational shorthand for the above F>
l -symmetrising isomor-

phisms for the respective objects (See also Remark 11.22.1 below).
(3) (Localisations and Global Realified Structures) For simplicity, we write †Dj =
{†Dvj}v∈V (resp. †D`j = {†D`vj}v∈V) for the D-(resp. D`-)prime-strip associated to the

F-prime-strip F}(†D})|j (See Definition 10.22 (2)). By Definition 10.22 (2), Defini-
tion 9.6 (2), (3), and Definition 10.23 (3), we have a functorial algorithm, with respect to
the category †D}, to construct (1-)compatible collections of “localisation” functors/poly-
morphisms

F~mod(
†D})j

gl. to loc.−→ F}(†D})|j, F~Rmod(
†D})j

gl. to loc.−→ (F}(†D})|j)R,{
{πrat

1 (†D~) y M~∞κ(
†D})}j

gl. to loc.−→ M~∞κv(
†Dvj) ⊂M~∞κ×v(

†Dvj)
}
v∈V

up to isomorphism, together with a natural isomorphism

D(†D`j )
gl. real’d to gl.non-real’d⊗R

∼−→ F~Rmod(
†D})j

of global realified Frobenioids (global side), and a natural isomorphism

R≥0(†D`j )v
localised (gl. real’d to gl. non-real’d⊗R)

∼−→ Ψ(F}(†D})|j)R,v

of topological monoids for each v ∈ V (local side), which are compatible with the respec-

tive bijections Prime(−) ∼→ V and the localisation isomorphisms {ΦD(†D`
j ),v

gl. to loc.
∼−→

R≥0(†D`j )v}v∈V constructed by Corollary 11.20 (2) and the above F~Rmod(
†D})j

gl. to loc.−→
(F}(†D})|j)R. Finally, all of these structures are compatible with the respective F>

l -
symmetrising isomorphisms of (2).

Remark 11.22.1. ([IUTchII, Remark 4.7.2]) Recall that F>
l , in the context of F>

l -symmetry,
is a subquotient of Gal(K/F ) (See Definition 10.29), hence we cannot perform the kind of
conjugate synchronisations in Corollary 11.20 (3) for F>

l -symmetry (for example, it non-trivially

acts on the number field M~(†D})). Therefore, we have to work with
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(1) F -prime-strips, instead of the corresponding ind-topological monoids with Galois actions
as in Corollary 11.20 (3),

(2) the objects labelled by (−)mod (Note that the natural action of Galois group Gal(K/F )
on them is trival, since they are in the Galois invariant parts), and

(3) the objects labelled by (−)∞κ,

because we can ignore the conjugacy indeterminacies for them (In the case of (2), there is no
conjugacy indeterminacy). See also Remark 9.6.2 (4) (in the second numeration).

Proof. Corollary follows from the definitions. �

Corollary 11.23. (F -theoretic Monoids associated to �-Hodge Theatres, [IUTchII, Corollary
4.8]) Let

†HT � =

(
†F~ L99 †F}

†ψNF
>←− †FJ

†ψΘ
>−→ †F> 99K †HT Θ

)
be a �-Hodge theatre, which lifts the D-�-Hodge theatre †HT D-� of Corollary 11.22, and is
glued to the �-Hodge theatre †HT � of Corollary 11.21 via the algorithm in Lemma 10.38
(Hence, J = T>).

(1) (Global Non-realified Structures) By Definition 9.6 (1) (the Kummer isomorphism

by the cyclotomic rigidity isomorphism via Q>0 ∩ Ẑ× = {1} (Cyc.Rig.NF1)), we have
a functorial algorithm, with respect to the pre-Frobenioid †F}, to construct Kummer
isomorphism{

πrat
1 (†D~) y †M~∞κ

} Kum
∼−→
{
πrat
1 (†D~) y M~∞κ(

†D})
}
, †M~κ

Kum
∼−→M~κ (†D})

of pseudo-monoids with group actions, which is well-defined up to conjugacy indetermi-
nacies, and by restricting Kummer classes (cf. Definition 9.6 (1)), natural Kummer
isomorphisms{
πrat
1 (†D~) y †M~

} Kum
∼−→
{
πrat
1 (†D~) y M~(†D})

}
, †M~mod

Kum
∼−→M~mod(

†D}),{
πrat
1 (†D~) y †M~

} Kum
∼−→
{
πrat
1 (†D~) y M~(†D})

}
, †M~mod

Kum
∼−→M~mod(

†D}).

These isomorphisms can be interpreted as a compatible collection of isomorphisms

†F}
Kum
∼−→ F}(†D}), †F~

Kum
∼−→ F~(†D}), †F~mod

Kum
∼−→ F~mod(

†D}), †F~Rmod

Kum
∼−→ F~Rmod(

†D})

of (pre-)Frobenioids (cf. Definition 9.6 (1), and Example 9.5).
(2) (F>

l -symmetry) The collection of isomorphisms of Corollary 11.21 (1) for the cap-
sule †FJ of the F-prime-strips and the isomorphism in (1) give us, for each j ∈
LabCusp(†D})( ∼→ J), a collection of Kummer isomorphisms

†Fj
∼→ †F}|j

Kum
∼→ F}(†D})|j,

{
πrat
1 (†D~) y †M~∞κ

}
j

Kum
∼→
{
πrat
1 (†D~) y M~∞κ(

†D})
}
j
,

(†M~mod)j

Kum
∼→ M~mod(

†D})j, (†M~mod)j

Kum
∼→ M~mod(

†D})j,

(†F~mod)j

Kum
∼→ F~mod(

†D})j, (†F~Rmod)j

Kum
∼→ F~Rmod(

†D})j,
and F>

l -symmetrising isomorphisms between the data indexed by distinct j ∈ LabCusp(†D}),
induced by the natural poly-action of F>

l on †F}. These F>
l -symmetrising isomorphisms
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are compatbile with the (simply transitive) F>
l -action on the index set J of the D-NF-

bridge †φNF
> with respect to †ζ> : LabCusp(†D}) ∼→ J(

∼→ F>
l ) in Proposition 10.19 (3),

and determine various diagonal objects

(†M~mod)〈F>
l 〉
⊂
∏
j∈F>

l

(†M~mod)j, (†M~mod)〈F>
l 〉
⊂
∏
j∈F>

l

(†M~mod)j,

and formal notational “diagonal objects” (See Corollary 11.22 (2))

†F}|〈F>
l 〉
, {πrat

1 (†D~) y †M~∞κ}〈F>
l 〉
, (†F~mod)〈F>

l 〉
, (†F~Rmod)〈F>

l 〉
.

(3) (Localisations and Global Realified Structures) By Definition 10.22 (2) and
Definition 10.23 (3), we have a functorial algorithm, with respect to the NF-bridge

†FJ
†ψNF

>→ †F} 99K †F~, to construct mutually (1-)compatible collections of localisation
functors/poly-morphisms,

(†F~mod)j
gl. to loc.−→ †Fj, (†F~Rmod)j

gl. to loc.−→ †FR
j ,{{

πrat
1 (†D~) y †M~∞κ

}
j

gl. to loc.−→ †M∞κvj ⊂ †M∞κ×vj

}
v∈V

,

up to isomorphism, which is compatible with the collections of functors/poly-morphisms
of Corollary 11.22 (3), with respect to the various Kummer isomorphisms of (1), (2),
together with a natural isomorphism

†Cj
gl. real’d to gl. non-real’d⊗R

∼−→ (†F~Rmod)j

of global realified Frobenioids (global side), which is compatible with respective bijections

Prime(−) ∼→ V, and a natural isomorphism

Ψ†F`
j ,v

localised (gl. real’d to gl. non-real’d⊗R)
∼−→ Ψ†FR

j ,v

of topological monoids for each v ∈ V (local side), which are compatible with the respec-

tive bijections Prime(−) ∼→ V, the localisation isomorphisms {Φ†Cj ,v

gl. to loc.
∼−→ ΨR

†F`
j ,v
}v∈V

constructed by Corollary 11.20 (2) and the above (†F~Rmod)j
gl. to loc.−→ †FR

j , the isomor-
phisms of Corollary 11.22 (3), and various (Kummer) isomorphisms of (1), (2). Finally,
all of these structures are compatible with the respective F>

l -symmetrising isomorphisms
of (2).

Proof. Corollary follows from the definitions. �

Put the results of this Chapter together, we obtain the following:

Corollary 11.24. (Frobenius-picture of ��-Hodge Theatres, [IUTchII, Corollary 4.10]) Let
†HT ��, ‡HT �� be ��-Hodge theatres with respect to the fixed initial Θ-data. Let †HT D-��,
‡HT D-�� denote the assosiated D-��-Hodge theatres respectively.

(1) (Constant Prime-Strips) Apply the constructions of Corollary 11.21 (1), (3) for
the underlying �-Hodge theatre of †HT ��. Then, the collection Ψcns(

†F�)t of data
determines an F-prime-strip for each t ∈ LabCusp±(†D�). We identify the collections

Ψcns(
†F�)0, Ψcns(

†F�)〈F>
l 〉
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of data, via the isomorphisms
diag
∼→ in Corollary 11.21 (3), and let

†F∆ = (†C∆, Prime(†D∆)
∼→ V, †F`∆, {†ρ∆,v}v∈V) (i .e., “∆ = { 0 , 〈F>

l 〉 }”)

denote the resulting F-prime-strip determined by the algorithm “F 7→ F”. Note that
we have a natural isomorphism †F∆

∼→ †Fmod of F-prime-strips, where †Fmod is the
data contained in the Θ-Hodge theatre of †HT ��.

(2) (Theta and Gaussian Prime-Strips) Apply Corollary 11.21 (4), (5) to the un-
derlying Θ-bridge and �-Hodge theatre of †HT ��. Then the collection ΨFenv(

†HT Θ)
of data, the global realified Frobenioid †Cenv := Cenv(†HT Θ), localisation isomorphisms

Φ†Cenv,v

gl. to loc.
∼−→ ΨFenv(

†HT Θ)Rv for v ∈ V give rise to an F-prime-strip

†Fenv = (†Cenv, Prime(†Denv)
∼→ V, †F`env, {†ρenv,v}v∈V)

(Note that †F`env is the F`-prime-strip determined by ΨFenv(
†HT Θ)). Thus, there is a

natural identification isomorphism †Fenv
∼→ †Ftheta, where

†Fenv is associated to data in
†HT Θ (See Definition 10.5 (4) for †Fenv).

Similarly, the collection ΨFgau(
†HT Θ) of data, the global realified Frobenioid †Cgau :=

Cgau(†HT Θ), localisation isomorphisms Φ†Cgau,v

gl. to loc.
∼−→ ΨFgau(

†HT Θ)Rv for v ∈ V give

rise to an F-prime-strip

†Fgau = (†Cenv, Prime(†Dgau)
∼→ V, †F`gau, {†ρgau,v}v∈V)

(Note that †F`gau is the F`-prime-strip determined by ΨFgau(
†HT Θ)). Finally, the evalu-

ation isomorphisms of Corollary 11.21 (4), (5) determine an evaluation isomorphism

†Fenv

eval
∼−→ †Fgau

of F-prime-strips.
(3) (Θ×µ- and Θ×µ

gau-Links) Let

‡FI×µ∆ (resp. †FI×µenv , resp. †FI×µgau )

donote FI×µ-prime-strip associated to the F-prime-strip ‡F∆ (resp. †Fenv, resp.
†Fgau) (See Definition 10.12 (3) for FI×µ-prime-strips). Then the functriality of this
algorithm induces maps

IsomF(†Fenv,
‡F∆) → IsomFI×µ(†FI×µenv , ‡FI×µ∆ ),

IsomF(†Fgau,
‡F∆) → IsomFI×µ(†FI×µgau , ‡FI×µ∆ ).

Note that the second map is equal to the composition of the first map with the evalua-

tion isomorphism †Fenv
eval→ †Fgau and the functorially obtained isomorphism †FI×µenv

eval→
†FI×µgau from this isomorphism. We call the full poly-isomorphism

†FI×µenv

full poly
∼−→ ‡FI×µ∆ (resp. †FI×µgau

full poly
∼−→ ‡FI×µ∆ )

the Θ×µ-link (resp. Θ×µ
gau-link) from †HT �� to ‡HT �� (cf. Definition 10.8), and we

write it as

†HT �� Θ×µ

−→ ‡HT �� (resp. †HT �� Θ×µ
gau−→ ‡HT �� )
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and we call this diagram the Frobenius-picture of ��-Hodge theatres (This is an
enhanced version of Definition 10.8). Note that the essential meaning of the above link
is

“ ΘN
v

∼−→ qN
v
” (resp. “ {qj2

v
}N1≤j≤l>

∼−→ qN
v
” )

for v ∈ Vbad.
(4) (Horizontally Coric F`×µ-Prime-Strips) By the definition of the unit portion of

the theta monoids and the Gaussian monoids, we have natural isomorphisms
†F`×µ∆

∼→ †F`×µenv
∼→ †F`×µgau ,

where †F`×µ∆ , †F`×µenv , †F`×µgau are the F`×µ-prime-strips associated to the F`-prime-strips
†F`∆,

†F`env,
†F`gau, respectively. Then, the composite

†F`×µ∆

∼→ †F`×µenv

poly
∼→ †F`×µ∆ (resp. †F`×µ∆

∼→ †F`×µgau

poly
∼→ †F`×µ∆ )

with the poly-isomorphism induced by the full poly-isomorphism †FI×µenv

full poly
∼−→ ‡FI×µ∆

(resp. †FI×µgau

full poly
∼−→ ‡FI×µ∆ ) in the definition of Θ×µ-link (resp. Θ×µgau-link) is equal to

the full poly-isomorphism of F`×µ-prime-strips. This means that (−)F`×µ∆ is preserved
(or “shared”) under both the Θ×µ-link and Θ×µgau-link (This is an enhanced version of
Remark 10.8.1 (2)). Note that the value group portion is not shared under the Θ×µ-link
and the Θ×µgau-link. Finally, this full poly-isomorphism induces the full poly-isomorphism

†D`∆

full poly
∼−→ ‡D`∆

of the associated D`-prime-strips. We call this the D- � �-link from †HT D-�� to
‡HT D-��, and we write it as

†HT D-�� D−→ ‡HT D-��.
This means that (−)D`∆ is preserved (or “shared”) under both the Θ×µ-link and Θ×µgau-
link (This is an enhanced version of Remark 10.8.1 (1), Definition 10.21 and Defini-
tion 10.35). Note that the holomorphic base “HT D-��” is not shared under the Θ×µ-link
and the Θ×µgau-link (i.e., Θ×µ-link and Θ×µgau-link share the underlying mono-analytic base
structures, but not the arithmetically holomorphic base structures).

(5) (Horizontally Coric Global Realified Frobenioids) The full poly-isomorphism

†D`∆

full poly
∼−→ ‡D`∆ in (4) induces an isomorphism

(D(†D`∆), Prime(D(†D`∆))
∼→ V, {†ρD,v}v∈V)

∼→ (D(‡D`∆), Prime(D(‡D`∆))
∼→ V, {‡ρD,v}v∈V)

of triples. This isomorphism is compatible with the R>0-orbits

(†C∆, Prime(†C∆)
∼→ V, {†ρ∆,v}v∈V)

“Kum”
poly
∼→ (D(†D`∆), Prime(D(†D`∆))

∼→ V, {†ρD,v}v∈V)
and

(‡C∆, Prime(‡C∆)
∼→ V, {‡ρ∆,v}v∈V)

“Kum”
poly
∼→ (D(‡D`∆), Prime(D(‡D`∆))

∼→ V, {‡ρD,v}v∈V)
of isomorphisms of triples obtained by the functorial algorithm in Corollary 11.21 (2),
with respect to the Θ×µ-link and the Θ×µgau-link. Here, the R>0-orbits are naturally defined
by the diagonal (with respect to Prime(−)) R>0-action on the divisor monoids.
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Proof. Corollary follows from the definitions. �

Remark 11.24.1. (Étale picture of D- � �-Hodge Theatres, [IUTchII, Corollary 4.11]) We
can visualise the “shared” and “non-shared” relation in Corollary 11.24 as follows:

†HT D-�� −− > †D`∆
∼= ‡D`∆ >−− ‡HT D-��

We call this diagram the étale-picture of ��-Hodge theatres (This is an enhanced version
of Remark 10.8.1, Remark 10.21.1 and Remark 10.35.1). Note that, there is the notion of the
order in the Frobenius-picture (i.e., †(−) is on the left, and ‡(−) is on the right), on the other
hand, there is no such an order and it has a permutation symmetry in the étale-picture (See
also the last table in Section 4.3). Note that these constructions are compatible, in an obvious
sense, with Definition 10.21 and Definition 10.35, with respect to the natural identification
(−)D`∆

∼→ (−)D`>.

12. Log-Links —Arithmetic Analytic Continuation.

12.1. Log-Links and Log-Theta Lattice.

Definition 12.1. ([IUTchIII, Definition 1.1]) Let †F = {†Fv}v∈V be an F -prime-strip with the
associated F`-prime-strip (resp. F`×µ-prime-strip, resp. D-prime-strip) †F` = {†F`v }v∈V (resp.
†F`×µ = {†F`×µv }v∈V, resp. †D = {†Dv}v∈V).

(1) Let v ∈ Vnon. Let

(Ψ†Fv
⊃ Ψ×†Fv

� ) Ψ∼†Fv
:= (Ψ×†Fv

)pf

denote the perfection of Ψ×†Fv
(cf.Section 5.1). By the Kummer isomorphism of Re-

mark 3.19.2, we can construct an ind-topological field structure on Ψ
gp
†Fv

, which is an

isomorph of Kv (See Section 5.1 for the notation (−)gp). Then, we can define the

pv-adic logarithm on Ψ∼†Fv
, and this gives us an isomorphism logv : Ψ∼†Fv

∼→ Ψ
gp
†Fv

of

ind-topological groups. Thus, we can transport the ind-topological field structure of
Ψ

gp
†Fv

into Ψ∼†Fv
. Hence, we can consider the multiplicative monoid “O�” of non-zero

integers of Ψ∼†Fv
, and let Ψlog(†Fv) denote it. Note that Ψ

gp

log(†Fv)
= Ψ∼†Fv

. The pair
†Πv y Ψlog(†Fv) determines a pre-Frobenioid

log(†Fv).
The resulting †Πv-equivariant diagram

(Log-Link v ∈ Vnon) Ψ†Fv
⊃ Ψ×†Fv

� Ψ∼†Fv
= Ψ

gp

log(†Fv)

is called the tautological log-link associated to †Fv (This is a review, in our setting,
of constructions of the diagram (Log-Link (non-Arch)) in Section 5.1), and we write it
as

†Fv
log−→ log(†Fv).

For any (poly-)isomorphism (resp. the full poly-isomorphism) log(†Fv)
(poly)
∼→ ‡Fv (resp.

log(†Fv)
full poly
∼→ ‡Fv) of pre-Frobenioids, we call the composite †Fv

log−→ log(†Fv)
(poly)
∼→

‡Fv a log-link (resp. the full log-link) from †Fv to ‡Fv and we write it as

†Fv
log−→ ‡Fv (resp. †Fv

full log−→ ‡Fv ).
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Finally, put

I†Fv
:=

1

2pv
Im
(
(Ψ×†Fv

)Gv(†Πv) → Ψ†F∼
v

)
⊂ Ψ†F∼

v
= Ψ

gp

log(†Fv)
,

and we call this the Frobenius-like holomorphic log-shell associated to †Fv (This
is a review of Definition 5.1 in our setting). By the reconstructible ind-topological
field structure on Ψ†F∼

v
= Ψ

gp

log(†Fv)
, we can regard I†Fv

as an object associated to the

codomain of any log-link †Fv
log−→ ‡Fv.

(2) Let v ∈ Varc. Recall that †Fv = (†Cv, †Dv, †κv) is a triple of a pre-Frobenioid †Cv, an Aut-

holomorphic space †Uv :=
†Dv, and a Kummer structure †κv : Ψ†Fv

:= O�(†Cv) ↪→ A
†Dv ,

which is isomorphic to the model triple (Cv,Dv, κv) of Definition 10.2 (3). For N ≥ 1,
let ΨµN

†Fv
⊂ Ψ×†Fv

⊂ Ψgp
†Fv

denote the subgroup of N -th roots of unity, and Ψ∼†Fv
� Ψgp

†Fv

for the universal covering of the topological group Ψgp
†Fv

(Recall that Ψ∼†Fv
� Ψgp

†Fv
is an

isomorph of “C exp−→ C×”). Then, the composite

Ψ∼†Fv
� Ψgp

†Fv
� Ψgp

†Fv
/ΨµN

†Fv

is also a universal covering of Ψgp
†Fv
/ΨµN

†Fv
. We can regard Ψ∼†Fv

as constructed from

Ψgp
†Fv
/ΨµN

†Fv
(See also Remark 10.12.1, Proposition 12.2, (4) in this definition, Proposi-

tion 13.7, and Proposition 13.11). By the Kummer structure †κv, we can construct a

topological field structure on Ψ
gp
†Fv

. Then, we can define the Archimedean logarithm

on Ψ∼†Fv
, and this gives us an isomorphism logv : Ψ∼†Fv

∼→ Ψ
gp
†Fv

of topological groups.

Thus, we can transport the topological field structure of Ψ
gp
†Fv

into Ψ∼†Fv
, and the Kum-

mer structure Ψ†Fv
↪→ A†Dv into a Kummer structure †κ∼v : Ψ∼†Fv

↪→ A†Dv . Hence, we

can consider the multiplicative monoid “O�” of non-zero elements of absolute values
≤ 1 of Ψ∼†Fv

, and let Ψlog(†Fv) denote it. Note that Ψ
gp

log(†Fv)
= Ψ∼†Fv

. The triple of topo-

logical monoid Ψlog(†Fv), the Aut-holomorphic space †Uv, and the Kummer structure †κ∼v
determines a triple

log(†Fv).
The resulting co-holomorphicisation-compatible-diagram

(Log-Link v ∈ Varc) Ψ†Fv
⊂ Ψgp

†Fv
� Ψ∼†Fv

= Ψ
gp

log(†Fv)

is called the tautological log-link associated to †Fv (This is a review, in our setting,
of constructions of the diagram (Log-Link (Arch)) in Section 5.2), and we write it as

†Fv
log−→ log(†Fv).

For any (poly-)isomorphism (resp. the full poly-isomorphism) log(†Fv)
(poly)
∼→ ‡Fv (resp.

log(†Fv)
full poly
∼→ ‡Fv) of triples, we call the composite †Fv

log−→ log(†Fv)
(poly)
∼→ ‡Fv a

log-link (resp. the full log-link) from †Fv to ‡Fv and we write it as

†Fv
log−→ ‡Fv (resp. †Fv

full log−→ ‡Fv ).

Finally, let
I†Fv

denote the Ψ×
log(†Fv)

-orbit of the uniquely determined closed line segment of Ψ∼†Fv
which

is preserved by multiplication by ±1 and whose endpoints differ by a generator of the
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kernel of the natural surjection Ψ∼†Fv
� Ψgp

†Fv
(i.e., “the line segment [−π,+π]”), or

(when we regard Ψ∼†Fv
as constructed from Ψgp

†Fv
/ΨµN

†Fv
) equivalently, the Ψ×

log(†Fv)
-orbit

of the result of multiplication by N of the uniquely determined closed line segment
of Ψ∼†Fv

which is preserved by multiplication by ±1 and whose endpoints differ by a

generator of the kernel of the natural surjection Ψ∼†Fv
� Ψgp

†Fv
/ΨµN

†Fv
(i.e., “the line

segment N [− π
N
,+ π

N
] = [−π,+π]”), and we call this the Frobenius-like holomorphic

log-shell associated to †Fv (This is a review of Definition 5.3 in our setting). By the

reconstructible topological field structure on Ψ†F∼
v
= Ψ

gp

log(†Fv)
, we can regard I†Fv

as an

object associated to the codomain of any log-link †Fv
log−→ ‡Fv.

(3) We put

log(†F) :=
{
log(†Fv) := Ψ∼†Fv

}
v∈V

for the collection of ind-topological modules (i.e., we forget the field structure on Ψ∼†Fv
),

where the group structure arises from the additive portion of the field structures on
Ψ∼†Fv

. For v ∈ Vnon, we regard Ψ∼†Fv
as equipped with natural Gv(

†Πv)-action. Put also

log(†F) := {log(†Fv)}v∈V
for the Fv-prime-strip determined by log(†Fv)’s, and let

†F
log−→ log(†F)

denote the collection {†Fv
log−→ log(†Fv)}v∈V of diagrams, and we call this the tauto-

logical log-link associated to †F. For any (poly-)isomorphism (resp. the full poly-

isomorphism) log(†F)
(poly)
∼→ ‡F (resp. log(†F)

full poly
∼→ ‡F) of F -prime-strips, we call the

composite †F
log−→ log(†F)

(poly)
∼→ ‡F a log-link (resp. the full log-link) from †F to ‡F

and we write it as

†F
log−→ ‡F (resp. †F

full log−→ ‡F ).

Finally, we put
I†F := {I†Fv

}v∈V,
and we call this the Frobenius-like holomorphic log-shell associated to †F. We
also write

I†F ⊂ log(†F)

for {I†Fv
⊂ log(†Fv)}v∈V. We can regard I†F as an object associated to the codomain

of any log-link †F
log−→ ‡F.

(4) For v ∈ Vnon (resp. v ∈ Varc), the ind-topological modules with Gv(
†Π)-action (resp. the

topological module and the closed subspace) I†Fv
⊂ log(†Fv) can be constructed only

from the v-component †F`×µv of the associated F`×µ-prime-strip, by the ×µ-Kummer

structure, since these constructions only use the perfection (−)pf of the units and are
unaffected by taking the quotient by Oµ(−) (cf. (Step 2) of Proposition 5.2) (resp. only
from the v-component †F`v of the associated F`-prime-strip, by (Step 3) of Proposi-

tion 5.4, hence, only from the v-component †F`×µv of the associated F`×µ-prime-strip,
by regarding this functorial algorithm as an algorithm which only makes us of the quo-
tien of this unit portion by µN for N ≥ 1 with a universal covering of this quotient).
Let

I†F`×µ
v
⊂ log(†F`×µv )
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denote the resulting ind-topological modules with Gv(
†Πv)-action (resp. the resulting

topological module and a closed subspace). We call this the Frobenius-like mono-
analytic log-shell associated to †F`×µ

v . Finally, we put

I†F`×µ := {I†F`×µ
v
}v∈V ⊂ log(†F`×µ) := {log(†F`×µv )}v∈V

for the collections constructed from the F`×µ-prime-strip †F`×µ (not from †F). We call
this the Frobenius-like mono-analytic log-shell associated to †F`×µ.

Proposition 12.2. (log-Links Between F -Prime-Strips, [IUTchIII, Proposition 1.2]) Let †F =
{†Fv}v∈V, ‡F = {‡Fv}v∈V be F-prime-strips with associated F`×µ-prime-strips (resp. D-
prime-strips, resp. D`-prime-strips) †F`×µ = {†F`×µv }v∈V, †F`×µ = {‡F`×µv }v∈V (resp. †D =

{†Dv}v∈V, ‡D = {‡Dv}v∈V, resp. †D` = {†D`v }v∈V, ‡D` = {‡D`v }v∈V), respectively, and

†F
log−→ ‡F a log-link from †F to ‡F. We recall the log-link diagrams

(lognon) Ψ†Fv
⊃ Ψ×†Fv

� log(†Fv) = Ψ
gp

log(†Fv)

(poly)
∼→ Ψ

gp
‡Fv
,

(logarc) Ψ†Fv
⊂ Ψgp

†Fv
� log(†Fv) = Ψ

gp

log(†Fv)

(poly)
∼→ Ψ

gp
‡Fv
.

for v ∈ Vnon and v ∈ Varc, respectively.

(1) (Vertically Coric D-Prime-Strips) The log-link †F
log−→ ‡F induces (poly-)isomorphisms

†D
(poly)
∼→ ‡D, †D`

(poly)
∼→ ‡D`

of D-prime-strips and D`-prime-strips, respectively. In particular, the (poly-)isomorphism

†D
(poly)
∼→ ‡D induces a (poly-)isomorphism

Ψcns(
†D)

(poly)
∼→ Ψcns(

‡D).

(2) (Compatibility with Log-Volumes) For v ∈ Vnon (resp. v ∈ Varc), the dia-
gram lognon (resp. the diagram logarc) is compatible with the natural pv-adic log-volumes

on (Ψ
gp
†Fv

)
†Πv , and (Ψ

gp

log(†Fv)
)
†Πv (resp. the natural angular log-volume on Ψ×†Fv

and the

natural radial log-volume on Ψ
gp

log(†Fv)
) in the sense of the formula (5.1) of Proposition 5.2

(resp. in the sense of the formula (5.2) of Proposition 5.4). When we regard Ψ∼†Fv
as con-

structed from Ψgp
†Fv
/ΨµN

†Fv
(See Definition 12.1 (2)), then we equip Ψgp

†Fv
/ΨµN

†Fv
the metric

obtained by descending the metric of Ψgp
†Fv

, however, we regard the object Ψgp
†Fv
/ΨµN

†Fv
(or

Ψ×†Fv
/ΨµN

†Fv
) as being equipped with a “weight N”, that is, the log-volume of Ψ×†Fv

/ΨµN
†Fv

is

equal to the log-volume of Ψgp
†Fv

([IUTchIII, Remark1.2.1 (i)]) (See also Remark 10.12.1,

Definition 12.1 (2), (4), Proposition 13.7, and Proposition 13.11).
(3) ((Frobenius-like) Holomorphic Log-Shells) For v ∈ Vnon (resp. v ∈ Varc), we have

Ψ
†Πv

log(†Fv)
, Im

(
(Ψ×†Fv

)
†Πv → log(†Fv)

)
⊂ I†Fv

(
⊂ log(†Fv)

)
(See the inclusions (Upper Semi-Compat. (non-Arch)) O×k , log(O

×
k ) ⊂ Ik in Section 5.1)

(resp.

Ψlog(†Fv) ⊂ I†Fv

(
⊂ log(†Fv)

)
, Ψ×†Fv

⊂ Im
(
I†Fv

→ Ψgp
†Fv

)
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(See the inclusions (Upper Semi-Compat. (Arch)) O�
k∼ ⊂ Ik, O

×
k ⊂ expk(Ik) in Sec-

tion 5.2) ).

(4) ((Frobenius-like and Étale-like) Mono-Analytic Log-Shells) For v ∈ Vnon (resp.
v ∈ Varc), by Proposition 5.2 (resp. Proposition 5.4), we have a functorial algorithm,
with respect to the category †D`v (= B(†Gv)

0) (resp. the split monoid †D`v ), to construct

an ind-topological module equipped with a continuous †Gv-action (resp. a topological
module)

log(†D`v ) :=
{†Gv y k∼(†Gv)

}
(resp. log(†D`v ) := k∼(†Gv) )

and a topological submodule (resp. a topological subspace)

I†D`
v
:= I(†Gv) ⊂ k∼(†Gv)

(which is called the étale-like mono-analytic log-shell associated to †D`v ) equipped
with a pv-adic log-volume (resp. an angular log-volume and a radial log-volume). More-
over, we have a natural functorial algorithm, with respect to the split-×µ-Kummer
pre-Frobenioid †F`×µv (resp. the triple †F`×µv ), to construct an Isomet-orbit (resp.
{±1} × {±1}-orbit arising from the independent {±1}-actions on each of the direct
factors “k∼(G) = C∼ × C∼” in the notation of Proposition 5.4)

log(†F`×µv )

“Kum”
poly
∼→ log(†D`v )

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the poly-

isomorphism Ψss
cns(
‡F`)

“Kum”
poly
∼−→ Ψss

cns(
‡D`) of Corollary 11.21 (2)). We also have a natural

functorial algorithm, with respect to the pv-adic Frobenioid †Fv (resp. the triple †Fv), to
construct isomorphisms (resp. poly-isomorphisms of the {±1} × {±1}-orbit arising
from the independent {±1}-actions on each of the direct factors “k∼(G) = C∼ × C∼”
in the notation of Proposition 5.4)

(Ψ
gp
‡Fv

(poly)∼= ) log(†Fv)
tauto
∼→ log(†F`×µv )

induced by Kum
∼−→ log(†D`v )

(resp. (Ψ
gp
‡Fv

(poly)∼= ) log(†Fv)
tauto
∼→ log(†F`×µv )

induced by Kum

poly, {±1}×{±1}
∼−→ log(†D`v ) )

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the isomor-

phism Ψcns(
‡D)×v

∼→ Ψss
cns(
‡D`)×v of Corollary 11.20 (2) and the Kummer isomorphism

Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D) of Corollary 11.21), which is compatible with the respective †Gv

and Gv(
†Πv)-actions, the respective log-shells, and the respective log-volumes on these

log-shells (resp. compatible with the respective log-shells, and the respective angular and
radial log-volumes on these log-shells).

The above (poly-)isomorphisms induce collections of (poly-)isomorphisms

log(†F`×µ) := {log(†F`×µv )}v∈V

“Kum”
poly
∼→ log(†D`) := {log(†D`v )}v∈V,

I†F`×µ := {I†F`×µ
v
}v∈V

“Kum”
poly
∼→ I†D` := {I†D`

v
}v∈V,
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(Ψ
gp
cns(
‡F) := {Ψgp

‡Fv
}v∈V

(poly)∼= ) log(†F) := {log(†Fv)}v∈V
tauto
∼→ log(†F`×µ)

induced by Kum
poly
∼→ log(†D`),

I†F := {I†Fv
}v∈V

tauto
∼→ I†F`×µ

induced by Kum
poly
∼→ I†D`

(Here, we regard each Ψ
gp
‡Fv

as equipped with Gv(
‡Πv)-action in the definition of Ψ

gp
cns(‡F)).

(5) ((Étale-like) Holomorphic Vertically Coric Log-Shells) Let ∗D be a D-prime-
strip with associated D`-prime-strip ∗D`. Let

F(∗D)

denote the F-prime-strip determined by Ψcns(
∗D). Assume that †F = ‡F = F(∗D), and

that the given log-link is the full log-link †F
full log−→ ‡F = F(∗D). We have a functorial

algorithm, with respect to the D-prime-strip ∗D, to construct a collection of topological
subspaces

I∗D := I†F
(which is called a collection of vertically coric étale-like holomorphic log-shell
associated to ∗D) of the collection Ψ

gp
cns(∗D) = Ψ

gp
cns(∗F),and a collection of isomorphisms

I∗D
∼→ I∗D`

(cf. the isomorphism Ψcns(
‡D)×v

∼→ Ψss
cns(
‡D`)×v of Corollary 11.20 (2)).

Remark 12.2.1. (Kummer Theory, [IUTchIII, Proposition 1.2 (iv)]) Note that the Kummer
isomorphisms

Ψcns(
†F)

Kum
∼→ Ψcns(

†D), Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D)

of Corollary 11.21 (1) are not compatible with the (poly-)isomorphism Ψcns(
†D)

(poly)
∼→ Ψcns(

‡D)
of (1), with respect to the diagrams (lognon) and (logarc).

Remark 12.2.2. (Frobenius-picture, [IUTchIII, Proposition 1.2 (x)]) Let {nF}n∈Z be a col-
lection of F -prime-strips indexed by Z with associated collection of D-prime-strips (resp. D`-
prime-strips) {nD}n∈Z (resp. {nD`}n∈Z). Then, the chain of full log-links

· · · full log−→ (n−1)F
full log−→ nF

full log−→ (n+1)F
full log−→ · · ·

of F -prime-strips (which is called the Frobenius-picture of log-links for F-prime-strips)
induces chains of full poly-isomorphisms

· · ·
full poly
∼→ (n−1)D

full poly
∼→ nD

full poly
∼→ (n+1)D

full poly
∼→ · · · ,

· · ·
full poly
∼→ (n−1)D`

full poly
∼→ nD`

full poly
∼→ (n+1)D`

full poly
∼→ · · ·

of D-prime-strips and D`-prime-strips respectively. We identify (−)D’s by these full poly-
isomorphisms, then we obtain a diagram

· · ·

Kum
++VVVV

VVVVV
VVVVV

VVVVV
VVVVV

V
full log// Ψcns(

(n−1)F)
Kum

''OO
OOO

OOO
OOO

full log // Ψcns(
nF)

Kum
��

full log // Ψcns(
(n+1)F)

Kum

wwooo
ooo

ooo
oo

full log// · · ·

Kum
sshhhhh

hhhhh
hhhhh

hhhhh
hhhhh

Ψcns(
(−)D).
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This diagram expresses the vertical coricity of Ψcns(
(−)D). Note that Remark 12.2.1 says that

this diagram is not commutative.

Proof. Proposition follows from the definitions. �

Definition 12.3. (log-Links Between ��-Hodge Theatres, [IUTchIII, Proposition 1.3 (i)]) Let

†HT ��, ‡HT ��

be ��-Hodge theatres with associated D-��-Hodge theatres †HT D-��, ‡HT D-�� respectively.
Let †F>,

†F�,
†Fj (in

†FJ),
†Ft (in

†FT ) (resp.
‡F>,

‡F�,
‡Fj (in

‡FJ),
‡Ft (in

‡FT )) denote F -
prime-strips in the ��-Hodge theatre †HT �� (resp. ‡HT ��). For an isomorphism

Ξ : †HT D-�� ∼→ ‡HT D-��

of D-��-Hodge theatres, the poly-isomorphisms determined by Ξ between the D-prime-strips
associated to †F>,

‡F> (resp. †F�,
‡F�, resp.

†Fj,
‡Fj, resp.

†Ft,
‡Ft) uniquely determines

a poly-isomorphism log(†F>)
poly
∼→ ‡F> (resp. log(†F�)

poly
∼→ ‡F�, resp. log(†Fj)

poly
∼→ ‡Fj, resp.

log(†Ft)
poly
∼→ ‡Ft), hence, a log-link †F>

log
∼→ ‡F> (resp. †F�

log
∼→ ‡F�, resp.

†Fj

log
∼→ ‡Fj, resp.

†Ft

log
∼→ ‡Ft), by Lemma 10.10 (2). We write

†HT �� log−→ ‡HT ��

for the collection of data Ξ : †HT D-�� ∼→ ‡HT D-��, †F>
log→ ‡F>,

†F�
log→ ‡F�, {†Fj

log→ ‡Fj}j∈J ,
and {†Ft

log→ ‡Ft}t∈T , and we call it a log-link from †HT �� to ‡HT ��. When Ξ is replaced by

a poly-isomorphism †HT D-��
poly
∼→ ‡HT D-�� (resp. the full poly-isomorphism †HT D-��

full poly
∼→

‡HT D-��), then we call the resulting collection of log-links constructed from each constituent
isomorphism of the poly-isomorphism (resp. full poly-isomorphism) a log-link (resp. the full
log-link from †HT �� to ‡HT ��, and we also write it

†HT �� log−→ ‡HT �� (resp. †HT �� full log−→ ‡HT �� ).

Note that we have to carry out the construction of the log-link first for single Ξ for the purpose
of maintaining the compatibility with the crucial global {±1}-synchronisation in the �-
Hodge theatre ([IUTchIII, Remark 1.3.1]) (cf. Proposition 10.33 and Corollary 11.20 (3)) (For
a given poly-isomorphism of ��-Hodge theatres, if we considered the uniquely determined
poly-isomorphisms on F -prime-strips induced by the poly-isomorphisms on D-prime-strips by
the given poly-isomorphism of ��-Hodge theatres, not the “constituent-isomorphism-wise”
manner, then the crucial global {±1}-synchronisation would collapse (cf. [IUTchI, Remark
6.12.4 (iii)], [IUTchII, Remark 4.5.3 (iii)])).

Remark 12.3.1. (Frobenius-picture and Vertical Coricity of D-��-Hodge theatres, [IUTchIII,
Proposition 1.3 (ii), (iv)]) Let {nHT ��}n∈Z be a collection of ��-Hodge theatres indexed by
Z with associated collection of D-��-Hodge theatres {nHT D-��}n∈Z. Then, the chain of full
log-links

· · · full log−→ (n−1)HT �� full log−→ nHT �� full log−→ (n+1)HT �� full log−→ · · ·
of ��-Hodge theatres (which is called the Frobenius-picture of log-links for ��-Hodge
theatres) induces chains of full poly-isomorphisms

· · ·
full poly
∼→ (n−1)HT D-��

full poly
∼→ nHT D-��

full poly
∼→ (n+1)HT D-��

full poly
∼→ · · · ,
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of D-��-Hodge theatres. We identify (−)HT D-��’s by these full poly-isomorphisms, then we
obtain a diagram

· · ·

Kum
++VVVV

VVVVV
VVVVV

VVVVV
VVVVV

full log// (n−1)HT ��
Kum

''PP
PPP

PPP
PPP

P
full log // nHT ��

Kum
��

full log // (n+1)HT ��
Kum

wwnnn
nnn

nnn
nnn

full log// · · ·

Kum
sshhhhh

hhhhh
hhhhh

hhhhh
hhhh

(−)HT D-��,

where Kum expresses the Kummer isomorphisms in Remark 12.2.1. This diagram expresses
the vertical coricity of (−)HT D-��. Note that Remark 12.2.1 says that this diagram is not
commutative.

Definition 12.4. ([IUTchIII, Definition 1.4]) Let {n,mHT ��}n,m∈Z be a collection of��-Hodge
theatres indexed by pairs of integers. We call either of the diagrams

...
...

· · · Θ×µ
// n,m+1HT �� Θ×µ

//

full log

OO

n+1,m+1HT �� Θ×µ
//

full log

OO

· · ·

· · · Θ×µ
// n,mHT �� Θ×µ

//

full log

OO

n+1,mHT �� Θ×µ
//

full log

OO

· · · ,

...

full log

OO

...

full log

OO

...
...

· · ·
Θ×µ

gau // n,m+1HT ��
Θ×µ

gau //

full log

OO

n+1,m+1HT ��
Θ×µ

gau //

full log

OO

· · ·

· · ·
Θ×µ

gau // n,mHT ��
Θ×µ

gau //

full log

OO

n+1,mHT ��
Θ×µ

gau //

full log

OO

· · ·

...

full log

OO

...

full log

OO

the log-theta-lattice. We call the former diagram (resp. the latter diagram) non-Gaussian
(resp. Gaussian).

Remark 12.4.1. For the proof of the main Theorem 0.1, we need only two adjacent columns
in the (final update version of) log-theta lattice. In the analogy with p-adic Teichmüller theory,
this means that we need only “lifting to modulo p2” (See the last table in Section 3.5).

Theorem 12.5. (Bi-Cores of the Log-Theta-Lattice, [IUTchIII, Theorem 1.5]) Fix an initial
Th-data

(F/F, XF , l, CK , V, Vbad
mod, ε).

For any Gaussian log-theta-lattice corresponding to this initial Θ-data, we write n,mD� (resp.
n,mD>) for the D-prime-strip labelled “�” (resp. “>”) of the ��-Hodge theatre.



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 229

(1) (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice induce the
full poly-isomorphisms between the associated D-��-Hodge theatres

· · ·
full poly
∼→ n,mHT D-��

full poly
∼→ n,m+1HT D-��

full poly
∼→ · · · ,

where n is fixed (See Remark 12.3.1).
(2) (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-lattice induce

the full poly-isomorphisms between the associated F`×µ-prime-strips

· · ·
full poly
∼→ n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆

full poly
∼→ · · ·

where m is fixed (See Corollary 11.24 (4)).
(3) (Bi-coric F`×µ-Prime-Strips) Let n,mD`∆ for the D`-prime-strip associated to the F`-

prime-strip n,mF`∆ of Corollary 11.24 (1) for the ��-Hodge theatre n,mHT ��. We iden-
fity the collections Ψcns(

n,mD�)0, Ψcns(
n,mD�)〈F>

l 〉
of data via the isomorphism Ψcns(

n,mD�)0
diag
∼→ Ψcns(

n,mD�)〈F>
l 〉

constructed in Corollary 11.20 (3), and let

F`∆(
n,mD�)

denote the resulting F`-prime-strip (Recall that “∆ = {0, 〈F>
l 〉}”) Note also we have

a natural identification isomorphism F`∆(
n,mD�)

∼→ F`>(
n,mD>), where F`>(

n,mD>) de-
notes the F`-prime-strip determined by Ψcns(

n,mD>) (Recall that “>= {0, �}”. See
Lemma 10.38). Let

F`×∆ (n,mD�), F`×µ∆ (n,mD�)

denote the associated F`×-prime-strip and F`×µ-prime-strip to F`∆(
n,mD�), respectively.

By the isomorphism “Ψcns(‡D)×v
∼→ Ψss

cns(
‡D`)×v ” of Corollary 11.20 (2), we have a

functorial algorithm, with respect to the D`-prime-strip n,mD`∆, to construct an F`×-
prime-strip F`×∆ (n,mD`∆). We also have a functorial algorithm, with respect to the D-
prime-strip n,mD�, to construct an isomorphism

F`×∆ (n,mD�)
tauto
∼→ F`×∆ (n,mD`∆),

by definitions. Then, the poly-isomorphisms of (1) and (2) induce poly-isomorphisms

· · ·
poly
∼→ F`×µ∆ (n,mD�)

poly
∼→ F`×µ∆ (n,m+1D�)

poly
∼→ · · · ,

· · ·
poly
∼→ F`×µ∆ (n,mD`∆)

poly
∼→ F`×µ∆ (n+1,mD`∆)

poly
∼→ · · ·

of F`×µ-prime-strips, respectively. Note that the poly-isomorphisms (as sets of iso-
morphisms) of F`×µ-prime-strips in the first line is strictly smaller than the poly-
isomorphisms (as sets of isomorphisms) of F`×µ-prime-strips in the second line in

general, with respect to the above isomorphism F`×∆ (n,mD�)
tauto
∼→ F`×∆ (n,mD`∆), by the

existence of non-scheme theoretic automorphisms of absolute Galois groups of MLF’s
(See the inclusion (nonGC for MLF) in Section 3.5), and that the poly-morphisms in
the second line are not full by Remark 8.5.1. In particular, by composing these isomor-
phisms, we obtain poly-isomorphisms

F`×µ∆ (n,mD`∆)
poly
∼→ F`×µ∆ (n

′,m′
D`∆)



230 GO YAMASHITA

of F`×µ-prime-strips for any n′,m′ ∈ Z. This means that the F`×µ-prime-strip F`×µ∆ (n,mD`∆)
is coric both horizontally and vertically, i.e., it is bi-coric. Finally, the Kummer iso-

morphism “Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D)” of Corollary 11.21 (1) determines Kummer iso-
morphism

n,mF`×µ∆

induced by Kum
∼−→ F`×µ∆ (n,mD`∆)

which is compatible with the poly-isomorphisms of (2), and the ×µ-Kummer structures
at v ∈ Vnon and a similar compatibility for v ∈ Varc (See Definition10.12 (1)).

(4) (Bi-coric Mono-analytic Log-Shells) The poly-isomorphisms in the bi-coricity in
(3) induce poly-isomorphisms{

In,mD`
∆
⊂ log(n,mD`∆)

} poly
∼→
{
In′,m′

D`
∆
⊂ log(n

′,m′
D`∆)

}
,

{
IF`×µ

∆ (n,mD`
∆) ⊂ log(F`×µ∆ (n,mD`∆))

} poly
∼→
{
IF`×µ

∆ (n
′,m′

D`
∆) ⊂ log(F`×µ∆ (n

′,m′
D`∆))

}
for any n,m, n′,m,∈ Z, which are compatible with the natural poly-isomorphisms

{
IF`×µ

∆ (n,mD`
∆) ⊂ log(F`×µ∆ (n,mD`∆))

} “Kum”
poly
∼−→

{
In,mD`

∆
⊂ log(n,mD`∆)

}
of Proposition 12.2 (4). On the other hand, by Definition 12.1 (1) for “Ψcns(

†F�)0” and
“Ψcns(

†F�)〈F>
l 〉
” in Corollary 11.24 (1) (which construct n,mF`∆), we obtain

In,mF∆
⊂ log(n,mF∆)

(This is a slight abuse of notation, since no F-prime-strip “n,mF∆” has been defined).
Then we have natural poly-isomorphisms

{
In,mF∆

⊂ log(n,mF∆)
} tauto
∼→
{
In,mF`×µ

∆
⊂ log(n,mF`×µ∆ )

}induced by Kum
poly
∼→
{
In,mD`

∆
⊂ log(n,mD`∆)

}
(See Proposition 12.2 (4)), where the last poly-isomorphism is compatible with the poly-
isomorphisms induced by the poly-isomorphisms of (2).

(5) (Bi-coric Mono-analytic Global Realified Frobenioids) The poly-isomorphisms

n,mD`∆

poly
∼→ n′,m′

D`∆ of D`-prime-strips induced by the full poly-isomorphisms of (1) and
(2) for n,m, n′,m′ induce an isomorphism

(D(n,m(D`∆), Prime(D(n,m(D`∆))
∼→ V, {n,mρD,v}v∈V)

∼→ (D(n′,m′
(D`∆), Prime(D(n′,m′

(D`∆))
∼→ V, {n′,m′

ρD,v}v∈V)

of triples (See Corollary 11.20 (2), and Corollary 11.24 (5)). Moreover, this isomor-
phism of triples is compatible, with respect to the horizontal arrows of the Gaussian
log-theta-lattice, with the R>0-orbits of the isomorphisms

(n,mC∆, Prime(n,mC∆)
∼→ V, {n,mρ∆,v}v∈V)

“Kum”
∼→ (D(n,mD`∆), Prime(D(n,mD`∆))

∼→ V, {n,mρD,v}v∈V)

of triples, obtained by the functorial algorithm in Corollary 11.21 (2) (See also Corol-
lary 11.24 (1), (5)).

Proof. Theorem follows from the definitions. �
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12.2. Kummer Compatible Multiradial Theta Monoids. In this subsection, we globalise
the multiradiality of local theta monoids (Proposition 11.7, and Proposition 11.15) to cover the
theta monoids and the global realified theta monoids in Corollary 11.20 (4), (5) Corollary 11.21
(4), (5), in the setting of log-theta-lattice.
In this subsection, let †HT �� be a ��-Hodge theatre with respect to the fixed initial Θ-data,

and n,mHT �� a collection of ��-Hodge theatres arising from a Gaussian log-theta-lattice.

Proposition 12.6. (Vertical Coricity and Kummer Theory of Theta Monoids, [IUTchIII,
Proposition 2.1]) We summarise the theta monoids and their Kummer theory as follows:

(1) (Vertically Coric Theta Monoids) By Corollary 11.20 (4) (resp. Corollary 11.20
(5)), each isomorphism of the full poly-isomorphism induced by a vertical arrow of the
Gaussian log-theta-lattice induces a compatible collection

(∞)Ψenv(
n,mD>)

∼→ (∞)Ψenv(
n,m+1D>) (resp. Denv(n,mD`>)

∼→ Denv(n,m+1D`>) )

of isomorphisms, where the last isomorphism is compatible with the respective bijection
Prime(−) ∼→ V, and localisation isomorphisms.

(2) (Kummer Isomorphisms) By Corollary 11.21 (4) (resp. Corollary 11.21 (5)), we
have a functorial algorithm, with respect to the ��-Hodge theatre †HT ��, to construct
the Kummer isomorphism

(∞)ΨFenv(
†HT Θ)

Kum
∼→ (∞)Ψenv(

†D>) (resp. Cenv(†HT Θ)
“Kum”
∼→ Denv(†D`>) ).

Here, the resp’d isomorphism is compatible with the respective Prime(−) ∼→ V and
the respective localisation isomorphisms. Note that the collection Ψenv(

†D>) of data
gives us an F`-prime-strip F`env(

†D>), and an F-prime-strip Fenv(
†D>) = (Denv(†D`>),

Prime(Denv(†D`>))
∼→ V, F`env(

†D>), {ρD
env,v
}v∈V) and that the non-resp’d (resp. the

resp’d) Kummer isomorphism in the above can be interpreted as an isomorphism

†F`env

induced by Kum
∼→ F`env(

†D>) (resp. †Fenv

“Kum”
∼→ Fenv(

†D>) )

of F`-prime-strips (resp. F-prime-strips).
(3) (Compatibility with Constant Monoids) By the definition of the unit portion of

the theta monoids (See Corollary 11.24 (4)), we have natural isomorphisms

†F`×∆
∼→ †F`×env, F`×∆ (†D`∆)

∼→ F`×env(
†D>),

which are compatible with the Kummer isomorphisms †F`env

induced by Kum
∼→ F`env(

†D>),

†F`×µ∆

induced by Kum
∼→ F`×µ∆ (†D`∆) of (2) and Theorem 12.5 (3).

Proof. Proposition follows from the definitions. �
Theorem 12.7. (Kummer-Compatible Multiradiality of Theta Monoids, [IUTchIII, Theorem
2.2]) Fix an initial Th-data

(F/F, XF , l, CK , V, Vbad
mod, ε).

Let †HT �� be a ��-Hodge theatre with respect to the fixed initial Θ-data.

(1) The natural functors which send an F-prime-strip to the associated FI×µ- and F`×µ-
prime-strips and composing with the natural isomorphisms of Proposition 12.6 (3) give
us natural homomorphisms

AutF(Fenv(
†D>))→ AutFI×µ(FI×µenv (†D>))� AutF`×µ(F`×µ∆ (†D`∆)),

AutF(†Fenv)→ AutFI×µ(†FI×µenv )� AutF`×µ(†F`×µ∆ )
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(Note that the second homomorphisms in each line are surjective), which are compatible

with the Kummer isomorphisms †Fenv

“Kum”
∼→ Fenv(

†D>),
†F`×µ∆

induced by Kum
∼→ F`×µ∆ (†D`∆)

of Proposition 12.6 (2), and Theorem 12.5 (3)
(2) (Kummer Aspects of Multiradiality at Bad Primes) For v ∈ Vbad, let

∞Ψ
⊥
env(

†D>)v ⊂ ∞Ψenv(
†D>)v, ∞Ψ

⊥
Fenv

(†HT Θ)v ⊂ ∞ΨFenv(
†HT Θ)v,

denote the submonoids corresponding to the respective splittings (i.e., the submonoids
generated by “∞θι

env
(MΘ
∗ )” and the respective torsion subgroups). We have a commuta-

tive diagram

∞Ψ⊥
Fenv

(†HT Θ)v ⊃ ∞ΨFenv (
†HT Θ)µv ⊂ ∞ΨFenv (

†HT Θ)×v � ∞ΨFenv (
†HT Θ)×µ

v

poly
∼→ Ψss

cns(
†F`

∆)×µ
v

Kum ↓∼= Kum ↓∼= Kum ↓∼= Kum ↓∼= “Kum” ↓
poly∼=

∞Ψ⊥
env(

†D>)v ⊃ ∞Ψenv(†D>)µv ⊂ ∞Ψenv(†D>)×v � ∞Ψenv(†D>)×µ
v

poly
∼→ Ψss

cns(
†D`

∆)×µ
v ,

where †D`∆ and †F`∆ are as in Theorem 12.5 (3), and Corollary 11.24 (1), respectively,
the most right vertical arrow is the poly-isomorphism of Corollary 11.21 (2), the most
right lower horizontal arrow is the poly-isomorphism obtained by composing the inverse
of the isomorphism F`×env(

†D>)
∼←− F`×∆ (†D`∆) of Proposition 12.6 (3) and the poly-

automorphism of Ψss
cns(
†D`∆)

×µ
v induced by the full poly-automorphism of the D`-prime-

strip †D`∆, and the most right upper horizontal arrow is the poly-isomorphism defined
such a manner that the diagram is commutative. This commutative diagram is compat-
ible with the various group actions with respect to the diagram

Πtemp
X (MΘ

∗ (†D>,v))� Gv(MΘ
∗ (†D>,v)) = Gv(MΘ

∗ (†D>,v)) = Gv(MΘ
∗ (†D>,v))

full poly
∼→ Gv(MΘ

∗ (†D>,v)).

Finally, each of the various composite ∞Ψenv(
†D>)

µ
v → Ψss

cns(
†F`∆)

×µ
v is equal to the

zero map, hence the identity automorphism on the following objects is compatible
(with respect to the various natural morphisms) with the collection of automorphisms of

Ψss
cns(
†F`∆)

×µ
v induced by any automorphism in AutF`×µ(†F`×µ∆ ):

(⊥, µ)étv the submonoid and the subgroup ∞Ψ
⊥
env(

†D>)v ⊃ ∞Ψenv(
†D>)

µ
v ,

(µẐ)
ét
v the cyclotome µẐ(M

Θ
∗ (
†D>,v)) ⊗ Q/Z with respect to the natural isomorphism

µẐ(M
Θ
∗ (
†D>,v))⊗Q/Z ∼→ ∞Ψenv(

†D>)
µ
v

(M)étv the projective system MΘ
∗ (
†D>,v) of mono-theta environments

(spl)étv the splittings ∞Ψ
⊥
env(

†D>)v � ∞Ψenv(
†D>)

µ
v by the restriction to the zero-labelled

evaluation points (See Corollary 11.11 (3) and Definition 11.12 (1)).

Proof. Theorem follows from the definitions. �

Corollary 12.8. ([IUTchIII, Étale Picture of Multiradial Theta Monoids, Corollary 2.3]) Let
{n,mHT ��}n,m∈Z be a collection of ��-Hodge theatres arising from a Gaussian log-theta-lattice,
with associated D- � �-Hodge theares n,mHT D-��. We consider the following radial environ-
ment. We define a radial datum

†R = (†HT D-��, Fenv(
†D>),

†Rbad, F`×µ∆ (†D`∆), F`×µenv (†D>)
full poly
∼→ F`×µ∆ (†D`∆))

to be a quintuple of

(HT D)étR a D-��-Hodge theatre †HT D-��,
(F)étR the F-prime-strip Fenv(

†D>) associated to †HT D-��,
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(bad)étR the quadruple †Rbad = ((⊥, µ)étv , (µẐ)
ét
v , (M)étv , (spl)

ét
v ) of Theorem 12.7 (2) for v ∈

Vbad,
(F`×µ)étR the F`×µ-prime-strip F`×µ∆ (†D`∆) associated to †HT D-��, and

(env∆)étR the full poly-isomorphim F`×µenv (†D>)
full poly
∼→ F`×µ∆ (†D`∆).

We define a morphism from a radial datum †R to another radial datum ‡R to be a quintuple
of

(HT D)étMorR
an isomorphism †HT D-�� ∼→ ‡HT D-�� of D-��-Hodge theatres,

(F)étMorR
the isomorphism Fenv(

†D>)
∼→ Fenv(

‡D>) of F-prime-strips induced by the isomor-

phism (HT D)étMor,

(bad)étMorR
the isomorphism †Rbad ∼→ ‡Rbad of quadruples induced by the isomorphism (HT D)étMor,

and
(F`×µ)étMorR

an isomorphism F`×µ∆ (†D`∆)
∼→ F`×µ∆ (‡D`∆) of F`×µ-prime-strips

(Note that the isomorphisms of (F)étMor and (F`×µ)étMor are automatically compatible with
(env∆)ét).
We define a coric datum

†C = (†D`, F`×µ(†D`))

to be a pair of

(D`)`étC a D`-prime-strip †D`, and
(F`×µ)`étC the F`×µ-prime-strip F`×µ(†D`) associated to †D`.

We define a morphism from a coric datum †C to another coric datum ‡C to be a pair of

(D`)`étMorC
an isomorphism †D`

∼→ ‡D` of D`-prime-strips, and

(F`×µ)`étMorC
an isomorphism F`×µ(†D`)

∼→ F`×µ(‡D`) of F`×µ-prime-strips which induces the

isomorphism (D`)`étMorC
on the associated D`-prime-strips.

We define the radial algorithm to be the assignment

†R = (†HT D-��, Fenv(
†D>),

†Rbad, F`×µ∆ (†D`∆), F`×µenv (†D>)
full poly
∼→ F`×µ∆ (†D`∆))

7→ †C = (†D`∆, F`×µ∆ (†D`∆))

and the assignment on morphisms determined by the data (F`×µ)étMorR
.

(1) (Multiradiality) The functor defined by the above radial algorithm is full and essen-
tially surjective, hence the above radial environment is multiradial.

(2) (Étale Picture) For each D- � �-Hodge theatre n,mHT D-�� with n,m ∈ Z, we can
associate a radial datum n,mR. The poly-isomorphisms induced by the vertical arrows of

the Gaussian log-theta-lattice induce poly-isomorphisms · · ·
poly
∼→ n,mR

poly
∼→ n,m+1R

poly
∼→ · · ·

of radial data by Theorem 12.5 (1). Let

n,◦R
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denote the radial datum obtained by idenfitying n,mR form ∈ Z via these poly-isomorphisms,
and

n,◦C

denote the coric datum obtained by applying the radial algorithm to n,◦R. Similarly,
the poly-isomorphisms induced by the horizontal arrows of the Gaussian log-theta-lattice

induce full poly-isomorphisms · · ·
full poly
∼→ n,mD`∆

full poly
∼→ n+1,mD`∆

full poly
∼→ · · · of D`-prime-

strips Theorem 12.5 (2). Let
◦,◦C

denote the coric datum obtained by idenfitying n,◦C for n ∈ Z via these full poly-
isomorphisms. We can visualise the “shared” and “non-shared” relation in Corol-
lary 12.8 (2) as follows:

Fenv(
n,◦D>) +

n,◦Rbad + · · · − − > F`×µ∆ (◦,◦D`∆) >−− Fenv(
n′,◦D>) +

n′,◦Rbad + · · ·

We call this diagram the étale-picture of multiradial theta monoids. Note that it
has a permutation symmetry in the étale-picture (See also the last table in Section 4.3).
Note also that these constructions are compatible, in an obvious sense, with Defini-
tion 11.24.1.

(3) (Kummer Compatibility of Θ×µ
gau-Link, env → ∆) The (poly-)isomorphisms of

F`×µ-prime-strips of/induced by (env∆)étR, (F)étMorR
, and (F`×µ)étMorR

are compatible

with the poly-isomorphisms n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆ of Theorem 12.5 (2) arising from

the horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer isomor-

phisms n,mF`×µ∆

induced by Kum
∼→ F`×µ∆ (n,mD`∆),

n,mF`env

induced by Kum
∼→ F`env(

n,mD>) of Theo-
rem 12.5 (3) and Proposition 12.6 (2). In particular, we have a commutative diagram

n,mF`×µ∆

full poly∼ //

induced by Kum & “∆7→env” ∼=
��

n+1,mF`×µ∆

∼= induced by Kum & “∆ 7→env”

��
F`×µenv (n,◦D`>)

full poly∼ // F`×µenv (n+1,◦D`>).

(4) (Kummer Compatibility of Θ×µ
gau-Link, ⊥ & ) The isomorphisms Fenv(

n,mD>)
∼→

Fenv(
n+1,mD>),

n,mRbad ∼→ n+1,m Rbad of (F)étMorR
, (bad)étMorR

are compatible with the

poly-isomorphisms n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆ of Theorem 12.5 (2) arising from the

horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer isomor-

phisms n,mFenv

“Kum”
∼→ Fenv(

n,mD>),
n,mF`×µ∆

induced by Kum
∼→ F`×µ∆ (n,mD`∆), and (n,mC∆,

Prime(n,mC∆)
∼→ V, {n,mρ∆,v}v∈V)

“Kum”
∼→ (D(n,mD`∆), Prime (D(n,mD`∆))

∼→ V, {n,mρD,v}v∈V)
of Proposition 12.6 (2), Theorem 12.5 (3), (5) and their n+1,m(−)-labelled versions, and
the full poly-isomorphism of projective system of mono-theta environments “MΘ

∗ (
†D>,v)

full poly
∼→ MΘ

∗ (
†F

v
)” of Proposition 11.15.

Proof. Corollary follows from the definitions. �
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Remark 12.8.1. ([IUTchIII, Remark 2.3.3]) In this remark, we explain similarities and dif-
ferences between theta evaluations and NF evaluations. Similarities are as follows: For the
theta case, the theta functions are multiradial in two-dimensional geometric containers, where
we use the cyclotomic rigidity of mono-theta environments in the Kummer theory, which uses
only µ-portion (unlike the cyclotomic rigidity via LCFT), and the evaluated theta values (in
the evaluation, which depends on a holomorphic structure, the elliptic cuspidalisation is used),
in log-Kummer correspondence later (See Proposition 13.7 (2)), has a crucial non-interference
property by the constant multiple rigidity (See Proposition 13.7 (2)). For the NF case, the
κ-coric functions are multiradial in two-dimensional geometric containers, where we use the

cyclotomic rigidity of via Q>0 ∩ Ẑ× = {1} in the Kummer theory, which uses only {1}-portion
(unlike the cyclotomic rigidity via LCFT), and the evaluated number fields (in the evaluation,
which depends on a holomorphic structure, the Beyli cuspidalisation is used), in log-Kummer
correspondence later (See Proposition 13.11 (2)), has a crucial non-interference property by
F×mod ∩

∏
v≤∞Ov = µ(F×mod) (See Proposition 13.7 (2)). See also the following table:

mulirad. geom. container in mono-an. container cycl. rig. log-Kummer

theta theta fct.
eval theta values qj

2
(ell. cusp’n) mono-theta no interf. by

(depends on labels&hol. str.) const. mul. rig.

NF ∞κ-coric fct.
eval NF F×mod (up to {±1})(Belyi cusp’n) via Q>0 ∩ Ẑ× = {1} no interf. by

(indep. of labels, dep. on hol. str.) = {1} F×mod ∩
∏

v≤∞Ov = µ

The differences are as follows: The output theta values qj
2
depend on the labels j ∈ F>

l (Recall

that the labels depend on a holomorphic structure), and the evaluation is compatible with
the labels, on the other hand, the output number field F×mod (up to {±1}) does not depend
on the labels j ∈ F>

l (Note also that, in the final multiradial algorithm, we also use global
realified monoids, and these are of mono-analytic nature (since units are killed) and do not
depend of holomorphic structure). We continue to explain the differences of the theta case
and the NF case. The theta function is transcendental and of local nature, and the cyclo-
tomic rigidity of mono-theta environments, which is compatible with profinite topology (See
Remark 9.6.2), comes from the fact that the order of zero at each cusp is equal to one (Such
“only one valuation” phenomenon corresponds precisely to the notion of “local”). Note that
such a function only exists as a transcendental function. (Note also that the theta functions
and theta values do not have Fo±

l -symmetry, however, the cyclotomic rigidity of mono-theta
enrionments have Fo±

l -symmetry. See Remark 11.17.1). On the other hand, the rational func-
tions used in Belyi cuspidalisation are algebraic and of global nature, and the cyclotomic rigidity

via Q>0 ∩ Ẑ× = {1}, which is obtained by sacrificing the compatibility with profinite topology
(See Remark 9.6.2). Algebraic rational function never satisfy the property like “the order of
zero at each cusp is equal to one” (Such “many valuations” phenomenon corresponds precisely
to the notion of “global”). See also the following table (cf. [IUTchIII, Fig. 2.7]):

theta � (0 is permuted) transcendental local compat. w/prof. top. “one valuation”

NF � (0 is isolated) algebraic global incompat. w/prof. top. “many valuations”
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We also explain the “vicious circles” in Kummer theory. In the mono-anabelian reconstruc-
tion algorithm, we use various cyclotomes µ∗ét arising from cuspidal inertia subgroups (See
Theorem 3.17), these are naturally identified by the cyclotomic rigidity isomorphism for in-
ertia subgroups (See Proposition 3.14 and Remark 3.14.1). We write µ∀ét for the cyclotome
resulting from the natural identifications. In the context of log-Kummer correspondence, the
Frobenius-like cyclotomes µFr’s are related to µ∀ét, via cyclotomic rigidity isomorphisms:

• †µFr

Kum

##F
FF

FF
FF

F

• ‡µFr
Kum //

log

OO

◦µ∀ét
log

OO

Kum

::tttttttttt

If we consider these various Frobenius-like µFr’s and the vertically coric étale-like µ∀ét as distinct
labelled objects, then the diagram does not result in any “vicious circles” or “loops”. On the
other hand, ultimately in Theorem 13.12, we will construct algorithms to describe objects of
one holomorphic structure on one side of Θ-link, in terms of another alien arithmetic holomor-
phic structure on another side of Θ-link by means of multiradial containers. These multiradial
containers arise from étale-like versions of objects, but are ultimately applied as containers for
Frobenius-like versions of objects. Hence, we need to contend with the consequences of identi-
fying the Frobenius-like µFr’s and the étale-like µ∀ét, which gives us possible “vicious circles” or
“loops”. We consider the indeterminacies arising from possible “vicious circles”. The cyclotome
µ∀ét is subject to indeterminacies with respect to multiplication by elements of the submonoid

Iord ⊂ N≥1 × {±1}

generated by the orders of the zeroes of poles of the rational functions appearing the cyclotomic
rigidity isomorphism under consideration (Recall that constructing cyclotomic rigidity isomor-
phisms associated to rational functions via the Kummer-theoretic approach of Definition 9.6
amounts to identifying various µ∗ét’s with various sub-cyclotomes of µFr’s via morphisms which
differ from the usual natural identification precisely by multiplication by the order ∈ Z at a
cusp “∗” of the zeroes/poles of the rational function). In the theta case, we have

Iord = {1}

as a consequence of the fact that the order of the zeros/poles of the theta function at any
cusp is equal to 1. On the other hand, for the NF case, such a phenomenon never happens for
algebraic rational functions, and we have

Im(Iord → N≥1) = {1}

by the fact Q>0∩ Ẑ× = {1}. Note also that the indeterminacy arising from Im(Iord → {±1}) (⊂
{±1}) is avoided in Definition 9.6, by the fact that the inverse of a non-constand κ-coric rational
function is never κ-coric, and that this thechnique is incompatible with the identification of
µFr and µ∀ét discussed above. Hence, in the final multiradial alogirhtm, a possible Im(Iord →
{±1}) (⊂ {±1})-indeterminacy arises. However, the totality F×mod of the non-zero elements is
invariant under {±1}, and this indeterminacy is harmless (Note that, in the theta case, the

theta values qj
2
have no {±1}-invariance).
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13. Main Multiradial Algorithm.

In this section, we construct the main multiradial algorithm to describe objects of one holo-
morphic structure on one side of Θ-link, in terms of another alien arithmetic holomorphic
structure on another side of Θ-link by means of multiradial containers. We briefly explain the
ideas. We want to “see” the alien ring structure on the left hand side of Θ-link (more precisely,
Θ×µLGP-link) from the right hand side of Θ-link:

• Θ-link // •

(̂eye)

��

As explained in Section 4.3, after constructing link (or wall) by using Frobenius-like objects, we
relate Frobenius-like objects to étale-like objects via Kummer theory (Kummer detachment).
Then, étale-like objects can penetrate the wall (étale transport). We also have another step
to go from holomorphic structure to the underlying mono-analytic structure for the purpose of
using the horizontally coric (i.e., shared) objects in the final multiradial alogirhtm. This is a
fundamental strategy:

arith.-holomorphic Frobenius-like obj’s data assoc. to F -prime-strips
↓ Kummer theory

arith.-holomorphic étale-like obj’s data assoc. to D-prime-strips
↓ forget arith.-hol. str.

mono-analytic étale-like obj’s data assoc. to D`-prime-strips.

We look more. The Θ-link only concerns the multiplicative structure (�), hence, it seems
difficult to see the additive structure (�) on the left hand side, from the right hand side. First,
we try to overcome this difficulty by using a log-link (Note that Fo±

l -symmetrising isomorphisms
are compatible with log-links, hence, we can pull-back Ψgau via log-link to construct ΨLGP):

� log(O×µ) • Θ-link // •

(̂eye)

��

�

OO

O×µ

OO

•

log-link

OO

However, the square

� log(O×µ) • Θ-link // •

(̂eye)

��

�

OO

O×µ

OO

•

log

OO

Θ
// •

log

OO

is non-commutative (cf. log(an) 6= (log a)N), hence we cannot describe the left vertical arrow in
terms of the right vertical arrow. We overcome this difficulty by considering the infinite chain
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of log-links:
...

• Θ //

log

OO

•

(̂eye)

��

•
log

OO

...

log

OO

Then, the infinite chain of log-links is invariant under the vertical shift, and we can describe
the infinite chain of log-links on the left hand side, in terms of the infinite chain of log-links on
the right hand side. This is a rough explanation of the idea.

13.1. Local and Global Packets. Here, we introduce a notion of processions.

Definition 13.1. ([IUTchI, Definition 4.10]) Let C be a category. A n-procession of C is a
diagram of the form

P1

all capsule-full poly
↪→ P2

all capsule-full poly
↪→ · · ·

all capsule-full poly
↪→ Pn,

where Pj is a j-capsule of Ob(C) for 1 ≤ j ≤ n, and each ↪→ is the set of all capsule-full
poly-morphisms. A morphism from an n-procession of C to an m-procession of C(

P1

all capsule-full poly
↪→ · · ·

all capsule-full poly
↪→ Pn

)
→
(
Q1

all capsule-full poly
↪→ · · ·

all capsule-full poly
↪→ Qm

)
consists of an order-preserving injection ι : {1, . . . , n} ↪→ {1, . . . ,m} together with a capsule-full

poly-morphism Pj
capsule-full poly

↪→ Qι(j) for 1 ≤ j ≤ n.

Ultimately, l>-processions of D`-prime-strips corresponding to the subsets {1} ⊂ {1, 2} ⊂
· · · ⊂ F>

l will be important.

Remark 13.1.1. As already seen, the labels (LabCusp(−)) depend on the arithmetically holo-
morphic structures (See also Section 3.5), i.e., ∆(−)’s or Π(−)’s (Recall that Π(−) for hyperbolic
curves of strictly Belyi type over an MLF has the information of the field structure of the base
field, and can be considered as arithmetically holomorphic, on the other hand, the Galois group
of the base field (Π(−) �)G(−) has no information of the field structure of the base field, and
can be considered as mono-analytic). In inter-universal Teichmüller theory, we will reconstruct
an alien ring structure on one side of (the updated version of) Θ-link from the other side of
(the updated version of) Θ-link (See also the primitive form of Θ-link shares the mono-analytic
structure †D`v , but not the arithmetically holomorphic structures †Dv, ‡Dv (Remark 10.8.1)),
and we cannot send arithmetically holomorphic structures from one side to the other side of
(the updated version of) Θ-link. In particular, we cannot send the labels (LabCusp(−)) from
one side to the other side of (the updated version of) Θ-link, i.e., we cannot see the labels on
one side from the other side:

1, 2, . . . , l> 7−→ ?, ?, . . . , ?.

Then, we have (l>)l
>
-indeterminacies in total. However, we can send processions:

{1} ↪→ {1, 2} ↪→ {1, 2, 3} ↪→ · · · ↪→ {1, 2, . . . , l>} 7−→ {?} ↪→ {?, ?} ↪→ · · · ↪→ {?, ?, . . . , ?}.
In this case, we can reduce the indeterminacies from (l>)l

>
to (l>)!. If we did not use this

reduction of indeterminacies, then the final inequality of height function would be weaker (More
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precisely, it would be ht . (2 + ε)(log-diff + log-cond), not ht . (1 + ε)(log-diff + log-cond)).
More concretely, in the calculations of Lemma 1.10, if we did not use the processions, then the
calculation 1

l>

∑
1≤j≤l>(j + 1) = l>+1

2
+ 1 would be changed into 1

l>

∑
1≤j≤l>(l

> + 1) = l> + 1,
whose coefficient of l would be twice.

For j = 1, . . . , l± (Recall that l± = l> + 1 = l+1
2

(See Section 0.2)), we put

S>
j := {1, . . . , j}, S±j := {0, . . . , j − 1}.

Note that we have

S>
1 ⊂ S>

2 ⊂ · · · ⊂ S>
l> = F>

l , S±1 ⊂ S±2 ⊂ · · · ⊂ S±l± = |Fl|.
We also consider S>

j as a subset of S±j+1.

Definition 13.2. ([IUTchI, Proposition 4.11, Proposition 6.9]) For a D-Θ-bridge †DJ

†φΘ>−→ †D>

(resp. D-Θ±-bridge †DT

†φΘ
±

±−→ †D�), let

Proc(†DJ) (resp. Proc(†DT ) )

denote the l>-processin (resp. l±-procession) of D-prime-strips determined by the sub-capsules
of †DJ (resp. †DT ) corresponding to the subsets S>

1 ⊂ S>
2 ⊂ . . . ⊂ S>

l> = F>
l (resp. S±1 ⊂ S±2 ⊂

. . . ⊂ S±l± = |Fl|), with respect to the bijection †χ : J
∼→ F>

l of Proposition 10.19 (1) (resp. the

bijection |T | ∼→ |Fl| determined by the F±l -group structure of T ). For the capsule †D`J (resp.
†D`T ) of D`-prime-strips associated to †DJ (resp. †DT ), we similarly define the l>-processin
(resp. l±-procession)

Proc(†D`J) (resp. Proc(†D`T ) )

of D`-prime-strips. If the D-Θ-bridge †φΘ
> (resp. the D-Θ±-bridge †φΘ±

± ) arises from a capsule
Θ-bridge (resp. Θ±-bridge), we similarly define the l>-processin (resp. l±-procession)

Proc(†FJ) (resp. Proc(†FT ) )

of F -prime-strips.

Proposition 13.3. (Local Holomorphic Tensor Packets, [IUTchIII, Proposition 3.1]) Let

{αF}α∈S±j = {{αFv}v∈V}α∈S±j
be a j-capsule of F-prime-strips with index set S±j . For V 3 v( | vQ ∈ VQ := V(Q)), we
regard log(αFv) as an inductive limit of finite dimensional topological modules over QvQ, by

log(αFv) = lim−→J⊂αΠv : open
(log(αFv))J . We call the assignment

VQ 3 vQ 7→ log(αFvQ) :=
⊕

V3v|vQ

log(αFv)

the 1-tensor packet associated to the F-prime-strip αF, and the assignment

VQ 3 vQ 7→ log(S
±
j FvQ) :=

⊗
α∈S±j

log(αFvQ)

the j-tensor packet associated to the collection {αF}α∈S±j of F-prime-strips, where the

tensor product is taken as a tensor product of ind-topological modules.

(1) (Ring Structures) The ind-topological field structures on log(αFv) for α ∈ S±j deter-

mine an ind-topological ring structure on log(S
±
j FvQ) as an inductive limit of direct sums

of ind-topological fields. Such decompositions are compatible with the natural action of
the topological group αΠv on the direct summand with subscript v of the factor labelled
α.
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(2) (Integral Structures) Fix α ∈ S±j+1, v ∈ V, vQ ∈ VQ with v | vQ. Put

log(S
±
j+1,αFv) := log(αFv)⊗


⊗

β∈S±j+1\{α}

log(βFvQ)

 ⊂ log(S
±
j+1FvQ).

Then, the ind-topological submodule log(S
±
j+1,αFv) forms a direct summand of the ind-

topological ring log(S
±
j+1FvQ). Note that log(S

±
j+1,αFv) is also an inductive limit of direct

sums of ind-topological fields. Moreover, by forming the tensor product with 1’s in the
factors labelled by β ∈ S±j+1 \ {α}, we obtain a natural injective homomorphism

log(αFv) ↪→ log(S
±
j+1,αFv)

of ind-topological rings, which, for suitable (cofinal) choices of objects in the inductive
limit descriptions for the domain and codomain, induces an isomorphism of such an
object in the domain onto each of the direct summand ind-topological fields of the object
in the codomain. In particular, the integral structure

Ψlog(αFv) := Ψlog(αFv) ∪ {0} ⊂ log(αFv)
determines integral structures on each of the direct summand ind-topological fields ap-

pearing in the inductive limit descriptions of log(S
±
j+1,αFv), log(S

±
j+1FvQ).

Note that log(αFv) is an isomorph of log(Kv
×
) ∼= Kv, the integral structure Ψlog(αFv) is an

isomorph of OKv
, and log(S

±
j+1,αFv) is an isomorph of

⊗
Kv

∼→ lim−→
⊕

Kv.

Proof. Proposition follows from the definitions. �
Remark 13.3.1. ([IUTchIII, Remark 3.1.1 (ii)]) From the point of view of “analytic section”

Vmod
∼→ V(⊂ V(K)) of SpecK � SpecFmod, we need to consider the log-volumes on the

portion of log(αFv) corresponding to Kv relative to the weight

1

[Kv : (Fmod)v]
,

where v ∈ Vmod denotes the valuation corresponding to v via the bijection Vmod
∼→ V (See also

Definition 10.4). When we consider
⊕

V3v|vQ as in case of log(αFvQ), we use the normalised

weight
1

[Kv : (Fmod)v] ·
(∑

Vmod3w|vQ [(Fmod)w : QvQ ]
)

so that the multiplication by pvQ affects log-volumes as + log(pvQ) (resp. by − log(pvQ)) for
vQ ∈ Varc

Q (resp. vQ ∈ Vnon
Q ) (See also Section 1.2). Similarly, when we consider log-volumes

on the portion of log(S
±
j+1FvQ) corresponding to the tensor product of Kvi

with V 3 vi | vQ for
0 ≤ i ≤ j, we have to consider these log-volumes relative to the weight

1∏
0≤i≤j[Kvi

: (Fmod)vi ]
,

where vi ∈ Vmod corresponds to vi. Moreover, when we consider direct sums over all possible
choices for the data {vi}i∈S±j+1

, we use the normalised weight

1(∏
0≤i≤j[Kvi

: (Fmod)vi ]
)
·
{∑

{wi}0≤i≤j∈((Vmod)vQ )
j+1

(∏
0≤i≤j[(Fmod)wi

: QvQ ]
)}



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 241

(See also Section 1.2) so that the multiplication by pvQ affects log-volumes as + log(pvQ) (resp.
by − log(pvQ)) for vQ ∈ Varc

Q (resp. vQ ∈ Vnon
Q ) (See Section 0.2 for the notation (Vmod)vQ).

Proposition 13.4. (Local Mono-Analytic Tensor Packets, [IUTchIII, Proposition 3.2]) Let

{αD`}α∈S±j =
{
{αD`v }v∈V

}
α∈S±j

be a j-capsule of D`-prime-strips with index set S±j . We call the assignment

VQ 3 vQ 7→ log(αD`vQ) :=
⊕

V3v|vQ

log(αD`v )

the 1-tensor packet associated to the D`-prime-strip αD, and the assignment

VQ 3 vQ 7→ log(S
±
j D`vQ) :=

⊗
α∈S±j

log(αD`vQ)

the j-tensor packet associated to the collection {αD`}α∈S±j of D`-prime-strips, where

the tensor product is taken as a tensor product of ind-topological modules. For α ∈ S±j+1, v ∈ V,
vQ ∈ VQ with v | vQ, put

log(S
±
j+1,αD`v ) := log(αD`v )⊗


⊗

β∈S±j+1\{α}

log(βD`vQ)

 ⊂ log(S
±
j+1D`vQ).

If {αD`}α∈S±j arises from a j-capsule

{αF`×µ}α∈S±j =
{
{αF`×µv }v∈V

}
α∈S±j

of F`×µ-prime-strips, then we put

log(αF`×µvQ
) := log(αD`vQ), log(S

±
j F`×µvQ

) := log(S
±
j D`vQ), log(S

±
j+1,αF`×µv ) := log(S

±
j+1,αD`v ),

and we call the first two of them the 1-tensor packetassociated to the F`×µ-prime-strip
αF`×µ, and the j-tensor packet associated to the collection {αF`×µ}α∈S±j of F`×µ-prime-

strips, respectively.

(1) (Mono-Analytic/Holomorphic Compatibility) Assume that {αD`}α∈S±j arises from

a j-capsule

{αF}α∈S±j = {{αFv}v∈V}α∈S±j
of F-prime-strips. We write {αF`×µ}α∈S±j for the j-capsule of F`×µ-prime-strips as-

sociated to {αF}α∈S±j . Then, the (poly-)isomorphisms log(†Fv)
tauto
∼→ log(†F`×µv )

“Kum”
poly
∼→

log(†D`v ) of Proposition 12.2 (4) induce natural poly-isomorphisms

log(αFvQ)
tauto
∼→ log(αF`×µvQ

)

“Kum”
poly
∼→ log(αD`vQ), log(S

±
j FvQ)

tauto
∼→ log(S

±
j F`×µvQ

)

“Kum”
poly
∼→ log(S

±
j D`vQ),

log(S
±
j+1,αFv)

tauto
∼→ log(S

±
j+1,αF`×µv )

“Kum”
poly
∼→ log(S

±
j+1,αD`v )

of ind-topological modules.



242 GO YAMASHITA

(2) (Integral Structures) For V 3 v | vQ ∈ Vnon
Q the étale-like mono-analytic log-shells

“I†D`
v
” of Proposition 12.2 (4) determine topological submodules

I(αD`vQ) ⊂ log(αD`vQ), I(
S±j D`vQ) ⊂ log(S

±
j D`vQ), I(

S±j+1,αD`v ) ⊂ log(S
±
j+1,αD`v ),

which can be regarded as integral structures on the Q-spans of these submodules. For
V 3 v | vQ ∈ Varc

Q by regarding the étale-like mono-analytic log-shells “I†D`
v
” of Proposi-

tion 12.2 (4) as the “closed unit ball” of a Hermitian metric on “log(†D`v )”, and putting

the induced direct sum Hermitian metric on log(αD`vQ), and the induced tensor product

Hermitian metric on log(S
±
j D`vQ), we obtain Hemitian metrics on log(αD`vQ), log(

S±j D`vQ),
and log(S

±
j+1,αD`vQ), whose associated closed unit balls

I(αD`vQ) ⊂ log(αD`vQ), I(
S±j D`vQ) ⊂ log(S

±
j D`vQ), I(

S±j+1,αD`v ) ⊂ log(S
±
j+1,αD`v ),

can be regarded as integral structures on log(αD`vQ), log(
S±j D`vQ), and log(S

±
j+1,αD`vQ), re-

spectively. For any V 3 v | vQ ∈ VQ, we put

IQ(αD`vQ) := Q-span of I(αD`vQ) ⊂ log(αD`vQ), I
Q(S

±
j D`vQ) := Q-span of I(S

±
j D`vQ) ⊂ log(S

±
j D`vQ),

IQ(S
±
j+1,αD`v ) := Q-span of I(S

±
j+1,αD`v ) ⊂ log(S

±
j+1,αD`v ).

If {αD`}α∈S±j arises from a j-capsule {αF}α∈S±j of F-prime-strips then, the objects

I(αD`vQ), I
Q(αD`vQ), I(

S±j D`vQ), I
Q(S

±
j D`vQ), I(

S±j+1,αD`v ), IQ(S
±
j+1,αD`v ) determine

I(αFvQ), IQ(αFvQ), I(
S±j FvQ), IQ(

S±j FvQ), I(
S±j+1,αFv), IQ(S

±
j+1,αFv),

and

I(αF`×µvQ
), IQ(αF`×µvQ

), I(S
±
j F`×µvQ

), IQ(S
±
j F`×µvQ

), I(S
±
j+1,αF`×µv ), IQ(S

±
j+1,αF`×µv )

via the above natural poly-isomorphisms log(αFvQ)
tauto
∼→ log(αF`×µvQ

)

“Kum”
poly
∼→ log(αD`vQ),

log(S
±
j FvQ)

tauto
∼→ log(S

±
j F`×µvQ

)

“Kum”
poly
∼→ log(S

±
j D`vQ), log(

S±j+1,αFv)
tauto
∼→ log(S

±
j+1,αF`×µv )

“Kum”
poly
∼→

log(S
±
j+1,αD`v ) of ind-topological modules.

Proof. Proposition follows from the definitions. �
Proposition 13.5. (Global Tensor Packets, [IUTchIII, Proposition 3.3]) Let

†HT ��

be a ��-Hodge theatre with associated �- and �-Hodge theatres †HT �, †HT � respectively.
Let {αF}α∈S>j be a j-capsule of F-prime-strips. We consider S>

j as a subset of the index set J

appearing the �-Hodge theatre †HT � via the isomorphism †χ : J
∼→ F>

l of Proposition 10.19
(1). We assume that for each α ∈ S>

j , a log-link

αF
log−→ †Fα

(i.e., a poly-morphism log(αF)
poly
∼→ †Fα of F-prime-strips) is given. Recall that we have a

labelled version (†M~mod)j of the field †M~mod (See Corollary 11.23 (1), (2)). We call

(†M~mod)S>j :=
⊗
α∈S>j

(†M~mod)α
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the global j-tensor packet associated to S>
j and the ��-Hodge theatre †HT ��.

(1) (Ring Structures) The field structures on (†M~mod)α for α ∈ S>
j determine a ring struc-

ture on (†M~mod)S>j , which decomposes uniquely as a direct sum of number fields. More-

over, by composing with the given log-links, the various localisation functors “(†F~mod)j →
†Fj” of Corollary 11.23 (3) give us a natural injective localisation ring homomorphism

(†M~mod)S>j
gl. to loc.
↪→ log(S

±
j+1FVQ) :=

∏
vQ∈VQ

log(S
±
j+1FvQ)

to the product of the local holomorphic tensor packets of Proposition 13.3, where we

consider S>
j as a subset of S±j+1, and the component labelled by 0 in log(S

±
j+1FvQ) of the

localisation homomorphism is defined to be 1.
(2) (Integral Structures) For α ∈ S>

j , by taking the tensor product with 1’s in the factors

labelled by β ∈ S>
j \ {α}, we obtain a natural injective ring homomorphism

(†M~mod)α ↪→ (†M~mod)S>j

which induces an isomorphism of the domain onto a subfield of each of the direct sum-
mand number fields of the codomain. For each vQ ∈ VQ, this homomorphism is com-
patible, in the obvious sense, with the natural injective homomorphism log(αFv) ↪→
log(S

±
j+1,αFv) of ind-topological rings of Proposition 13.3 (2), with respect to the local-

isation homomorphisms of (1). Moreover, for each vQ ∈ Vnon
Q (resp. vQ ∈ Varc

Q ), the
composite

(†M~mod)α ↪→ (†M~mod)S>t
gl. to loc.
↪→ log(S

±
j+1FVQ)� log(S

±
j+1FvQ)

of the above displayed homomorphism with the vQ-component of the localisation homo-
morphism of (1) sends the ring of integers (resp. the set of elements of absolute value

≤ 1 for all Archimedean primes) of the number field (†M~mod)α into the submodule (resp.

the direct product of subsets) constituted by the integral structures on log(S
±
j+1FvQ) (resp.

on various direct summand ind-topological fields of log(S
±
j+1FvQ)) of Proposition 13.3 (2).

Proof. Proposition follows from the definitions. �
13.2. Log-Kummer Correspondences and Main Multiradial Algorithm.

Proposition 13.6. (Local Packet-Theoretic Frobenioids, [IUTchIII, Proposition 3.4])

(1) (Single Packet Monoids) In the situation of Proposition 13.3, for α ∈ S±j+1, v ∈ V,
vQ ∈ VQ with v | vQ, the image of the monoid Ψlog(αFv), its submonoid Ψ×log(αFv)

of units,

and realification ΨR
log(αFv)

, via the natural homomorphism log(αFv) ↪→ log(S
±
j+1,αFv) of

Proposition 13.3 (2), determines monoids

Ψlog(
S±
j+1

,α
Fv)
, Ψ×log(S

±
j+1

,α
Fv)
, ΨR

log(
S±
j+1

,α
Fv)

which are equipped with Gv(
αΠv)-actions when v ∈ Vnon, and for the first monoid, with

a pair of an Aut-holomorphic orbispace and a Kummer structure when v ∈ Varc. We

regard these monoids as (possibly realified) subquotients of log(S
±
j+1,αFv) which act on

appropriate (possibly realified) subquotients of log(S
±
j+1,αFv). (For the purpose of equip-

ping Ψlog(αFv) etc. with the action on subquotients of log(S
±
j+1,αFv), in the algorithmical

outputs, we define Ψ
log(

S±
j+1

,αFv)
etc. by using the image of the natural homomorphism

log(αFv) ↪→ log(S
±
j+1,αFv)).
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(2) (Local Logarithmic Gaussian Procession Monoids) Let

‡HT �� log−→ †HT ��

be a log-link of ��-Hodge theatres. Consider the F-prime-strip processions Proc(†FT ).
Recall that the Frobenius-like Gaussian monoid (∞)ΨFgau(

†HT Θ)v of Corollary 11.21 (4)
is defined by the submonoids in the product

∏
j∈F>

l
(Ψ†F

v
)j (See Corollary 11.17 (2),

Proposition 11.19 (4)). Consider the following diagram:∏
j∈F>

l
log(j;‡Fv) ⊂

∏
j∈F>

l
log(S

±
j+1j;‡Fv)

∪ ∪∏
j∈F>

l
(Ψ†F

v
)j

poly
∼←−

∏
j∈F>

l
Ψlog(j;‡Fv)

by (1)
∼→

∏
j∈F>

l
Ψlog(

S±
j+1

,j;‡
Fv)
,

∪
ΨFgau(

†F
v
)

where ΨFgau(
†F

v
) in the last line denotes, by abuse of notation, ΨFξ

(†F
v
) for a value

profie ξ in the case of v ∈ Vbad. We take the pull-backs of ΨFgau(
†F

v
) via the poly-

isomorphism given by log-link ‡HT �� log−→ †HT ��, and send them to the isomorphism∏
j∈F>

l
Ψlog(j;‡Fv)

∼→
∏

j∈F>
l
Ψlog(

S±
j+1

,j;‡
Fv)

constructed in (1). By this construction, we

obtain a functorial algorithm, with respect to the log-link ‡HT �� log−→ †HT �� of ��-
Hodge theatres, to construct collections of monoids

V 3 v 7→ ΨFLGP
((‡

log−→)†HT ��)v, ∞ΨFLGP
((‡

log−→)†HT ��)v,
equipped with splittings up to torsion when v ∈ Vbad (resp. splittings when v ∈ Vgood).
We call them Frobenius-like local LGP-monoids or Frobenius-like local log-
arithmic Gaussian procession monoids. Note that we are able to perform this
construction, thanks to the compatibility of log-link with the Fo±

l -symmetrising
isomorphisms.

Note that, for v ∈ Vbad, we have(
j-labelled component of ΨFLGP

((‡
log−→)†HT ��)Gv(‡Πv)

v

)
⊂ IQ(S

±
j+1,j;‡Fv)

(i.e., “(K̃v ⊃)O×Kv
· qj2

v
⊂ Q log(O×Kv

)”), where (−)Gv(‡Πv) denotes the invariant part,

and the above j-labelled component of Galois invariant part acts multiplicatively on

IQ(S
±
j+1,j;‡Fv). For any v ∈ V, we also have(
j-labelled component of (ΨFLGP

((‡
log−→)†HT ��)×v )Gv(‡Πv)

)
⊂ IQ(S

±
j+1,j;‡Fv)

(i.e., “(K̃v ⊃)O×Kv
⊂ Q log(O×Kv

)” for v ∈ Vgood), where ‡Πv = {1} for v ∈ Varc,

and the above j-labelled component of Galois invariant part of the unit portion acts

multiplicatively on IQ(S
±
j+1,j;‡Fv).

Proof. Proposition follows from the definitions. �
Proposition 13.7. (Kummer Theory and Upper Semi-Compatibility for Vertically Coric Local
LGP-Monoids, [IUTchIII, Proposition 3.5]) Let {n,mHT �p}n,m∈Z be a collection of ��-Hodge
theatres arising from a Gaussian log-theta-lattice. For each n
inZ, let

n,◦HT D-��
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denote the D- � �-Hodge theatre determined, up to isomorphism, by n,mHT �p for m ∈ Z, via
the vertical coricity of Theorem 12.5 (1).

(1) (Vertically Coric Local LGP-Monoids and Associated Kummer Theory) Let

F(n,◦D�)t

denote the F-prime-strip associated to the labelled collection of monoids “Ψcns(
n,◦D�)t”

of Corollary 11.20 (3). Then, by applying the constructions of Proposition 13.6 (2) to
the full log-links associated these (étale-like) F-prime-strips (See Proposition 12.2 (5)),
we obtain a functorial algorithm, with respect to the D-��-Hodge theatre n,◦HT D-��,
to construct collections of monoids

V ∈ v 7→ ΨLGP(
n,◦HT D-��)v, ∞ΨLGP(

n,◦HT D-��)v

equipped with splittings up to torsion when v ∈ Vbad (resp. splittings when v ∈ Vgood).
We call them vertically coric étale-like local LGP-monoids or vertically coric
étale-like local logarithmic Gaussian procession monoids. Note again that we
are able to perform this construction, thanks to the compatibility of log-link with
the Fo±

l -symmetrising isomorphisms. For each n,m ∈ Z, this functorial algorithm
is compatible, in the obvious sende, with the functorial alogrithm of Proposition 13.6 (2)
for †(−) = n,m(−), and ‡(−) = n,m−1(−), with respect to the Kummer isomorphism

Ψcns(
n,m′

F�)t

Kum
∼→ Ψcns(

n,◦D�)t

of labelled data of Corollary 11.21 (3) and the identification of n,m
′
Ft with the F-prime-

strip associated to Ψcns(
n,m′

F�)t for m
′ = m − 1,m. In particular, for each n,m ∈ Z,

we obtain Kummer isomorphisms

(∞)ΨFLGP
(n,m−1

log−→n,mHT ��)v
Kum
∼→ (∞)ΨFLGP

(n,◦HT D-��)v
for local LGP-monoids for v ∈ V.

(2) (Upper Semi-Compatibility) The Kummer isomorphisms of the above (1) are upper

semi-compatible with the log-links n,m−1HT �� log−→ n,mHT �� of ��-Hodge theatres
in the Gaussian log-theta-lattice in the following sense:
(a) (non-Archimedean Primes) For vQ ∈ Vnon

Q , (and n ∈ Z) by Proposition 13.6 (2),
we obtain a vertically coric topological module

I(S
±
j+1F(n,◦D�)vQ).

Then, for any j = 0, . . . , l>, m ∈ Z, v | vQ, and m′ ≥ 0, we have⊗
|t|∈S±j+1

Kum ◦ logm′
((

Ψcns(
n,mF�)

×
|t|

)n,mΠv
)
⊂ I(S

±
j+1F(n,◦D�)vQ),

where Kum denotes the Kummer isomorphism of (1), and logm
′
denotes the m′-

th iteration of pv-adic logarithm part of the log-link (Here we consider the m′-th
iteration only for the elements whose (m′− 1)-iteration lies in the unit group). See
also the inclusion (Upper Semi-Compat. (non-Arch)) in Section 5.1.

(b) (Archimedean Primes) For vQ ∈ Varc
Q , (and n ∈ Z) by Proposition 13.6 (2), we

obtain a vertically coric closed unit ball

I(S
±
j+1F(n,◦D�)vQ).
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Then, for any j = 0, . . . , l>, m ∈ Z, v | vQ, we have⊗
|t|∈S±j+1

Kum
(
Ψcns(

n,mF�)
×
|t|

)
⊂ I(S

±
j+1F(n,◦D�)vQ),

⊗
|t|∈S±j+1

Kum
(
closed ball of radius π inside Ψcns(

n,mF�)
gp

|t|

)
⊂ I(S

±
j+1F(n,◦D�)vQ),

and, for m′ ≥ 1,(
closed ball of radius π inside Ψcns(

n,mF�)
gp

|t|

)
⊃ (a subset)

logm
′

� Ψcns(
n,m−m′

F�)
×
|t|,

where Kum denotes the Kummer isomorphism of (1), and logm
′
denotes the m′-th

iteration of the Archimedean exponential part of the log-link (Here we consider the
m′-th iteration only for the elements whose (m′−1)-iteration lies in the unit group).
See also the inclusion (Upper Semi-Compat. (Arch)) in Section 5.2.

(c) (Bad Primes) Let v ∈ Vbad, and j 6= 0. Recall that the monoids (∞)ΨFLGP
((‡

log−→)†HT ��)v,
and (∞)ΨLGP(

n,◦HT D-��)v are equipped with natural splitting up to torsion in the
case of ∞Ψ(−), and up to 2l-torsion in the case of Ψ(−). Let

(∞)Ψ
⊥
FLGP

((n,m−1
log−→)n,mHT ��)v ⊂ (∞)ΨFLGP

((n,m−1
log−→)n,mHT ��)v,

(∞)Ψ
⊥
LGP(

n,◦HT D-��)v ⊂ (∞)ΨLGP(
n,◦HT D-��)v

denote the submonoids defined by these splittings. Then, the actions of the monoids

Ψ⊥FLGP
((n,m−1

log−→)n,mHT ��)v (m ∈ Z)
on the ind-topological modules

IQ(S
±
j+1,jF(n,◦D�)v) ⊂ log(S

±
j+1,jF(n,◦D�)v) (j = 1, . . . , l>),

via the Kummer isomorphisms of (1) is mutually compatible, with respect to
the log-links of the n-th column of the Gaussian log-theta-lattice, in the following
sense: The only portions of these actions which are possibly related to each other
via these log-links are the indeterminacies with respect to multiplication by roots
of unity in the domains of the log-links (since Ψ⊥(−) ∩ Ψ×(−) = µ2l). Then,
the pv-adic logarithm portion of the log-link sends the indeterminacies at m (i.e.,
multiplication by µ2l) to addition by zero, i.e., no indeterminacy! at m + 1 (See
also Remark 10.12.1, Definition 12.1 (2), (4), and Proposition 12.2 (2) for the
discussion on quotients by ΨµN

†Fv
for v ∈ Varc).

Now, we consider the groups

((Ψcns(
n,mF�)|t|)

×
v )

Gv(n,mΠv), ΨFLGP
((n,m−1

log−→)n,mHT ��)Gv(n,m−1Πv)
v

of units for v ∈ V, and the splitting monoids

Ψ⊥FLGP
((n,m−1

log−→)n,mHT ��)v
for v ∈ Vbad as acting on the modules

IQ(S
±
j+1F(n,◦D�)vQ)

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-links,
but rather via the totality of the pre-composites of Kummer isomorphisms with iterates of the
pv-adic logarithmic part/Archimedean exponential part of log-links as in the above (2). In this
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way, we obtain a local log-Kummer correspondence between the totality of the various
groups of units and splitting monoids for m ∈ Z, and their actions on the “IQ(−)” labelled by
“n, ◦”

{ Kum ◦ logm′
(groups of units, splitting monoids at (n,m)) y IQ(n,◦(−)) }m∈Z,m′≥0,

which is invariant with respect to the translation symmetries m 7→ m+1 of the n-th column of
the Gaussian log-theta-latice.

Proof. Proposition follows from the definitions. �

Proposition 13.8. (Global Packet-Theoretic Frobenioids, [IUTchIII, Proposition 3.7])

(1) (Single Packet Global non-Realified Frobenioid, �-Line Bundle Version) In
the situation of Proposition 13.5, for each α ∈ S>

j , by the construction of Definition 9.7
(1), we have a functorial algorithm, from the image

(†M~MOD)α := Im
(
(†M~mod)α ↪→ (†M~mod)S>j ↪→ log(S

±
j+1FVQ)

)
of the number field, via the homomorphisms of Proposition 13.5 (1), (2) to construct a
(pre-)Frobenioid

(†F~MOD)α

with a natural isomorphism

(†F~mod)α
∼→ (†F~MOD)α

of (pre-)Frobenioids (See Corollary 11.23 (2) for (†F~mod)α), which induces the tautolog-

ical isomorphism (†M~mod)α
∼→ (†M~MOD)α on the associated rational function monoids.

We ofthen identify (†F~mod)α with (†F~MOD)α, via the above isomorphism. We write
(†F~RMOD)α for the realification of (†F~MOD)α.

(2) (Single Packet Global non-Realified Frobenioid, �-Line Bundle Version) For
each α ∈ S>

j , by the construction of Definition 9.7 (2), we have a functorial algorithm,

from the number field (†M~mod)α := (†M~MOD)α and the Galois invariant local monoids

(Ψlog(
S±
j+1

,α
Fv)

)Gv(αΠv)

of Proposition 13.6 (1) for v ∈ V, to construct a (pre-)Frobenioid

(†F~mod)α

(Note that, for v ∈ Vnon (resp. v ∈ Varc), the corresponding local fractional ideal Jv of

Definition 9.7 (2) is a submodule (resp. subset) of IQ(S
±
j+1,αFv) whose Q-span is equal

to IQ(S
±
j+1,αFv)) with natural isomorphisms

(†F~mod)α
∼→ (†F~mod)α, (†F~mod)α

∼→ (†F~MOD)α

of (pre-)Frobenioids, which induces the tautological isomorphisms (†M~mod)α
∼→ (†M~mod)α,

(†M~mod)α
∼→ (†M~MOD)α on the associated rational function monoids, respectively. We

write (†F~Rmod)α for the realification of (†F~mod)α.
(3) (Global Realified Logarithmic Gaussian Procession Frobenioids, �-Line Bun-

dle Version) Let ‡HT �� log−→ †HT �� a log-link. In this case, in the construction of the

above (1), (2), the target log(S
±
j+1FVQ) of the injection is ‡-labbeled object log(S

±
j+1,j;‡FVQ),

thus, we write ((‡→)†M~MOD)α, (
(‡→)†M~mod)α, (

(‡→)†F~MOD)α, (
(‡→)†F~mod)α for (†M~MOD)α,
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(†M~mod)α, (
†F~MOD)α, (

†F~mod)α, respectively, in order to specify the dependence. Consider
the diagram

∏
j∈F>

l

†Cj
gl. real’d to gl.non-real’d⊗R

∼−→
∏

j∈F>
l
(†F~Rmod)j

∼→
∏

j∈F>
l
((‡→)†F~RMOD)j,

∪
†Cgau

where the isomorphisms in the upper line are Corollary 11.23 (3) and the realification
of the isomorphism in (1). Then, by sending the global realified portion †Cgau of the

F-prime-strip †Fgau of Corolllary 11.24 (2) via the isomorphisms of the upper line,

we obtain a functorial algorithm, with respect to the log-link ‡HT �� log−→ †HT �� of
Proposition 13.6 (2), to construct a (pre-)Frobenioid

CLGP(
(‡

log−→)†HT ��).

We call (‡→)†CLGP := CLGP(
(‡

log−→)†HT ��) a Frobenius-like global realified LGP-
monoid or Frobenius-like global realified �-logarithmic Gaussian procession

monoids. The combination of it with the collection ΨFLGP
((

‡ log−→)†HT ��) of data con-
structed by Proposition 13.6 (2) gives rise to an F-prime-strip

(‡→)†FLGP = ((‡→)†CLGP, Prime((‡→)†CLGP)
∼→ V, (‡→)†F`LGP, {(‡→)†ρLGP,v}v∈V)

with a natural isomorphism

†Fgau
∼→ (‡→)†FLGP

of F-prime-strips.
(4) (Global Realified Logarithmic Gaussian Procession Frobenioids, �-Line Bun-

dle Version) Put

ΨFlgp
((

‡ log−→)†HT ��) := ΨFLGP
((

‡ log−→)†HT ��), (‡→)†F`lgp :=
(‡→)†F`LGP.

In the construction of (3), by replacing (†F~Rmod)j
∼→ (†F~RMOD)j by (†F~Rmod)j

∼→ (†F~Rmod)j,

we obtain a functorial algorithm, with respect to the log-link ‡HT �� log−→ †HT �� of
Proposition 13.6 (2), to construct a (pre-)Frobenioid

(‡→)†Clgp := Clgp((
‡ log−→)†HT ��).

and an F-prime-strip

(‡→)†Flgp = ((‡→)†Clgp, Prime((‡→)†Clgp)
∼→ V, (‡→)†F`lgp, {(‡→)†ρlgp,v}v∈V)

with tautological isomorphisms

†Fgau
∼→ (‡→)†FLGP

∼→ (‡→)†Flgp

of F-prime-strips. We call (‡→)†Clgp := Clgp((
‡ log−→)†HT ��) a Frobenius-like global

realified lgp-monoid or Frobenius-like global realified �-logarithmic Gaussian
procession monoids.
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(5) (Global Realified to Global non-Realified⊗R) By the constructions of global real-

ified Frobenioids CLGP(
(‡

log−→)†HT ��) and Clgp((
‡ log−→)†HT ��) of (3), (4), we have a com-

mutative diagram

CLGP(
(‡

log−→)†HT ��) � � //

∼=
��

∏
j∈F>

l
(†F~RMOD)j

∼=
��

Clgp((
‡ log−→)†HT ��) � � //

∏
j∈F>

l
(†F~Rmod)j.

In particular, by the definition of (†F~mod)j in terms of local fractional ideals, and the
product of the realification functors

∏
j∈F>

l
(†F~mod)j →

∏
j∈F>

l
(†F~Rmod)j, we obtain an al-

gorithm, which is compatible, in the obvious sense, with the localisation isomorphisms

{†ρlgp,v}v∈V and {†ρLGP,v}v∈V, to construct objects of the (global) categories Clgp((‡
log−→)†HT ��),

CLGP(
(‡ log−→)†HT ��), from the local fractional ideals generated by elements of the monoid

ΨFlgp
((‡

log−→)†HT ��)v for v ∈ Vbad.

Proof. Proposition follows from the definitions. �
Definition 13.9. ([IUTchIII, Definition 3.8])

(1) Put Ψ⊥Flgp
((‡

log−→)†HT ��)v := ΨFlgp
((‡

log−→)†HT ��)v for v ∈ Vbad. When we regard the
object of ∏

j∈F>
l

(†F~mod)j

and its realification determined by any collection, indexed by v ∈ Vbad, of generators up

to µ2l of the monoids Ψ⊥Flgp
((‡

log−→)†HT ��)v, as an object of the global realified Frobenioid

(‡→)†CLGP = CLGP(
(‡

log−→)†HT ��) or (‡→)†Clgp = Clgp((
‡ log−→)†HT ��), then we call it a Θ-

pilot object.
We call the object of the global realified Frobenioid †C∆ of Corollary 11.24 (1) de-

termined by any collection, indexed by v ∈ Vbad, of generators up to torsion of the
splitting monoid associated to the split Frobenioid †F`∆,v in the v-component of the

F`-prime-strip †F`∆ of Corollary 11.24 (1), a q-pilot object.

(2) Let ‡HT �� log−→ †HT �� be a log-link of ��-Hodge theatres, and
∗HT ��

a ��-Hodge theatre. Let
∗FI×µ∆ (resp. (‡→)†FI×µLGP , resp. (‡→)†FI×µlgp )

be the FI×µ-prime-strip associated to the F-prime strip ∗F∆ of Corollary 11.24 (1)
(resp. (‡→)†FLGP, resp.

(‡→)†FLGP). We call the full poly-isomorphism

(‡→)†FI×µLGP

full poly
∼−→ ∗FI×µ∆ (resp. (‡→)†FI×µlgp

full poly
∼−→ ∗FI×µ∆ )

the Θ×µ
LGP-link (resp. Θ×µlgp -link) from †HT �� to ∗HT ��, relative to the log-link

‡HT �� log−→ †HT ��, and we write it as

†HT ��
Θ×µ

LGP−→ ∗HT �� (resp. †HT ��
Θ×µ

lgp−→ ∗HT �� ).
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(3) Let {n,mHT ��}n,m∈Z be a collection of ��-Hodge theatres indexed by pairs of integers.
We call the diagram

...
...

· · ·
Θ×µ

LGP // n,m+1HT ��
Θ×µ

LGP //

full log

OO

n+1,m+1HT ��
Θ×µ

LGP //

full log

OO

· · ·

· · ·
Θ×µ

LGP // n,mHT ��
Θ×µ

LGP //

full log

OO

n+1,mHT ��
Θ×µ

LGP //

full log

OO

· · · ,

...

full log

OO

...

full log

OO

(resp.

...
...

· · ·
Θ×µ

lgp // n,m+1HT ��
Θ×µ

lgp //

full log

OO

n+1,m+1HT ��
Θ×µ

lgp //

full log

OO

· · ·

· · ·
Θ×µ

lgp // n,mHT ��
Θ×µ

lgp //

full log

OO

n+1,mHT ��
Θ×µ

lgp //

full log

OO

· · ·

...

full log

OO

...

full log

OO

) the LGP-Gaussian log-theta-lattice (resp. lgp-Gaussian log-theta-lattice),
where the Θ×µLGP-link (resp. Θ×µlgp -link) from

n,mHT �� to n+1,mHT �� is taken relative to

the full log-link n,m−1HT �� full log−→ n,mHT ��. Note that both of Θ×µLGP-link and Θ×µlgp -link
send Θ-pilot objects to q-pilot objects.

Proposition 13.10. (Log-Volume for Packets and Processions, [IUTchIII, Proposition 3.9])

(1) (Local Holomorphic Packets) In the situation of Proposition 13.4 (1), (2), for V 3
v | vQ ∈ Vnon

Q (resp. V 3 v | vQ ∈ Varc
Q ), α ∈ S±j+1, the pvQ-adic log-volume (resp.

the radial log-volume) on each of the direct summand pvQ-adic fields (resp. complex

Archimedean fields) of IQ(αFvQ), IQ(
S±j+1FvQ), and IQ(S

±
j+1,jFvQ) with the normalised

weights of Remark 13.3.1 determines log-volumes

µlog
α,vQ

: M(IQ(αFvQ))→ R, µlog

S±j+1,vQ
: M(IQ(S

±
j+1FvQ))→ R,

µlog

S±j+1,α,v
: M(IQ(S

±
j+1,αFv))→ R,

where M(−) denotes the set of compact open subsets of (−) (resp. the set of compact
closures of open subsets of (−)), such that the log-volume of each of the local holomorphic
integral structures

OαFvQ
⊂ IQ(αFvQ), OS±

j+1FvQ

⊂ IQ(S
±
j+1FvQ), OS±

j+1
,αFv

⊂ IQ(S
±
j+1,αFv),

given by the integral structures of Proposition 13.3 (2) on each of the direct summand,
is equal to zero. Here, we assume that these log-volumes are normalised in such a
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manner that multiplication by pv corresponds to − log(pv) (resp. + log(pv)) on the log-
volume (cf. Remark 13.3.1) (See Section 0.2 for pv with Archimedean v). We call this

normalisation the packet-normalisation. Note that “µlog

S±j+1,vQ
” is invaariant by per-

mutations of S±j+1. When we are working with collections of capsules in a procession,
we normalise log-volumes on the products of “M(−)” associated to the various cap-
sules by taking the average over the various capsules. We call this normalisation the
procession-normalisation.

(2) (Mono-Analytic Compatibility) In the situation of Proposition 13.4 (1), (2), for
V 3 v | vQ ∈ Vnon

Q (resp. V 3 v | vQ ∈ Varc
Q ), α ∈ S±j+1, by applying the pvQ-adic log-

volume (resp. the radial log-volume) on the mono-analytic log-shells “I†D`
v
” of Proposi-

tion 12.2 (4), and adjusting appropriately the discrepancy between the local holomorphic
integral structures of Proposition 13.3 (2) and the mono-analytic integral structures of
Proposition 13.4 (2), we obtain log-volumes

µlog
α,vQ

: M(IQ(αD`vQ))→ R, µlog

S±j+1,vQ
: M(IQ(S

±
j+1D`vQ))→ R,

µlog

S±j+1,α,v
: M(IQ(S

±
j+1,αD`v ))→ R,

where M(−) denotes the set of compact open subsets of (−) (resp. the set of compact
closures of open subsets of (−)), which are compatible with the log-volumes of (1), with
respect to the natural poly-isomorphisms of Proposition 13.4 (1). In particular, these
log-volumes can be constructed via a functorial alogrithm from the D`-prime-strips. If
we consider the mono-analyticisation of an F-prime-strip procession as in Proposi-
tion 13.6 (2), then taking the average of the packet-normalised log-volumes gives rise to
procession-normalised log-volumes, which are compatible with the procession-normalised
log-volumes of (1), with respect to the natural poly-isomorphisms of Proposition 13.4 (1).
By replacing “D`” by F`×µ, we obtain a similar theory of log-volumes for the various
objects associated to the mono-analytic log-shells “I†F`×µ

v
”

µlog
α,vQ

: M(IQ(αF`×µvQ
))→ R, µlog

S±j+1,vQ
: M(IQ(S

±
j+1F`×µvQ

))→ R,

µlog

S±j+1,α,v
: M(IQ(S

±
j+1,αF`×µv ))→ R,

which is compatible with the “D`”-version, with respect to the natural poly-isomorphisms
of Proposition 13.4 (1).

(3) (Global Compatibility) In the situation of Proposition 13.8 (1), (2), put

IQ(S
±
j+1FVQ) :=

∏
vQ∈VQ

IQ(S
±
j+1FvQ) ⊂ log(S

±
j+1FVQ) =

∏
vQ∈VQ

log(S
±
j+1FvQ)

and let

M(IQ(S
±
j+1FVQ)) ⊂

∏
vQ∈VQ

M(IQ(S
±
j+1FvQ))

denote the subset of elements whose components have zero log-volume for all but finitely
many vQ ∈ VQ. Then, by adding the log-volumes of (1) for vQ ∈ VQ, we obtain a global
log-volume

µlog

S±j+1,VQ
: M(IQ(S

±
j+1FVQ)) → R

which is invariant by multiplication by elements of

(†M~mod)α = (†M~MOD)α ⊂ IQ(
S±j+1FVQ)
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(product formula), and permutations of S±j+1. The global log-volume µlog

S±j+1,VQ
({Jv}v∈V)

of an object {Jv}v∈V of (†F~mod)α (See Definition 9.7 (2)) is equal to the degree of the

arithmetic line bundle determined by {Jv}v∈V (cf. the natural isomorphism (†F~mod)α
∼→

(†F~mod)α of Proposition 13.8 (2)), with respect to a suitable normalisation.
(4) (log-Link Compatibility) Let {n,mHT ��}n,m∈Z be a collection of ��-Hodge theatres

arising from an LGP-Gaussian log-theta-lattice.
(a) For n,m ∈ Z, the log-volumes of the above (1), (2), (3) determine log-volumes on

the various “IQ(−)” appearing in the construction of the local/global LGP-/lgp-
monoids/Frobenioids in the F-prime-strips n,mFLGP,

n,mFlgp of Proposition 13.8

(3), (4), relative to the log-link n,m−1HT �� full log−→ n,mHT ��.
(b) At the level of the Q-spans of log-shells “IQ(−)” arising from the various F-prime-

strips involved, the log-volumes of (a) indexed by (n,m) are compatible, in the sense
of Proposition 12.2 (2) (i.e., in the sense of the formula (5.1) of Proposition 5.2 and
the formula (5.2) of Proposition 5.4), with the log-volumes indexed by (n,m − 1)

with respect to the log-link n,m−1HT �� full log−→ n,mHT �� (This means that we do
not need to be worried about how many times log-links are applied in the
log-Kummer correspondence, when we take values of the log-volumes).

Proof. Proposition follows from the definitions. �

Proposition 13.11. (Global Kummer Theory and Non-Interference with Local Integers, [IUTchIII,
Proposition 3.10]) Let {n,mHT �p}n,m∈Z be a collection of ��-Hodge theatres arising from an
LGP-Gaussian log-theta-lattice. For each n
inZ, let

n,◦HT D-��

denote the D- � �-Hodge theatre determined, up to isomorphism, by n,mHT �p for m ∈ Z, via
the vertical coricity of Theorem 12.5 (1).

(1) (Vertically Coric Global LGP- lgp-Frobenioids and Assosiated Kummer The-
ory) By applying the construcions of Proposition 13.8 to the (étale-like) F-prime-strips
“F(n,◦D�)t” and to the full log-links associated to these (étale-like) F-prime-strips (See
Proposition 12.2 (5)), we obtain functorial algorithms, with respect to the D-��-Hodge
theatre n,◦HT D-��, to construct vertically coric étale-like number fields, monoids,
and (pre-)Frobenioids equipped with natural isomorphisms

M~mod(
n,◦HT D-��)α = M~MOD(

n,◦HT D-��)α ⊃M~mod(
n,◦HT D-��)α = M~MOD(

n,◦HT D-��)α,

M~mod(
n,◦HT D-��)α ⊃M~mod(

n,◦HT D-��)α,

F~mod(
n,◦HT D-��)α

∼→ F~mod(
n,◦HT D-��)α

∼→ F~MOD(
n,◦HT D-��)α

for α ∈ S>
j

via †χ
⊂ J , and vertically coric étale-like F-prime-strips equipped

with natural isomorphisms

F(n,◦HT D-��)gau
∼→ F(n,◦HT D-��)LGP

∼→ F(n,◦HT D-��)lgp.

Note again that we are able to perform this construction, thanks to the compatibility
of log-link with the Fo±

l -symmetrising isomorphisms. For each n,m ∈ Z, these
functorial algorithms are compatible, in the obvious sense, with the (non-vertically coric
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Frobenius-like) functorial algorithms of Proposition 13.8 for †(−) = n,m(−), and ‡(−) =
n,m−1(−), with respect to the Kummer isomorphisms

Ψcns(
n,m′

F�)t

Kum
∼→ Ψcns(

n,m′
D�)t,

(n,m
′M~mod)j

Kum
∼→ M~mod(

n,m′D})j, (n,m
′M~mod)j

Kum
∼→ M~mod(

n,m′D})j
of labelled data (See Corollary 11.21 (3), and Corollary 11.23 (2)), and the evident
identification of n,m′

Ft with the F-primes-strip associated to Ψcns(
n,m′

F�)t for m′ =
m− 1,m. In particular, for each n,m ∈ Z, we obtain Kummer isomorphisms

(n,mM~mod)α

Kum
∼→ M~mod(

n,◦HT D-��)α, ((n,m−1→)n,mM~MOD/mod)α

Kum
∼→ M~MOD/mod(

n,◦HT D-��)α,

(n,mM~mod)α

Kum
∼→ M~mod(

n,◦HT D-��)α, ((n,m−1→)n,mM~MOD/mod)α

Kum
∼→ M~MOD/mod(

n,◦HT D-��)α,

(n,mF~mod)α

Kum
∼→ F~mod(

n,◦HT D-��)α, ((n,m−1→)n,mF~MOD/mod)α

Kum
∼→ F~MOD/mod(

n,◦HT D-��)α,

n,mFgau

Kum
∼→ F(n,◦HT D-��)gau, ((n,m−1→)n,mFLGP/lgp)

Kum
∼→ F(n,◦HT D-��)LGP/lgp,

(Here (−)MOD/mod is the shorthand for “(−)MOD (resp. (−)mod)”, and (−)LGP/lgp is the
shorthand for “(−)LGP (resp. (−)lgp)”) of fields, monoids, Frobenioids, and F-prime-
strips, which are compatible with the above various equalities, natural inclusions, and
natural isomorphisms.

(2) (Non-Interference with Local Integers) In the notation of Proposition 13.4 (2),
Proposition 13.6 (1), Proposition 13.8 (1), (2), and Proposition 13.10 (3), we have

(†M~MOD)α∩
∏
v∈V

Ψlog(
S±
j+1

,α
Fv)

= µ((†M~MOD)α)

⊂∏
v∈V

IQ(S
±
j+1,αFv) =

∏
vQ∈VQ

IQ(S
±
j+1FvQ) = IQ(

S±j+1FVQ)


(i.e., “F×mod ∩

∏
v≤∞O

�
(Fmod)v

= µ(F×mod)”) (Here, we identify
∏

V3v|vQ I
Q(S

±
j+1,αFv) with

IQ(S
±
j+1FvQ)). Now, we consider the multiplicative groups

((n,m−1→)n,mM~MOD)j

of non-zero elements of number fields as acting on the modules

IQ(S
±
j+1F(n,◦D�)VQ)

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-
links, but rather via the totality of the pre-composites of Kummer isomorphisms with
iterates of the pv-adic logarithmic part/Archimedean exponential part of log-links, where
we observe that these actions are mutually compatible, with respect to the log-links of
the n-th column of the LGP-Gaussian log-theta-lattice, in the following sense: The only
portions of these actions which are possibly related to each other via these log-links are
the indeterminacies with respect to multiplication by roots of unity in the domains of the
log-links (by the above displayed equality). Then, the pv-adic logarithm portion of the
log-link sends the indeterminacies at m (i.e., multiplication by µ((n,m−1→)n,mM~MOD)j)
to addition by zero, i.e., no indeterminacy! at m+ 1 (See also Remark 10.12.1, Defini-
tion 12.1 (2), (4), and Proposition 12.2 (2) for the discussion on quotients by ΨµN

†Fv
for

v ∈ Varc). In this way, we obtain a global log-Kummer correspondence between
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the totality of the various multiplicative groups of non-zero elements of number fields
for m ∈ Z, and their actions on the “IQ(−)” labelled by “n, ◦”

{ Kum ◦ logm′
(((n,m−1→)n,mM~MOD)j) y IQ(n,◦(−)) }m∈Z,m′≥0,

which is invariant with respect to the translation symmetries m 7→ m + 1 of the n-th
column of the LGP-Gaussian log-theta-latice.

(3) (Frobenioid-theoretic log-Kummer Correspondences) The Kummer isomorphisms
of (1) induce, via the log-Kummer correspondence of (2), isomorphisms of (pre-)Frobenioids

((n,m−1→)n,mF~MOD)α

Kum
∼→ F~MOD(

n,◦HT D-��)α, ((n,m−1→)n,mF~RMOD)α

Kum
∼→ F~RMOD(

n,◦HT D-��)α
which are mutually compatible with the log-links of the LGP-Gaussian log-theta-lattice,
as m rus over the elements of Z. These compatible isomorphisms of (pre-)Frobenioids
with the Kummer isomorphisms of (1) induce, via the global log-Kummer correspondence
of (2) and the splitting monoid portion of the the local log-Kummer correspondence of
Proposition 13.7 (2), a Kummer isomorphism

(n,m−1→)n,mF⊥LGP

Kum
∼→ F⊥(n,◦HT D-��)LGP

of associated F⊥-prime-strips, which are mutually compatible with the log-links of
the LGP-Gaussian log-theta-lattice, as m rus over the elements of Z.

Note that we use only MOD-/LGP-labelled objects in (2) and (3), since these are defined only
in terms of multiplicative operations (�), and that the compatibility of Kummer isomorphisms
with log-links does not hold for mod-/lgp-labelled objects, since these are defined in terms of
both multiplicative and additive operaions (� and �), where we only expect only a upper semi-
compatibility (cf. Definition 9.7, and Proposition 13.7 (2)).

Proof. Proposition follows from the definitions. �
The following the Main Theorem of inter-universal Teichmüller theory:

Theorem 13.12. (Multiradial Algorithms via LGP-Monoids/Frobenioids, [IUTchIII, Theorem
3.11]) Fix an initial Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε).

Let
{n,mHT ��}n,m∈Z

be a collection of ��-Hodge theatres, with respect to the fixed initial Θ-date, arising from an
LGP-Gaussian log-theta-lattice. For each n ∈ Z, let

n,◦HT D-��

denote the D-��-Hodge theatre determined, up to isomorphism, by n,mHT �� for m ∈ Z, via
the vertical coricity of Theorem 12.5 (1).

(1) (Multiradial Representation) Consider the procession of D`-prime-strips Proc(n,◦D`T )

{n,◦D`0} ↪→ {n,◦D`0 , n,◦D`1} ↪→ . . . ↪→ {n,◦D`0 , n,◦D`1 , . . . , n,◦D`l>}.
Consider also the following data:

(Shells) (Unit portion — Mono-Anaytic Containers) For V 3 v | vQ, j ∈ |Fl|, the topolog-
ical modules and mono-analytic integral structures

I(S
±
j+1;n,◦D`vQ) ⊂ I

Q(S
±
j+1;n,◦D`vQ), I(

S±j+1,j;n,◦D`v ) ⊂ IQ(S
±
j+1,j;n,◦D`v ),

which we regard as equipped with the procession-normalised mono-analytic log-
volumes of Proposition 13.10 (2),
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(ThVals) (Value Group Portion — Theta Values) For v ∈ Vbad, the splitting monoid

Ψ⊥LGP(
n,◦HT D-��)v

of Proposition 13.7 (2c), which we regard as a subset of∏
j∈F>

l

IQ(S
±
j+1,j;n,◦D`v ),

equipped with a multiplicative action on
∏

j∈F>
l
IQ(S

±
j+1,j;n,◦D`v ), via the natural poly-

isomorphisms

IQ(S
±
j+1,j;n,◦D`v )

“Kum”−1

poly
∼→ IQ(S

±
j+1,j;n,◦F`×µ(D�)v)

tauto−1

∼→ IQ(S
±
j+1,j;n,◦F(D`�)v)

of Proposition 13.4 (2), and
(NFs) (Global Portion — Number Fields) For j ∈ F>

l , the number field

M~MOD(
n,◦HT D-��)j = M~mod(

n,◦HT D-��)j ⊂ IQ(S
±
j+1;n,◦D`VQ

) :=
∏
vQ∈VQ

IQ(S
±
j+1;n,◦D`vQ)

with natural isomorphisms

F~MOD(
n,◦HT D-��)j

∼→ F~mod(
n,◦HT D-��)j, F~RMOD(

n,◦HT D-��)j
∼→ F~Rmod(

n,◦HT D-��)j
(See Proposition 13.11 (1)) between the associated global non-realified/realified Frobe-
nioids, whose associated global degrees can be computed by means of the log-volumes
of (a).

Let
n,◦RLGP

denote the collection of data (a), (b), (c) regarded up to indeterminacies of the following
two types:

(Indet xy) the indeterminacies induced by the automorphisms of the procession of D`-prime-
strip Proc(n,◦D`T ), and

(Indet →) for each vQ ∈ Vnon
Q (resp. vQ ∈ Varc

Q ), the indeterminacies induced by the action
of independent copies of Isomet (resp. copies of {±1} × {±1}-orbit arising from
the independent {±1}-actions on each of the direct factors “k∼(G) = C∼×C∼” of
Proposition 12.2 (4)) on each of the direct summands of the j+1 factors appearing

in the tensor product used to define IQ(S
±
j+1;n,◦D`vQ)

Then, we have a functorial algorithm, with respect to Proc(n,◦D`T ), to construct n,◦RLGP

(from the given initial Θ-data). For n, n′ ∈ Z, the permutation symmetries of the étale
picture of Corollary 12.8 (2) induce compatible poly-isomorphisms

Proc(n,◦D`T )
poly
∼→ Proc(n

′,◦D`T ),
n,◦RLGP

poly
∼→ n′,◦RLGP

which are, moreover, compatible with the poly-isomorphisms n,◦D`0

poly
∼→ n′,◦D`0 induced by

the bi-coricity of the poly-isomorphisms of Theorem 12.5 (3). We call the switching poly-

isomorphism n,◦RLGP
poly
∼→ n′,◦RLGP an étale-transport poly-isomorphism (See also

Remark 11.1.1), and we also call (Indet xy) the étale-transport indeterminacies.
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(2) (log-Kummer Correspondence) For n,m ∈ Z, the Kummer isomorphisms

Ψcns(
n,mF�)t

Kum
∼→ Ψcns(

n,◦D�)t, (n,mM~mod)j

Kum
∼→ M~mod(

n,◦D})j,

{πrat
1 (n,mD~) y n,mM~∞κ}j

Kum
∼→ {πrat

1 (n,◦D~) y M~∞κ(
n,◦D})}j

(where t ∈ LabCusp±(n,◦D�)) of labelled data of Corollary 11.21 (3), Corollary 11.23
(1), (2) (cf. Proposition 13.7 (1), Proposition 13.11 (1)) induce isomorphisms between
the vertically coric étale-like data (Shells), (ThVals), and (NFs) of (1), and the corre-
sponding Frobenius-like data arising from each ��-Hodge theatre n,mHT ��:
(a) for V 3 v | vQ, j ∈ |Fl|, isomorphisms

I(Q)(S
±
j+1;n,mFvQ)

tauto
∼→ I(Q)(S

±
j+1;n,mF`×µvQ

)

“Kum”
poly
∼→ I(Q)(S

±
j+1;n,◦DvQ),

I(Q)(S
±
j+1,j;n,mFv)

tauto
∼→ I(Q)(S

±
j+1,j;n,mF`×µv )

“Kum”
poly
∼→ I(Q)(S

±
j+1,j;n,◦Dv)

of local mono-analytic tensor packets and their Q-spans (See Proposition 13.4 (2)),
all of which are compatible with the respective log-volumes by Proposi-
tion 13.10 (2) (Here, I(Q)(−) is a shorthand for “I(−) (resp. IQ(−))”),

(b) for Vbad 3 v, isomorphisms

Ψ⊥FLGP
((n,m−1→)n,mHT ��)v

Kum
∼→ Ψ⊥LGP(

n,◦HT D-��)v
of splitting monoids (See Proposition 13.7 (1)),

(c) for j ∈ F>
l , isomorphisms

((n,m−1→)n,mM~MOD/mod)j

Kum
∼→ M~MOD/mod(

n,◦HT D-��)j,

((n,m−1→)n,mF~MOD/mod)j

Kum
∼→ F~MOD/mod(

n,◦HT D-��)j,

((n,m−1→)n,mF~RMOD/mod)j

Kum
∼→ F~RMOD/mod(

n,◦HT D-��)j,
of number fields and global non-realified/realified Frobenioids (See Proposition 13.11
(1)), which are compatible with the respective natural isomorphisms between “(−)MOD”
and “(−)mod” (Here, (−)MOD/mod is a shorthand for “(−)MOD (resp. (−)mod)”), here,
the last isomorphisms induce isomorphisms

(n,m−1→)n,mCLGP/lgp

Kum
∼→ CLGP/lgp(

n,◦HT D-��)
(Here, (−)LGP/lgp is a shorthand for “(−)LGP (resp. (−)lgp)”) of the global realified

Frobenioid portions of the F-prime-strips (n,m−1→)n,mFLGP, F(n,◦HT D-��)LGP,
(n,m−1→)n,mFlgp, and F(n,◦HT D-��)lgp (See Proposition 13.11 (1)).

Moreover, the various isomorphisms Ψ⊥FLGP
((n,m−1→)n,mHT ��)v

Kum
∼→ Ψ⊥LGP(

n,◦HT D-��)v’s,

and ((n,m−1→)n,mM~MOD/mod)j

Kum
∼→ M~MOD/mod(

n,◦HT D-��)j’s in (b), (c) are mutually
compatible with each other, as m runs over Z, with respect to the log-links of the n-th
column of the LGP-Gaussian log-theta-lattice, in the sense that the only portions of the
domains of these isomorphisms which are possibly related to each other via the log-links
consist of µ in the domains of the log-links at (n,m), and these indeterminacies at
(n,m) (i.e., multiplication by µ) are sent to addition by zero, i.e., no indeterminacy!
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at (n,m+ 1) (See Proposition 13.7 (2c), Proposition 13.11 (2)). This mutual compati-

bility of ((n,m−1→)n,mM~MOD/mod)j

Kum
∼→ M~MOD/mod(

n,◦HT D-��)j’s implies mutual compati-

bilities of ((n,m−1→)n,mF~MOD)j

Kum
∼→ F~MOD(

n,◦HT D-��)j’s, and ((n,m−1→)n,mF~MOD)j

Kum
∼→

F~MOD(
n,◦HT D-��)j’s (Note that the mutual compatibility does not hold for (−)mod-

labelled objects, since these are defined in terms of both multiplicative and additive op-
eraions (� and �), where we only expect only a upper semi-compatibility (cf. Definition 9.7,
Proposition 13.7 (2), and Proposition 13.11 (3)). On the other hand, the isomorphisms
of (a) are subject to the following indeterminacy:

(Indet ↑) the isomorphisms of (a) are upper semi-compatible, with respect to the log-links
of the n-th column of the LGP-Gaussian log-theta-lattice, as m runs over Z, in a
sense of Proposition 13.7 (2a), (2b).

(We call (Indet →) and (Indet ↑) the Kummer detachment indeterminacies.)
Finally, the isomorphisms of (a) are compatible with the respective log-volumes,
with respect to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice,
as m runs over Z (This means that we do not need to be worried about how many
times log-links are applied in the log-Kummer correspondence, when we take values
of the log-volumes).

(3) (Θ×µLGP-Link Compatibility) The various Kummer isomorphisms of (2) are compatible
with the Θ×µLGP-links in the following sense:
(a) (Kummer on ∆) By applying the Fo±

l -symmetry of the ��-Hodge theatre n,mHT ��,

the Kummer isomorphism Ψcns(
n,mF�)t

Kum
∼→ Ψcns(

n,◦D�)t induces a Kummer iso-

morphism n,mF`×µ∆

induced by Kum
∼→ F`×µ∆ (n,◦D`∆) (See Theorem 12.5 (3)). Then, we

have a commutative diagram

n,mF`×µ∆

full poly∼ //

induced by Kum ∼=
��

n+1,mF`×µ∆

∼= induced by Kum
��

F`×µ∆ (n,◦D`∆)
full poly∼ // F`×µ∆ (n+1,◦D`∆),

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the Θ×µLGP-
link between (n,m) and (n+ 1,m) by Theorem 12.5 (3).

(b) (∆ → env) The F-prime-strips n,mFenv, F

env(

n,◦D>) appearing implicitly in the
construction of the F-prime-strips (n,m−1→)n,mFLGP, F

(n,◦HT D-��)LGP,
(n,m−1→)n,mFlgp,

F(n,◦HT D-��)lgp, admit natural isomorphisms n,mF`×µ∆

∼→ n,mF`×µenv , F`×µ∆ (n,◦D`∆)
∼→

F`×µenv (n,◦D`>) of associated F`×µ-prime-strips (See Proposition 12.6 (3)). Then, we
have a commutative diagram

n,mF`×µ∆

full poly∼ //

induced by Kum & “∆7→env” ∼=
��

n+1,mF`×µ∆

∼= induced by Kum & “∆ 7→env”

��
F`×µenv (n,◦D`>)

full poly∼ // F`×µenv (n+1,◦D`>),

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the Θ×µLGP-
link between (n,m) and (n+ 1,m) by Corollary 12.8 (3).
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(c) (env→ gau) Recall that the (vertically coric étale-like) data “n,◦R” i.e.,(
n,◦HT D-��, Fenv(

n,◦D>),
[
∞Ψ

⊥
env(

n,◦D>)v ⊃ ∞Ψenv(
n,◦D>)

µ
v , µẐ(M

Θ
∗ (

n,◦D>,v))⊗Q/Z, MΘ
∗ (

n,◦D>,v),

∞Ψ
⊥
env(

n,◦D>)v � ∞Ψenv(
n,◦D>)

µ
v

]
v∈Vbad , F`×µ∆ (n,◦D`∆), F`×µenv (n,◦D>)

full poly
∼→ F`×µ∆ (n,◦D`∆)

)
of Corollary 12.8 (2) implicitly appears in the construction of the F-prime-strips
(n,m−1→)n,mFLGP, F

(n,◦HT D-��)LGP,
(n,m−1→)n,mFlgp, F

(n,◦HT D-��)lgp. This (ver-
tically coric étale-like) data arising from n,◦HT D-�� is related to corresponding
(Frobenius-like) data arising from the projective system of the mono-theta environ-
ments associated to the tempered Frobenioids of the ��-Hodge theatre n,mHT �� at
v ∈ Vbad via the Kummer isomorphisms and poly-isomorphisms of projective sys-
tems of mono-theta environments of Proposition 12.6 (2), (3) and Theorem 12.5
(3). With respect to these Kummer isomorphisms and poly-isomorphisms of pro-
jective systems of mono-theta environments, the poly-isomorphism

n,◦R
poly
∼→ n+1,◦R

induced by the permutation symmetry of the étale picture n,◦HT D-��
full poly
∼→ n+1,◦HT D-��

is compatible with the full poly-isomorphism

n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆

of F`×µ-prime-strips induced by Θ×µLGP-link between (n,m) and (n + 1,m) and so
on. Finally, the above two displayed poly-isomorphisms and the various related
Kummer isomorphisms are compatible with the various evaluation map implicit
in the portion of the log-Kummer correspondence of (2b), up to indeterminacies
(Indet xy), (Indet→), (Indet ↑) of (1), (2).

(d) (κ-coric → NF) With respect to the Kummer isomorphisms of (2) and the gluing
of Corollary 11.21, the poly-isomorphism[{
πrat
1 (n,◦D~) y M~∞κ(

n,◦D})
}
j

gl. to loc.→ M∞κv(
n,◦Dvj) ⊂M∞κ×v(

n,◦Dvj)
]
v∈V

poly
∼→
[{
πrat
1 (n+1,◦D~) y M~∞κ(

n+1,◦D})
}
j

gl. to loc.→ M∞κv(
n+1,◦Dvj) ⊂M∞κ×v(

n+1,◦Dvj)
]
v∈V

(See Corollary 11.22 (3)) induced by the permutation symmetry of the étale picture

n,◦HT D-��
full poly
∼→ n+1,◦HT D-�� is compatible with the full poly-isomorphism

n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆

of F`×µ-prime-strips induced by Θ×µLGP-link between (n,m) and (n + 1,m). Fi-
nally, the above two displayed poly-isomorphisms and the various related Kummer
isomorphisms are compatible with the various evaluation map implicit in the por-
tion of the log-Kummer correspondence of (2b), up to indeterminacies (Indet xy),
(Indet→), (Indet ↑) of (1), (2).

Proof. Theorem follows from the definitions. �
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A rough picture of the final multiradial representation is as follows:

(F×mod)1
y

· · · (F×mod)l>
y

{IQ0 } ⊂ {I
Q
0 , IQ1 } ⊂ · · · ⊂ {IQ0 , . . . , IQl>}

Ψ⊥LGP,
?�

q1
2

OO

0�

q2
2

acts

BB���������������� ' �

q(l
>)2

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

where the multiplicative group (F×mod)j of non-zero elements of a j-labelled number field acts on

IQj , and Ψ⊥LGP acts on IQj in the (j + 1)-capsule by multiplication by qj
2
. Note that Ψ⊥LGP does

not act on other components IQ0 , . . . , I
Q
j−1 of the (j + 1)-capsule. Note also that the 0-labelled

objects (together with the diagonal labelled objects) are used to form horizontally coric objects
(Recall that “∆ = {0, 〈F>

l 〉}”), and (F×mod)j’s or Ψ⊥LGP do not act on 0-labelled (Q-span of)

log-shell IQ0 .
The following table is a summary of Theorem 13.12 and related topics:

(temp. conj. vs. prof. conj. → Fo±
l -conj. synchro.→ diag.→hor. core→ Θ×µLGP-link↓)

(1) (Objects) (2) (log-Kummer) (3) (Comat’ty with Θ×µLGP-link)

Fo±
l -sym. I (  units) inv. after admitting inv. after admitting

� (Indet ↑) (indet →) ( Ẑ×-indet.)

Fo±
l -sym. Ψ⊥LGP val. gp. no interf. by const. mult. rig. protected from Ẑ×-indet.

� (←compat. of log-link (ell. cusp’n←pro-p anab. by mono-theta cycl. rig.

w/ Fo±
l -sym.) +hidden. endom.) (←quad. str. of Heis. gp.)

F>
l -sym. Mmod NF no interf. protected from Ẑ×-indet.

� Belyi cusp’n(←pro-p anab. by F×mod ∩
∏

v≤∞Ov = µ by Q>0 ∩ Ẑ× = {1}

+hidden endom.)

others: (compat. of log.-vol. w/ log-links), (Arch. theory:Aut-hol. space (ell. cusp’n is used))

(disc. rig. of mono-theta), (étale pic.: permutable after admitting (indet xy) (autom. of proc. incl.))

Corollary 13.13. (Log-Volume Estimates for Θ-Pilot Objects, [IUTchIII, Corollary 3.12]) Let

−| log(Θ)| ∈ R ∪ {+∞}



260 GO YAMASHITA

denote the procession-normalised mono-analytic log-volume (where the average is taken over
j ∈ F>

l ) of the holomorphic hull (See the definiton after Lemma 1.6) of the union of the
possible image of a Θ-pilog object, with respect to the relevant Kummer isomorphisms in
the multiradial representation of Theorem 13.13 (1), which we regard as subject to the indeter-
minacies (Indet ↑), (Indet →), and (Indet xy) of Theorem 13.13 (1), (2). Let

−| log(q)| ∈ R

denote the procession-normalised mono-analytic log-volume of the image of a q-pilot object,
with respect to the relevant Kummer isomorphisms in the multiradial representation of Theo-
rem 13.13 (1), which we do not regard as subject to the indeterminacies (Indet ↑), (Indet →),
and (Indet xy) of Theorem 13.13 (1), (2) (Note that we have | log(q)| > 0). Then, we obtain

−| log(q)| ≤ −| log(Θ)|

(i.e., “0 . −(large number) + (mild indeterminacies)”. See also Appendix A.4). Note also
that the explicit computations of the indeterminacies in Proposition 1.12, in fact, shows that
−| log(Θ)| <∞.

Proof. The Θ×µLGP-link
0,0HT ��

Θ×µ
LGP−→ 1,0HT �� induces the full poly-isomorphism 0,0FI×µLGP

full poly
∼→

1,0FI×µ∆ of FI×µ-prime-strips, which sends Θ-pilot objects to a q-pilot objects. By the Kum-
mer isomorphisms, the 0,0-labelled Frobenius-like objects corresponding to the objects in the
multiradial representaion of Theorem 13.12 (1) are isomorphically related to the 0,◦-labelled
vertically coric étale-like objects (i.e., mono-analytic containers with actions by theta values,
and nubmer fields) in the multiradial representaion of Theorem 13.12 (1). After admitting the
indeterminacies (indet xy), (indet→), and (indet ↑), these (0, ◦)-labelled vertically coric étale-
like objects are isomorphic (See Remark 11.1.1) to the (1, ◦)-labelled vertically coric étale-like
objects. Then, Corollary follows by comparing the log-volumes (Note that log-volumes are
invariant under (Indet xy), (Indet →), and also compatible with log-Kummer correspondence
of Theorem 13.12 (2)) of (1, 0)-labelled q-pilot objects (by the compatibility with Θ×µLGP-link of
Theorem 13.12 (3)) and (1, ◦)-labelled Θ-pilot objects, since, in the mono-analytic containers
(i.e., Q-spans of log-shells), the holomorphic hull of the union of possible images of Θ-pilot
objects subject to indeterminacies (Indet xy), (Indet →), (Indet ↑) contains a region which is
isomorphic (not equal) to the region determined by the q-pilot objects (This means that “very
small region with indeterminacies” contains “almost unit region”). �
Then, Theorem 0.1 (hence, Corollary 0.2 as well) is proved, by combining Proposition 1.2,

Proposition 1.15, and Corollary 13.13.

Remark 13.13.1. By admitting (Indet xy), (Indet →), and (Indet ↑), we obtain objects
which are ivariant under the Θ×µLGP-link. On the other hand, the Θ×µLGP-link can be considered

as “absolute Frobenius” over Z, since it relates (non-ring theoretically) q
v
to {qj2

v
}1≤j≤l> .

Therefore, we can consider

(Indet xy) the permutative indeterminay in the étale transport:

• //
~~   

◦ •oo “†Gv
∼= ‡Gv” (and autom’s of processions)

(Indet →) the horizontal indeterminacy in the Kummer detachment:

• Θ−→ • †O×µ ∼= ‡O×µ with integral structures,

and
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(Indet ↑) the vertical indeterminacy in the Kummer detachment:

• log(O×) �
� // 1

2p
log(O×)

•

log

OO

O×

log

OO

+ �

88qqqqqqqqqqq

as “descent data from Z to F1”.

Remark 13.13.2. The following diagram (cf. [IUTchIII, Fig. 3.8]) expresses the tautological
two ways of computations of log-volumes of q-pilot objects in the proof of Corol-
lary 13.13:(

�-line bdls.1≤j≤l> assoc. to

{0,◦qj2
v
}v∈V up to Indet.’s

)
étale transport∼=

suited to Fmod

(
�-line bdls.1≤j≤l> assoc. to

{1,◦qj2
v
}v∈V up to Indet.’s

)

(
�-line bdl. assoc. to

{0,0qj2
v
}v∈V

) Θ
×µ
LGP

-link
∼=

suited to FMOD

_

Kummer detach.
via log-Kummer corr.

OO

(
�-line bdl. assoc. to

{1,0q
v
}v∈V

)
∼=
(
�-line bdl. assoc. to

{1,0q
v
}v∈V

)
.

��

compare log-vol.’s

OO

compatibility with Θ×µ
LGP-link

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

These tautological two ways of computations of log-volumes of q-pilot objects can be considered
as computations of self-intersection numbers “∆.∆” of the diagonal “∆ ⊂ Z ⊗F1 Z” from
point view of Remark 13.13.1. This observation is compatible with the analogy with p-adic
Teichmúller theory (See last table in Section 3.5), where the computation of the global degree
of line bundles arising from the derivative of the canonical Frobenius lifting (↔ Θ-link) gives us
an inequality (1−p)(2g−2) ≤ 0 (Recall that self-intersection numbers give us Euler numbers).
This inequality (1 − p)(2g − 2) ≤ 0 essentially means the hyperbolicity of hyperbolic curves.
Analogously, the inequality

| log(Θ)| ≤ | log(q)| ; 0

means the hyperbolicity of number fields.

See also the following table (cf. [IUTchIII, Fig. 3.2]):

�-line bundles, MOD/LGP-labelled objects �-line bundles, mod/lgp-labelled objects

defined only in terms of � defined in terms of both � and �

value group/non-coric portion unit group/coric portion

“(−)I” of Θ×µLGP-link “(−)`×µ” of Θ×µLGP/Θ
×µ
lgp -link

precise log-Kummer corr. only upper semi-compatible log-Kummer corr.

ill-suited to log-vol. computation suited to log-vol. computation

subject to mild indeterminacies
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Remark 13.13.3. In this remark, we consider the following natural questions: How about the
following variants of Θ-links?

(1)

{qj2
v
}1≤j≤l> 7→ qλ

v
(λ ∈ R>0),

(2)

{(qj2
v
)N}1≤j≤l> 7→ q

v
(N > 1), and

(3)
q
v
7→ qλ

v
(λ ∈ R>0).

From conclusions, (1) works, and either of (2) or (3) does not work.

(1) ([IUTchIII, Remark 3.12.1 (ii)]) We explain the variant (1). Recall that we have l ≈
ht >> |deg(q

v
)| ; 0. Then, the resulting inequalty from “the generalised Θ×µLGP-link” is

λ · 0 . −(ht) + (indet.)

for λ << l, which gives us the almost same inequality of Corollary 13.13, and weaker
inequality for λ > l than the inequality of Corollary 13.13 (since deg(q

v
) < 0).

(2) ([EtTh, Introduction, Remark 2.19.2, Remark 5.12.5], [IUTchII, Remark 1.12.4, Remark
3.6.4], [IUTchIII, Remark 2.1.1]) We explain the variant (2). There are several reasons
that the variant (2) does not work (See also the principle of Galois evaluation of
Remark 11.10.1):
(a) If we replace Θ by ΘN (N > 1), then the crucial cyclotomic rigidity of mono-theta

environments (Theorem 7.23 (1)) does not hold, since the construction of the cyclo-
tomic rigidity of mono-theta environments uses the quadraticity of the commutator
[ , ] structure of the theta group (i.e., Heisenberg group) (See also Remark 7.23.2).
If we do not have the cyclotomic rigidity of mono-theta environments, then we have
no Kummer compatibility of theta monoids (cf.Theorem 12.7).

(b) If we replace Θ by ΘN (N > 1), then the crucial constant multiple rigidity of mono-
theta environments (Theorem 7.23 (3)) does not hold either, since, if we consider
N -th power version of mono-theta environments by relating the 1-st power ver-
sion of mono-theta environments (for the purpose of maintaining the cyclotomic
rigidity of mono-theta environments) via N -th power map, then such N -th power
map gives rise to mutually non-isomorphic line bundles, hence, a constant multiple
indeterminacy under inner automorphisms arising from automorphisms of corre-
sponding tempered Frobenioid (cf. [IUTchIII, Remark 2.1.1 (ii)], [EtTh, Corollary
5.12 (iii)]).

(c) If we replace Θ by ΘN (N > 1), then, the order of zero of ΘN at cusps is equal
to N > 1, hence, in the log-Kummer correspondence, one loop among the various
Kummer isomorphisms between Frobenius-like cyclotomes in a column of log-theta-
lattice and the vertically coric étale-like cyclotome gives us the N -power map before
the loop, therefore, the log-Kummer correspondence totally collapes. See also Re-
mark 12.8.1 (“vicious circles”).

If it worked, then we would have

0 . −N(ht) + (indet.),

which gives us an inequality

ht . 1

N
(1 + ε)(log-diff + log-cond)

for N > 1. This contradicts Masser’s lower bound in analytic number theory ([Mass2]).
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(3) ([IUTchIII, Remark 2.2.2]) We explain the variant (3). In the theta function case,
we have Kummer compatible splittings arisen from zero-labelled evaluation points (See
Theorem 12.7):

id y
(
O× · ∞θ x Π

0-labelled ev. pt.
←↩ Π/∆

) −→
...
−→

Aut(G), Isomet y (Gy O×µ)

∞θ 7→ 1 ∈ O×µ.
Here, the crucial Kummer compatibility comes from the fact that the evaluation map
relates the Kummer theory of O×-portion of O× · ∞θ on the left to the coric O×µ on
the right, via the evaluation ∞θ 7→ 1 ∈ O×µ. On the other hand, in the case of the

variants (3) under consideration, the corresponding arrow maps qλ 7→ 1 ∈ O×µ, hence,
this is incompatible with passage to Kummer classes, since the Kummer class of qλ in a

suitable cohomology group of Π/∆ is never sent to the trivial element of the relavant

cohomology group of G, via the full poly-isomorphism Π/∆
full poly
∼→ G.

Appendix A. Motivation of Θ-link (Explanatory).

In this section, we explain a motivation of Θ-link from a historical point of view, i.e., in the
order of classical de Rham’s comparison theorem, p-adic Hodge comparison theorem, Hodge-
Arakelov comparison theorem, and a motivation of Θ-link. This section is an explanatory
section, and we do not give proofs, or sometimes rigorous statements. See also [Pano, §1].

A.1. Classical de Rham’s Comparison Theorem. The classical de Rham’s comparison
theorem in the special case for Gm(C) = C× says that the pairing

H1(Gm(C),Z)⊗Z H
1
dR(Gm(C)/C)→ C,

which sends [γ] ⊗ [ω] to
∫
γ
ω, induces a comparison isomorphism H1

dR(Gm(C)/C)
∼→ C ⊗Z

(H1(Gm(C),Z))∗ (Here, (·)∗ denotes the Z-dual). Note thatH1(Gm(C),Z) = Z [γ0],H
1
dR(Gm(C)/C) =

C
[
dT
T

]
, and

∫
γ0

dT
T

= 2πi, where γ0 denotes a counterclockwise loop around the origin, and T

denotes a standard coordinate of Gm.

A.2. p-adic Hodge Comparison Theorem. A p-adic analogue of the above comparison
paring (in the special case for Gm over Qp) in the p-adic Hodge theory is the pairing

TpGm ⊗Zp H
1
dR(Gm/Qp)→ Bcrys,

which sends ε⊗
[
dT
T

]
to (“

∫
ε
dT
T

= ”) log [ε] = t(= tε), where Tp denotes the p-adic Tate module,

ε = (εn)n is a system of p-power roots of unity (i.e., ε0 = 1, ε1 6= 1, and εpn+1 = εn), Bcrys is
Fontaine’s p-adic period ring (See also [Fo3]), and t = log [ε] is an element in Bcrys defined by ε

(See also [Fo3]). The above pairing induces a comparison isomorphism Bcrys⊗QpH
1
dR(Gm/Qp)

∼→
Bcrys ⊗Zp (TpGm)

∗ (Here, (·)∗ denotes the Zp-dual). Note that ε = (εn)n is consdered as a kind
of analytic path around the origin.
We consider the pairing in the special case for an elliptic curve E over Zp. We have the

universal extension 0→ (LieE∨Qp
)∗ → E†Qp

→ EQp → 0 (See [Mess] for the universal extension)

of EQp := E⊗Zp Qp (Here, (·)∗ denotes the Qp-dual, and E
∨
Qp
(∼= EQp) is the dual abelian variety

of EQp). By taking the tangent space at the origin, we obtain an extension 0 → (LieE∨Qp
)∗ →

LieE†Qp
→ LieEQp → 0 whose Qp-dual is canonically identified with the Hodge filtration of

the de Rham cohomology 0 → (LieEQp)
∗ → H1

dR(EQp/Qp) → LieE∨Qp
→ 0 under a canonical
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isomorphism H1
dR(EQp/Qp) ∼= (LieE†Qp

)∗ (See also [MM] for the relation between the universal

extension and the first crystalline cohomology; [BO1] and [BO2] for the isomorphism between

the crystalline cohomology and the de Rham cohomology). For an element ωE† of (LieE†Qp
)∗,

we have a natural homomorphism logω
E†

: Ê†Qp
→ Ĝa/Qp such that the pull-back (logω

E†
)∗dT is

equal to ωE† , where Ê†Qp
is the formal completion of E†Qp

at the origin, and Ĝa/Qp is the formal
additive group over Qp.
Now, the pairing in the p-adic Hodge theory is

TpE ⊗ (LieE†Qp
)∗ → Bcrys,

which sends P ⊗ ωE† to (“
∫
P
ωE† = ”) logω

E†
[P ], where P = (Pn)n satisfies that Pn ∈

E(Qp), P0 = 0, and pPn+1 = Pn. The above pairing induces a comparison isomorphism

Bcrys ⊗Qp H
1
dR(Gm/Qp)

∼→ Bcrys ⊗Zp (TpGm)
∗ (Here, (·)∗ denotes the Zp-dual). Note again that

P = (Pn)n is consdered as a kind of analytic path in E. See also [BO1] and [BO2] for the
isomorphism between the de Rham cohomology and the crystalline cohomology; [MM] for the
relation between the first crystalline cohomology and the universal extension; [Mess] for the
relation between the universal extension and the Dieudonné module; [Fo2, Proposition 6.4] and
[Fo1, Chapitre V, Proposition 1.5] for the relation between the Dieudonné module and the Tate
module (the above isomorphism is a combination of these relations).

A.3. Hodge-Arakelov Comparison Theorem. Mochizuki studied a global and “discre-
tised” analogue of the above p-adic Hodge comparison map (See [HASurI], [HASurII]). Let
E be an elliptic curve over a number field F , l > 2 a prime number. Assume that we have
a non-trivial 2-torsion point P ∈ E(F )[2] (we can treat the case where P ∈ E(F ) is order
d > 0 and d is prime to l, however, we treat the case where d = 2 for the simplicity). Put
L = O(l [P ]). Then, roughly speaking, the main theorem of Hodge-Arakelov theory says that
the evaluation map on E†[l](= E[l])

Γ(E†,L|E†)deg<l
∼−→ L|E†[l](= L|E[l] = ⊕E[l]F )

is an isomorphism of F -vector spaces, and preserves specified integral structures (we omit the
details) at non-Archimedean and Archimedean places. Here, Γ(E†,L|E†)deg<l denotes the part
of Γ(E†,L|E†) whose relative degree is less than l (Note that Zariski locally E† is isomorphic
to E × A1 = SpecOE[T ]). Note that dimF Γ(E†,L|E†)deg<l = l2, since dimF Γ(E,L) = l, and
that dimF L|E[l] = l2, since #E[l] = l2. The left hand side is the de Rham side, and the right
hand side is the étale side. The discretasation means that we consider l-torsion points E[l], not
the Tate module, and in philosophy, we consider E[l] as a kind of approximation of “underling
analytic manifold” of E (like ε = (εn)n and P = (Pn)n were considered as a kind of analytic
paths in Gm and E respectively). We also note that in the étale side we consider the space of
functions on E[l], not E[l] itself, which is a common method of quantisations (like considering
universal enveloping algebra of Lie algebra, not Lie algebra itself, or like considering group
algebra, not group itself).
(For the purpose of the reader’s easy getting the feeling of the above map, we also note that

the Gm-case (i.e., degenerated case) of the above map is the evaluation map

F [T ]deg<l
∼−→ ⊕ζ∈µlF

sending f(T ) to (f(ζ))ζ∈µl , which is an isomorphism since the Vandermonde determinant is
non-vanishing.)
For j ≥ 0, the graded quotient Fil−j/Fil−j+1 (in which the derivations of theta function live)

with respect to the Hodge filtration given by the relative degree on the de Rham side (=theta

function side) is isomorphic to ω
⊗(−j)
E , where ωE is the pull-back of the cotangent bundle of
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E to the origin of E. On the other hand, in the étale side (=theta value side), we have a

Gaussian pole qj
2/8lOF in the specified integral structure near the infinity (i.e., q = 0) ofMell.

This Gaussian pole comes from the values of theta functions at torsion points. We consider the
degrees of the corresponding vector bundles on the moduli of elliptic curves to the both sides
of the Hodge-Arakelov comparison map. The left hand side is

−
l−1∑
j=0

j[ωE] ≈ −
l2

2
[ωE] = −

l2

24
[log q],

since [ω⊗2E ] = [ΩMell
] = 1

6
[log q], where ΩMell

is the cotangent bundle ofMell and 6 is the degree
of the λ-line over the j-line. The right hand side is

− 1

8l

l−1∑
j=0

j2[log q] ≈ − l
2

24
[log q].

Note that these can be considered as a discrete analogue of the calculation of Gaussian integral∫ ∞
−∞

e−x
2

dx =
√
π

from the point of view that − 1
8l

∑l−1
j=0 j

2[log q] is a Gaussian distribution (i.e., j 7→ j2) in the

cartesian coordinate, and −
∑l−1

j=0 j[ωE] ≈ −
l2

2
[ωE] is a calculation in the polar coordinate and

[ωE] is an analogue of
√
π, since we have ω⊗2E

∼= ΩMell
and the integration of ΩMell

around the
infinity (i.e., q = 0) is 2πi. See also Remark 1.15.1

A.4. Motivation of Θ-Link. In the situation as in the Hodge-Arakelov setting, we assume
that E has everywhere stable reduction. In general, E[l] does not have a global multiplicative
subspace, i.e., a submodule M ⊂ E[l] of rank 1 such that it coincides with the multiplicative
subspace µl for each non-Archimedean bad places. However, let us assume such a global
multiplicative subspace M ⊂ E[l] exists in sufficiently general E in the moduli of elliptic
curves. Take an isomorphism M ×N ∼= E[l] as finite flat group schemes over F (not as Galois
modules). Then, by applying the Hodge-Arakelov comparison theorem to E ′ := E/N over
K := F (E[l]), we obtain an isomorphism

Γ((E ′)†,L|(E′)†)
deg<l ∼−→

⊕
(− l−1

2
=)−l>≤j≤l>(= l−1

2
)

(q
j2

2lOK)⊗OK
K,

where q = (qv)v:bad is the q-parameters of the non-Archimedean bad places. Then, by the
incompatibility of the Hodge filtration on the left hand side with the direct sum decomposition
in the right hand side, the projection to the j-th factor is non-trivial for most j:

Fil0 = qOK ↪→ qj
2

OK ,

where we put q := q
1
2l . This morphism of arithmetic line bundles is considered as an arithmetic

analogue of Kodaira-Spencer morphism. In the context of (Diophantine applications of) inter-
universal Teichmüller theory, we take l to be a prime number in the order of the height of the
elliptic curve, thus, l is very large (See Section ). Hence, the degree of the right hand side in the
above inclusion of the arithmetic line bundles is negative number of a very large absolute value,
and the degree of the left hand side is almost zero comparatively to the order of l. Therefore,
the above inclusion implies

0 . −(large number) (≈ −ht),
which gives us a upper bound of the height ht . 0 in sufficiently general E in the moduli of
elliptic curves.
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However, there never exists such a global multiplicative in sufficiently general E in the
moduli of elliptic curves (If it existed, then the above argument showed that the height is
bounded from the above, which implies the number of isomorphism class of E is finite (See
also Proposition C.1)). If we respect the scheme theory, then we cannot obtain the inclusion

qOK ↪→ qj
2
OK . Mochizuki’s ingenious idea is: Instead, we respect the inclusion qOK ↪→ qj

2
OK,

and we say a good-bye to the scheme theory. The Θ-link in inter-universal Teichmüller theory
is a kind of identification

(Θ-link) : {qj2}1≤j≤l>(= l−1
2

) 7→ q

in the outside of the scheme theory (In inter-universal Teichmüller theory, we also construct a
kind of “global multiplicative subspace” in the outside of the scheme theory). So, it identifies
an arithmetic line bundle of negative degree of a very large absolute value with an arithmetic
line bundle of almost degree zero (in the outside of the scheme theory). This does not mean a
contradiction, because both sides of the arithmetic line bundles belong to the different scheme
theories, and we cannot compare their degrees. The main theorem of the multiradial algorithm
in inter-universal Teichmüller theory implies that we can compare their degrees after admitting
mild indeterminacies by using absolute mono-anabelian reconstructions (and other techniques).
We can calculate that the indeterminacies are (roughly) log-diff + log-cond by concrete calcu-
lations. Hence, we obtain

0 . −ht + log-diff + log-cond,

i.e., ht . log-diff+log-cond. We have the following remark: We need not only to reconstruct (up
to some indeterminacies) mathematical objects in the scheme theory of one side of a Θ-link from
the ones in the scheme theory of the other side, but also to reduce the indeterminacies to mild
ones. In order to do so, we need to control them, to reduce them by some rigidities, to kill them
by some operations like taking p-adic logarithms for the roots of unity (See Proposition 13.7
(2c), Proposition 13.11 (2)), to estimate them by considering that some images are contained
in some containers even though they are not precisely determinable (See Proposition 13.7 (2),
Corollary 13.13), and to synchronise some indeterminacies to others (See Lemma 11.9, and
Corollary 11.16 (1))　 and so on. This is a new kind of geometry – a geometry of controlling
indeterminacies which arise from changing scheme theories i.e., changing unverses. This is
Mochizuki’s inter-universal geometry.
Finally, we give some explanations on “multiradial algorithm” a little bit. In the classical

terminology, we can consider different holomorphic structures on R2, i.e., C ∼= R2 ∼= C, where
one C is an analytic (not holomorphic) dilation of another C, and the underlying analytic struc-
ture R2 is shared. We can calculate the amount of the non-holomorphic dilation C ∼= R2 ∼= C
based on the shared underlying analytic structure R2 (If we consider only holomorphic struc-
tres and we do not consider the underlying analytic structure R2, then we cannot compare
the holomorphic structures nor calculate the non-holomorphic dilation). This is a prototype
of the multiradial algorithm. In philosophy, scheme theories are “arithmetically holomorphic
structures” of a number field, and by going out the scheme theory, we can consider “under-
lying analytic structure” of the number field. The Θ-link is a kind of Teichmüller dilation of
“arithmetically holomorphic structures” of the number field sharing the “underlying analytic
structure”. The shared “underlying analytic structure” is called core, and each “arithmetically
holomorphic structure” is called radial data. The multiradial algorithm means that we can
compare “arithmetically holomorphic structures” (of the both sides of Θ-link) based on the
shared “underlying analytic structure” of the number field after admitting mild indetermina-
cies (In some sense, this is a partial (meaningful) realisation of the philosophy of “the field
of one element” F1). Mochizuki’s ideas of “underlying analytic structure” and the multiradial
algorithm are really amazing discoveries.
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Appendix B. Anabelian Geometry.

For a (pro-)veriety X over a field K, let ΠX (resp. ∆X) be the arithmetic fundamental

group of X (resp. the geometric fundamental group of X) for some basepoint. Let ∆
(p)
X be

the maximal pro-p quotient of ∆X , and put Π
(p)
X := ΠX/ker(∆X → ∆

(p)
X ). For (pro-)varieties

X, Y over a field K, let Homdom
K (X,Y ) (resp. IsomK(X,Y )) denote the set of dominant K-

morphisms (resp. K-isomorphisms) from X to Y . For an algebraic closure K over K, put

GK := Gal(K/K). Let Homopen
GK

(ΠX ,ΠY ) (resp. Homopen
GK

(Π
(p)
X ,Π

(p)
Y ), resp. IsomOut

GK
(∆X ,∆Y ),

resp. IsomOut
GK

(∆
(p)
X ,∆

(p)
Y )) denote the set of open continuous GK-equivariant homomorphisms

from ΠX to ΠY (resp. from Π
(p)
X to Π

(p)
Y , resp. from ∆X to ∆Y up to composition with an

inner automorphism arising from ∆Y , resp. from ∆
(p)
X to ∆

(p)
Y up to composition with an inner

automorphism arising from ∆
(p)
Y ).

Theorem B.1. (relative Grothendieck Conjecture over sub-p-adic field [pGC, Theorem A])
Let K be a sub-p-adic field (Definition 3.1 (1)). Let X be a smooth pro-variety over K. Let Y
be a hyperbolic pro-curve over K. Then, the natural maps

Homdom
K (X, Y )→ Homopen

GK
(ΠX ,ΠY )/Inn(∆Y )→ Homopen

GK
(Π

(p)
X ,Π

(p)
Y )/Inn(∆

(p)
Y )

are bijective. In particular, the natural maps

IsomK(X, Y )→ IsomOut
GK

(∆X ,∆Y )→ IsomOut
GK

(∆
(p)
X ,∆

(p)
Y )

are also bijective.

Remark B.1.1. The Isom-part of Theorem B.1 holds for a larger class of field which is called
generalised sub-p-adic field ([TopAnb, Theorem 4.12]). Here, a field K is called generalised
sub-p-adic if there is a finitely generated extension L of the fractional field of W (Fp) such
that we have an injective homomorphism K ↪→ L of fields. ([TopAnb, Definition 4.11]), where
W (Fp) denotes the ring of Witt vectors with coefficients in Fp.

Appendix C. Miscellany.

C.1. On the Height Function.

Proposition C.1. ([GenEll, Proposition 1.4 (iv)]) Let L = (L, || · ||L) be an arithmetic line
bundle such that LQ is ample. Then, we have #{x ∈ X(Q)≤d | htL(x) ≤ C} < ∞ for any
d ∈ Z≥1 and C ∈ R.

Proof. By using L⊗nQ for n >> 0, we have an embedding XQ ↪→ PNQ for some N . By taking a

suitable blowing-up f : X̃ → X, this embedding extends to g : X̃ ↪→ PNZ over SpecZ, where X̃
is normal, Z-proper, Z-flat, and fQ : X̃Q

∼→ XQ. Then the proposition for (X,L) is reduced to

the one for (X̃, f ∗L). As is shown in Section 1.1, the bounded discrepancy class of htf∗L depends

only on (f ∗L)Q. Thus, the proposition for (X̃, f ∗L) is equivalent to the one for (X̃, g∗OPN
Z
(1)),

where OPN
Z
(1) is the line bundle OPN

Z
(1) equipped with the standard Fubini-Study metric ||·||FS.

Then, it suffices to show the proposition for (PNZ ,OPN
Z
(1)). For 1 ≤ e ≤ d, we put Q :=

(PNZ ×SpecZ · · · (e-times) · · · ×SpecZ PNZ )/(e-th symmetric group), which is normal Z-proper, Z-
flat. The arithmetic line bundle ⊗1≤i≤epr

∗
iOPN

Z
(1) on PN ×SpecZ · · · (e-times) · · · ×SpecZ PN

descends to LQ = (LQ, || · ||LQ) on Q with (LQ)Q ample, where pri is the i-th projection. For

any x ∈ PN(F ) where [F : Q] = e, the conjugates of x over Q determine a point xQ ∈ Q(Q),
and, in turn, a point y ∈ Q(Q) determines a point x ∈ PN(F ) up to a finite number of
possibilities. Hence, it suffices to show that #{y ∈ Q(Q) | htLQ(y) ≤ C} < ∞ for any C ∈ R.
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We embed Q ↪→ PMZ for some M by (LQ)⊗mQ for m >> 0. Then, by the same argument

as above, it suffices to show that #{x ∈ PM(Q) | htOPM (1)(x) ≤ C} < ∞ for any C ∈ R.
For x ∈ PM(Z)(= PM(Q)), we have htOPM (1)(x) = degQx

∗OPM (1) by definition. We have

degQ : APic(SpecZ) ∼→ R since any projective Z-module is free (Q has class number 1), where an

arithmetic line bundle LZ,C on SpecZ in the isomorphism class corresponding to C ∈ R via this
isomorphism is (OSpecZ, e

−C | · |) (Here | · | is the usual absolute value). The set of global sections
Γ(LZ,C) is {a ∈ Z | |a| ≤ eC} which is a finite set (see Section 1.1 for the definition of Γ(L)).
We also have LZ,C1 ↪→ LZ,C2 for C1 ≤ C2. Take the standard generating sections x0, . . . , xM ∈
Γ(PMZ ,OPM

Z
(1)) (“the coordinate (x0 : . . . : xM) ∈ PMZ ”) with ||xi||FS ≤ 1 for 0 ≤ i ≤ M i.e.,

x0, . . . , xM ∈ Γ(OPM
Z
(1)). Then, for x ∈ PM(Z)(= PM(Q)) with htOPM (1)(x) ≤ C, we have a map

x∗OPM (1) ↪→ LZ,C , which sends x0, . . . , xM ∈ Γ(OPM
Z
(1)) to x∗(x0), . . . , x

∗(xM) ∈ Γ(LZ,C). This

map {x ∈ PM(Z) | htOPM (1)(x) ≤ C} → Γ(LZ,C)
⊕(M+1), which sends x to (x∗(x0), . . . , x

∗(xM)),

is injective since x0, . . . , xM ∈ Γ(PMZ ,OPM
Z
(1)) are generating sections. In short, we have {x ∈

PM(Q) | htOPM (1)(x) ≤ C} ⊂ {(x0 : . . . : xM) ∈ PM(Q) | xi ∈ Z, |xi| ≤ eC (0 ≤ i ≤ M)}. Now,
the proposition follows from the finiteness of Γ(LZ,C)

⊕(M+1). �

C.2. Non-Critical Belyi Map. The following theorem, which is a refinement of a classical
theorem of Belyi, is used in Proposition 1.2.

Theorem C.2. ([Belyi, Theorem 2.5], non-critical Belyi map) Let X be a proper smooth con-
nected curve over Q, and S, T ⊂ X(Q) finite sets such that S ∩ T = ∅. Then there exists a
morphism φ : X → P1

Q such that (a) φ is unramified over P1
Q \ {0, 1,∞}, (b) φ(S) ⊂ {0, 1,∞},

and (c) φ(T ) ⊂ P1(Q) \ {0, 1,∞}.

Proof. (Step 1): By adjoining points of X(Q) to T , we may assume that #T ≥ 2gX +1, where
gX is the genus of X. We consider T as a reduced effective divisor on X by abuse of notation.
Take s0 ∈ Γ(X,OX(T )) such that (s0)0 = T , where (s0)0 denotes the zero divisor of s0. We
have H1(X,OX(T − x)) = H0(X,ωX(x− T ))∗ = 0 for any x ∈ X(Q), since deg(ωX(x− T )) ≤
2gX−2−(2gX+1)+1 = −2. Thus, the homomorphism Γ(X,OX(T ))→ OX(T )⊗k(x) induced
by the short exact sequnce 0→ OX(T−x)→ OX(T )→ OX(T )⊗k(x)→ 0 is surjective. Hence,
there exists an s1 ∈ Γ(X,OX(T )) such that s1(t) 6= 0 for all t ∈ T since Q is infinite. Then,
(s0 : s1) has no basepoints, and gives us a finite morphism ψ : X → P1

Q such that ψ∗OP1(1) =

OX(T ), and ψ(t) = 0 for all t ∈ T since (s0)0 = T . Here, ψ is unramified over 0 ∈ P1
Q, since

ψ∗OP1(1) = OX(T ) and T is reduced. We also have 0 /∈ ψ(S) since (s0)0 = T and S ∩ T = ∅.
Then, by replacing X, T , and S by P1

Q, 0, and ψ(S)∩{x ∈ P1
Q | ψ ramifies over x} respectively,

the theorem is reduced to the case where X = P1
Q, T = {t} for some t ∈ P1(Q) \ {∞}

(Step 2): Next, we reduce the theorem to the case where X = P1
Q, S ⊂ P1(Q), T = {t} for

some t ∈ P1(Q) \ {∞} as follows: We will construct a non-zero rational function f(x) ∈ Q(x)
which defines a morphism φ : P1

Q → P1
Q such that φ(S) ⊂ P1(Q), φ(t) /∈ φ(S), and φ is

unramified over φ(t). By replacing S by the union of all Gal(Q/Q)-conjugates of S, we may
assume that S is Gal(Q/Q)-stable (Note that t /∈ (new S) since t ∈ P1(Q) and t /∈ (old S)).
Put m(S) := maxF ([F : Q]− 1), where F runs through the fields of definition of the points in
S, and d(S) :=

∑
F ([F : Q] − 1), where F runs thrhough the fields of definition of the points

in S with [F : Q] − 1 = m(S). Thus, S ⊂ P1(Q) is equivalent to d(S) = 0, which holds if
and only if m(S) = 0. We use an induction on m(S), and for each fixed m(S), we use an
induction on d(S). If m(S), d(S) 6= 0, take α ∈ S \ P1(Q) such that d := [Q(α) : Q] is equal to
m(S)+1. We choose a1 ∈ Q such that 0 < |t−a1| < (mins∈S\{∞} |s−a1|)/d(1+d.d!). Then, by
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applying an automorphism f1(x) := (mins∈S\{∞} |s − a1|)/(x − a1) of P1
Q (and replacing t and

S by f1(t) and f1(S) respectively), we may assume that |s| ≤ 1 for all s ∈ S(= S \ {∞}) and
|t| > d(1+d.d!) (Note that the property (new t) ∈ P1(Q)\{∞} still holds since |(old t)−a1| > 0
and f1(x) ∈ Q(x)). Let g(x) = xd + c1x

d−1 + · · ·+ cd ∈ Q[x] be the monic minimal polynomial
of α over Q. Then |ci| ≤ d! for 1 ≤ i ≤ d, since ci is a summation of

(
d
i

)
(≤ d!) products of i

conjugates of α. Thus, |g(s)| ≤ 1+ |c1|+ · · ·+ |cd| ≤ 1+d.d! and |g′(s)| ≤ d+d|c1|+ · · ·+d|cd| ≤
d(1 + d.d!) for all s ∈ S(= S \ {∞}) since |s| ≤ 1 (Here g′(x) is the derivative of g(x)). Hence,
t /∈ g(S) ∪ g(Sα) =: S ′, where Sα := {β ∈ Q | g′(β) = 0}. We also have [Q(α′) : Q] < d for any
α′ ∈ g(Sα) since g(x), g′(x) ∈ Q[x] and deg(g′(x)) < d. Therefore, S ′ is Gal(Q/Q)-stable and
we have m(S ′) < m(S) or (m(S ′) = m(S) and d(S ′) < d(S)). This completes the induction,
and we get a desired morphism φ by composing the constructed maps as above.
(Step 3): Now, we reduced the theorem to the case where X = P1

Q, S ⊂ P1(Q), and T = {t}
for some t ∈ P1(Q) \ {∞} with S ∩ T = ∅. We choose a2 ∈ Q such that 0 < |t − a2| <
(mins∈S\{∞} |s − a2|)/4. Then, by applying an automorphism f2(x) := 1/(x − a2) of P1

Q (and
replacing t and S by f2(t) and f2(S) respectively), we may assume that |t| ≥ 4|s| for all s ∈
S(= S \{∞}). (Note that the property (new t) ∈ P1(Q)\{∞} still holds since |(old t)−a2| > 0
and f2(x) ∈ Q(x)). New t is not equal to 0 since old t is not equal to ∞. By applying the
automorphism x 7→ −x of P1

Q, we may assume that t > 0 (still t ∈ P1(Q) \ {0,∞}). By
applying an automorphism f3(x) := x + a3 of P1

Q, where a3 := maxS\{∞}3s′<0 |s′| (a3 := 0
when {s′ ∈ S \ {∞} | s′ < 0} = ∅) and replacing t and S by f3(t) and f3(S) respectively, we
may assume that s ≥ 0 for all s ∈ S(= S \ {∞}) and t ≥ 2s for all s ∈ S(= S \ {∞}), since
(t+a3)/(s+a3) ≥ t/(s+a3) ≥ t/2a3 ≥ 2 where t, s are old ones (still (new t) ∈ P1(Q)\{0,∞}).
By adjoing {0,∞} (if necessary for 0), we may assume that S ⊃ {0,∞} since t /∈ {0,∞}.
(Step 4): Thus, now we reduced the theorem to the case whereX = P1

Q, {0,∞} ⊂ S ⊂ P1(Q),

T = {t} for some t ∈ P1(Q) \ {∞} with S ∩ T = ∅, and s > 1 , t ≥ 2s for every s ∈ S \ {0,∞}.
We show the theorem in this case (hence the theorem in the general case) by the induction
on #S. If #S ≤ 3 then we are done. We assume that #S > 3. Let a4 ∈ Q be the second
smallest s ∈ S \ {0,∞}. By applying an automorphism f4(x) := x/a4 of P1

Q (and replacing t
and S by f4(t) and f4(S) respectively), we may assume moreover that 0 < r < 1 for some r ∈ S
and s > 1 for every s ∈ S \ {0, r, 1,∞} Put r = m/(m + n) where m,n ∈ Z>0. We consider
the function h(x) := xm(x − 1)n and the morphisms ψ, ψ′ : P1

Q → P1
Q defined by h(x) and

h(x) + a5 respectively, where a5 := −mins∈S\{∞} h(s). We have h({0, 1, r,∞}) ⊂ {0, h(r),∞}.
Thus #ψ(S) < #S and hence #ψ′(S) < #S. Any root of the derivative h′(x) = xm−1(x −
1)n−1((m+ n)x−m) = 0 is in {0, r, 1,∞} ⊂ S. Thus ψ is unramified outside ψ(S), and hence
ψ′ is unramified outside ψ′(S). Now h(x) is monotone increasing for x > 1 since h′(x) > 0 for
x > 1. Thus we have h(t) > h(s) for s ∈ S \ {∞} with s > 1 since t ≥ 2s > s. We also have
h(t) > h(2) > 1 since t ≥ 2 (which comes from t ≥ 2s for s = 1 ∈ S). Thus, ψ(t) /∈ ψ(S)
since |h(x)| ≤ 1 for 0 ≤ x ≤ 1. Hence we also have ψ′(t) /∈ ψ′(S). Now we claim that
(h(t) + a5)/(h(s) + a5) ≥ 2 for all s ∈ S \ {∞} such that h(s) + a5 6= 0. If this claim is proved,
then by replacing S, t by ψ′(S), ψ′(t) respectively, we are in the situation with smaller #S where
we can use the induction hypothesis, and we are done. We show the claim. First we observe that
we have h(t)/h(s) = (t/s)m((t−1)/(s−1))n ≥ (t/s)m+n ≥ (t/s)2 (*) for s ∈ S\{∞}, since t ≥ s
implies (t− 1)/(s− 1) ≥ t/s. In the case where n is even, we have a5 = 0 since h(s) ≥ 0 for all
s ∈ S\{∞} and h(0) = 0. Thus, we have (h(t)+a5)/(h(s)+a5) = h(t)/h(s) ≥ (t/s)2 ≥ t/s ≥ 2
for 1 < s ∈ S \ {∞} by (*). On the other hand, h(s) + a5 = h(s) = 0 for s = 0, 1 and
(h(t)+a5)/(h(r)+a5) = h(t)/h(r) ≥ h(t) = tm(t−1)n ≥ t ≥ 2 by 0 < h(r) < 1 and t ≥ 2. Hence
the claim holds for even n. In the case where n is odd, we have a5 = |h(r)| = ( m

m+n
)m( n

m+n
)n,

since h(x) ≤ 0 for 0 ≤ x ≤ 1 and, x = r ⇔ h′(x) = 0 for 0 < x < 1. We also have 0 < a5 =
( m
m+n

)m( n
m+n

)n ≤ m
m+n

n
m+n

= mn
(m−n)2+4mn

≤ mn
4mn

= 1
4
. Then, for 1 < s ∈ S\{∞} with h(s) ≥ a5,
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we have (h(t) + a5)/(h(s) + a5) ≥ h(t)/2h(s) ≥ (t/s)2/2 ≥ 2 by (*). For 1 < s ∈ S \ {∞}
with h(s) ≤ a5, we have (h(t) + a5)/(h(s) + a5) ≥ h(t)/2a5 ≥ 2h(t) = 2tm(t − 1)n ≥ t ≥ 2 by
0 < a5 ≤ 1/4 and t ≥ 2. For s = r ∈ S, we have h(r) + a5 = −a5 + a5 = 0. For s = 0, 1 ∈ S,
we have (h(t) + a5)/(h(s) + a5) = (h(t) + a5)/a5 ≥ h(t) = tm(t− 1)n ≥ t ≥ 2 by 0 < a5 ≤ 1/4
and t ≥ 2. Thus, we show the claim, and hence, the theorem. �
C.3. k-Core.

Lemma C.3. ([CanLift, Proposition 2.7]) Let k be an algebraically closed field of characteristic
0.

(1) If a semi-elliptic (cf. Section 3.1) orbicurve X has a non-trivial automorphism, then it
does not admit k-core.

(2) There exist precisely 4 isomorphism classes of semi-elliptic orbicurves over k which do
not admit k-core.

Proof. (Sketch) For algebraically closed fields k ⊂ k′, the natural functor from the category

Ét(X) of finite étale coverings over X to the category Ét(X ×k k′) of finite étale coverings over
X ×k k′ is an equivalence of categories, and the natural map Isomk(Y1, Y2) → Isomk′(Y1 ×k
k′, Y2 ×k k′) is a bijection for Y1, Y2 ∈ Ob(Ét(X)) by the standard arguments of algebraic
geometry, i.e., For some k-variety V such that the function field k(V ) of V is a sub-field of k′,
the diagrams of finite log-étale morphisms over (X×kk′, D×kk′) (Here, X is a compactification
and D is the complement) under consideration is the base-change of the diagrams of finite étale
morphisms over V with respect to Spec k′ → Spec k(V ) → V , we specialise them to a closed

point v of V , we deform them to a formal completion V̂v at v, and we algebrise them (See also
[CanLift, Proposition 2.3], [SGA1, Exposé X, Corollaire 1.8]), and the above bijection is also
shown in a similar way by noting H0(Y , ω∨

X/k
(−D)|Y ) = 0 for any finite morphism Y → X in

the argments of deforming the diagrams under consideration to V̂v. Thus, the natural functor
Lock(X) → Lock′(X ×k k′) is an equivalence categories. Hence, the lemma is reduced to the
case where k = C.
We assume that k = C. Note also that the following four statements are equivalent:

(i) X does not admit k-core,
(ii) π1(X) is of inifinite index in the commensurator CPSL2(R)0(π1(X)) in PSL2(R)0(∼= Aut(H))

(Here, PSL2(R)0 denotes the connected component of the identity of PSL2(R), and H
denotes the upper half plane),

(iii) X is Margulis-arithmetic (See [Corr, Definition 2.2]), and
(iv) X is Shimura-arithmetic (See [Corr, Definition 2.3]).

The equivalence of (i) and (ii) comes from that if X admits k-core, then the morphism to k-
core X � Xcore is isomorphic to H/π1(X)� H/CPSL2(R)0(π1(X)), and that if π1(X) is of finite
index in CPSL2(R)0(π1(X)), then H/π1(X) � H/CPSL2(R)0(π1(X)) is k-core (See also [CanLift,
Remark 2.1.2, Remark 2.5.1]). The equivalence of (ii) and (iii) is due to Margulis ([Marg,
Theorem 27 in p.337, Lemma 3.1.1 (v) in p.60], [Corr, Theorem 2.5]). The equivalence of (iii)
and (iv) is [Corr, Proposition 2.4].
(1): We assume thatX admits a k-coreXcore. Let Y → X be the unique double covering such

that Y is a once-punctured elliptic curve. Let Y , Xcore denote the smooth compactifications
of Y,Xcore respectively. Here, we have Y \ Y = {y}, and a point of Y is equal to y if and
only if its image is in Xcore \Xcore. Thus, we have Xcore \Xcore = {x}. The coarsification (or
“coarse moduli space”) of Xcore is the projective line P1

k over k. By taking the coarification
of a unique morphism Y � Xcore, we obtain a finite ramified covering Y � P1

k. Since this
finite ramified covering Y � P1

k comes from a finite étale covering Y → Xcore, the ramification
index of Y � P1

k is the same as all points of Y lying over a given point of P1
k. Thus, by the
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Riemann-Hurwitz formula, we obtain −2d+
∑

i
d
ei
(ei−1), where ei’s are the ramification indices

over the ramification points of P1
k, and d is the degree of the morphism Y � P1

k. Hence, by∑
i

1
ei
(ei− 1) = 2, the possibility of ei’s are (2, 2, 2, 2), (2, 3, 6), (2, 4, 4), and (3, 3, 3). Since y is

the unique point over x, the largest ei is equal to d. In the case of (2, 2, 2, 2), we have X = Xcore,
and X has no non-trivial automorphism. In other three cases, Y is a finte étale covering of the
orbicurve determind by a triangle group (See [Take1]) of type (2, 3,∞), (2, 4,∞), and (3, 3,∞).
By [Take1, Theorem 3 (ii)], this implies that Y is Shimura-arithmetic, hence X is Shimura-
arithmetic as well. This is a contradiction (See also [CanLift, Remark 2.1.2, Remark 2.5.1]) by
the above equivalence of (i) and (iv).
(2): If X does not admit k-core, then X is Shimura-arithmetic by the above equivalence of

(i) and (iv). Then, by [Take2, Theorem 4.1 (i)], this implies that, in the notation of [Take2],
the arithmetic Fuchsian group π1(X) has signature (1;∞) such that (tr(α), tr(β), tr(αβ)) is
equal to (

√
5, 2
√
5, 5), (

√
6, 2
√
3, 3
√
2), (2

√
2, 2
√
2, 4), and (3, 3, 3). This gives us precisely 4

isomorphism classes. �
C.4. On the Prime Number Theorem. For x > 0, put π(x) := #{p | p : prime ≤ x} and
ϑ(x) :=

∑
prime: p≤x log p (Chebychev’s ϑ-function). The prime number theorem says that

π(x) ∼ x

log x
(x→∞),

where, ∼ means that the ratio of the both side goes to 1. In this subsection, we show the
following proposition, which is used in Proposition 1.15.

Proposition C.4. π(x) ∼ x
log x

(x→∞) if and only if ϑ(x) ∼ x (x→∞).

This is well-known for analytic number theorists. However, we include a proof here for the
convenience for arithmetic geometers.

Proof. We show the “only if” part: Note that ϑ(x) =
∫ x
1
log t ·d(π(t)) = π(x) log x−π(1) log 1−∫ x

1
π(t)
t
dt = π(x) log x −

∫ x
2
π(t)
t
dt (since π(t) = 0 for t < 2). Then, it suffices to show that

limx→∞
1
x

∫ x
2
π(t)
t
dt = 0. By assumption π(t)

t
= O

(
1

log t

)
, we have 1

x

∫ x
2
π(t)
t
dt = O

(
1
x

∫ x
2

dt
log t

)
.

By
∫ x
2

dt
log t

=
∫ √x
2

dt
log t

+
∫ x√

x
dt

log t
≤
√
x

log 2
+ x−

√
x

log
√
x
, we obtain limx→∞

1
x

∫ x
2
π(t)
t
dt = 0. We show the

“if” part: Note that π(x) =
∫ x
3/2

1
log t

d(ϑ(t)) = ϑ(x)
log x
− ϑ(3/2)

log(3/2)
+
∫ x
3/2

π(t)
t(log t)2

dt = ϑ(x)
log x

+
∫ x
2

π(t)
t(log t)2

dt

(since ϑ(t) = 0 for t < 2). Then, it suffices to show that limx→∞
log x
x

∫ x
2

ϑ(t)
t(log t)2

dt = 0. By

assumption ϑ(t) = O(t), we have log x
x

∫ x
2

ϑ(t)
t(log t)2

dt = O
(

log x
x

∫ x
2

dt
(log t)2

)
. By

∫ x
2

1
(log t)2

dt =∫ √x
2

dt
(log t)2

+
∫ x√

x
dt

(log t)2
≤

√
x

(log 2)2
+ x−

√
x

(log
√
x)2

, we obtain limx→∞
log x
x

∫ x
2

ϑ(t)
t(log t)2

dt = 0. �

C.5. On Residual Finiteness of Free Groups.

Proposition C.5. (Residual Finiteness of Free Groups) Let F be a free group. Then, the

natural homomorphism F → F̂ to its profinite completion F̂ is injective.

Proof. Take an element 1 6= a ∈ F . It suffices to show that there exists a normal subgroup
H ⊂ F of finite index, such that we have a 6∈ H. Take a set Gen of free generators of F .
We write a = aNaN−1 · · · a1, where ai ∈ Gen or a−1i ∈ Gen, and there is no cancellation in
the expression a = aNaN−1 · · · a1. Let Gen → SN+1 be a map, which sends x ∈ Gen to any
permutation σ with σ(i) = i + 1 for ai = x, and σ(j + 1) = j for a−1j = x (This is well-
defined, since the expression a = aNaN−1 · · · a1 has no cancellation). This map Gen → SN+1

extends to a homomorphism F → SN+1. Put H to be the kernel of this homomorphism. Then,
H is a normal subgroup of finite index in F , since F/H ⊂ SN+1. The image of a by this
homomorphism sends 1 to N + 1, in particular, it is non-trivial. Hence we have a 6∈ H. �



272 GO YAMASHITA

C.6. Some Lists on Inter-Universal Teichmüller Theory.
Model Objects
Local:

Vbad (Example 8.8) Vgood ∩ Vnon (Example 8.7) Varc (Example 8.11)

Dv Btemp(X
v
)0 (Πv) B(X−→v

)0 (Πv) X−→v

D`v B(Kv)
0 (Gv) B(Kv)

0 (Gv) (O�(C`v ), spl`v )

Cv (F
v
)base-field (Πv y (O�

Fv
)pf) Πv y (O�

Fv
)pf Arch. Fr’d Cv (  ang. region)

F
v

temp. Fr’d F
v
(  Θ-fct.) equal to Cv (Cv,Dv, κv)

C`v Gv y O×
Fv
· qN

v
Gv y O×

Fv
· pNv equal to Cv

F`v (C`v , spl`v ) (C`v , spl`v ) (C`v ,D`v , spl`v )

We use Cv (not F
v
) with v ∈ Vnon and F

v
with v ∈ Varc for F -prime-strips (See Defini-

tion 10.9 (3)), and F
v
’s with v ∈ V for Θ-Hodge theatres.

Global :
D} := B(CK)

0, D}± := B(XK)
0,

Fmod := (Cmod, Prime(Cmod)
∼→ V, {F`v }v∈V, {ρv : ΦCmod,v

gl. to loc.
∼−→ ΦR

C`v
}v∈V )

( ρv : log
`
mod(pv) 7→ 1

[Kv :(Fmod)v ]
logΦ(pv) ).

Some Model Bridges, and Bridges

• (model D-NF-bridge, Def. 10.16) φNF
v := Autε(D}) ◦ φNF

•,v ◦ Aut(Dv) : Dv
poly−→ D},

φNF
1 := {φNF

v }v∈V : D1
poly−→ D}, φNF

j := (action of j) ◦ φNF
1 : Dj

poly−→ D},
φNF
> := {φNF

j }j∈F>
l
: D> := {Dj}j∈F>

l

poly−→ D}.
• (model D-Θ-bridge, Def. 10.17)

φΘ
vj

:= Aut(D>,v) ◦


Btemp(Πv)

0 eval. section−→
labelled by j

Btemp(Πv)
0 (v ∈ Vbad)

Btemp(Πv)
0

full poly
∼→ Btemp(Πv)

0 (v ∈ Vgood)

 ◦ Aut(Dvj)
: Dvj

poly−→ D>,v, φΘ
j := {φΘ

vj
}v∈V : Dj

poly−→ D>, φΘ
> := {φΘ

j }j∈F>
l
: D>

poly−→ D>.

• (model Θell-bridge, Def. 10.31) φΘell

v0
:= Autcusp(D}±)◦φΘell

•,v ◦Aut+(Dv0) : Dv0
poly−→ D}±,

φΘell

0 := {φΘell

v0
}v∈V : D0

poly−→ D}±, φΘell

t := (action of t) ◦ φΘell

0 : Dt
poly−→ D}±,

φΘell

± := {φΘell

t }t∈Fl
: D±

poly−→ D}±.

• (model Θ±-bridge, Def. 10.30) φΘ±
vt

: Dvt
+-full poly

∼−→ D�,v, φΘ±
t : Dvt

+-full poly
∼−→ D�,v,

φΘ±
± := {φΘ±

t }t∈Fl
: D± := {Dt}t∈Fl

poly−→ D�.

• (NF-,Θ-bridge, Def. 10.24) (‡FJ
‡ψNF

>−→ ‡F} 99K ‡F~), (‡FJ
‡ψΘ

>−→ ‡F> 99K ‡HT Θ).
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• (Θell-,Θ±-bridge, Def. 10.36) †ψΘell

± : †FT
poly−→ †D}±, †ψΘ±

± : †FT
poly−→ ‡F�.

Theatres

• (Θ-Hodge theatre, Def. 10.7) †HT Θ = ({†F
v
}v∈V, †Fmod).

• (D-�-Hodge theatre, Def. 10.18 (3)) †HT D-� = (†D}
†φNF

>←− †DJ

†φΘ>−→ †D>).

• (�-Hodge theatre, Def. 10.24 (3)) ‡HT � = (‡F~ L99 ‡F}
‡ψNF

>←− ‡FJ
‡ψΘ

>−→ ‡F> 99K ‡HT Θ).

• (D-�-Hodge theatre, Def. 10.32 (3)) †HT D-� = (†D�
†φΘ

±
±←− †DT

†φΘ
ell

±−→ †D}±).

• (�-Hodge theatre, Def. 10.24 (3)) †HT � = (†F�
†ψΘ±

±←− †FT
†ψΘell

±−→ †D}±).
• (D-��-Hodge theatre, Def. 10.40 (1)) †HT D-�� = (†HT D-�

gluing99K †HT D-�).
• (��-Hodge theatre, Def. 10.40 (2)) †HT �� = (†HT �

gluing99K †HT �).
Properties(Proposition 10.20, Lemma 10.25, Proposition 10.34, Lemma 10.37)

• Isom(†φNF
> , ‡φNF

> ) : an F>
l -torsor.

• #Isom(†φNF
> , ‡φNF

> ) = 1.

• #Isom(†HT D-�, ‡HT D-�) = 1.

• Isomcapsule-full poly(
†DJ ,

†DJ ′)
†φNF

> ,†φΘ> form a D-�-Hodge theatre : an F>
l -torsor.

• †φNF
>  †HT D-�, up to F>

l -indeterminacy.

• Isom(1ψNF
> , 2ψNF

> )
∼→ Isom(1φNF

> , 2φNF
> ).

• Isom(1ψΘ
> ,

2ψΘ
>)

∼→ Isom(1φΘ
>,

2φΘ
>).

• Isom(1HT Θ, 2HT Θ)
∼→ Isom(1D>,

2D>).

• Isom(1HT �, 2HT �) ∼→ Isom(1HT D-�, 2HT D-�).
• Isomcapsule-full poly(

‡FJ ,
‡FJ ′)

‡ψNF
> ,‡ψΘ

> form a �-Hodge theatre : an F>
l -torsor.

• Isom(†φΘ±
± , ‡φΘ±

± ) : a {±1} × {±1}V -torsor.
• Isom(†φNF

> , ‡φNF
> ) : an Fo±

l -torsor. we have a natural isomorphism

• Isom(†HT D-�, ‡HT D-�) : an {±1}-torsor.
• Isomcapsule-+-full poly(

†DT ,
†DT ′)

†φΘ
±

± ,†φΘ
ell

± form a D-�-Hodge theatre : an Fo±
l × {±1}V -torsor.

• †φΘell

±  †HT D-�, up to Fo±
l -indeterminacy.

• Isom(1ψΘ±
± , 2ψΘ±

± )
∼→ Isom(1φΘ±

± , 2φΘ±
± ).

• Isom(1ψΘell

± , 2ψΘell

± )
∼→ Isom(1φΘell

± , 2φΘell

± ).

• Isom(1HT �, 2HT �) ∼→ Isom(1HT D-�, 2HT D-�).
• Isomcapsule-+-full poly(

‡FT ,
‡FT ′)

‡ψΘ±
± ,‡ψΘell

± form a �-Hodge theatre : an Fo±
l × {±1}V -torsor.

Links

• (D-�-link, Def. 10.21) †HT D-� D−→ ‡HT D-� (†D`>

full poly
∼−→ ‡D`>).

• (D-�-link, Def. 10.35) †HT D-� D−→ ‡HT D-� (†D`>

full poly
∼−→ ‡D`>).

• (D-��-link, Cor. 11.24 (4)) †HT D-�� D−→ ‡HT D-�� (†D`∆

full poly
∼−→ ‡D`∆).

• (Θ-link, Def. 10.8) †HT Θ Θ−→ ‡HT Θ (†Ftheta

full poly
∼−→ ‡Fmod).

• (Θ×µ-link, Cor. 11.24 (3)) †HT �� Θ×µ

−→ ‡HT �� (†FI×µenv

full poly
∼−→ ‡FI×µ∆ ).

• (Θ×µgau-link, Cor. 11.24 (3)) †HT �� Θ×µ
gau−→ ‡HT �� (†FI×µgau

full poly
∼−→ ‡FI×µ∆ ).
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• (Θ×µLGP-link, Def. 13.9 (2)) †HT ��
Θ×µ

LGP−→ ∗HT �� ((‡→)†FI×µLGP

full poly
∼−→ ∗FI×µ∆ ).

• (Θ×µlgp -link, Def. 13.9 (2)) †HT ��
Θ×µ

lgp−→ ∗HT �� ((‡→)†FI×µlgp

full poly
∼−→ ∗FI×µ∆ ).

• (log-link, Def. 12.3) †HT �� log−→ ‡HT ��

(†HT D-�� ∼→ ‡HT D-��, †F>
log→ ‡F>,

†F�
log→ ‡F�, {†Fj

log→ ‡Fj}j∈J , {†Ft
log→ ‡Ft}t∈T ).
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uniform -, 31

abstractly equivalent, 6
algorithm
multiradial, 138, 173, 266
uniradial, 138

α-signed automorphism
- of †D, 171

anabelioid
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morphism of -s, 77

angular region, 125
arithmetic
Margulis-, 270
Shimura-, 270

arithmetically holomorphic, 59
arithmetic divisor, 9, 126
Q-, 9
R-, 9
effective -, 9, 126
principal -, 9

arithmetic line bundle, 9
Aut-holomorphic disc, 61
Aut-holomorphic orbispace, 62
Aut-holomorphic space, 61
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hyperbolic - of finite type, 61
local morphism of -s, 62
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co-holomorpic (U ,V)- -, 62
finite étale (U ,V)- -, 62
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morphism to †D}±, 155

Aut-holomorphic structure, 61
U-local pre- -, 61

bi-anabelian, 42
bi-coric
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bounded discrepancy class, 10
bridge
D-NF- -, 161
D-Θ- -, 162
D-Θ- - is glued to D-Θ±- -, 179
D-Θell- -, 174
D-Θ±- -, 174
NF- -, 168
Θ- -, 168
Θ- - is glued to Θ±- -, 179
Θell- -, 177
Θ±- -, 177
base-NF- -, 161
base-Θ- -, 162
base-Θell- -, 174
base-Θ±- -, 174
isomorphism of D-NF- -s, 161

isomorphism of D-Θ- -s, 162
isomorphism of D-Θell- -s, 174
isomorphism of D-Θ±- -s, 174
isomorphism of NF- -s, 168
isomorphism of Θ- -s, 169
isomorphism of Θell- -s, 177
isomorphism of Θ±- -s, 177
model D-NF- -, 160
model D-Θ- -, 161
model D-Θell- -, 174
model D-Θ±- -, 173
model NF- -, 166
model Θ- -, 166
model base-NF- -, 160
model base-Θ- -, 161
model base-Θell- -, 174
model base-Θ±- -, 173

CAF, 6
capsule, 7
#J- -, 7
- -full poly-isomorphism, 7
- -full poly-morphism, 7
morphism of -, 7

Cauchy sequence, 69
equivalent -, 69

closed point
algebraic -, 41

co-holomorphicisation, 62
pre- -, 62

commensurably terminal, 8
commensurator, 8
compactly bounded subset, 10
support of -, 10

condition
-(Cusp)X , 42
-(Delta)X , 42
-(Delta)’X , 42
-(GC), 42
-(slim), 42

co-orientation, 62
pre- -, 62

co-oriented, 62
coric, 180

∞κ- -, 130

∞κ- - structure, 133, 134, 136

∞κ×- -, 130
∞κ×- - structure, 133, 134, 136
κ- -, 129
- category, 179
- data, 179
-ally defined, 180
bi- -, 68
horizontally -, 68, 152, 173
vertically -, 68

critical point, 129
275
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strictly -, 129
cusp
±-label class of -s of Πv, 191
±-label class of -s of Π±

v , 191

±-label class of -s of †D}, 171
±-label class of -s of †Dv, 170

±-label class of -s of Π̂v, 191

±-label class of -s of Π̂±
v , 191

label class of -s of †D}, 159
label class of -s of †Dv, 158
non-zero -, 101
set of -s of †D}, 159
set of -s of †D}±, 171
set of -s of †Dv, 158, 170

set of -s of †D±
v , 170

set of -s of †Dv, 158
zero -, 101

cuspidalisation
Belyi -, 47
elliptic -, 45

cuspidal quotient, 44
cyclotome, 8
- of Gk, 56
- of M , 58
- of P , 129
- of ΠX as orientation, 50
- of K, 8
- of Π[µN ], 107
external - of †M, 114
internal - of †M, 114

cyclotomic envelope, 107
cyclotomic rigidity
- for inertia subgroup, 51
- in tempered Frobenioid, 128
- of mono-theta environment, 114

- via Q>0 ∩ Ẑ× = {1}, 133, 135
- via LCFT, 57, 58
- via positive rational structure and LCFT, 84
classical -, 57, 58

decent data from Z to F1, 261

edge-like subgroup, 80
element
negative - of Fo±

l , 169

positive - of Fo±
l , 169

étale-like object, 67
étale theta class, 93
- of standard type, 99, 106
standard set of values of -, 99

étale theta function, 94
étale-transport, 68, 237, 255
indeterminacies, 255

evaluation isomorphism, 202, 203, 205, 209, 212,
214, 215

formal -, 207
global formal -, 212

of F-prime-strips, 219
evaluation points
- of Xv, 160
- of X

v
, 161

Faltings height, 24
F±
l -group, 170

F±
l -torsor, 170
positive automorphism of, 170

frame, 65
-d, 65
orthogonal -, 65

Frobenioid, 119
µN -split pre- -, 119
×-Kummer pre- -, 121
×µ-Kummer pre- -, 121
p-adic -, 122
Archimedean -, 125
base category of elementary -, 119
base category of pre- -, 119
base-field-theoretic hull of tempered -, 124
birationalisation of model -, 120
divisor monoid of model -, 119
divisor monoid of pre- -, 119
elementary -, 119
global non-realified -, 132
global realified -, 126
isomorphism of pre- -s, 120
model -, 119
pre- -, 119
pre- - structure, 119
rational function monoid of model -, 119
realification of model -, 120
split pre- -, 119
split-×-Kummer pre- -, 121
split-×µ-Kummer pre- -, 121
tempered -, 124
vertically coric étale-like pre- -, 252

Frobenius
absolute -, 260

Frobenius-like object, 67
fundamental group
admissible - , 78

Galois evaluation
principle of -, 194, 262

graph
dual - , 77
dual semi- - , 77
semi- - of anabelioids, 77

graph of Ξ, 180

height function, 9
Hodge theatre
D-ΘNF- -, 162
D-Θ±ell- -, 175
D-Θ±ellNF- -, 179
D-��- -, 179



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 277

D-�- -, 175
D-�- -, 162
Θ- -, 151
ΘNF- -, 169
Θ±ell- -, 177
Θ±ellNF- -, 179
�- -, 177
�- -, 169
��- -, 179
base-ΘNF- -, 162
base-Θ±ell- -, 175
base-Θ±ellNF- -, 179
isomorphism of �- -, 177
isomorphism of �- -, 169
isomorphism of ��- -s, 179
isomorphism of D-�- -s, 175
isomorphism of D-�- -s, 162
isomorphism of D-��- -s, 179

holomorphic hull, 15

indeterminacy
horizontal -, 18
permutative -, 18
vertical -, 18

initial Θ-data, 26, 144
inter-universal Melline transformation, 31
inversion automorphism, 95, 101, 187
pointed -, 187, 188

isometry of O×µ(G), 121
isomorph, 8
isomorphism
of categories, 146

k-core, 41
admit -, 41

Kummer-detachment, 68, 237
indeterminacy, 257

Kummer-faithful, 40
Kummer isomorphism
- by Kummer structure, 136
- for M , 58
- for F-prime-strips, 217
- for Ik, 71, 73
- for k

×
(ΠX), 71

- for algebraic closure of number fields, 133, 217
- for constant monoids, 199, 208, 213
- for labelled Frobenioids, 217
- for labelled constant monoids, 209, 214
- for labelled number fields, 217
- for labelled pseudo-monoids, 217
- for local LGP-monoids, 245
- for monoids, 135
- for number fields, 217
- for pseudo-monoids, 133, 135, 217
- for theta monoids, 199
- of F⊥-prime-strip, 254

Kummer structure
×- -, 121

×µ- -, 121
- of an Aut-holomorphic space, 66
model - of an Aut-holomorphic space, 66
morphism of elliptically admissible

Aut-holomorphic orbispaces with -s, 66

l-cyclotomically full, 39, 40
line bundle
�- -, 140
�- -, 139
elementary morphism of �- -s, 140
elementary morphism of �- -s, 139
morphism of �- -s, 140
morphism of �- -s, 139
tensor product of �- -, 140
tensor product of �- -, 139

line segment, 64
- tangent to S · p, 65
endpoint of -, 64
parallel -s, 64

link
D-ΘNF- -, 163
D-Θ±ell- -, 176
D-�- -, 176
D-�- -, 163
D-��- -, 220
Θ- -, 151
Θ×µ- -, 219
Θ×µ

LGP- -, 249
Θ×µ

gau- -, 219

Θ×µ
lgp- -, 249

log- - from †Fv to ‡Fv, 221, 222

log- - from †F to ‡F, 223

log- - from †HT �� to ‡HT ��, 227
base-ΘNF- -, 163
base-Θ±ell- -, 176
full log- - from †Fv to ‡Fv, 221, 222

full log- - from †F to ‡F, 223

full log- - from †HT �� to ‡HT ��, 227
generalised Θ×µ

LGP- -, 262
log- -, 71, 73
tautological log- - associated to †Fv, 221, 222

tautological log- - associated to †F, 223
local additive structure, 64
local field, 6
local linear holomorphic structure, 65
system of -s, 66

local structure, 61
log-conductor function, 10
log-different function, 10
log-divisor
effective Cartier, 123

log-Kummer correspondence
global -, 253
local -, 247

log-meromorphic function, 123
log-orbicurve
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of type (1, (Z/lZ)Θ), 103
of type (1,Z/lZ), 103
of type (1,Z/lZ)±, 103
of type (1, l-tors−−→), 117

of type (1, l-tors), 101
of type (1, l-tors)±, 101
of type (1, l-torsΘ), 102

log-shell, 15, 73
étale-like holomorphic -, 71, 73
étale-like mono-analytic -, 72, 74
étale-like mono-analytic - associated to †D`

v , 225
Frobenius-like holomorphic -, 71
Frobenius-like holomorphic - associated to †Fv,

222, 223
Frobenius-like holomorphic - associated to †F,

223
Frobenius-like mono-analytic - associated to

†F`×µ
v , 224

Frobenius-like mono-analytic - associated to
†F`×µ, 224

vertically coric étale-like holomorphic -
associated to ∗D, 226

log-theta-lattice, 228
LGP-Gaussian -, 250
lgp-Gaussian -, 250
Gaussian -, 228
non-Gaussian -, 228

log-volume function, 14, 72
global -, 251
radial -, 14, 74

maximal cuspidally central quotient, 50
miracle identity, 30
MLF, 6
mono-analytic, 59
mono-anabelian, 32, 42, 66
mono-anabelian transport, 136
monoid
- on D, 118
Frobenioid-theoretic constant -, 199
Frobenioid-theoretic Gaussian -, 203
Frobenioid-theoretic theta -, 199
Frobenius-like global realified �-logarithmic

Gaussian procession -, 248
Frobenius-like global realified �-logarithmic

Gaussian procession -, 248
Frobenius-like global realified LGP- -, 248
Frobenius-like global realified lgp- -, 248
Frobenius-like local LGP- -, 244
Frobenius-like local logarithmic Gaussian

procession -, 244
group-like - on D, 118
mono-theta-theoretic constant -, 198
mono-theta-theoretic Gaussian -, 202
mono-theta-theoretic theta -, 198
morphism of split -s, 67
primary element of -, 126
prime of -, 126

split -, 67
vertically coric étale-like -, 252
vertically coric étale-like local LGP- -, 245
vertically coric étale-like local logarithmic
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ιŸ , 187

Iord, 236

JN , 89
J̈N , 91
JX , 117

kNF, 54
k(ΠX), 71
k∼, 71, 73
k(X), 73
K, 16, 145
K̈, 91
KN , 88
K̈N , 91
KV , 10
‡κ`×µ

v , 156
‡κ`×v , 156
†κ∼v , 222
†κv, 151
κv, 125

l, 145
l>, 6
l±, 6
(l∆Θ)(MΘ

∗ ), 183, 188
(l∆Θ)(MΘ
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†Õ~×, 132
†Õ�
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[A2] Y. André, Period mappings and differential equations: From C to Cp. MSJ Memoirs 12, Japanese
mathematical society, 2003.

[BO1] P. Berthelot, A. Ogus, Notes on crystalline cohomology. Princeton University Press, 1978, Prince-
ton, New Jersey.

[BO2] P. Berthelot, A. Ogus, F-Isocrystals and De Rham Cohomology. I Invent. Math. 72, (1983),159–199.
[Fo1] J.-M. Fontaine, groupes p-divisibles sur les corps locaux. Astérisque 47-48 (1977).
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