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We study bialgebras and Hopf algebras in the compact closed category Rel of sets and

binary relations. Various monoidal categories with extra structure arise as the categories of

(co)modules of bialgebras and Hopf algebras in Rel. In particular, for any group G, we

derive a ribbon category of crossed G-sets as the category of modules of a Hopf algebra in

Rel that is obtained by the quantum double construction. This category of crossed G-sets

serves as a model of the braided variant of propositional linear logic.

1. Introduction

Many important examples of traced monoidal categories (Joyal et al. 1996) and rib-

bon categories (tortile monoidal categories) (Shum 1994; Turaev 1994) have emerged in

mathematics and theoretical computer science during the last two decades. Ribbon

categories of particular interest to mathematicians are those of linear representations of

quantum groups (quasi-triangular Hopf algebras) (Drinfel’d 1987; Kassel 1995). In many

of these examples, there are braidings (Joyal and Street 1993) that are not symmetries: in

terms of the graphical presentation (Joyal and Street 1991; Selinger 2011), the braid c =

is distinguished from its inverse c−1 = , and this is the key property for providing

non-trivial invariants (or denotational semantics) of knots, tangles and so on (Freyd and

Yetter 1989; Kassel 1995; Turaev 1994; Yetter 2001) as well as solutions of the quantum

Yang–Baxter equation (Drinfel’d 1987; Kassel 1995) and 3-dimensional topological

quantum field theory (Bakalov and Kirilov 2001). In theoretical computer science, major

examples include categories with fixed-point operators used in denotational and algebraic

semantics (Bloom and Ésik 1993; Hasegawa 1999; Hasegawa 2009; Ştefǎnescu 2000),

and the category of sets and binary relations and its variations used for models of

linear logic (Girard 1987) and game semantics (Joyal 1977; Melliès 2004). Moreover, the

Int-construction (Joyal et al. 1996) provides a rich class of models of the Geometry of

Interaction (Girard 1989; Abramsky et al. 2002; Haghverdi and Scott 2011) and, more

generally, bi-directional information flow (Hildebrandt et al. 2004; Katsumata 2008). In

most of these cases the braiding is a symmetry, so is identified with .

† This is a revised and expanded version of the work presented at the Conference on the Mathematical

Foundations of Programming Semantics (MFPS XXVI): see Hasegawa (2010).
‡ This work was partly supported by the Grant-in-Aid for Scientific Research (C) 20500010 and the Grant-in-

Aid for Scientific Research (C) 23500016.
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Although it is nice to know that all these examples share a common structure, it is also

striking that the important examples from mathematics are almost disjoint from those

from computer science†. Is this just a matter of taste, or is it the case that categories used

in computer science cannot host structures interesting for mathematicians (non-symmetric

braidings in particular)?

In this paper we demonstrate that there are mathematically interesting structures in a

category preferred by computer scientists. Specifically, we focus on the category Rel of

sets and binary relations. Rel is a compact closed category (Kelly and Laplaza 1980),

that is, a ribbon category in which the braiding is a symmetry. We study bialgebras and

Hopf algebras in Rel, and show that various monoidal categories with extra structure, like

traces and autonomy, can be derived as the categories of (co)modules of bialgebras in Rel.

As a most interesting example, for any group G, we consider the associated Hopf algebra

in Rel, and apply the quantum double construction (Drinfel’d 1987) to it. The resulting

Hopf algebra is equipped with a universal R-matrix as well as a universal twist. We show

that the category of its modules is the category of crossed G-sets (Freyd and Yetter 1989;

Whitehead 1949) and suitable binary relations, featuring non-symmetric braiding and

non-trivial twist.

While the results mentioned above are interesting in their own right, we hope that this

work serves as a useful introduction to the theory of quantum groups for researchers

working on semantics of computation, and that it helps to connect these two research

areas, which deserve to interact much more.

Related work

Hopf algebras have been extensively studied in connection with quantum groups

(Drinfel’d 1987): standard references include Kassel (1995) and Majid (1995). The idea

of using Hopf algebras for modelling various non-commutative linear logics goes back

to Blute (1996), where the focus is on Hopf algebras in the ∗-autonomous category of

topological vector spaces. As far as we know, there is no published result on Hopf algebras

in Rel. Since Freyd and Yetter (1989), categories of crossed G-sets have appeared frequently

as typical examples of braided monoidal categories. In the standard setting of finite-

dimensional vector spaces, modules of the quantum double of a Hopf algebra A amount

to the crossed A-bimodules (Kassel 1995; Kassel and Turaev 1995), and our result is largely

an adaptation of such a standard result to Rel. However, we are not aware of any char-

acterisation in the literature of crossed G-sets in terms of a quantum double construction.

Organisation of the paper

In Section 2, we recall basic notions and facts for monoidal categories and bialgeb-

ras. In Section 3, we examine some bialgebras in Rel that arise from monoids and

† Important exceptions are the dagger compact closed categories used in the study of quantum information

protocols (Abramsky and Coecke 2004), though they do not feature non-symmetric braidings. Note that the

category of crossed G-sets we introduce later in the paper is actually a dagger tortile category in the sense of

Selinger (2011).
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groups, and study the categories of (co)modules. Section 4 is devoted to a quantum

double construction in Rel. In this development, we give a simplified description of

the quantum double construction in terms of the Int-construction on traced symmetric

monoidal categories. In Section 5, we observe that the ribbon Hopf algebra constructed

in the previous section gives rise to a ribbon category of crossed G-sets, and look

at some elements of this category. We discuss how this category can be used as a

model of braided linear logic in Section 6. Finally, Section 7 presents the paper’s

conclusions.

2. Monoidal categories and bialgebras

2.1. Monoidal categories

A monoidal (tensor) category (Mac Lane 1971; Joyal and Street 1993) C = (C,⊗, I, a, l, r)

consists of a category C, a functor ⊗ : C × C → C, an object I ∈ C and natural

isomorphisms

aA,B,C : (A ⊗ B) ⊗ C
∼→ A ⊗ (B ⊗ C)

lA : I ⊗ A
∼→ A

rA : A ⊗ I
∼→ A

subject to the standard coherence diagrams. A monoidal category C = (C,⊗, I, a, l, r) is

said to be strict if a, l, r are identity morphisms. For simplicity, in most of this paper

we will pretend that our monoidal categories are strict; Mac Lane’s coherence theorem

ensures that there is no loss of generality in doing so.

In the rest of this paper, we will make use of the graphical presentation of morphisms

in monoidal categories (Joyal and Street 1991; Selinger 2011). A morphism

f : A1 ⊗ A2 ⊗ · · · ⊗ Am → B1 ⊗ B2 ⊗ · · · ⊗ Bn

in a monoidal category will be drawn as:

f

Am

A2

.

.

.

A1

Bn

B2

.

.

.

B1

which is to be read from left to right.

Morphisms can be composed, sequentially:

X f Y Y g Z �→ X f Y g Z

g ◦ f

http://journals.cambridge.org
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or in parallel:

A f B

C g D

�→
A f B

C g D

f ⊗ g

A braiding (Joyal and Street 1993) is a natural isomorphism

cA,B : A ⊗ B
∼→ B ⊗ A

such that both c and c−1 satisfy the following ‘bilinearity’ or ‘Hexagon Axiom’ (the case

for c−1 is omitted):

(A ⊗ B) ⊗ C A ⊗ (B ⊗ C) (B ⊗ C) ⊗ A

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C) B ⊗ (C ⊗ A)
�

cA,B⊗C

�aA,B.C �cA,B⊗C

�

aB,C,A

�
aB,A,C

�
B⊗cA,C

For braidings, we shall use the drawings

cA,B =
B

A ��
A

B

and

c−1
A,B =

A

B

��
B

A

A symmetry is a braiding such that cA,B = c−1
B,A. In that case we simply draw

����

hence

�� = �� = ����
A braided/symmetric monoidal category is a monoidal category equipped with a braid-

ing/symmetry.

A twist or a balance for a braided monoidal category is a natural isomorphism

θA : A
∼→ A

such that

θA⊗B = cB,A ◦ (θB ⊗ θA) ◦ cA,B.

Twists are drawn as

θA =

θ−1
A =

http://journals.cambridge.org
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A balanced monoidal category is a braided monoidal category with a twist. Note that a

symmetric monoidal category is precisely a balanced monoidal category with θA = idA for

every A.

In a monoidal category, a dual pairing between two objects A and B is given by a pair

of morphisms d : I → A ⊗ B, called unit, and e : B ⊗ A → I , called counit, drawn as�� B

A

and
A

B

��
respectively, and satisfying

��
��=

and �� ��=

In such a dual pairing, B is called the left dual of A, and A is called the right dual of B.

For an object, its left (or right) dual, if it exists, is uniquely determined up to isomorphism.

A monoidal category is left autonomous or left rigid if every object A has a left dual A∗

with unit ηA : I → A ⊗ A∗ and counit εA : A∗ ⊗ A → I . In a left autonomous category,

I ∼= I∗

A∗ ⊗ B∗ ∼= (B ⊗ A)∗.

Also, (−)∗ extends to a contravariant functor, where, for a morphism f : A → B, its dual

f∗ : B∗ → A∗ is given as: ��f ��
A ribbon category (Turaev 1994) or tortile monoidal category (Shum 1994) is a balanced

monoidal category that is left autonomous and satisfies (θA)∗ = θA∗ . In a ribbon category,

(−)∗ is a contravariant equivalence, and there is a natural isomorphism A∗∗ ∼= A (hence

the left dual of A and the right dual of A are isomorphic). Note that a ribbon category

whose twist is the identity is a compact closed category (Kelly and Laplaza 1980).

A traced monoidal category (Joyal et al. 1996) is a balanced monoidal category C
equipped with a trace operator

TrXA,B : C(A ⊗ X,B ⊗ X) → C(A,B),

http://journals.cambridge.org
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which will be drawn as a ‘feedback’ operator

fA

X

B

X

�→

�� ��
fA B

satisfying a few coherence axioms. Alternatively, by the structure theorem in Joyal et al.

(1996), traced monoidal categories are characterised as monoidal full subcategories of

ribbon categories. Any ribbon category has a unique trace, called its canonical trace

(Joyal et al. 1996) – for uniqueness, see, for example, Hasegawa (2009). For a morphism

f : A ⊗ X → B ⊗ X in a ribbon category, its trace TrXA,Bf : A → B is given by

TrXA,Bf = (idB ⊗ (εX ◦ (idX∗ ⊗ θX) ◦ cX,X∗ )) ◦ (f ⊗ idX∗ ) ◦ (idA ⊗ ηX).

f
=

f

For monoidal categories C = (C,⊗, I, a, l, r) and C′ = (C′,⊗′, I ′, a′, l′, r′), a monoidal

functor from C to C′ is a tuple (F,m,mI ) where F is a functor from C to C′, m is a

natural transformation from F(−) ⊗′ F(=) to F(−⊗ =) and mI : I ′ → FI is an arrow

in C′, satisfying three coherence conditions. It is said to be strong if mA,B and mI are

all isomorphisms, and strict if they are all identities. A balanced monoidal functor from a

balanced C to another C′ is a monoidal functor (F,m,mI ) that also satisfies

mB,A ◦ cFA,FB = FcA,B ◦ mA.B

FθA = θFA.

For monoidal functors (F,m,mI ) and (G, n, nI ) with the same source and target monoidal

categories, a monoidal natural transformation from (F,m,mI ) to (G, n, nI ) is a natural

transformation ϕ : F → G such that

ϕA⊗B ◦ mA,B = nA,B ◦ ϕA ⊗ ϕB

ϕI ◦ mI = nI .

A (balanced/symmetric) monoidal adjunction between (balanced/symmetric) monoidal

categories is an adjunction in which both of the functors are (balanced/symmetric)

monoidal and the unit and counit are monoidal natural transformations.

2.2. Monoids, comonoids and (co)modules

A monoid in a monoidal category C = (C,⊗, I, a, l, r) is an object A equipped with

morphisms m : A ⊗ A → A, called the multiplication, and 1 : I → A, called the unit, such

that the following diagrams commute.

A ⊗ A ⊗ A A ⊗ A A A ⊗ A

A ⊗ A A A ⊗ A A

�A⊗m

�

m⊗A

�

m

�A⊗1

�

1⊗A

�
�

�
�

���

id

�

m

�
m

�
m
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With the notation

m = �
1 = �

these diagrams can be expressed as follows:

� �
=

� � � � = =
� �

When C is symmetric and m ◦ cA,A = m, that is,� = �
holds, we say A is commutative.

Dually, a comonoid in a monoidal category C is an object A equipped with morphisms

∆ : A → A ⊗ A, called the comultiplication, and ε : A → I , called the counit, satisfying

A A ⊗ A A A ⊗ A

A ⊗ A A ⊗ A ⊗ A A ⊗ A A

�∆

�

∆

�

A⊗∆

�∆

�

∆

�
�

�
�

���

id

�

A⊗ε

�
∆⊗A

�
ε⊗A

They can be drawn as

��
��

=

���� ��� = =
���

where

∆ =
��

ε = �
We say A is co-commutative when C is symmetric and cA,A ◦ ∆ = ∆, or, graphically,�� =

��
Suppose A = (A,m, 1) is a monoid. A gives rise to a monad A⊗(−) whose multiplication

is

m ⊗ X : A ⊗ A ⊗ X → A ⊗ X

and unit is

1 ⊗ X : X → A ⊗ X.

A (left) A-module is an Eilenberg–Moore algebra of this monad. More explicitly, an

A-module consists of an object X and a morphism α : A ⊗ X → X, called the action,

satisfying

X A ⊗ X A ⊗ A ⊗ X A ⊗ X

X A ⊗ X X

�1⊗X

�
�

�
�

���
id

�

α

�

m⊗X

�A⊗α

�

α

�
α
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or, in the graphical presentation,

� α =

and

� α =
α

α

A morphism of A-modules from (X, α) to (Y , β) is a morphism f : X → Y satisfying

A ⊗ X A ⊗ Y

X Y

�A⊗f

�
α

�
β

�
f

We will use Mod(A) to denote the category of A-modules and morphisms.

Dually, given a comonoid A = (A,∆, ε), a (left) A-comodule is an Eilenberg-Moore

coalgebra of the comonad A ⊗ (−) whose comultiplication is

∆ ⊗ X : A ⊗ X → A ⊗ A ⊗ X

and counit is

ε ⊗ X : A ⊗ X → X.

Explicitly, an A-comodule consists of an object X and a morphism α : X → A⊗X, called

the coaction, satisfying the axioms dual to those of modules. A morphism of A-comodules

from (X, α) to (Y , β) is then a morphism f : X → Y making the evident diagram commute.

We will denote the category of A-comodules and morphisms by Comod(A).

2.3. Bialgebras and Hopf algebras

We now suppose that C is a symmetric monoidal category with a symmetry

cX,Y : X ⊗ Y
∼=→ Y ⊗ X.

A bialgebra in C is given by a tuple A = (A,m, 1,∆, ε) where A is an object of C and

(A,m, 1) is a monoid in C while (A,∆, ε) is a comonoid in C, satisfying

A ⊗ A A

A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A ⊗ A A ⊗ A

�m

�

∆⊗∆

�

∆

�
A⊗cA,A⊗A

�
m⊗m

A ⊗ A A I I I

I A A ⊗ A A

�m

�
���ε⊗ε

�
��� ε

�
���
1 �

���
1⊗1

�id

�
���1�

∆

�
���
ε
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Graphically,

��� =

����
��

��� = �� � �= �� � �= idI

We say A is commutative (respectively, co-commutative) when it is commutative

(respectively, co-commutative) as a monoid (respectively, comonoid). For a bialgebra

A, we can consider the category of modules Mod(A) (for A as a monoid) as well as that

of comodules Comod(A) (for A as a comonoid). The functor A ⊗ (−) is both monoidal

and comonoidal. Moreover, as a monad A ⊗ (−) is comonoidal, while as a comonad it

is monoidal. It follows that both Mod(A) and Comod(A) are monoidal categories (cf.

Bruguieres and Virelizier (2006) and Pastro and Street (2009)). Explicitly, in Mod(A), the

tensor unit is

(I, A ⊗ I ∼= A
ε→ I)

and the tensor product of (X, α) and (Y , β) is

(X ⊗ Y ,A ⊗ X ⊗ Y
∆⊗X⊗Y−→ A ⊗ A ⊗ X ⊗ Y

A⊗cA,X⊗Y
−→ A ⊗ X ⊗ A ⊗ Y

α⊗β
−→ X ⊗ Y ).

α

β��
The monoidal structure of Comod(A) is given by dualising that of Mod(A).

A Hopf algebra is a bialgebra A = (A,m, 1,∆, ε) equipped with a morphism S : A → A,

called an antipode, such that

A ⊗ A A ⊗ A

A I A

A ⊗ A A ⊗ A

�S⊗A

�
���
m

�
���∆

�
���∆

�ε �1

�
A⊗S

�
���
m

commutes - see the picture below:�� S
� =

�� S � = � �

http://journals.cambridge.org
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We shall now recall some basic results on Hopf algebras. First, the antipode of a Hopf

algebra is unique – if S and S ′ are both antipodes, we have S = S ′ because

S =

�� �� S

S ′

�� = ��
�� S

S ′
��

= S ′

Lemma 2.1. For any Hopf algebra A = (A,m, 1,∆, ε, S), the equation S◦m = m◦(S⊗S )◦cA,A
holds.

� S = ���� S

S �
Proof. We give a graphical proof, in which each step follows from the axioms of

bialgebras and antipode:

� S = ��
��� S

S

� �����

=
���� �

�
��

��

���� �
�
�

S

S � �
� S

� �

=
����

�
�

�
�

��

��

���� �
��
�

����
S

S
�

�
� S

� �

=

����
��

���
�

�
�

���� ����

����
S

S
�

�
� S

� �
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=

��
�� �

�
�

�

�
��

��
S

S

S

�
� �

= ���� S

S �

(Those familiar with group theory might notice that this is just a graphical reworking of

the proof of (x · y)−1 = y−1 · x−1, cf. Example 2.7.)

From Lemma 2.1, we can easily derive the well-known fact that the antipode S of any

commutative or co-commutative Hopf algebra satisfies S ◦ S = id , and is thus invertible.

In general, an antipode does not have to be invertible – see Takeuchi (1971) for some

examples. It is also known that any Hopf algebra in a compact closed category with

equalisers has an invertible antipode (Takeuchi 1999), and this is the case for the category

of finite dimensional vector spaces. All concrete examples considered below have an

invertible antipode (see also Remark 3.5).

Lemma 2.2. If C is a compact closed category and A is a Hopf algebra in C, then Mod(A)

is left autonomous, where a left dual of a module (X, α) is

A ⊗ X∗ c→ X∗ ⊗ A
X∗⊗S⊗η

−→ X∗ ⊗ A ⊗ X ⊗ X∗ X∗⊗α⊗X∗

−→ X∗ ⊗ X ⊗ X∗ ε⊗X∗

−→ X∗.

����
S

��
α 	


The unit and counit of the dual pairing are given by the unit and counit of the dual

pairing of X and X∗ in C.

Proof. It suffices to show that

(i) the unit ηX : I → X ⊗ X∗ is a morphism of modules from (I, ε) to (X, α) ⊗ (X, α)∗;

and

(ii) the counit εX : X∗ ⊗ X → I is a morphism of modules of (X, α)∗ ⊗ (X, α) → (I, ε).

http://journals.cambridge.org
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The first of these amounts to the equation

�
���
�

S

��
α 	

α

����

��
=

�� �
which follows from the axioms of duality, modules and antipode. We can also show (ii)

in a similar way.

Remark 2.3. In this paper we only consider bialgebras and Hopf algebras in symmetric

monoidal categories. However, it makes complete sense to think about bialgebras and

Hopf algebras in braided monoidal categories, and this is the central topic in Majid (1994).

Remark 2.4. As noted in Cockett and Seely (1997), the category of modules of a bialgebra

in a symmetric or braided linearly distributive category is a linearly distributive category.

Similarly, the category of modules of a Hopf algebra in a symmetric or braided ∗-

autonomous category is a ∗-autonomous category.

2.4. Braiding and twists on modules of a bialgebra

If a bialgebra A is co-commutative, the monoidal category Mod(A) has a symmetry

inherited from the base symmetric monoidal category. However, whether A is co-

commutative or not, there can be some non-trivial braiding and twist on Mod(A). We

now suppose Mod(A) is braided with a braiding σ (while we use c for the symmetry of

the base symmetric monoidal category). Since A = (A,m) is an A-module, we have

σA,A : A ⊗ A → A ⊗ A,

and

cA,A ◦ σA,A ◦ (1 ⊗ 1) : I → A ⊗ A,

which we shall denote by R. Conversely, for this R : I → A ⊗ A, it can be seen that

σX,Y ◦ (f ⊗ g) = cX,Y ◦ (α ⊗ β) ◦ (A ⊗ cA,X ⊗ Y ) ◦ (R ⊗ X ⊗ Y ) ◦ (f ⊗ g)

holds for modules X = (X, α) and Y = (Y , β) and morphisms f : I → X and g : I → Y

in C. So from R, we can recover

σX,Y : X ⊗ Y → Y ⊗ X

as

σX,Y = cX,Y ◦ (α ⊗ β) ◦ (A ⊗ cA,X ⊗ Y ) ◦ (R ⊗ X ⊗ Y )

α

β

R �
��
�

provided the base symmetric monoidal category C is closed and the global section functor

C(I,−) : C → Set is faithful, which is the case for all commonly used examples, including

http://journals.cambridge.org
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the category of vector spaces and linear maps, as well as Rel. In such cases, there is a

bijective correspondence between braidings on Mod(A) and morphisms of I → A ⊗ A

satisfying certain equations (Kassel 1995; Majid 1995; Street 2007). Such a morphism

of I → A ⊗ A is called a universal R-matrix or a braiding element. Explicitly, a universal

R-matrix is a morphism R : I → A ⊗ A that:

(i) is convolution-invertible, that is, there exists R◦ : I → A ⊗ A satisfying

(m ⊗ m) ◦ (A ⊗ cA,A ⊗ A) ◦ (R ⊗ R◦) = (m ⊗ m) ◦ (A ⊗ cA,A ⊗ A) ◦ (R◦ ⊗ R)

= 1 ⊗ 1;

(ii) satisfies the following three equations:

R

���� ���
��

�
� =

R
��

��
��

�
�

R

��
=

R
�

��R ��
�� �

R �� =
R

��
R

��

�

The convolution-invertibility ensures the invertibility of the braid σ induced from R.

These three graphically presented equations imply that σ is a morphism of modules, that

σ is bilinear and that σ−1 is bilinear, respectively. A bialgebra equipped with a universal

R-matrix is called a quasi-triangular bialgebra.

We next let A be a quasi-triangular Hopf algebra in a compact closed category C and

suppose that Mod(A) is a ribbon category, that is, not just braided but also with a twist

θ. We then have a morphism v = θA ◦ 1 : I → A, which satisfies

θX ◦ f = α ◦ (v ⊗ X) ◦ f

for a module X = (X, α) and a morphism f : I → X in C. Thus, from this v we can

recover θX as θX = α ◦ (v ⊗ X) provided the global section functor C(I,−) is faithful.

In such cases, we have a bijective correspondence between twists on Mod(A) and certain

morphisms v : I → A satisfying a few axioms (Kassel 1995; Majid 1995; Turaev 1994).

Such a v is called a universal twist or a twist element. Explicitly, a universal twist is a

morphism v : I → A that:

(i) is convolution-invertible, that is, there exists v◦ : I → A such that m ◦ (v ⊗ v◦) = 1;

(ii) is central (m ◦ (A ⊗ v) = m ◦ (v ⊗ A)); and
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(iii) satisfies the following two equations:

v
�� =

R

��
R ���

��
�
�

v

v

�
�

v S = v

The convolution-invertibility implies that θ induced from v is invertible, and centrality

says that θ is a morphism of modules. The first equation amounts to the axiom for twists,

and the second is required for the axiom (θX)∗ = θX∗ . A quasi-triangular Hopf algebra

equipped with a universal twist is called a ribbon Hopf algebra. In summary, we have the

following results.

Proposition 2.5 (Turaev 1994; Kassel 1995; Yetter 2001).

(1) If A is a quasi-triangular bialgebra in a symmetric monoidal category C, then Mod(A)

is a braided monoidal category.

(2) If A is a ribbon Hopf algebra in a compact closed category C, then Mod(A) is a

ribbon category.

Note that every co-commutative Hopf algebra is equipped with a universal R-matrix

R = 1 ⊗ 1 and a universal twist v = 1, giving rise to the symmetry and trivial twist on the

category of modules. We will give a non-commutative non-co-commutative ribbon Hopf

algebra in Rel in Section 4.

2.5. Examples

We shall now look at a few basic cases.

Example 2.6. As a classical example, consider the category Vectk of vector spaces over a

field k and linear maps. Vectk is a symmetric monoidal category whose monoidal product

is given by the tensor product of vector spaces, and k (the 1-dimensional space) serves as

the tensor unit. Its full subcategory Vectfin
k of finite dimensional vector spaces is a compact

closed category: for a finite dimensional V , its left (and right) dual is the dual vector

space V ∗ = hom(V , k) of linear maps from V to k, with unit given by the dual basis and

counit the evaluation map. A monoid in Vectk is nothing but an algebra in the standard

sense. Similarly, a comonoid in Vectk is what is normally called a coalgebra. Modules,

comodules, bialgebras and Hopf algebras in Vectk and Vectfin
k are exactly those in the

classical sense – a detailed account can be found in Kassel (1995).

Example 2.7. Let Set be the category of sets and functions. By taking finite products as

tensor products, Set forms a symmetric monoidal category. A monoid in Set is just a

monoid in the usual sense. For any set X, the diagonal map X → X ×X and the terminal

map X → 1 give a commutative comonoid structure on X – and this is the unique

comonoid structure on X. Given a monoid M, its modules are just the M-sets, that is,

http://journals.cambridge.org


http://journals.cambridge.org

M. Hasegawa 632

sets on which M acts, and Mod(M) is isomorphic to the category M-Set of M-sets and

functions respecting M-actions. For any set X, a comodule (A, α : A → X×A) of the unique

comonoid X = (X,∆, ε) on X is determined by the function π ◦α : A → X, and Comod(X)

is isomorphic to the slice category Set/X. A bialgebra in Set is a monoid equipped with

the unique comonoid structure. A Hopf algebra in Set is then a group G with the unique

comonoid structure, where the antipode is given by the inverse g �→ g−1 : G → G.

3. Bialgebras in Rel

We will now turn our attention to the category Rel of sets and binary relations. Rel is

a compact closed (hence ribbon) category, where the tensor product of sets X and Y is

given by the direct product X × Y of sets and the unit object is a singleton set I = {∗}.
For a set X, its left dual X∗ is X itself, with unit and counit given by

ηX = {(∗, (x, x)) | x ∈ X} : I → X × X

εX = {((x, x), ∗) | x ∈ X} : X × X → I.

3.1. Bialgebras and Hopf algebras inherited from Set

The easiest cases of bialgebras and Hopf algebras in Rel are those arising from monoids

and groups in Set, respectively. First, note that there is an identity-on-objects strict

symmetric monoidal functor J : Set → Rel sending a set to itself and a function f : X → Y

to a binary relation {(x, f(x)) | x ∈ X} from X to Y . We also recall the following standard

result.

Lemma 3.1. A strong symmetric monoidal functor preserves the structure of monoids,

comonoids, bialgebras and Hopf algebras.

From this and Example 2.7, it follows that a monoid M = (M, ·, e) (in Set) gives rise to a

co-commutative bialgebra M = (M,m, 1,∆, ε) in Rel, with

m = J((a1, a2) �→ a1 · a2) = {((a1, a2), a1 · a2) | a1, a2 ∈ M}
1 = J(∗ �→ e) = {(∗, e)}
∆ = J(a �→ (a, a)) = {(a, (a, a)) | a ∈ M}
ε = J(a �→ ∗) = {(a, ∗) | a ∈ M}.

M is commutative if M is commutative. Similarly, a group G = (G, ·, e, (−)−1) gives rise

to a co-commutative Hopf algebra

G = (G,m, 1,∆, ε, S)

in Rel, with an antipode

S = {(g, g−1) | g ∈ G} : G → G.

Let us examine the category Mod(G) for a group G = (G, ·, e, (−)−1) – it makes sense

to think about Mod(M) for a monoid M, but when M is not a group the description of

Mod(M) can be rather complicated. A module of G is a set X equipped with a binary
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relation α : G × X → X subject to the two axioms given above. It is not hard to see that

α is actually a function because, for each g ∈ G, the relation

α ◦ (g × X) = {(x, x′) | ((g, x), x′) ∈ α} : X → X

is an isomorphism in Rel with inverse α ◦ (g−1 × X), and hence it is a bijective function.

In fact, α is a G-action on X since for g ∈ G and x ∈ X, by letting g • x be the unique

x′ ∈ X such that ((g, x), x′) ∈ α, we have e • x = x and

(g · h) • x = g • (h • x).

Therefore we can identify objects of Mod(G) with G-sets. A morphism from a G-set (X, •)

to (Y , •) is then a binary relation r : X → Y such that (x, y) ∈ r implies (g • x, g • y) ∈ r.

Since G is a co-commutative Hopf algebra, Mod(G) is a compact closed category that is

actually very similar to Rel. Explicitly, the tensor of (X, •) and (Y , •) is

(X × Y , (g, (x, y)) �→ (g • x, g • y)),

while the tensor unit is ({∗}, (g, ∗) �→ ∗). A left dual of (X, •) is (X, •) itself.

We shall now look at Comod(M) for a monoid M = (M, ·, e). A comodule of M is a set

X with a binary relation α : X → M×X subject to the comodule axioms – but the axioms

imply that α is a function whose second component is the identity on X. Hence an object

of Comod(M) can be identified with a set X equipped with a function | | : X → M. A

morphism from (X, | |) to (Y , | |) is then a binary relation r : X → Y such that (x, y) ∈ r

implies |x| = |y|. Comod(M) is a monoidal category, with

(X, | |) ⊗ (Y , | |) = (X × Y , (x, y) �→ |x| · |y|)
I = ({∗}, ∗ �→ e).

Note that the function | | does not have to respect the monoid structure in any way:

indeed, the only place where the monoid structure of M is used is in the definition of ⊗
and I .

Proposition 3.2.

(1) If M is a commutative monoid, Comod(M) is symmetric monoidal.

(2) If M is a left (respectively, right)-cancellable monoid, Comod(M) has a left (respect-

ively, right) trace in the sense of Selinger (2011).

(3) If M is a commutative cancellable monoid, Comod(M) is a traced symmetric monoidal

category.

(4) If G is a group, every object (X, | |) of Comod(G) has a left dual (X, | |−1), and

Comod(G) is pivotal (Freyd and Yetter 1989).

(5) If G is an Abelian group, Comod(G) is a compact closed category.

This proposition makes a connection between structures on a monoid (commutativity,

left/right cancellability, inverses) and the respective structures induced on the monoidal

category of comodules (symmetry, left/right trace, pivotal structure).

Thus we can derive a number of monoidal categories with symmetry, duals, and trace as

categories of (co)modules of (the associated bialgebra of) a monoid or a group. However,
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none of them have a non-symmetric braiding; we will give a Hopf algebra in Rel in

Section 4 whose category of modules has a non-symmetric braiding and a non-trivial

twist.

3.2. Some constructions

There are a number of ways of constructing bialgebras and Hopf algebras in Rel from the

existing ones. Here we shall look at some basic constructions that make sense not only for

Rel but also for general symmetric monoidal categories and compact closed categories.

Opposite bialgebras and Hopf algebras. Given a bialgebra

A = (A,m, 1,∆, ε)

in a symmetric monoidal category, its opposite bialgebra is the bialgebra

Aop = (A,mop, 1,∆, ε)

where mop = m ◦ cA,A, that is, �
If A is a Hopf algebra with invertible antipode S , then Aop is a Hopf algebra with antipode

S−1. The fact that S−1 is an antipode of Aop is an immediate consequence of Lemma 2.1.

This opposite construction makes sense in Rel. Concretely, given a bialgebra

A = (A,m, 1,∆, ε)

in Rel, its opposite bialgebra is the bialgebra

Aop = (A,mop, 1,∆, ε)

where

mop = m ◦ cA,A = {((x2, x1), y) | ((x1, x2), y) ∈ m}.
If A is a Hopf algebra with invertible antipode S , then Aop is a Hopf algebra with antipode

S−1 = {(y, x) | (x, y) ∈ S}.

For a group G, the Hopf algebra G
op

is isomorphic to Gop where Gop is the group obtained

by reverting the multiplication of G.

Dual bialgebras and Hopf algebras. Given a bialgebra

A = (A,m, 1,∆, ε)

in a compact closed category, its dual bialgebra is the bialgebra

A∗ = (A∗,∆∗, ε∗, m∗, 1∗)
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where†

∆∗ =

��
�� 	




�

ε∗ = ���
m∗ = � ��

��
�
�

1∗ =
� ��

If A is a Hopf algebra with antipode S , then A∗ is a Hopf algebra with antipode

S∗ =

��S ��
In the case of Rel, for a bialgebra

A = (A,m, 1,∆, ε),

its dual bialgebra is the bialgebra

A∗ = (A,∆∗, ε∗, m∗, 1∗)

where

∆∗ = {((y2, y1), x) | (x, (y1, y2)) ∈ ∆}
ε∗ = {(∗, x) | (x, ∗) ∈ ε}
m∗ = {(y, (x2, x1)) | ((x1, x2), y) ∈ m}
1∗ = {(y, ∗) | (∗, y) ∈ 1}.

If A is a Hopf algebra with antipode S , then A∗ is a Hopf algebra with antipode

S∗ = {(y, x) | (x, y) ∈ S}.

Remark 3.3. Some other authors define the dual bialgebra (Hopf algebra) A∗ as our

((Aop)∗)op, whose multiplication and comultiplication are given by

�� ����

�� 	



�and ����� ��

��
�
�

† Strictly speaking, we need to include the isomorphisms X∗ ⊗Y ∗ ∼= (Y ⊗X)∗ and I ∼= I∗ in some appropriate

places in this definition.
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See, for example, Kassel (1995) – our definition agrees with that of Majid (1994).

Tensor products. When

A1 = (A1, m1, 11,∆1, ε1)

A2 = (A2, m2, 12,∆2, ε2)

are bialgebras in a symmetric monoidal category, their tensor product is the bialgebra

A1 ⊗ A2 = (A1 ⊗ A2, m12, 112,∆12, ε12)

where

m12 = (m1 ⊗ m2) ◦ (A1 ⊗ cA2 ,A1
⊗ A2)

112 = 11 ⊗ 12

∆12 = (A1 ⊗ cA1 ,A2
⊗ A2) ◦ (∆1 ⊗ ∆2)

ε12 = ε1 ⊗ ε2.

Note that the bialgebra A1 ⊗A2 is isomorphic to A2 ⊗A1, and A
op
1 ⊗A

op
2 is isomorphic to

(A1⊗A2)
op. In the case of compact closed categories, the bialgebra A∗

1⊗A∗
2 is isomorphic to

(A2 ⊗A1)
∗. When both A1 and A2 are Hopf algebras with antipodes S1 and S2, respectively,

then A1 ⊗ A2 is a Hopf algebra with antipode S12 = S1 ⊗ S2. In Rel, they are

m12 = {(((x1, x2), (y1, y2)), (z1, z2)) | ((xi, yi), zi) ∈ mi}
112 = {(∗, (x1, x2)) | xi ∈ 1i}
∆12 = {((x1, x2), ((y1, y2), (z1, z2))) | (xi, (yi, zi)) ∈ ∆i}
ε12 = {((x1, x2), ∗) | (xi, ∗) ∈ εi}
S12 = {((x1, x2), (y1, y2)) | (xi, yi) ∈ Si}.

For groups G1 and G2, it is not hard to see that G1 ⊗ G2 is isomorphic to G1 × G2.

Using these constructions, we can construct non-commutative non-co-commutative

bialgebras and Hopf algebras in Rel. For example, for a non-Abelian group G, we have

G ⊗ G
∗

is a Hopf algebra that is neither commutative nor co-commutative. However,

this Hopf algebra does not have an R-matrix – for which we need a more sophisticated

construction, which is the topic of the next section.

Remark 3.4. Of course, there are lots of bialgebras and Hopf algebras in Rel which cannot

be obtained by these constructions on Ms or Gs. (In fact, bialgebras derived in this way

are isomorphic to M1 ⊗ M2
∗

for some monoids M1 and M2.) For an easy example, let X

be a set and (MX,⊕, 0) be the free commutative monoid on X, or, equivalently, let MX

be the set of finite multisets of elements of X, ⊕ be the union of multisets and 0 be the

empty multiset. Then there is a bialgebra

MX = (MX,m, 1,∆, ε)
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in Rel where

m = {((x1, x2), x1 ⊕ x2) | xi ∈ MX}
1 = {(∗, 0)}
∆ = {(x1 ⊕ x2, (x1, x2)) | xi ∈ MX}
ε = {(0, ∗)}.

MXop and MX∗ are obviously isomorphic to MX.

Remark 3.5. At the time of writing this paper, we do not know if all Hopf algebras in

Rel have an invertible antipode. Note that Rel does not have all equalisers, so the result

in Takeuchi (1999) cannot be applied to Rel. On the other hand, it is not clear if the

construction of a Hopf algebra with a non-invertible antipode in Takeuchi (1971) can be

carried out in Rel.

4. A quantum double construction in Rel

In the previous section, we observed that every group G = (G, ·, e, (−)−1) gives rise

to a co-commutative Hopf algebra G = (G,m, 1,∆, ε, S) in Rel. In this section we will

obtain a quasi-triangular Hopf algebra by applying Drinfel’d’s quantum double construction

(Drinfel’d 1987; Majid 1990) to G.

4.1. Quantum double construction in compact and traced categories

We shall use the quantum double construction given in terms of Hopf algebras in compact

closed categories.

Proposition 4.1. (See Chen (2000), Kassel (1995) and Kassel and Turaev (1995).) Suppose

C is a compact closed category and A = (A,m, 1,∆, ε, S) is a Hopf algebra in C, where

the antipode S is invertible. Then there exists a quasi-triangular Hopf algebra D(A) on

A ⊗ A∗.

Before going into the technical details, we will first explain an outline of the construction

and make some informal remarks. Given a Hopf algebra A = (A,m, 1,∆, ε, S) with S

invertible, let

Aop∗ = (A∗,∆∗, ε∗, (mop)∗, 1∗, (S−1)∗)

be the dual opposite Hopf algebra. There are suitable actions of A on Aop∗ and Aop∗ on

A, and with them we can form a bicrossed product (Majid 1990; 1995) of A with Aop∗,

which is the Hopf algebra D(A). Note that D(A) is almost like a tensor product of A and

Aop∗ – apart from some clever adjustments to the multiplication and antipode. Also note

that Mod(Aop∗) is isomorphic to Comod(A) as a monoidal category, and Mod(D(A)) can

be regarded as a combination of Mod(A) and Comod(A), as we will soon see for the case

of G in Rel.

Unfortunately, a direct description of D(A) is rather complicated – see Chen (2000), for

instance. Instead, we shall give an alternative, simpler description using the Int-construction

of Joyal et al. (1996).
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Recall that for a traced monoidal category C, we can construct a ribbon category Int(C)

whose objects are pairs of those of C, and a morphism

f : (A+, A−) → (B+, B−)

in Int(C) is a morphism from A+ ⊗ B− to B+ ⊗ A− in C, which can be drawn as

f
B−

A+

A−

B+

The composition of f : (A+, A−) → (B+, B−) and g : (B+, B−) → (C+, C−) is�� ��
�

�

f

�
�

g
�

�

The tensor product of (A+, A−) and (B+, B−) is (A+ ⊗ B+, B− ⊗ A−), while the unit object

is (I, I) – see Joyal et al. (1996) and Hasegawa (2009) for further details of the structure

of Int(C).

Proposition 4.2. For a Hopf algebra A = (A,m, 1,∆, ε, S) with an invertible antipode S

in a traced symmetric monoidal category C, there is a quasi-triangular Hopf algebra

((A,A), md, 1d,∆d, εd, Sd) with a universal R-matrix R in Int(C) given as follows:

md : (A,A) ⊗ (A,A) → (A,A)

�� �� 

� 	
ϕ 1d : I → (A,A) � �

∆d : (A,A) → (A,A) ⊗ (A,A)

��� εd : (A,A) → I � �

Sd : (A,A) → (A,A)

S

S−1

�
�

	

ϕ

R : I → (A,A) ⊗ (A,A) � � R◦ : I → (A,A) ⊗ (A,A) � �S−1

where ϕ : A ⊗ A → A ⊗ A is
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�� S
�

�� �

Proof (outline). We just need to check that all axioms of quasi-triangular Hopf algebras

hold – this is perhaps best done by equational reasoning on the graphical presentations

using sufficiently large sheets of paper. Checking the axioms that do not involve md and

Sd is fairly straightforward since there is no interaction between the first (positive, lower)

component and the second (negative, upper) component. Cases with md or Sd, and thus

ϕ, do need some work. Here we shall just show one of the more complex cases in the

form of the first axiom for universal R-matrices:

R

���� ���
��

�
� ?

=
R

��

��
��

�
�

From the definition, the left-hand side of this axiom is equal to

�
�

�
��

���
�

��
�� �

�
	

ϕ

�
�

	

ϕ �

�

�
�

� �
�

�
�

�
��

�
�

�
� ��

�
�

�
�� �

�
��

�
���

�
��

�
�

�
� ��

�
�

�

�
�

��
�

�

�
�

�
� �

�
�

��

���
�

�
�

��

After some simplifications, using the easily derivable equation�� 	
ϕ
�

=
�

This is equal to ��
��

�
��
��

�
	

ϕ

���
�

�
�

Similarly, the right-hand side is
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�
�

�
�

��
���

��
�� �

�
	

ϕ

�
�

	

ϕ �

�

�
�

� �
�

�
�

�
��

�
�

�
�

�
�

�
����

�
�

��

�� ��

�
�

�

�
�

��
�

�����

�
�

�
��

����

��

�
�

�
��

which, making use of the easy equation �� 	
ϕ� = �
turns out to be equal to ��

��
�

�
�

��

�
�

�
�

	

ϕ
����

�
���

�
�

By expanding the definition of ϕ and using some further simplifications, both of these

finally agree with ��
��

�
��

��
��

�
�

When C itself is a compact closed category, there is a strong symmetric monoidal

equivalence F : Int(C) → C sending (A+, A−) to F(A+, A−) = A+ ⊗ A∗
−, with the obvious

isomorphism from

F(A+, A−) ⊗ F(B+, B−) = A+ ⊗ A∗
− ⊗ B+ ⊗ B∗

−

to

F((A+, A−) ⊗ (B+, B−)) = A+ ⊗ B+ ⊗ (B− ⊗ A−)∗.

Through this equivalence, this quasi-triangular Hopf algebra on (A,A) in Int(C) is sent to

a quasi-triangular Hopf algebra on A ⊗ A∗ in C, as claimed in Proposition 4.1.
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4.2. Quantum double of G in Rel

We will now turn our attention to the Hopf algebra G in Rel. Since the antipode S

of G is invertible, we can apply the quantum double construction to G and obtain a

quasi-triangular (in fact, ribbon) Hopf algebra D(G).

By Proposition 4.2, the quantum double of G in Int(Rel) is

((G,G), md, 1d,∆d, εd, Sd, R)

where

md = {(((h1, h2), g), (h1h2, (h
−1
1 gh1, g))) | g, h1, h2 ∈ G}

1d = {((∗, g), (e, ∗)) | g ∈ G}
∆d = {((h, (g2, g1)), ((h, h), g1g2)) | g1, g2, h ∈ G}
εd = {((g, ∗), (∗, e)) | g ∈ G}
Sd = {((h, h−1g−1h), (h−1, g)) | g, h ∈ G}
R = {((∗, (h, g)), ((e, g), ∗)) | g, h ∈ G}
R◦ = {((∗, (h, g−1)), ((e, g), ∗)) | g, h ∈ G}

Graphically:

md �� �� 

� 	
ϕ

g
g

g
h−1
1gh1

h2

h1 h1

h1h2

1d

�g � e

∆d �g1

g2
g1g2��h
h

h

εd

�g � e

Sd

Sh

h−1

h−1

S−1h−1g−1h
g−1

g
�
�

	

ϕ

R

� �h e

g g

R◦

� �h e

S−1g g−1

where

ϕ = �� S
�

�� �u

x
x

x x−1

x

x−1u

x−1ux

x

Moreover, G has a universal twist

{((∗, g), (g, ∗)) | g ∈ G} : I → (G,G),

so it is a ribbon Hopf algebra. We can then obtain the following theorem through the

strong symmetric monoidal equivalence from Int(Rel) to Rel.

Theorem 4.3. Suppose G = (G, ·, e, (−)−1) is a group. There is a ribbon Hopf algebra

D(G) = (G × G,md, 1d,∆d, εd, Sd, R, v)
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in Rel, with

md = {(((g, h1), (h
−1
1 gh1, h2)), (g, h1h2)) | g, h1, h2 ∈ G}

1d = {(∗, (g, e)) | g ∈ G}
∆d = {((g1g2, h), ((g1, h), (g2, h)) | g1, g2, h ∈ G}
εd = {((e, g), ∗) | g ∈ G}
Sd = {((g, h), (h−1g−1h, h−1)) | g, h ∈ G}
R = {(∗, ((g, e), (h, g))) | g, h ∈ G}
v = {(∗, (g, g)) | g ∈ G}

where R is the universal R-matrix and v is the universal twist.

When G is not Abelian, D(G) is neither commutative nor co-commutative. In the next

section, we shall see that modules of D(G) can be identified with the crossed G-sets (Freyd

and Yetter 1989; Whitehead 1949).

5. A ribbon category of crossed G-sets

5.1. Crossed G-sets

Let G = (G, ·, e, (−)−1) be a group. A crossed G-set X = (X, •, | |) is given by a set X

together with a group action • : G×X → X and a function | | from X to G such that, for

any g ∈ G and x ∈ X, we have |g • x| = g · |x| · g−1. For instance, G itself can be seen to

be a crossed G-set with g • h = g · h · g−1 and |h| = h. Another trivial example is a G-set

with |x| = e.

Proposition 5.1. For any set X, there is a bijective correspondence between D(G)-modules

on X and crossed G-sets on X.

Proof. If α : G × G × X → X is a D(G)-module, for any g ∈ G and x ∈ X, there are

unique h ∈ G and y ∈ X such that (((h, g), x), y) ∈ α, and X carries the structure of a

crossed G-set where g • x is this uniquely determined y and |x| is the unique h such that

(((h, e), x), x) ∈ α. Conversely, a crossed G-set (X, •, | |) gives rise to a module

{(((|g • x|, g), x), g • x) | g ∈ G, x ∈ X} : G × G × X → X.

It is not hard to see that this is a bijective correspondence.

A morphism of crossed G-sets from (X, •, | |) to (Y , •, | |), corresponding to the

morphism of D(G)-modules, is a binary relation r : X → Y such that (x, y) ∈ r implies

(g•x, g•y) ∈ r as well as |x| = |y|. The identity and composition of morphisms are just the

same as those for binary relations. We will use XRel(G) to denote the category of crossed

G-sets and morphisms, which is isomorphic to Mod(D(G)). Note that the category G-��ff

of crossed G-sets due to Freyd and Yetter (Freyd and Yetter 1989) is the subcategory of

XRel(G) for which the morphisms are restricted to functions and the objects are finite. A

variant of XRel(G) where G is not a group but a commutative monoid has appeared in

Abramsky et al. (1999).
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For any set X, the free crossed G-set over X is given by

F(X) = (G × G × X, •, | |)

with

g • (h1, h2, x) = (g · h1 · g−1, g · h2, x)

and

|(h1, h2, x)| = h1.

F extends to a functor from Rel to XRel(G) which is left adjoint to the forgetful functor

U : XRel(G) → Rel that sends (X, •, | |) to X.

5.2. The ribbon structure on XRel(G)

By Proposition 2.5, Mod(D(G)), and thus XRel(G), is a ribbon category. In XRel(G), the

tensor unit is I = ({∗}, (g, ∗) �→ ∗, ∗ �→ e), and the tensor product of X = (X, •, | |) and

Y = (Y , •, | |) is

X ⊗ Y = (X × Y , (g, (x, y)) �→ (g • x, g • y), (x, y) �→ |x| · |y|).

The tensor product of morphisms, as well as the coherence isomorphisms a, l and r, are

inherited from Rel. For this monoidal structure we have a braiding σX,Y : X⊗Y
∼=→ Y ⊗X

induced by the universal R-matrix R given by

σX,Y = {((x, y), (|x| • y, x)) | x ∈ X, y ∈ Y }.

There is also a twist θX : X
∼=→ X induced by the universal twist v given by

θX = {(x, |x| • x) | x ∈ X}.

For a crossed G-set X = (X, •, | |), its left dual is X∗ = (X, •, | |−1), with unit

ηX = {(∗, (x, x)) | x ∈ X} : I → X ⊗ X∗

and counit

εX = {((x, x), ∗) | x ∈ X} : X∗ ⊗ X → I.

Note that the canonical trace on XRel(G) is just given like that on Rel, so for

f : A ⊗ X → B ⊗ X,

the trace TrXA,Bf : A → B is

TrXA,Bf = {(a, b) ∈ A × B | ∃x ∈ X((a, x), (b, x)) ∈ f}.

5.3. Interpreting tangles in XRel(G)

Since the category of (oriented, framed) tangles is equivalent to the ribbon category freely

generated by a single object (Shum 1994), by specifying a ribbon category and an object,

we always obtain a structure-preserving functor from the category of tangles to the ribbon
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category, which determines an invariant of tangles (Yetter 2001). This is also the case for

XRel(G).

In order to understand how a crossed G-set gives rise to an invariant of tangles, it is

helpful to consider the rack (Fenn and Rourke 1992) associated with the crossed G-set†.

Given a crossed G-set (X, •, | |), we define operators 
, 
−1 : X × X → X by

x 
 y = |y| • x

x 
−1 y = |y|−1 • x.

Then (X, 
, 
−1) forms a rack: that is, the following equations hold‡:

(x 
 y) 
−1 y = x = x 
−1 y) 
 y (bijectivity of (−) 
 y)

(x 
 y) 
 z = (x 
 z) 
 (y 
 z). (self-distributivity)

We can now describe braiding and twist in terms of this rack:

σX,Y = {((x, y), (y 
 x, x)) | x ∈ X, y ∈ Y }
θX = {(x, x 
 x) | x ∈ X}.

The interpretation of a tangle diagram in XRel(G) with a crossed G-set X is then

determined by all possible X-labellings of the segments from an underpass to the next

underpass satisfying ‘y under x from the left gives y 
 x’ and ‘y under x from the right

gives y 
−1 x’:

�
�����
��	

y

x

x

y 
 x

�
��	��
���

x

y

y 
−1 x

x ��
x x 
 x �� ��
x x 
−1 x

For instance, the self-distributivity justifies the Reidemeister move III:

��
�

��
�� �

�
�� ��

��	

�
�

�
�

���
x

y

z

x 
 y

z

y 
 z

(x 
 y) 
 z

∼

��
�

��
��	

��
�� �

���
�

�
�

�
��

�x

y

z

x 
 z

z

y 
 z

(x 
 z) 
 (y 
 z)

Similarly, the Reidemeister move II is justified by the bijectivity:

�
���

��	
��

����
���

x (x 
 y) 
−1 y

y y
x 
 y

∼
�

�

x x

y y

∼ �
���

���
��

����
��	

x x

y (y 
−1 x) 
 x

y 
−1 x

The framed version of the Reidemeister move I is also justified by the self-distributivity

and bijectivity:

��x �� ��

x 
 x

(x 
 x) 
−1 (x 
 x)

∼
�x x

∼
��
x �� ��

x 
−1 x
(x 
−1 x) 
 (x 
−1 x)

† Indeed, another name for crossed G-sets is augmented racks, which was coined by Fenn and Rourke, who

showed that every rack arises from an augmented rack, and hence a crossed G-set.
‡ However, this does not have to be a quandle in the sense of Joyce (1982), since the idempotency x 
 x = x

does not hold in general.
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In the above, the equation (x 
 x) 
−1 (x 
 x) = x is derivable as

(x 
 x) 
−1 (x 
 x) = (((x 
−1 x) 
 x) 
 x) 
−1 (x 
 x) (bijectivity)

= (((x 
−1 x) 
 x) 
 (x 
 x)) 
−1 (x 
 x) (self-distributivity)

= (x 
−1 x) 
 x (bijectivity)

= x. (bijectivity)

The equation (x 
−1 x) 
 (x 
−1 x) = x also follows from a similar reasoning – consider

(((x 
−1 x) 
 (x 
−1 x)) 
 x) 
−1 x.

Example 5.2. Consider the following link:

� �

Its interpretation in XRel(G) with a crossed G-set X takes a value in

XRel(G)(I, I) = {idI ,�},

and it is the identity relation idI if there exist x, y ∈ X such that

x = x 
 y

y = y 
 x

hold; otherwise it is the empty relation �.

These invariants are far from complete. For example, the links�
�

�
� and ��

always have the same interpretation for any crossed G-set.

6. A model of braided linear logic

In this section we outline the notion of models of (fragments of) braided linear logic, and

see how XRel(G) in the previous section gives such a model. For a detailed exposition on

categorical models of linear logic, see Melliès (2009). Some considerations on the proof

theory of braided linear logic can be found in Bellin and Fleury (1998).

6.1. Models of braided linear logic

By a model of braided multiplicative linear logic (braided MLL), we mean a braided ∗-

autonomous category (Barr 1995); note that a ribbon category is braided ∗-autonomous,

and is thus a model of braided MLL. A model of braided multiplicative additive linear

logic (braided MALL) is then a braided ∗-autonomous category with finite products.
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For the exponential, we employ the following generalisation of the notion of linear

exponential comonads (Hyland and Schalk 2003) on symmetric monoidal categories: by a

linear exponential comonad on a braided monoidal category, we mean a braided monoidal

comonad whose category of coalgebras is a category of commutative comonoids. A model

of braided MELL is then a braided ∗-autonomous category with a linear exponential

comonad. (An implication of this definition is that braiding becomes symmetry on

exponential objects: σ−1
!X,!Y = σ!Y ,!X .) A model of braided LL is a model of braided

MALL with a linear exponential comonad (or a model of MELL with finite products).

6.2. XRel(G) as a model of braided linear logic

XRel(G) is a ribbon category with finite products, and is thus a model of braided MALL.

There is a strict balanced monoidal functor F : Rel → XRel(G) that sends a set X to

FX = (X, (g, x) �→ x, x �→ e).

F has a right adjoint U : XRel(G) → Rel that sends X = (X, •, | |) to

UX = {x ∈ X | |x| = e}/∼

where x ∼ y if and only if g • x = y for some g. By composing F and U with a linear

exponential comonad ! on Rel (for example, the finite multiset comonad), we obtain a

linear exponential comonad F!U on XRel(G) whose category of coalgebras is equivalent

to that of !. Hence, XRel(G) is a model of braided LL.

As a result, there exists a linear fixed-point operator on XRel(G) derived from the trace

and the linear exponential comonad on XRel(G) as given in Hasegawa (2009), which

can be used for interpreting a linear fixed-point combinator YX :!(X � X) � X. (In

Hasegawa (2009), we constructed such a linear fixed-point operator on traced symmetric

monoidal categories with a linear exponential comonad. While the braiding of XRel(G) is

not symmetric, the construction given there works without any change, essentially because

braiding becomes symmetry on exponential objects, as noted above.)

XRel(G) is degenerate as a model of LL in the sense that it cannot distinguish tensor

from par. As an easy remedy, one may apply the simple self-dualisation construction

(Hyland and Schalk 2003) to obtain a ‘non-compact’ model. For a braided monoidal

closed category C with finite products, there is a braided ∗-autonomous structure on

C × Cop whose tensor unit is (I, 1) (where 1 is a terminal object and should not be

confused with the unit element of a monoid) and tensor product is given by

(U,X) ⊗ (V , Y ) = (U ⊗ V ,U � Y × V � X),

while the duality is given by (U,X)⊥ = (X,U). By applying the simple self-dualisation

construction to XRel(G), we obtain a ‘non-compact’ model XRel(G)×XRel(G)op of braided

LL. Alternatively, XRel(G) × XRel(G)op arises as the category of modules of D(G) (or

(D(G),�) to be more precise) in the ∗-autonomous category Rel × Relop obtained by the

simple self-dualisation on Rel.
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7. Concluding remarks

We have demonstrated that there are many non-trivial Hopf algebras in the category of

sets and binary relations. In particular, by applying the quantum double construction, we

have constructed a non-commutative non-co-commutative Hopf algebra with a universal

R-matrix and a universal twist, and the ribbon category of its modules turns out to be a

category of crossed G-sets.

Technically, most of our results are variations or instances of the already established

theory of quantum groups, and we do not claim much novelty in this regard. What is

much more important in this work, we believe, is that our results show that it is indeed

possible to carry out a substantial part of quantum group theory in a category used for

the semantics of computation and logic. Although we have spelled out just a particular

case of Rel, we expect that the same can be done meaningfully in various other settings,

including:

— the ∗-autonomous category of coherent spaces and linear maps (Girard 1987), and its

variations used as models of linear logic;

— various categories of games, in particular the compact closed category of Conway

games (Joyal 1977; Melliès 2004); and

— the category of sets (or presheaves on discrete categories) and linear normal functors

(Hasegawa 2002), as well as the bicategory of small categories and profunctors.

The first two would lead to models of braided linear logic and some braided variants of

game semantics. The third should be a direct refinement of our work on Rel, in that we

replace binary relations X ×Y → 2 with Set-valued functors X ×Y → Set (which amount

to linear normal functors from SetX to SetY ).

Finally, we must admit that the computational significance of braided monoidal struc-

ture is yet to be examined. As far as we know, XRel(G) is the first non-symmetric ribbon

category featuring a linear exponential comonad, which allows non-trivial interpretations

of braidings as well as recursive programs at the same time. If we are to develop a sort

of braided variant of denotational semantics in future, XRel(G) might be a good starting

point. A potentially related direction would be the area of topological quantum computation

(Freedman et al. 2002; Kitaev 2003; Wang 2010; Panangaden and Paquette 2011), in which

modular tensor categories† (Turaev 1994; Bakalov and Kirilov 2001) play the central role.

Although XRel(G) is not modular, it might be possible to develop a toy (and suitably

simplified) model of topological quantum computation in it.
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