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Abstract

We study the glueing constructions (comma, objects) on general al-
gebraic structures on a 2-category, described in terms of 2-monads and
adjunctions. Specifically, lifting theorems for the comma objects and
change-of-base results on both algebras of 2-monads and adjunctions in a
2-category are presented.

As a leading example, we take the 2-monad on Cat whose algebras are
symmetric monoidal categories, and show that many of the constructions
in our previous work on models of linear type theories can be derived
within this axiomatics.

1 Introduction

In the previous work [2, 3] we have considered a glueing construction for symmet-
ric monoidal (closed) categories, for studying the logical predicates for models of
linear type theories. In that construction the glueing functor is supposed to be
lax symmetric monoidal, thus preserves the structure only up to a few coherent
morphisms, not up to isomorphisms or identity.

From a view of the study of categories with algebraic structures [8] (which
generalizes the study of sets with algebraic structures), symmetric monoidal
categories are algebras of a 2-monad on Cat, while lax symmetric monoidal
functors are lax morphisms between the algebras. The case study on symmetric
monoidal structures suggests that, general algebraic structures determined by a
2-monad on a 2-category enjoy a glueing construction along a lax morphism. In
fact this is the case, and this is the first statement of this paper (Theorem 2.1).

However, in the same work we actually dealt with the glueing of symmetric
monoidal closed structures. As well known, symmetric monoidal closed cate-
gories are not algebras of a 2-monad on Cat; but the closed structure is deter-
mined as right adjoints of the symmetric monoidal products, thus their glueing
can be obtained by combining the observation on glueing algebras of 2-monads
together with a form of adjoint-lifting theorem. So, in Section 2 we also state
a result on glueing adjunctions (Theorem 2.4). Together with Theorem 2.1, we
can derive many of the results in [2, 3] in this 2-categorical axiomatics.



Section 3 is devoted to two change-of-base results of the algebras as well
as adjunctions, which involve the idiom of (2-categorical generalizations of)
fibrations and cofibrations. The assumptions might be seen somewhat artifi-
cial. However, since a comma object can be characterized as a pullback of the
codomain (co)fibration, the setting in this section can be naturally related to
that in Section 2. In any case, we use the change-of-base result for adjunctions
(Theorem 3.2) for deriving Theorem 2.4.

These results show the applicability of the glueing constructions for interest-
ing algebraic structures. In principle, we can handle any structures which arise
as algebras of 2-monads on 2-categories, as well as those with some operators de-
termined in terms of adjunctions. Examples related to computer science include
cartesian closed categories, (symmetric) monoidal closed categories, symmet-
ric monoidal adjunctions between a cartesian closed category and a symmetric
monoidal closed category, and closed Freyd categories. Most cases take place in
the 2-category Cat, except the last one for which we work in the 2-category of
Set™ -categories.

As direct applications we have full completeness of the translations between
various type theories whose models are described in terms of these algebraic
structures. We sketch an instance in Section 4.

Preliminaries

Comma Objects. Throughout this paper we work on a 2-category C with
comma objects ((op)lax limit [6]) BT for each 1-cell I" : A— B which is a lax
cone

BT

A————B
satisfying two universal properties [9]:
1. For any lax cone
C
fO K fl
<&
A B

there is a unique g : C— B|I" so that its composition with A is equal to
% (hence dg o g = fo and d; o g = f; hold).
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then there is a unique 7 : f = g so that a = do o~ and ﬂ =d; 0.

Algebras of a 2-monad and Morphisms between Them. We suppose
that T is a (strict) 2-monad on C (thus a V-monad where V = Cat). We will talk
about (strict) T-algebras (Aa : TA— A (where a is asked to satisfy on the
nose the usual unit and associativity laws), and about strict, strong and (op)lax
T-algebra morphisms [1]. A lax T-algebra morphism between T-algebras (4 a)
and (B b) is a pair (I : A— BT : bo TT = T o a) subject to a few coherence
laws; it is strong if T is invertible, and strict if it is the identity.

Fibrations in a 2-category. Later we also use a notion of fibrations and
cofibrations in 2-categories, via a ‘representable definition’; that is, a 1-cell
p : E — Bis a (co)fibration iff C(—,p) is a functor into the category of
(co)fibrations and morphisms between them in the usual sense. In other words,
C(X,p):C(X,E) — C(X,B) is a (co)fibration for each X, and C(F, E) : C(Y,E) —
C(X, ) preserves (co)cartesian morphisms for any F': Y — X. (See [5] for com-
parisons with other definitions of fibrations in 2-categories where this definition
corresponds to the notion of strict fibration.)

For example, dy : B|I' — Ais a cofibration, and is also a fibration when B
has pullbacks (again in the representable sense, i.e., C(—, B) is a functor into the
category of categories with pullbacks and pullback-preserving functors). This
observation is used in the proof of Theorem 2.4.

Examples

As a leading example, we will take the 2-category Cat of small categories,
functors and natural transformations as C. A comma object BT" for a functor
T': A— Bis just the comma category, thus its objects are tuples (A € AB €
B f:B —TA), and an arrow from (A4, B, f) to (A’,B.f') is a pair (a: A —
A" )b : B — B') so that Tao f = f' o b holds. The first projection dy sends
(A,B, f) to A and (a,b) to a, while the second projection d; sends (4, B, f) to
B and (a, b) to b. The natural transformation A : d; = T'ody sends (4, B, f) to
f. Also we let T be the 2-monad on Cat whose algebras are small symmetric
monoidal categories (this is the setting used in [2, 3]). A lax T-morphism is
then a lax symmetric monoidal functor (see Example 2.3).



2 Comma Objects
2.1 Lifting 7T-algebras Structures

The first result is easy to prove, but of fundamental use for our purpose:

Theorem 2.1 Let (Aa), (Bb) be T-algebras and (I',T") be a laz morphism
from (Aa) to (Rb). Then the comma object BT can be given a T-algebra
structure ¢ : T(B|T) — B|T, so that the projections d o : B|T — A and
dy : BT — B are strict morphisms.

Proof Sketch: We have

TA e TH
a <f: b
A = B

By the universal property of B|T" there exists a unique ¢ : T(B|T') — B|T so
that A o ¢ agrees with this lax cone, therefore ¢ makes the following diagram
commute.

Td Td
TA ~—— T(RT) ——~ TB

\

A ” Rr @ B

Tt is not hard to check that (BT, ¢) is a T-algebra, i.e. the unit and associativity
laws hold. 0

Remark 2.2 In fact, this gives a comma object in the 2-category T-Alg; [1] of
T-algebras, lax morphisms and the appropriate 2-cells. Thus A : d; = I"'odjy
is a 2-cell in T-Alg;, and satisfies the universal properties of the comma object
in T-Alg;. As a special case, for a 2-cell k : f; = I' o fy with strict morphisms



fo: C— Aand f ; : C— B the uniquely determined g : C— B|T is a strict
morphism (this observation will be used in Section 4).

Example 2.3 Let A B be symmetric monoidal categories and I' : A —» B
be a lax symmetric monoidal functor; spelling out the detail, T is a functor
with a coherent natural transformation my 4 :TA®TA" > T(A® A’) and a
coherent arrow my : I'Il — I satisfying a few coherence diagrams. Then the
comma category BI" can be given a symmetric monoidal structure, so that the
projections to Aand B are strict symmetric monoidal functor. Explicitly, we
have the unit and tensor on RI" as

I = (Ia IymI)
A4,B,f)o (A, B, f) = (A A, BB ,mano(f®[))
2.2 Lifting Adjunctions

Next we turn to the problem of lifting adjunctions on the comma objects. Specif-
ically, we consider the following problem. Let B; [Ty, By |T's be the comma
objects of Ty : Ay — By and Ty : Ay — By respectively. Also suppose that

FA B
there are adjunctions Ay 1" Ay and B; 1+  By. Consider F': By [I'; — By [Ty
A B
U

satisfying dyo F = FAody and dy o F = FBod; (such an F, if exists, is uniquely
determined). We ask if F' has a right adjoint U, so that the first projections
give a map of adjunction from F 4 U to F* 4 UA. Note that we do not want
to assume FB oy = 'y 0 FA (or FB o Ty ~ I'y o FA) which excludes many
interesting examples; an acceptable assumption we can make is the existence of
a 2-cell from FBoTy to 'y 0 FA.

Theorem 2.4 Suppose that

A B
e there are adjunctions A; z Ay and B, z Bo,
Ut U®

o I-cellsTy: Ay —» By, To: Ay —» By, and a 2-cello : FBoT; = T'y 0 FA,
e and moreover By has pullbacks.

F
Then there exists an adjunction By [Ty Z B2 [Ty so that the first projections

U
give a map of adjunction from F 4 U to FA 4 UA.

F
Proof Sketch: We first observe that there exists an adjunction B |B; z Bl

U
B, so that the first projections (dg’s) form a map of adjunction from F 4 U
to F® 4 UB. Note that these projections are automatically cofibrations (the



codomain cofibrations in the case of Cat). Since B; has pullbacks, it follows
that the first projection from B |B; to B; is a fibration too. Finally, we note
that B; [T, is obtained by pulling back the first projection from B; |B; to B;
along T';, so we can apply Theorem 3.2 to obtain an adjunction between B, |T'
and IBQ lrg O

In the case of C = Cat, the construction can be described explicitly as follows.
First, we have F : B; [Ty — By |y by F(A,B, f) = (FAA,F®B,04 0 FBf) and
F(a,b) = (F*a, F®b). Tts right adjoint U : By [Ty — B; [Ty sends (4, B, f) to
(UAA, P(A),p(f)) given by the top line of the following pullback

f
P(A) ﬂ» r,Uut4a

Bp —  , 77/B
UPB —~ UPT24

where 7 : T} o U» = UB oy is derived from o in the obvious way (c.f. Proof of
Theorem 3.2).

Example 2.5 (Lemma 3.1 of [3], see also [2]) Let A and B be symmetric
monoidal closed categories and I' : A — B be a lax symmetric monoidal
functor. Moreover suppose that B has pullbacks. Then the comma category
B/T can be given a symmetric monoidal closed structure, so that the projec-
tion to ABis a strict symmetric monoidal closed functor. To give a right
adjoint of (=) ® (4,B,f) : B|T" — B|T, we have to consider adjunctions
(-)® A4 A —(-)and (-)® B4 B — (—), with a natural transformation
m_a0(—® f):I'(-)® B=T(—® A). Then the exponent from (4, B, f) to
(A’,B', f') in BT is given by the top line of the following pullback [2, 3].

P—2—+T(4—A)

{(f*rAI)OA(F(eVA.A' OmA—oA’,A))

B — B’ B—_OJCTB_OI‘AI



3 Change-of-base

In [3], it is observed that pulling back a strict symmetric monoidal closed bi-
fibration along a lax symmetric monoidal functor results a strict symmetric
monoidal closed bifibration (see Example 3.3 below). In this section we give the
2-categorical generalizations of this situation, for T-algebras and for adjunctions.

3.1 Change-of-base for T-algebras

Theorem 3.1 Let (Aa), (Bb), (Ee) be T-algebras, (T,T) be a lax mor-
phism from (Aa) to (Bb), and p: E— Bbe an oplax morphism from (Ee)
to (B b) which is also a cofibration. Suppose that there is a pullback:

D ——E
A—F>IB

Then D can be given a T-algebra structure d : TD— D so that q is a strict
morphism from (b d) to (Aa).

Proof Sketch: We first observe

TD

T
TA — L+ TR ~—2TE
a glbg e
A———B ~——E

By the universal property of p|Bwe have

TD

7 Eh\wq
v

E < p|B -~ B

do dl



Therefore we obtain a commutative diagram

D —2+ p|B —2+ E

Tq \ P
dy

TA ——A ——B

where « : p|B— Eis given by the cocartesian lifting. Hence we have d : TD— D
as the unique arrow determined by

A—F>IB

Some calculation shows that (I} d) is a T-algebra. O



3.2 Change-of-base for Adjunctions

Now we give the most involved result in this note.

Theorem 3.2 Suppose that

FA F]B FIE
o there are adjunctions Ay z Ay, By z By and E; z K,
U UB UE
o I-cellsTy : Ay = By and Ty : Ay — By, and a 2-cell o : FBo Ty =

T'yo FA,
e fibration p1 : B — By and a cofibration py : Es — B,
e 50 that p; and py form a map of adjunction from F® 4 UE to F® 4 UB.

Now suppose that the following pullbacks exist:

T

Dl—l’]El ]D)2L’E2

{pg

A SEORS By Ay T B,

q1 P1 q2

FD

Then there exists an adjunction Dy z Dy so that g1 and gz form a map of
UD

adjunction from FP 4 UP to FA 4 UA.

Proof: We use n*, e, nB, B, ¥ and €F for units and counits of adjunctions
FA 4 UA F® 4 UB and F® - U respectively. Since p;, ps form a map of
adjunction, we have p; o ™ = 1® o p; and also ps 0 €® = B o p,.

Define a 2-cell 7: T; o UA = UB o'y by

Ay
A
e
A g‘; id
F»l/ FA
By
N /
id i; B,
o
B,



Right Adjoint. Consider the 2-cell Toqy : T 0 U oqo = UBoTy0 ¢y €
C(Dy,B;). By noting that UBoT'5 0 gy = p; o UF o7y, we have a cartesian lifting
a:f=UFory €C(Iy,E ) so that

Dy Dy
A f =Y K,
U* T2 _
= ‘ -
Ay = B, Ty
IBl ]Rl

holds. We then define U : )y — I); by the universal property of the following
pullback

Therefore we have

Dy Dy
N RN
Dy Ay 1)) Dy X By
N L DN
q1 P2 = @ - E D2
U
A N B, Ay E B,
N N
IBl IBI

10



Left Adjoint. Consider the 2-cell coq : FBoTi0qp = ThyoFroq €
C(D;,B;). By noting that F® oT; 0o q; = ps o F¥ o ry, we have a cocartesian
lifting 3: Ffor; = g € C(D;, ) so that

Dy Dy

11



Unit and Counit. Consider a 2-cell 3* : r; = UF ory o F given by

N
\/

E,

Since a : r10U = UFor, is cartesian over TOg, 8018 @oF : r1oUoF = UForqoF
over Togeo F. As p of3* = (Togo F)T1on"oq), there is a unique
k:71 =>r10U 0 F sothat (a0 F)k = 8* and p1 o k =Ty o o ¢; hold.

Therefore we have 2-cells nA oqu:qg =>qoUoFandk:ry =>rioUoF
so that p; ok = I'; o™ 0 ¢;. By the 2-dimensional universal property of the
pullback there is a unique 7 : id = U o F such that ¢on =n"oq; and ryon =&
hold.

Dually, consider a 2-cell o, : F®or; o U = ry given by

/\
\/
FN

E,

id

Since B : FEory = 75 0 F is cocartesian over g oq, sois BoU : FFor; o U =
rooFolU overgogoU. As peoay, = (Ty OEAOQQ)(O'OQ1 oU), there is a unique
f:r90FoU = 7y so that §(BoU) = a, and py 08 = Ty 0™ 0 g3 hold.

Therefore we have 2-cells e ogo : o FoU = g and 8 : ry 0 Fo U = 1y
so that py 0 8 = T'y 0 e® 0 ¢. By the 2-dimensional universal property of the
pullback there is a unique € : FoU = id such that gzoe = e*0gq; and ry0e =6
hold.

Finally, we need to show (Uog)(noU) =U and (¢0 F)(Fon) = F. By the
2-dimensional universal property of the pullbacks, it suffices to show

rio((Uoe)(nol)) = riolU
qio((Uoe)(nol)) = qolU
rpo((eo F)(Fon)) = ryoF
go((eoF)(Fom) = qofF



The second and fourth equations are easily verified. Since « is cartesian, the
first equation follows from a(ry 0 ((Uoe)(noU))) = a which is routinely checked.
Similarly, since f is cocartesian, the third equation follows from (20 ((0 F)(Fo
1)))B = B, which again is easily shown. O

Example 3.3 (Proposition 3.2 of [3]) Let A B Ebe symmetric monoidal closed
categories, I' : A— B a lax symmetric monoidal functor, and p : E — B be
a strict symmetric monoidal closed functor which is also a bifibration. Now
consider a pullback:

D ——E

A—F>E

By Theorem 3.1 and 3.2, Dcan be given a symmetric monoidal closed structure,
for which g is strict.

4 Full Completeness via Glueing

We conclude this note by sketching how a glueing construction can be used
for relating algebraic structures on Cat (and the corresponding type theories);
further examples are found in [2, 3] and papers cited there, in particular [7].

Let SMCat be the category of small symmetric monoidal categories and
strict symmetric monoidal functors, and SMCCat be that of small symmetric
monoidal closed categories and strict symmetric monoidal closed functors. The
forgetful functor from SMCCat to SMCat has a left adjoint F : SMCat —
SMCCat, which sends a symmetric monoidal category Cto the symmetric
monoidal closed category FCobtained by freely adding exponents to C The
Ccomponent of the unit of this adjunction is the obvious strict symmetric
monoidal functor j : C— FC We show that 7 is fully faithful — this amounts
to the full completeness of the ®, I-fragment of intuitionistic linear logic in the
®, I, —o-fragment [2].

Before proving the result, let us note an observation on the glueing con-
struction into the presheaf categories. Let j : C— D be any functor. Let
I': D— Set®” be the functor sending D € Dto I{j—, D) € Set €, and
Y : C— Set©” be the Yoneda embedding. Then there is a natural transfor-
mation j : ) = I'oj where (jx)y sends f € Y, X) to j(f) € jY,5X). Let
Gbe the comma category Set c©r IT'; by the universal property of the comma
object, there is a functor h : C— Gso that d goh = j and d; o h = ), uniquely
determined by the lax cone j. It follows that, by the Yoneda lemma, this A is
fully faithful.

Now the proof of the full faithfulness of j : C— FC Consider the functor
I : FC— Set®” as above. Recall that Set®" is a symmetric monoidal co-
completion of C[4], thus can be given a symmetric monoidal closed structure,
for which the Yoneda embedding )} : C— Set " is strict symmetric monoidal

13



and T is lax symmetric monoidal. From Example 2.5, we know that the comma
category G= Set ©r LT can be given a symmetric monoidal closed structure,
for which the projection dy : G — FCis strict symmetric monoidal closed.
By the previous observation, there is a fully faithful functor h : C— Gso
that dy o h = 5. From an observation in Remark 2.2, we also know that h is
strict symmetric monoidal. Since j is a unit, there is a unique strict symmetric
monoidal closed functor g : FC— Gso that goj = h and d ¢gog = id. Therefore
we have the following diagram in SMCat.

, FC
J
—
C—G i id
j \
FC

As h is fully faithful and g is faithful, it follows that j is fully faithful. (Here
we are slightly sloppy about the size issue — to be precise, we had to cut down
Set®” to be small while keeping the needed structure, to work within SMCat.)

Remark 4.1 Obviously this proof works only for algebras which are closed
under the exponentiation with Set. To examine the limitation of this approach,
it seems important to identify the 2-monads whose algebras enjoy this property.
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