
Preface

A general abstract theory for computation involving shared resources is presented. We
develop the models of sharing graphs, also known as term graphs, in terms of both
syntax and semantics.

According to the complexity of the permitted form of sharing, we consider four
situations of sharing graphs. The simplest is first-order acyclic sharing graphs repre-
sented by let-syntax, and others are extensions with higher-order constructs (lambda
calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings,
we provide the equational theory for representing the sharing graphs, and identify the
class of categorical models which are shown to be sound and complete for the theory.
The emphasis is put on the algebraic nature of sharing graphs, which leads us to the
semantic account of them.

We describe the models in terms of the notions of symmetric monoidal categories
and functors, additionally with symmetric monoidal adjunctions and traced monoidal
categories for interpreting higher-order and cyclic features. The models studied here
are closely related to structures known as notions of computation, as well as models for
intuitionistic linear type theory. As an interesting implication of the latter observation,
for the acyclic settings, we show that our calculi conservatively embed into linear
type theory. The models for higher-order cyclic sharing are of particular interest as
they support a generalized form of recursive computation, and we look at this case in
detail, together with the connection with cyclic lambda calculi.

We demonstrate that our framework can accommodate Milner’s action calculi,
a proposed framework for general interactive computation, by showing that our cal-
culi, enriched with suitable constructs for interpreting parameterized constants called
controls, are equivalent to the closed fragments of action calculi and their higher-
order/reflexive extensions. The dynamics, the computational counterpart of action
calculi, is then understood as rewriting systems on our calculi, and interpreted as local
preorders on our models.

Preface to the Present Edition

This book contains the author’s PhD thesis written under the supervision of Rod
Burstall (first supervisor), Philippa Gardner and John Power (second supervisors) at
Laboratory for Foundations of Computer Science, University of Edinburgh. The the-
sis was examined by Martin Hyland (Cambridge) and Alex Simpson (Edinburgh).
Except for correcting minor mistakes and updating the bibliographic information, the
text agrees with the examined version of the thesis.

Some parts of the book have been published elsewhere in [13, 35, 38]. Since the
examination of the thesis, a number of works related to this research have appeared. I

vi

take this opportunity to mention some of them.

� An independent work by Corradini and Gadducci [25] used essentially the same
categorical structure described in Chapter 3 for modeling acyclic graph rewrit-
ing systems (with Cat-enrichment rather than Preord-enrichment). Miyoshi [70]
translated the results in Chapter 6 to their setting and reformulated the cyclic
sharing theories as a rewriting logic.

� While the model construction techniques in Chapter 5 show the conservativity
of syntactic translations, further techniques for showing the fullness (or full
completeness) of the translations have been developed by the author, as reported
in [39].

� A direction progressing rapidly is the investigation of traced monoidal cate-
gories as a foundation of recursive computation, as claimed in Chapter 7. Some
fundamental issues on traced monoidal categories are studied in Abramsky,
Blute and Panangaden [4] and Blute, Cockett and Seely [23]; the latter con-
tains a fixpoint theorem related to those in Chapter 7. As an interesting case
study, Ryu Hasegawa [40] related the fixpoint operator in a model of (typed
and untyped) lambda calculus and the Lagrange-Goodman inversion formula in
enumerative combinatorics in terms of trace. The relation to axiomatic domain
theory has been studied by Plotkin and Simpson [74].

� In Chapter 9 the possibility of developing the premonoidal variant of the sharing
theories and their models was suggested. Related to this, Jeffrey [46] has intro-
duced a semantics of the graphically-presented imperative programs based on
premonoidal categories. In that setting, he also modeled recursion using trace.

Acknowledgements

I want to express my heartfelt thanks to my supervisors; I can never thank them
enough.

Rod Burstall, my first supervisor, always helped me to think constructively and
positively, especially at difficult moments throughout my PhD study in Edinburgh.
I will never forget a meeting with Rod when I had a bad hangover – there I got an
essential inspiration in deciding my research direction.

Philippa Gardner, my second supervisor during the second year, always gave me
enthusiastic encouragement, and I benefited from countless delightful (often over-
heated) discussions with her.

John Power has always been an important intellectual source and often a mentor
for me during these three years, and he became my second supervisor after Philippa
moved to Cambridge. Without his generous and much needed support, this thesis
would probably never have been written in this form.

At a stimulating place like LFCS, even a brief chat often meant a lot to me. I am
grateful to people who influenced me in various forms, especially to Andrew Barber,
Ewen Denney, Marcelo Fiore, Alex Mifsud, Robin Milner, Gordon Plotkin and Alex

vii

Simpson. In particular, Chapter 5 and Chapter 8 refer to joint work with Andrew,
Philippa and Gordon.

I want to thank Martin Hyland for helpful discussions on traced monoidal cate-
gories as well as for his warm encouragement. Thanks are also due to Zena Ariola
and Stefan Blom, for e-mail communications on cyclic lambda calculi and related
topics.

And, above all, many, many thanks go to my cheerful, lovely, friends.

This work was partly supported by an Oversea Research Student award.

Contents

1 Introduction 1
1.1 Computation Involving Shared Resources 1
1.2 Sharing Graphs as Models of Sharing 1
1.3 Sharing Graphs and Their Presentation 3
1.4 Categorical Models for Sharing Graphs 8
1.5 Relating Models . 12
1.6 Recursion from Cyclic Sharing . 12
1.7 Action Calculi as Graph Rewriting 13
1.8 Overview . 16

2 Sharing Graphs and Equational Presentation 19
2.1 Sharing Graphs . 19
2.2 Acyclic Sharing Theory . 23
2.3 Cyclic Sharing Theory . 31
2.4 Rewriting on Sharing Graphs . 35
2.5 Equational Term Graph Rewriting 37

3 Models of Acyclic Sharing Theory 39
3.1 Preliminaries from Category Theory 39
3.2 Acyclic Sharing Models . 43
3.3 The Classifying Category . 50
3.4 Theory-Model Correspondence . 54
3.5 Modeling Rewriting via Local Preorders 55

4 Higher-Order Extension 57
4.1 Higher-Order Acyclic Sharing Theory 58
4.2 Higher-Order Acyclic Sharing Models 59
4.3 The Classifying Category . 62

5 Relating Models 65
5.1 Preliminaries from Category Theory 65
5.2 Higher-Order Extension . 66
5.3 Notions of Computation . 67
5.4 Models of Intuitionistic Linear Logic 69

6 Models of Cyclic Sharing Theory 71
6.1 Traced Monoidal Categories . 71
6.2 Cyclic Sharing Models . 75
6.3 The Classifying Category . 79

xii CONTENTS

7 Recursion from Cyclic Sharing 83
7.1 Fixed Points in Traced Cartesian Categories 83
7.2 Generalized Fixed Points . 86
7.3 Higher-Order Cyclic Sharing Theory 90
7.4 Cyclic Lambda Calculi . 94
7.5 Analyzing Fixed Points . 99

8 Action Calculi 103
8.1 Action Calculi: Definitions, Basics 103
8.2 Action Calculi as Sharing Theories 105
8.3 Extensions . 108

9 Conclusion 115

A Proofs 117
A.1 Proof of Proposition 6.1.5 . 117
A.2 Proof of Theorem 7.1.1 . 117
A.3 Proof of Theorem 7.2.1 . 121
A.4 Proof of Proposition 7.1.4 . 122
A.5 Proof of Proposition 7.2.2 . 125

Bibliography 127

Index 133

1

Introduction

1.1 Computation Involving Shared Resources

The notion of sharing has appeared on various occasions in computer science, either
explicitly or implicitly. The idea is simple: instead of giving computational resources
(processes, memories etc) to each client, a single resource can be shared by multiple
clients.

In general, this kind of replacement may change the nature of the involved com-
putation significantly. For instance, if the resource we are concerned with requires
heavy computation or a large memory, sharing becomes an essential technique for
saving both time and space needed for the computation. Many implementations of
pure functional programming languages are based on this observation – avoiding un-
necessary duplication of subcomputation is crucial for achieving efficient functional
computation.

However, sharing is not just about the efficiency. If the resource involves some
computation with side effects, say non-determinism or imperative states, the sharing
of such a resource may change not just the amount of computation but also the result
of computation. In such impure cases, the distinction between duplicated resources
and shared resources must be made more carefully, and this makes it difficult, or at
least non-trivial, to reason about general computation involving shared resources.

Furthermore, sharing can naturally be used for implementing cyclic (self-referen-
tial) data structures, which have been used for implementing recursive computation
efficiently. The expressive power obtained by cyclic sharing is enormous, but dealing
with cyclic structures is far more difficult than dealing with just acyclic ones. For
instance, there are various practical ways of encoding recursive computation using
cyclic sharing, but, to the best of our knowledge, there has been no formal comparison
between them.

This thesis is devoted to giving a theory for describing and reasoning about such
computation with sharing. The weight is put on the study of the classes of models of
sharing, rather than individual specific models, in a desire to extract a generic account
for sharing.

1.2 Sharing Graphs as Models of Sharing

Sharing for Efficiency

No programmer would be happy to write an expression like

2 1. INTRODUCTION

... (factorial(100) + 123) * factorial(100) ...

containing two identical subexpressions factorial(100) – not just because it
makes the program messy but because it does suggest a duplication of very heavy
computation (here we suppose that the program factorial(100) calculates the
factorial of 100, which in many cases results in an overflow). The former reason
may be very important from the view of software engineering where readability and
reusability of programs are essential, but it is not a matter to be discussed now. Here
we shall stick to the second point - efficiency. Many programmers should agree to
rewrite the expression above as

let x = factorial(100) in ... (x + 123) * x ...

The intention is that, we avoid calculating factorial(100) twice by sharing the
result of this computation, without changing the result of computation. The let
syntax indicates that factorial(100) is a shared resource with a name x which
are later referred (used) at two places in the program.

But actually this is not just a matter for programmers, but more essentially the
problem of the implementor of the programming language. Though the two examples
above are supposed to return the same result, hence are extensionally equivalent, they
are “intensionally” different because the amount of the involved computation is differ-
ent; implementors must realize some semantic models in which such these two have
distinct denotations – they may not be models for programmers (who just care about
the results) but are models for implementors (who care about the actual computational
steps behind the results).

Graph rewriting theory – the theory of sharing graphs (term graphs) and rewriting
systems on them – has been recognized as a canonical and practically useful instance
of such models for implementors [15, 84]. The idea is to use graphs for represent-
ing the sharing relations of resources and realize computation on them as rewriting
systems. For instance, the situation above can be explained simply by the graphical
representation of the expressions, as

��

��

123

123

The left tree corresponds to the original unshared version, whereas the right graph is
for the “refined” version with sharing of a resource. The actual computation is mod-
eled by rewriting, i.e. local replacement of subgraphs. Obviously the left one requires
more computation (rewriting steps) because of the duplicated resource (subgraph).

1.3. SHARING GRAPHS AND THEIR PRESENTATION 3

Impure Cases: Sharing as a Programming Technique

Consider a language with a non-deterministic construct zero or one which returns
0 or 1 at random. As before, we shall use the let-syntax for representing sharing. Then
the following two programs obviously have different meanings.

zero_or_one + zero_or_one

let x = zero_or_one in x + x

The former returns 0, 1 or 2, whereas the latter 0 or 2 (see Figure 1.1). In this case
the shared resource is not pure; it contains a side-effect, thus should be better under-
stood as a process in a concurrent language or an object in an object-oriented lan-
guage. Similar things happen if we consider imperative languages with states. In such
“impure” settings, introducing sharing may change the result of computation, hence
changing the extensional (programmers’) semantics of the language. Therefore shar-
ing becomes an important feature of the programming language which programmers
have to recognize as a programming technique; and actually most programmers of im-
pure languages do, often explicitly when manipulating states, objects and memories.

Cyclic Sharing and Recursion

Circular phenomena have been a rich source of a wide range of intellectual investi-
gations for long time – in science, technology, and even philosophy; see [16] for a
survey and lots of examples. Computer science is not an exception. Sharing graph-
based models have a natural advantage in representing cyclic data structures, and the
most interesting and practical usage of such cyclic sharing is, of course, as the means
of realizing recursive computation, which is one of the most important subjects in
computer science. As already shown by Turner [87] in 70s, recursive computation
can be efficiently implemented using self-referential (i.e. cyclic) terms. We come
back this point later and explain in some detail – the analysis of recursive computation
created from cyclic sharing is one of the central implications of this thesis.

1.3 Sharing Graphs and Their Presentation

As motivated above, we regard sharing graphs, or term graphs, as abstract representa-
tions of the sharing relation of resources. They can be seen as a special sort of directed
graph in which nodes represent resources and links show the sharing, but perhaps are
better understood as a generalization of the tree notations for terms – the name “term
graphs” means the direct generalization of “term trees”.

If there is no notion of sharing, it suffices to talk about just trees (terms) where sub-
trees (subterms) correspond to subcomputations. However, if we want to talk about
sharing, trees are not sufficient, and we are naturally led to replace trees by a class of
directed graphs. Now a subgraph may be referred from various places in the graph,

4 1. INTRODUCTION

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0�1

0�1

0�1

Figure 1.1: Sharing non-deterministic computation

1.3. SHARING GRAPHS AND THEIR PRESENTATION 5

A

A

A

A

A

A

A

A

A

A

A

A

A

F

F

F

F

F

F

F

F

F

F

G

G

G

G

G

G

(1)

(2)

(3)

(4)

(5)

Figure 1.2: Various term graphs corresponding to a term

thus representing a shared resource. Figure 1.2 shows that there are various shar-
ing graphs corresponding to a term G�F�A�A��F�A�A��. As mentioned earlier, the
meaning of sharing changes depending on the computation concerned. If each node
represents purely functional computation, the difference between these sharing graphs
is just about the amount of computation. The final answer will be the same, but the
sharing graph (2) presents the optimal way to get the answer. On the other hand, if A
is a process which returns 0 or 1 non-deterministically and F and G calculate the sum
of arguments, then the original term presents a computation which returns 0, 1, 2, 3 or
4, while (1) and (4) return 0, 2 or 4, whereas (2) and (5) returns just 0 or 2. (3) returns
0, 1, 2, 3 or 4 as the original term, but the probability would be changed.

Allowing cyclic bindings, sharing graphs get further flexibility. Let us look at
some instances of cyclic sharing graphs (Figure 1.3). (1) and (2) present the simplest
situations of cyclic sharing. In (1), the resource I refers to itself; (2) may seem odd
as it does not involve any resource, but such a “self-referential pointer” or “trivial
cycle” can occur even in a realistic situation. (3) is similar to (1), except that it has one
additional input. A more sophisticated example is (4) where F and G mutually refer

6 1. INTRODUCTION

A

F

F

G

II IIII

I

(1) (2) (3)

(4)

(5)
(6)

. . .

Figure 1.3: Cyclic sharing graphs

each other. (1) and (5) have the same tree-unwinding I�I�I�I�� � ����� as (6), but again
it depends on the situation whether we should identify the meaning of (1) and (5) with
(6).

Now we turn our attention to how to present term graphs concisely. Defining
them as directed graphs, as we will do later, is not very informative; sharing graphs
have more structural and algebraic properties than general directed graphs do, and
we wish to capture this nature. A first hint comes from the observation above that
sharing graphs can be obtained by enriching traditional terms (trees) with constructs
for acyclic or cyclic sharing. Our programming example already suggests a convenient
syntax for them - the let (letrec) blocks.

Actually similar notions have appeared in many places for presenting similar kind
of (possibly circular) dependency relations. There are various versions of systems of
equations for describing “non-well-founded sets” [5, 16] like

x � �y�
y � �x�z�
z � �x�

(The anti-foundation axiom states that this kind of system has a unique solution.)
Similarly it is common to present a state transition system like finite state automata,
and also concurrent processes, e.g. [63], by a system of equation

Clock � tick�Clock�break�Stuckclock

Yet another popular instance is the description of inductive (or recursive) types: for
instance the type T of finite branching finite trees can be represented as a solution of

1.3. SHARING GRAPHS AND THEIR PRESENTATION 7

a system of equations

T � F
F � 1 � T �F

(The terms can be generated by BNF

t ::� ����� f �
f ::� ��� � �����t� f � ��

These systems of equations have natural graph presentations, though it is possible
that two different systems may describe the identical graph1. So there should be an
equational theory on these systems which is sound and complete with respect to the
graph interpretation.

We give such an axiomatization on our terms with the let/letrec blocks (which
are of course an instance of systems of equations). Such notation has an advantage
in allowing us equational and inductive structural reasoning about sharing graphs.
We inductively construct (the presentations of) sharing graphs from variables (pointer
names), function symbols (resources) and systems of equations. Thus, as the tradi-
tional algebraic theories for terms, we give equational theories for sharing graphs in
terms of systems of equations for which we use the let/letrec-binding syntax. For
instance, the acyclic sharing graphs in the first example can be presented as

(1) ��� x � F�A�A� �� G�x�x�
(2) ��� y � A �� ��� x � F�y�y� �� G�x�x�
(3) ��� y � A �� G�F�A�y��F�y�A��
(4) ��� y � A �� ��� y� � A �� �� G�F�y�y��F�y��y���
(5) ��� y � A �� G�F�y�y��F�y�y��

As noted above, two different terms can represent the same graph; for instance, �3�
can be presented as ��� y � A �� ��� x � F�A�y� �� G�x�F�y�A��, and our equational
theory guarantees that this is equal to ��� y � A �� G�F�A�y��F�y�A��. Similarly, the
(finite) cyclic sharing graphs in the second picture correspond to

(1) ������ x � I�x� �� x
(2) ������ x � x �� x
(3) ������ x � F�y�x� �� x

(the free variable y represents the unspecified input node)
(4) ������ x � A� y � F�x�z�� z � G�x�y� �� z
(5) ������ x � I�I�x�� �� x

A simple discipline of typing is naturally given, as for traditional algebraic theories,
in which any sharing graph is equipped with its input and output types (sorts). This
allows us to construct graphs by well-typed composition inductively.

1Actually, for these examples, we usually work up to some stronger equivalences than that of graphs;
for instance two systems are often equated if they correspond to the same infinite unwinding, equivalently
if they are “bisimular”. But here we do not presuppose such specific semantic interpretations, and just
compare the graphs concerned themselves.

8 1. INTRODUCTION

Moreover, the rewriting rules on sharing graphs are easily presented on such an
equational formulation, in similar manner to the usual term rewriting rules on alge-
braic theories. The only difference is that in each rewriting step we replace a subgraph
by another (with the same typing), instead of replacing a subterm by another.

Such advantages of this style of presentation have already been emphasized and
studied by Klop, Ariola and others in the context of graph rewriting theory [7, 11].
In this thesis we basically follow their ideas, but use them freely in a more general
and semantic (algebraic) context. The merit of the equational presentation becomes
clearer in developing the semantic counterpart of sharing graphs, as explained below.

1.4 Categorical Models for Sharing Graphs

Traditionally, the semantic account of sharing graphs has been given in specific mod-
els, most importantly as tree unwindings where two sharing graphs are identified if
they represent the same (possibly infinite) tree. Such a semantics stands out if we use
sharing graphs for representing efficient implementations of pure functional compu-
tation. In this thesis, however, we take a different starting point, for the following
reasons.

1. We wish to keep as many choices of semantic models as possible, so that we
can interpret various (impure) forms of computation flexibly. For instance, if
we want to take non-determinism into account, the infinite tree unwinding se-
mantics is inconsistent. Rather than starting from specific models and trying to
interpret actual computation in them, we axiomatize the properties needed by
the models of sharing, and then find intended models.

2. We wish to talk about the class of models. This enables us to prove general
results on all models at once, and also to classify models in a natural manner.
For instance, we will give relations between our sharing graphs and intuitionistic
linear logic by comparing the classes of models.

For describing the classes of models of sharing graphs, we find category-theoretical
languages useful. The canonical examples of the use of category theory in this di-
rection are the correspondence between algebraic theories and cartesian categories
(categories with finite products), as well as that between the simply typed lambda cal-
culus and cartesian closed categories. Let us summarize these “standard” categorical
type theory correspondence as below; to make the connection with cyclic sharing, we
include the treatment of recursion in our picture (Figure 1.4). Following Lawvere
[58], we give models of an algebraic theory by a finite product preserving functor
from the classifying category (term model) of the algebraic theory into a cartesian
category. Each function symbol F with arity ��σ1� � � � �σn��τ� is interpreted as an mor-
phism ��F �� : ��σ1��� � � �� ��σn��� ��τ�� in the target cartesian category, where ��σi��, ��τ��
present the objects associated with each sort σi, τ in the algebraic theory, and � is
the (chosen) cartesian product. The interpretation is then inductively extended to all
expressions (terms) in the algebraic theory – it determines a finite product preserving
functor from the classifying category into the model category if and only if it satis-
fies the soundness property: if two expressions are provably equal in the theory, then

1.4. CATEGORICAL MODELS FOR SHARING GRAPHS 9

Theories Models

algebraic
theory

� cartesian
categories

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

algebraic
theory +
recursion

� cartesian
categories
+ fixpoint

�
��

�
��

simply typed
λ-calculus

� cartesian
closed
categories

�
�
�
�
�
��

�
�
�
�
��

simply typed
λ-calculus
+ recursion

� � � � � � � � � � � � � � � � � � � �
cartesian
closed
categories
+ fixpoint

Figure 1.4: Algebraic theories and their models

10 1. INTRODUCTION

their interpretation in the model is the same morphism. This is the basic picture of the
theory-model correspondence in categorical type theory. A detailed account can be
found, for instance, in [26].

This basic setting can be enriched with higher-order features, as well as recursive
computation. For shifting to the higher-order extension, we require the existence of
exponents, thus assume that the functor ����X has a right adjoint for each object X in
the model category. Therefore we are led to the notion of cartesian closed categories,
and again we get the theory-model correspondence between simply typed lambda the-
ories and cartesian closed categories [26, 56] (this time the semantic interpretations
are given as cartesian closed functors).

For recursion, the standard way is to assume a construction on the model cartesian
(closed) category, called a (parameterized) fixed point operator

f : A�X � X

f † : A � X

which is subject to the condition that �idA� f †	; f � f † (to be more precise, we assume
that this construction is natural in A, so that the model is sound for the interpretation of
substitutions). In the standard notation for a recursion operator on algebraic theories,
this corresponds to

Γ�x : σ
 M : σ
Γ
 µx�M : σ

with the fix point equation µx�M � M�µx�M�x�. Many concrete examples of such cat-
egories are found in domain theory, where cartesian closedness and existence of fixed
point operators are fundamental requirements for giving the denotational semantics of
programming languages.

The main technical development in this thesis is to give, for sharing graphs, a
precise analog of this standard categorical type theory. The equational theory presen-
tation of sharing graphs via the let (letrec)-syntax is already very close to the standard
algebraic theories, and it is natural to expect that there is a similar theory-model cor-
respondence for sharing graphs.

The essential change is that, instead of cartesian categories, we take identity-on-
objects, strict symmetric monoidal functors from cartesian categories to symmetric
monoidal categories as the basic setting for interpreting the sharing graphs. Intu-
itively, the domain cartesian category is used for modeling the non-linear nature of
sharing graphs – pointer names, or links, and also copyable-values (if they exist), are
duplicated or discarded freely, hence will be interpreted in the cartesian category as
we do for algebraic theories. On the other hand, the codomain symmetric monoidal
category is for interpreting linear entities in sharing graphs; since we do not duplicate
or discard the shared resources which are expensive or contain some side effect, they
must be treated linearly. (The reader familiar with linear logic [36] may informally
understand this by the analogy with the logical connectives & and � of linear logic;
later we will give the precise connection between our models of sharing and those of
propositional intuitionistic linear logic.) The strict functor between them is to relate
these non-linear and linear natures. In short, the essence of models of sharing lies
in the separation of non-linear and linear features which live at the same time in the

1.4. CATEGORICAL MODELS FOR SHARING GRAPHS 11

Theories Models

acyclic
sharing

� F : C � S

�
�
�
�
�
�

�
��

�
�
�
�
�
�

�
��

cyclic
sharing

� F : C � S
S traced

�
��

�
��

higher-order
acyclic sharing

� F : C � S
F ����X has
a right adjoint

�
�
�
�
��

�
�
�
�
��

higher-order
cyclic sharing

� � � � � � � � � � � � � � � � � � � �
F : C � S
F ����X has
a right adjoint,
S traced

Figure 1.5: Sharing theories and their models

notion of sharing. Now we shall give our picture of the theory-model correspondence
for sharing graphs (Figure 1.5). By F : C � S, we mean an identity-on-objects strict
symmetric monoidal functor F from a cartesian category C to a symmetric monoidal
category S.

For interpreting higher-order features, we additionally require that F ����X has a
right adjoint for each object X ; this is the precise analog of cartesian closed categories
for our setting. For interpreting cyclic sharing, we need a relatively new concept from
category theory – traced monoidal categories [50]. Intuitively, a traced symmetric
monoidal category is a symmetric monoidal category equipped with a construct for
“feedback”, called a trace:

f : A�X � B�X

TrX
A�B� f � : A � B

It would be helpful to understand that, in TrX � f �, f ’s output X is feedbacked, or
linked, to f ’s input X . The formal axiomatization for a trace will be recalled later;
we will see that it precisely corresponds to the equivalence on cyclic graphs, and the
theory-model correspondence will be extended to the cyclic settings comfortably by
assuming that the symmetric monoidal category S is traced.

The rewriting theories on sharing graphs are then simply modeled by the local-
preorders on the symmetric monoidal category S of our models. Some graph rewriting
systems, especially the equational term graph rewriting by Klop and Ariola, are close

12 1. INTRODUCTION

to our theories and their semantic models.
Note that if we restrict our attention to the case that C and S are the same cartesian

category and F is the identity functor, then we recover the standard categorical type
theory as sketched before (a connection between traces and fixed point operators will
be established later).

1.5 Relating Models

To demonstrate the advantage of our generic approach, we shall relate some known
systems and ours by comparing their classes of models. Many people have pointed out
that term graphs have some similarity with Girard’s linear logic [36], in their resource-
sensitive natures. Also it has been pointed that Moggi’s computational lambda calcu-
lus [71] looks like higher-order graph rewriting systems. We give some formal ac-
counts to these intuitive understandings, by first relating the classes of models, and
then relating the theories as a corollary.

A model of propositional intuitionistic linear logic may be described as a sym-
metric monoidal adjunction between a cartesian closed category and a symmetric
monoidal closed category [12, 18, 20]. It is easily seen that such a structure is essen-
tially a special case of the structures we have for interpreting acyclic sharing graphs,
as sketched above. Thus there is a sound translation from the equational theory of
sharing graphs into that of intuitionistic linear type theory. But we can say more: this
translation is conservative, thus a linear type theory is seen as a conservative extension
of the theory of sharing graphs. To prove this, we use the standard model construction
technique from category theory (Yoneda construction as the free symmetric monoidal
cocompletion [44]).

The connection with Moggi’s work [71, 72] is much more straightforward. The
models for acyclic higher-order sharing will be shown to be essentially the same as
his models for computational lambda calculus, with an assumption that the associated
monad has a commutative strength. As a special instance of the theory developed by
Power and Robinson [77, 76], we describe this comparison.

1.6 Recursion from Cyclic Sharing

One of the traditional methods of interpreting a recursive program in a semantic do-
main is to use the least fixed-point of continuous functions. However, as already men-
tioned, in the real implementations of programming languages, we often use some
kind of shared cyclic structure for expressing recursive environments efficiently. For
instance, the following is a call-by-name operational semantics of the recursive call,
in which free x may appear in M and N. We write E
 M �V for saying that evaluat-
ing a program M under an environment E results a value V ; in call-by-name strategy
an environment assigns a free variable to a pair consisting of an environment and a
program.

E �
 N � V where E � � E
�x �� �E ��M��

E
 ������ x � M �� N � V

1.7. ACTION CALCULI AS GRAPH REWRITING 13

That is, evaluating a recursive program ������ x � M �� N under an environment E
amounts to evaluating the subprogram N under a cyclic environment E � which refer-
ences itself. One may see that it is reasonable and efficient to implement the recursive
(self-referential) environment E � as a cyclic data structure as below.

MM NN EE

E �E �

or equivalently

Also it is known that if we implement a programming language using the technique
of sharing, the use of the fixed point combinator causes some unexpected duplication
of resources [9, 57]; it is more efficient to get recursion by cycles than by the fixed
point combinator in such a setting. This fact suggests that there is a gap between the
traditional approach based on fixed points and cyclically created recursion.

Our semantic models for higher-order cyclic sharing turn out to be the setting for
studying recursive computation created by such a cyclic data structure, more specifi-
cally cyclic lambda graphs [10, 8]. We claim that our new models are natural objects
for the study of recursive computation because they unify several aspects on recursion
in just one semantic framework. The leading examples are

� the graphical (syntactical) interpretation of recursive programs by cyclic data
structures motivated as above,

� the domain-theoretic interpretation in which the meaning of a recursive pro-
gram ������ x � F�x� �� x is given by the least fixed point

�
n Fn���, and

� the non-deterministic interpretation where the program ������ x � F�x� �� x is
interpreted by �x � x � F�x��, the set of all possible solutions of the equation
x � F�x�.

Each of them has its own strong tradition in computer science. However, to our knowl-
edge, this is the first attempt to give a uniform account on these well-known, but less-
related, interpretations. Moreover, our higher-order cyclic sharing theories and cyclic
lambda calculi serve as a uniform language for them.

1.7 Action Calculi as Graph Rewriting

Finally we show that our framework can accommodate Milner’s action calculi [68], a
proposed framework for general interactive computation, by showing that our sharing
theories, enriched with suitable constructs for interpreting parameterized constants
called controls, are equivalent to the closed fragments of action calculi [34, 75] and
their higher-order/reflexive extensions [66, 67, 61].

The dynamics, the computational counterpart of action calculi, is then understood
as rewriting systems on sharing theories, and interpreted as local preorders on our
models. In this sense, we understand action calculi as generalized graph rewriting

14 1. INTRODUCTION

systems – and regard the notion of sharing as one of the fundamental concepts of
action calculi.

To demonstrate how sharing is used in action calculi, we shall consider two situ-
ations representable in the action calculus-version of the π-calculus [69, 64] as pre-
sented in [68] (see Chapter 8, Example 8.1.6).

���� w � x�y��y �� w � w� � x̄�z	

�
�

�
�

out

�
z

�x

�
�

�
�

box
�x �w�y �y ��	

�
�
w

w

�

z � z

z�

z�

We may regard this situation (not representable in the original π-caclulus!) as a broad-
casting; there is an announcer x�y��y who gets a message via a telephone number x and
then broadcasts it; her/his program is monitored by two listeners w�w. Therefore the
received message z is broadcast (duplicated) to the listeners. Compare this and the un-
shared version x�y��y � x�y��y � x̄�z	, where we have two persons who share the same
telephone number x. So we don’t know which person will receive the message z, and
there are two possible reactions (in both cases the result is x�y��y � z, thus one person
remains unchanged:

x�y��y � x�y��y � x̄��z	

�
�

�
�

out

�
z

�x

�
�

�
�

box
�x ��y �y �
�
�

�
�

box
�x ��y �y �

�

x�y��y � z

�z

�
�

�
�

box
�x ��y �y �

Further sophisticated and complicated examples will be available by allowing cyclic
sharing (reflexion) and higher-order constructions.

All of our semantic results on sharing graphs equally apply to action calculi (with
some care on the treatment of controls). The conservativity of intuitionistic linear type
theory over action calculi (as reported in [13]), the correspondence between higher-
order action calculi and Moggi’s work (as described in [35]), and the analysis of re-
cursive computation in reflexive action calculi (c.f. [61]) are obtained as corollaries of
results on sharing graphs.

Figure 1.6 is a summary of the correspondence between our theory of sharing
graphs and action calculi:

1.7. ACTION CALCULI AS GRAPH REWRITING 15

Sharing Graphs Action Calculi

acyclic
sharing

� Action Calculi

�
�
�
�
�
�

�
��

�
�
�
�
�
�

�
��

cyclic
sharing

� Reflexive
Action Calculi

�
��

�
��

higher-order
acyclic sharing

� Higher-Order
Action Calculi

�
�
�
�
��

�
�
�
�
��

higher-order
cyclic sharing

� Higher-Order
Reflexive
Action Calculi

Figure 1.6: Sharing theories and action calculi

16 1. INTRODUCTION

We hope that our work provides a bridge between graph rewriting theory and con-
currency theory.

1.8 Overview

Chapter 2 introduces the notion of sharing graphs and the corresponding simply typed
equational theories, called sharing theories. We emphasize the algebraic, structural na-
ture of sharing graphs via the equational presentations, which leads us to the semantic
development in the following chapters.

In Chapter 3 we study the category-theoretic models of acyclic sharing theories.
In terms of symmetric monoidal categories and functors, we describe the class of
models, and establish the soundness and completeness, in a similar way to the standard
categorical type theory.

In Chapter 4 we give a higher-order extension of acyclic sharing. The models of
this setting are obtained by assuming additional conditions formulated as adjunctions,
and we repeat the same pattern as in Chapter 3.

As an application of our approach, in Chapter 5 we relate our acyclic sharing the-
ories with notions of computation and intuitionistic linear type theory by comparing
their classes of models.

In Chapter 6 we give the models of cyclic sharing, by additionally using the no-
tion of traced monoidal categories. After reviewing traced monoidal categories, we
establish the expected properties of our models, again in the same way as Chapter 3.

Chapter 7 describes higher-order cyclic sharing. The models of this setting, ob-
tained by combining those in Chapter 4 and Chapter 6, are of particular interest as they
support a generalized form of recursive computation. We look at this in some detail,
together with the connection with cyclic lambda calculi.

Chapter 8 is devoted to showing that Milner’s action calculi can be accommodated
in our framework.

Finally, in Chapter 9, we conclude this thesis with some discussions towards fur-
ther research.

1.8. OVERVIEW 17

1. Introduction

2. Sharing Graphs

3. Acyclic Models

4. Higher-Order 6. Cyclic Models

7. Recursion from Cyclic Sharing

5. Relating Models 8. Action Calculi

9. Conclusion

Main Developments

Applications

Figure 1.7: Overview of this book

