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Abstract

We show that the {—, —o}-fragment of Intuitionistic Linear Logic is
fullin the {!, —o}-fragment, both formulated as linear lambda calculi. The
proof is a mild extension of our previous technique used for showing the
fullness of Girard’s translation from Intuitionistic Logic into Intuitionistic
Linear Logic, and makes use of double-parameterized logical predicates.

1 Linear Lambda Calculi

Our presentation is based on a dual-context type system for intuitionistic linear
logic (called DILL) due to Barber and Plotkin [1]. In this formulation of the
linear lambda calculi, a typing judgement takes the form I' ; A F M : 7 in
which T represents an intuitionistic (or additive) context whereas A is a linear
(multiplicative) context.

A set of base types (b ranges over them) is fixed throughout this paper.

1.1 A

The first system we consider is a fragment with connectives — (intuitionistic or
non-linear arrow type) and —o (linear arrow type). We use Az?.M and M e N
for the non-linear lambda abstraction and application respectively, while Az?. M
and M N for the linear ones.

Types and Terms

o = blo—oo|o—o

M == z|Az°.M |MeM | Az M | MM

*The content of this paper is a very mild extenstion of our previous work presented in [2] -
the structure and most of the details of the proof are essentially the same (or even identical).
The reason of this reworking is rather technical; we need the main result of this paper in our
another work [3].



Typing

I';z:0b2z:0 IF'i,z:0,Ty; 0Fxz:0
Iz:01; AFM: oo ' s AbFM:00 -0 T;0FN:0oy
T'; AF Azt M :01 — 02 T'; AFMeN : o

I'; A,z:oFM:oo I'; A\FM:0y —o02 T; AgFN:oy
T'; A XM :01 —o 09 T; AifAs F MN : oy

where A1fA, is a merge of Ay and Ay [1]. Thus, AjfA, represents one of
possible merges of A; and A, as finite lists. We assume that, when we introduce
A1#As, there is no variable occurring both in A; and in A;. We write @) for
the empty context. We note that any typing judgement has a unique derivation
(hence a typing judgement can be identified with its derivation).

Axioms
(M.M)N = M[N/z]
Az.M x = M
(Az.M)N = M[N/x]
Az.Mex = M (zgFV(M))

The equality judgement I' ; A+ M = N : o is defined as usual.

1.2 A\

The second fragment is that with the exponential ! and the linear arrow type
—o. The same system has been used in [2] as the target calculus of Girard’s
translation.

Types and Terms

T u= bllr|T—oT
M = z|IM|letls” be M in M| Xa".M | MM
Typing
T;z:7hx:7 F,z:7,T2; OFx:7T
T;0-M:7 T'; AiEMn Tyo:m; AgFN:m
I'; OHM 7 T; AifAsHlet 1z be M in N : 1

s Az b-M:n F's AtFM:mp—om T AgFN:m
T'; AFXx™ . M:1 —o7y I'; AifAsF MN : 7y




Axioms

(Ax.M)N = MI[N/z]

Az.Mzx = M

let lz be IM in N = N[M/z]

let lz be M in !z = M

Cllet lx be M in N] = let!x be M in C[N]

where C[—] is a linear context (no ! binds [—]); formally it is generated from the
following grammar.

C = [-]|2x.C|CM | MC |let!z be Cin M |let!z be M inC

1.3 Translation from A~ to A"

We now give the translation (—)° from A~ to A»™°, which is a straightforward
extension of Girard’s translation from the simply typed lambda calculus into
Abe,

¥ = b
(01 = 02)° = lof — 03
° = =z
\z°.M)° = Az .M°
(Mal —o032 NUI)O = Mo No
(Az?.M)° = Xy .let 127" be y in M°
(M014><72 @Nal)o = Mo ([No)

Proposition 1.1 (type soundness) IfI'; AF M : o is derivable in A7,
soisT° ; A°F M°:0° in Ao,

Proof: For instance, the derivation

T,x:ol;AFM:Ug
T; AF Azt M : 01 — 09

is sent to

e yiotFyiloy I°,x:o07]; A"I—M°:U‘2J
T°; A° y:lo? Flet 1271 be y in M°: 03
T°; A°F (Az7 . M)° = \y'“ let 1277 be y in M° :lo? — o3

while

r; AFM:o, — oy r; @F‘Nltfl
T';s AFMeN : o0,




is sent to

: T 0 N°:of
I°; A°F Moy — a9 T°; QFIN®:lof
T°; A°F (MeN)° = M°(IN°) : 03
Lemma 1.2 (compatibility with substitution) M°[N°/z] = (M[N/z])°.

Proof: Easy. O

Proposition 1.3 (equational soundness) IfI' ; A+ M = N : o holds in
A7, s0 doesT° ; A°F M° =N°:0° in \b—.

Proof: The crucial cases are:

((Az.M)eN)° (Ay.let !z be y in M°)(IN°)
let !z be IN® in M°

= MON/a]

(M[N/x])°

(Az.Mezx)°® Ay.let 1z be y in M° (Ix)
Ay.M° (let 'z be y in lx)
Ay.M°y

M

O

Proposition 1.4 (equational completeness) IfT° ; A° - M° = N° : ¢°
holds in A\, then T ; A+ M = N : o holds in \™>°.

Proof: There is an obvious translation (—)* from A"~ to the simply typed
lambda calculus A~ which forgets all the information regarding the linearlity
(see [2]). Since the composition A7»7° O\ 28 - obviously reflects the
equality, so does (—)°. O

2 Dual Logical Predicates

In addition to the case of Girard’s translation from the simply typed lambda
calculus to A", we have to deal with the linearity in the source calculus as
well. To this end we add one more parameter for linear contexts to the logical
predicates used in [2] for showing the fullness of Girard’s translation.

Notations We write A~ and A"~ for the sets of well-typed terms of A~
and )\~ respectively, and use the following notations.

AT ;A) = {MeA>|T;AFM:0o}
AT A) = {MeA"™|T;AFM:7}
Pl S PQ iff PQ = F,Pl for some I



Definition 2.1 (dual predicate) Let T be a type of \» ™. A family P of sets
indexed by the contexts of A\~ ~° is called a dual predicate on 7 when P(T'; A) C
Ab=(T° ; A°) and closed under

e renaming: M € P(T ; A) implies Mp € P(T'p ; Ap) for any renaming p
o weakening: T < TV implies P(T ; A) C P(T'; A)
e cquality: M € P(T'; A) and M = M' imply M' € P(T' ; A)

Lemma 2.2 (linear implication on dual predicates) Let P;, P» be dual

predicates on 71 and T2 respectively. Then there is a dual predicate P —o Py on
71 —o T9 defined by

(P — P)(T'; A) =
{M e A, (T A°)

T1—0T2

N e P(I"; A') and T <T” imply
M N € Py(T" ; AfA")

Proof: Easy. O

Lemma 2.3 (exponential on dual predicates) Let P be a dual predicate
on 7. Then there is a dual predicate \P on |1 defined by

M =!N for some

{M € AT 0) N e P(T; 0)

} if A=9
IP(T; A)=

0 otherwise

Proof: Easy. O

Now we are ready to repeat the same story as given in [2]:

Definition 2.4 A family {P:} of dual predicates is called a logical dual pred-
icate when each P; is a dual predicate on 7, and Py _o;, = Py, — P, as well
as P, =!P, hold.

Proposition 2.5 (Basic Lemma) Let {P;} be a logical dual predicate. For
M; € Pr,(T'; A) (1 <i<m), Mj € PT]:_(I‘ ; AY) (1 <5 <mn)andz :
TlyeesTm i Tm 3 Y1171, Yn : To B N 7, it follows that

let lz; be My in ...let lz,, be My, in N[M{/y1,..., M) /ys] € P-(T ; A)
where A = Aqff. . BALEALE . BAL.
Note that this can be equally stated as follows:

Proposition 2.6 Let {P;} be a logical dual predicate. For M; € P, (T ; 0)
(1<i<m), Mj e PT]:_(I“ s A (A <j<n)andzr 71, Tm P Tm 5 Y1t
TiyeeyYn : Th B N 7, it follows that

N[My/zy,- oy My T, M1 /Y1, .., M}, Jy,] € Pr(T 5 A)
where A = Alf.. fA! .



Proof: Induction on the derivation of terms (equivalently typing judgements) -
actually identical as the proof of Basic Lemma in [2], except that we have to
add the parameters for linear contexts. O

Corollary 2.7 (Basic Lemma for closed terms) Let {P;} be a logical dual
predicate. Then, for any 0 ; O = N : 7, it follows that N € P.(0 ; 0).

3 Fullness
Definition 3.1 For a type o and context T' ; A of A™°, define

P,(T; A)={N € AE;Z°(I‘° ; A°) | N = M° for some M € A_7°(T ; A)}
Lemma 3.2 P is a dual predicate on o°.
Proof: Obvious. O
Lemma 3.3 (crucial lemma) P,, _,,, ='P,, — P,,.

Proof: Suppose that M € P,, ., (T ; A),i.e. M = M'® for some T' ; A +
M': 01 — o3. Let N €!P, (I" ; A’) — by definition we may safely assume
that A’ = (. This means that N =!N’ for some N’ € P,, (I" ; ). Therefore
N =IN"° for some I ; O - N" : gy. It then follows that

MN — M/O (!N”O)
— (MI@N”)O

Hence M N € P,,(T" ; AfA’). Therefore M € (IP,, — P,,)(T'; A).

Conversely, suppose that M € (IP,, — P,,)(I' ; A). Since !z €!P,, (2 :
o1, ; 0), we have M (12) € Py, (2 : 01,T'; A). Hence there exists z: 01,7 ; A F
N : 05 such that M (1z) = N°.

M = MN9T.My

Ayl M (let 1297 be y in 2)
Mot let 1297 be y in M (12)
Ay'77 let 1297 be y in N°

= Ay .N)°

So we conclude that M € Py, ., (T ; A). O

Proposition 3.4 Consider o family {P,} indezed by the types of A™~°, such
that P, is a dual predicate on o° and satisfies P,, ., =!P,, — P,,. Then
there is a logical dual predicate {P}} such that PY. = P, holds for any type o
of A7 — eaplicitly, such a {P}} is given by P = P, P}, _, = P —o P}
and P} =\P.



Proof: Induction on the types of A~»7°. The only nontrivial case is that of arrow
types o1 — 0o2:

* _ *
(c1—02)° 13!0? —00§

!P;i’ —o P;g definition of P*
!P,, — P,, induction hypothesis

Pal —02

O

Corollary 3.5 Define a logical dual predicate {P*} by Py = Py, P =

T1—9°T2

P: — Py, and P{_ =!P;. Then Pj. = P, holds for any type o of A7 7°.

Theorem 3.6 (fullness) Suppose that T° ; A°F N : ¢° is derivable in A"~
Then there exists I' ; A+ M : o derivable in \™>=° such that T'° ; A°+ M° =
N : 0° holds.

Proof: Apply the Basic Lemma to the logical dual predicate {P%}. O
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