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ABSTRACT
The shift and reset operators, proposed by Danvy and Fil-
inski, are powerful control primitives for capturing delimited
continuations. Delimited continuation is a similar concept as
the standard (unlimited) continuation, but it represents part
of the rest of the computation, rather than the whole rest
of computation. In the literature, the semantics of shift and
reset has been given by a CPS-translation only. This paper
gives a direct axiomatization of calculus with shift and reset,
namely, we introduce a set of equations, and prove that it
is sound and complete with respect to the CPS-translation.
We also introduce a calculus with control operators which
is as expressive as the calculus with shift and reset, has a
sound and complete axiomatization, and is conservative over
Sabry and Felleisen’s theory for first-class continuations.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages

General Terms
Languages,Theory,Verification

Keywords
Continuation, CPS-translation, Axiomatization

1. INTRODUCTION
First-class continuations are powerful control facility in

functional programming languages such as Scheme (call/cc)
and SML/NJ (callcc and throw). It captures the whole rest
of computation so that we can represent loops, backtrack-
ing, coroutines, and other control structures [29]. However,
one sometimes wants to capture some part of the rest of
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computation, and compose the captured continuation with
ordinary functions. In the literature, such a kind of con-
tinuations is called partial continuations, delimited contin-
uations, functional continuations, or composable continua-
tions, and we use the term “delimited continuations” in this
paper. Recent years have found that delimited continua-
tions are useful in writing programs with explicit control in
such areas as partial evaluation, CPS-translation, and even
mobile computation [32, 30, 27, 2].

There are many proposals for representing first-class de-
limited continuations [9, 6, 23, 17, 14]. Among them, Danvy
and Filinski’s shift and reset operators [6, 7] are most widely
used and efficient implementations for them have been pro-
posed [11, 13]. An important merit of their operators is
that a clean and rigorous semantics is given through a CPS-
translation. Moreover, Filinski [11] proved that any express-
ible1 monadic effects are representable by the shift and reset
operators, which demonstrates the expressive power of these
operators.

We address the problem of reasoning about programs with
first-class delimited continuations, in particular the shift and
reset operators. Although there is a rigorous CPS-based se-
mantics for shift and reset, the CPS-translation generates
larger and restructured codes, with which it is often very
hard to recognize the high-level aspects of the original pro-
gram (though the size of the generated codes is not really
a matter, if we use compacting CPS-translations [25, 8]).
Thus we look for a direct axiomatization which is closer to
the programmer’s intuition and yet as powerful as the CPS-
based reasoning.

In this paper, we give such an axiomatization for shift
and reset, and prove the soundness and completeness of our
axiomatization with respect to the semantics given by CPS-
translation. Based on our axiomatization, one can directly
reason about properties of programs which involve shift and
reset, without converting the program to CPS-terms.

Our method is an extension of the technique developed by
Sabry and Felleisen [25], who gave a sound and complete ax-
iomatization of call-by-value type-free lambda calculus with
first-class continuations. There are mainly two obstacles
when we apply their technique to shift and reset.

The first one is that, the target calculus of the CPS-
translation in the case of shift and reset is not the usual

1He defines that a monad is expressible if its defining func-
tions η and ∗ are defined in purely functional object lan-
guage.



CPS-forms, by which we mean there are non-value terms in
an argument position in functional application. This means
that we cannot use the full βη-equality in the target cal-
culus, which is extensively used in their proof. To avoid
this problem we use Danvy and Filinski’s CPS-hierarchy,
which can be considered as doubling CPS-translation, that
is, to CPS-translate source terms twice (though this is only
conceptual. In this paper we use a curried version of CPS-
hierarchy, which does not exactly agree with the composition
of two CPS-translations.)

The second problem is the complexity of this doubling
CPS-translation. In the target calculus of CPS-translation,
we must treat not only an ordinary continuation variable,
but also a metacontinuation variable which is introduced
by the second CPS-translation, and the term structure of
the target calculus is more complex than Sabry-Felleisen’s.
Also, we have two operators shift and reset, rather than
a single primitive callcc, which also complicates the proof.
Nevertheless, by making clear distinction between pure eval-
uation contexts and ordinary evaluation contexts, and care-
fully treating the reset primitive, we are able to extend Sabry
and Felleisen’s technique to the shift and reset case, and find
a sound and complete axiomatization.

Independently to Sabry and Felleisen, Hofmann [18] also
proposed a sound and complete axiomatization for a call-
by-value lambda calculus with first-class continuations. He
constructed a term model using a category-theoretic machin-
ery to prove the result, which is more structured than Sabry
and Felleisen’s. However, he treated a typed version, and it
is not certain that his proof technique can be applied to the
type-free case. Recently Führmann and Thielecke presented
a refined proof and axiomatization in a typed setting [12].

Sabry [24] proposed an elegant technique to obtain a sound
and complete axiomatization with respect to a CPS-semantics.
He applied it to a calculus with shift and lazy reset, which
differs from (ordinary) reset in that a reset term is always
a value. As a by-product of his proof, he showed some ax-
ioms by Sabry and Felleisen [25] are redundant. In order to
apply Sabry’s technique to the calculus for shift and reset,
we must carefully reformulate the target calculus since the
target calculus in our case does not have the full βη-equality
while we need the βη-equality for continuations (and meta-
continuations). Yet, we must note that the resulting axioms
in this work are very close to Sabry’s, and in fact, his axioms
can be obtained by adding one axiom to ours. We shall use
this fact to obtain conservativity of our axioms over Sabry-
Felleisen’s axiomatization.

The rest of this paper is organized as follows. We intro-
duce the shift and reset operators and their CPS-translation
in Section 2. Our axiomatization with the soundness theo-
rem is given in Section 3. Section 4 analyzes the target cal-
culus and gives an inverse translation from the target to the
source. Section 5 and Section 6 give a proof of the complete-
ness of our axioms. Section 7 examines the axioms given in
this paper, specifically, gives conservativity and some inde-
pendence results. Section 8 gives concluding remarks.

2. SHIFT AND RESET

2.1 Source Language
In this section we introduce the shift and reset operators

due to Danvy and Filinski [6, 7] in a type-free, call-by-value
setting.

The grammar of the calculus λS is given by:

(terms) M, N ::= V | MN | 〈M〉
(values) V ::= x | λx.M | S

where x is a variable, MN and λx.M are application and
λ-abstraction.

The shift operator resembles the standard first-class con-
tinuation operator callcc, but it captures part of the rest of
the computation, and the part is specified by the (dynami-
cally determined) closest reset operator. In the calculus λS ,
the angle brackets in the term 〈M〉 represent the reset op-
erator, namely, they delimit the effect of the shift operators
in M . We give the shift operator as a constant, rather than
the original form ξc.M , which can be defined by S(λc.M)
in our formulation.

Free and bound occurrences of variables are defined as
usual. FV (M) denotes the set of free variables in M . The
usual capture-avoiding substitution is denoted by M{x :=
N}.

We introduce three kinds of contexts.

(contexts) C ::= [ ] | λx.C | CM | MC | 〈C〉
(e-contexts) E ::= [ ] | EM | V E | 〈E〉
(p-contexts) F ::= [ ] | FM | V F

where C stands for contexts, E for evaluation contexts (e-
contexts, for short), and F for pure evaluation contexts (p-
contexts, for short). Contexts and evaluation contexts are
standard [10]. We distinguish from other contexts a pure
evaluation context, which is an evaluation context that does
not have any enclosing reset operators around the hole. We
use the metavariables E and F (with suffixes) for e-contexts
and p-contexts, resp. For a context C and a term M , we
write C[M ] for the usual (variable-capturing) hole-filling op-
eration. For instance, if C ≡ λx.[ ] and M ≡ xy, then
C[M ] ≡ λx.xy, thus x is captured by C. If a variable x
becomes a bound variable in C[x], we say it is captured by
C.

An intuitive operational semantics of the shift and reset
operators can be given as follows. Let E, F and V be an e-
context, a p-context and a value, resp. We have the following
equalities (or reductions if we read from left to right):

E[〈F [SV ]〉] = E[〈V (λx.〈F [x]〉)〉]
E[〈V 〉] = E[V ]

In the first line, the shift operator S encapsulates part of
the rest of the computation as a function λx.〈F [x]〉. The
context being captured is specified by the closest reset op-
erator, since F is a p-context, and there are no other reset’s
enclosing the hole. The captured computation is almost
λx.F [x], but it contains an additional reset operator, which
correctly delimits the (possible) effects in F; this also al-
lows a simple CPS-translation, as explained by Danvy and
Filinski [6]. Note that, the current delimited continuation
F is discarded, so the shift operator also behaves like an
abort. In the second line, the reset operator is discarded if
its content is already a value.

In this paper we also consider other control operators D
and A, whose intuitive semantics is given as follows:



E[〈F [DV ]〉] = E[〈F [V (λx.A(F [x]))]〉]
E[〈F [AV ]〉] = E[V ]

Since the shift operator does two things (capturing a de-
limited continuation and aborting), we want to split its roles
into two operators to help our technical development. The
abortive behavior of shift is inherited by the A-operator,
and the role of capturing a delimited continuation is inher-
ited by the D-operator. By replacing the shift operator by
the D- and A-operators we obtain the calculus λDA.

Note that S and D,A are inter-definable by each other.
That is, λS can define λDA, and vice versa.

D = λz.S(λk.k(z(λx.A(kx))))

A = λz.S(λd.z)

S = λz.D(λk.A(z(λx.〈kx〉)))
Formally, these equations are justified by the CPS-translation
given later.

The decomposition of the shift operator to the D- and A-
operators are not new to this work, and we refer to Murthy
[21] and Filinski [11] for interested readers.

In this paper, we shall first axiomatize the calculus λDA,
then the calculus λS .

2.2 CPS-translation
A CPS-translation is a syntactic translation from source

terms to target terms. In our case, the source calculus is
λS and λDA, and the target language is the pure type-free
lambda calculus without control operators.

As explained in the introduction, we shall use Danvy and
Filinski’s CPS-hierarchy (metacontinuation semantics). The
reason is as follows: the image of the ordinary CPS-translation
of a shift-term contains a term like k′(kx), whose evaluation
is sensitive to the evaluation order. Since we want to eval-
uate it in call-by-value, the full β-reduction cannot be used
in the target language. On the other hand, if we adopt
the CPS-hierarchy (twice or more CPS-translations), target
terms do not contain such forms, and we can safely use the
full βη-equality in the target calculus.

Before giving the CPS-translation we introduce a combi-
nator J in the target calculus defined by J = λxγ.γx. It is
the image of the empty context (the identity continuation).

The CPS-translations of λS and λDA in Plotkin style are
given as follows, where the introduced bound variables k, k′,
x, v, w, m, n, and γ are assumed to be fresh.

[[ ]] : Term → Target Term

[[V ]] = λk.kV ∗

[[MN ]] = λk.[[M ]](λm.[[N ]](λn.mnk))

[[〈M〉]] = λkγ.[[M ]]J(λv.kvγ)

( )∗ : Value → Target Term

x∗ = x

(λx.M)∗ = λx.[[M ]]

S∗ = λxk.x(λvk′γ.kv(λw.k′wγ))J

D∗ = λxk.x(λvk′.kv)k

A∗ = λxkγ.γx

Note that the result of translating the term 〈M〉 needs
two arguments k and γ. The first one is the ordinary con-
tinuation parameter, while the second one is the metacon-
tinuation parameter.

An important observation on the CPS-translation above
is that, while the continuation variable k can be used many
times (by the D-operator), the metacontinuation variable
γ is always used once, thus linear. Intuitively, it can be
explained like this: the CPS-translation is essentially the
composition of two successive (ordinary) CPS-translations,
and the source language of the second CPS-translation is
the ordinary call-by-value lambda calculus without control
operators. Therefore, as shown in the literature [5, 4, 15],
continuations are used linearly and the target calculus of the
second CPS-translation can be considered as linear lambda
calculus. Continuations in the second CPS-translation are
metacontinuations in our setting, thus γ is linear in the tar-
get calculus. The second author exploits this linearity in his
semantic analysis of delimited continuations [16].

Although we present the CPS-translation in a type-free
setting, we may consider its target calculus as typed calculus
with recursive types, and the mentioned linearity is made
explicit in the type system. We will briefly mention in the
conclusion how it is done.

The CPS-translation above defines a rigorous semantics
of shift and reset. The reset operator installs the identity
continuation J as the current continuation. The D-operator
captures the current continuation k (up to the most recently
called reset operator), and applies λvk′.kv to the argument.
The A-operator discards the current continuation k, and
directly applies the argument x to the metacontinuation γ.

3. AXIOMS
For the purpose of presentation, we give the axioms in

this section, and postpone the proof of the completeness to
later sections. The actual development was in the opposite
order; these axioms have been obtained during the proof of
completeness.

3.1 Axioms and their Soundness
The set of axioms for λDA is given in Figure 1, and that

for λS is given Figure 2.
For the sake of comparison, we list Sabry and Felleisen’s

axiomatization for first-class continuations [25] in Figure 3.
(we slightly changed the names of the axioms from the orig-
inal.)

Some explanations of our axioms will follow.
The axioms βv, ηv and βΩ are axioms for pure lambda

terms, and are essentially the same as those for Moggi’s
computational lambda calculus [20], which is considered as
the canonical calculus in call-by-value. Sabry and Felleisen’s
axiomatizations contains the axiom β-lift, but it is known
to be derivable2.

The axioms D-elim, D-current, D-abort, and D-lift are ax-
ioms for the D-operator. It is easy to see that these axioms
in our axiomatization (Figure 1) are essentially equivalent
to Sabry and Felleisen’s axiomatization (Figure 3) for un-
limited continuations if we identify D with callcc. The only
difference is that the latter contains an extra axiom (callcc-
tail), but it is derivable as is shown below.

The remaining axioms are the key to the axiomatization

2Sabry [24] attributes this observation to Filinski.



(λx.M)V = M{x := V } βv

λx. V x = V ηv, if x �∈ FV (V )

(λx.F [x])M = F [M ] βΩ, if x �∈ FV (F )

〈V 〉 = V reset-value

〈(λx.M)〈N〉〉 = (λx.〈M〉)〈N〉 reset-lift

D(λk.M) = M D-elim, if k �∈ FV (M)

D(λk.kM) = D(λk.M) D-current

D(λk.C[F [kM ]]) = D(λk.C[kM ]) D-abort, if k is not captured by C

F [DM ] = D(λk.F [M(λf.kF [f ])]) D-lift, if k �∈ FV (F [DM ]) and f �∈ FV (kF )

F [AM ] = AM A-lift

〈AM〉 = 〈M〉 A-top

A〈M〉 = AM A-reset

Figure 1: Axioms for λDA

Axioms βv, ηv , βΩ, reset-value, and reset-lift with the following axioms.

S(λk.kM) = M S-elim, if k �∈ FV (M)

〈F [SM ]〉 = 〈M(λx.〈F [x]〉)〉 reset-S, if x �∈ FV (F )

S(λk.〈M〉) = S(λk.M) S-reset

Figure 2: Axioms for λS

of delimited continuations. The axioms A-lift, A-top, A-
reset, and reset-value are already present in Sabry’s work
[24], but the notion of values in his calculus is different from
that in our calculus in that he treated “lazy” prompt (reset)
and 〈M〉 is always a value.

The axiom reset-lift seems new to this work. It states
a non-trivial equality on the nested and sequential uses of
the reset operator, and is also the key case of the equation
βΩ-reset-2 in Lemma 1 below.

For λS , we replace the seven axioms for D and A by three
axioms for S, which closely resemble those for Felleisen’s C-
operator [10] except that we need some extra care for the
interaction with the reset operator, and that the continua-
tion captured by S is composable (not abortive).

Let T be one of the theories λDA, λS , and λβη, where λβη

is the pure lambda calculus with the full βη-equality. We
write T � M = N if M = N is derived from the axioms in T .
We also write M ≡ N for the syntactic equality (including
α-equivalence).

Theorem 1 (Soundness). Let T be λDA or λS , and
M and N be terms in T . Then T � M = N implies
λβη � [[M ]] = [[N ]].

This theorem is proved by directly computing both sides
of each axiom, and the proof is omitted.

3.2 Derivable Equations
The next two lemmas give several useful equations in λDA

and λS . The proofs of these lemmas can be found in the
appendix.

Lemma 1. The following equations are derivable in λDA,
in which we assume x �∈ FV (F ) ∪ FV (E) ∪ {k} and k �∈
FV (M2).

F [(λx.N)M ] = (λx.F [N ])M β-lift

〈〈M〉〉 = 〈M〉 reset-reset

〈DM〉 = 〈MA〉 D-top

(λx.D(λk.M1))M2 = D(λk.(λx.M1)M2) D-tail

〈(λx.〈F [x]〉)M〉 = 〈F [M ]〉 βΩ-reset-1

(λx.E[x])〈M〉 = E[〈M〉] βΩ-reset-2

The axiom βΩ-reset-2 is similar to βΩ, but the former allows
an arbitrary e-context E in the body of the β-redex, rather
than a p-context F (which must not have reset-operators
enclosing the hole). Note that a more general equation
(λx.E[x])M = E[M ] is not sound with respect to the CPS-
translation.

Lemma 2. The following equations are derivable in λS ,
in which we assume x �∈ FV (kF ) and k �∈ FV (F )∪FV (M).

F [SM ] = S(λk.M(λx.〈kF [x]〉))S-nat

S(λk.Mk) = SM Sη

(λx.S(λk.N))M = S(λk.(λx.N)M) S-tail

Note that the equation S-nat has a similar form to D-lift,
however, it can be derived in λS .

4. TARGET CALCULUS AND INVERSE
TRANSLATION

The goal of the rest of this paper is to prove the complete-
ness of the axioms for λDA and λS . There are three ways
to prove the completeness of this kind. The first approach
is due to Sabry and Felleisen [25], who carefully analyze the



Axioms βv, ηv , βΩ, and A-lift with the following axioms.

F [(λx.N)M ] = (λx.F [N ])M β-lift

callcc(λk.M) = M callcc-elim, if k �∈ FV (M)

callcc(λk.kM) = callcc(λk.M) callcc-current

callcc(λk.C[F [kM ]]) = callcc(λk.C[kM ]) callcc-abort, if k is not captured by C

F [callccM ] = callcc(λk.F [M(λf.kF [f ])]) callcc-lift, if k �∈ FV (F [M ]) and f �∈ FV (kF )

(λx.callcc(λk.M1))M2 = callcc(λk.(λx.M1)M2) callcc-tail

Figure 3: Sabry and Felleisen’s Axioms for callcc

target of the CPS-translation, then define an “inverse” of the
CPS-translation, and prove the equality in the target (the
βη-equality) is preserved by the inverse translation. The
other two approaches are Hofmann’s work [18] and Sabry’s
work [24], both of which are cleaner than Sabry-Felleisen’s
proof. However, it is not certain whether we can apply these
techniques to the calculus with shift and reset. Hofmann’s
work is for the typed-setting. It seems possible to apply
Sabry’s work to our case, but it needs reformulation of the
target calculus. In order to axiomatize the very calculus
Danvy and Filinski proposed, we will adopt Sabry-Felleisen’s
approach in this paper.

In this and the next sections, we take λDA as the source
calculus; the completeness for λS is derived in Section 6 as
a corollary to the case of λDA.

4.1 The Target Calculus
We first analyze the structure of the target terms of the

CPS-translation which is necessary to define an inverse of
the CPS-translation.

Assume that the ordinary variables are x1, · · · xn, the con-
tinuation variables are k1, · · · , km, and the metacontinua-
tion variable is γ. By the linearity condition of the meta-
continuation variable, we need only one metacontinuation
variable.

The following grammar defines the target calculus.

(terms) T ::= λk.Q | WW

(pre-values) Q ::= λγ.R | TK | KW

(answers) R ::= QG | GW

(values) W ::= x1 | · · · | xn | λx.T

(continuations) K ::= k1 | · · · | km | λx.Q

(metacontinuations) G ::= γ | λx.R

A term in the target calculus is called a T -term if it be-
longs to the class T defined above. Similarly, a Q-, R-, W -,
K-, and G-term are defined.

Since there is only one metacontinuation variable γ, the
term λγ.R does not have free metacontinuation variables.
By further extending this reasoning, we have that T -, Q-, W -
and K-terms do not contain free metacontinuation variables,
and R- and G-terms contain a single free occurrence of the
metacontinuation variable γ.

Theorem 2. (i) Let M and V be a term and a value in
λDA, resp. Then [[M ]] is a T -term and V ∗ is a W -term in
the target calculus.

(ii) The target calculus is closed under the full βη-reductions.

Proof. (i) We have that D∗ and A∗ are W -terms, and
J is a K-term. Other cases are proved by straightforward
induction.

(ii) This is easily proved by case-analysis. We must be
careful to check that the linearity condition on the meta-
continuation variable γ is preserved through the reduction,
but it is proved by straightforward induction.

Even though the above grammar is closed under the re-
ductions in the target calculus, there are T -terms which are
not an image of any source term. However, in the next
subsection, we see that an “inverse” function from all the
T -terms to the source terms can be defined.

4.2 Inverse Translation
The “inverse” of the CPS-translation is a total function

from the set of target terms (not necessarily in the image of
CPS-translation, but arbitrary terms defined by the above
grammar) to the set of terms in λDA. Depending on the
six classes in the target calculus, the inverse translation con-
sists of the six functions, T −1( ), Q−1( ), R−1( ), W−1( ),
K−1( ), and G−1( ) defined below.

T −1(λk.Q) = D(λk.A(Q−1(Q)))

T −1(W1W2) = W−1(W1)W−1(W2)

Q−1(λγ.R) = D(λγ.R−1(R))

Q−1(TK) = K−1(K)[T −1(T )]

Q−1(KW ) = K−1(K)[W−1(W )]

R−1(QG) = G−1(G)[〈Q−1(Q)〉]
R−1(GW ) = G−1(G)[W−1(W )]

W−1(x) = x

W−1(λx.T ) = λx.T −1(T )

K−1(k) = k[ ]

K−1(λx.Q) = (λx.〈Q−1(Q)〉)[ ]

G−1(γ) = γ[ ]

G−1(λx.R) = (λx.R−1(R))[ ]

The inverse translation is similar in spirit to Sabry and
Felleisen’s inverse translation [25]. For instance, we explic-
itly capture continuations in the cases of T −1(λk.Q) and
Q−1(λγ.R). Yet, there are differences in treating values and
continuations, and these are subtle points. For instance,
a reset (delimiter) is inserted to the result of K−1(λx.Q),
which is essential for our completeness proof.

As an example of the inverse translation, let us consider
the term λk.fx(λv.k(λak.ka)) in the target calculus. This
term is obtained by β-reducing [[(λya.a)(fx)]]. We can com-



pute its inverse as follows:

T −1(λk.fx(λv.k(λak′.k′a)))

≡ D(λk.A(Q−1(fx(λv.k(λak′.k′a)))))

≡ D(λk.A(K−1(λv.k(λak′.k′a))[T −1(fx)]))

By a similar calculation, we have

K−1(λv.k(λak′.k′a)) ≡ (λv.〈k(λa.D(λk′.A(k′a)))〉)[ ],

T −1(fx) ≡ fx

thus, the result of the inversion is

D(λk.A((λv.〈k(λa.D(λk′.A(k′a)))〉)(fx))).

We can show the resulting term is equal to (λva.a)(fx) un-
der the theory λDA.

Going back to the definition of the inverse translation, let
us observe that its images have the following special form:

1. T −1(T ) is a term, W−1(W ) is a value, and K−1(K)
and G−1(G) are p-contexts in λDA.

2. Whenever Q−1(Q) appears as subterms of other terms,
it is either of the form 〈Q−1(Q)〉 or the form A(Q−1(Q)).
Namely, Q−1(Q) always appears in a delimited context, or
an abortive context. The same thing holds for K−1(K).

3. Whenever G−1(G)[M ] appears as a subterm of other
terms, M is either of the form W−1(W ) or the form 〈N〉.

These observations will be used in the completeness proof.
In the following, we simply write ( )−1 for the six inverse
translations to avoid clutter.

We can prove that the inverse translation is in fact the
(left) inverse of the CPS-translation up to the axioms in
Figure 1.

Theorem 3. Let M be a term and V be a value in λDA.
Then we have:

λDA � ([[M ]])−1 = M

λDA � (V ∗)−1 = V

Proof. We prove the theorem by simultaneous induction
on M and V .

(Case M is a value V1)

([[V1]])
−1 ≡ D(λk.A(k(V ∗

1 )−1))

= D(λk.A(kV1)) (by I.H.)

= D(λk.kV1) (by D-abort)

= V1 (by D-current, D-elim)

(Case M ≡ N1N2)

([[N1N2]])
−1

≡ D(λk.A((λm.〈(λn.〈k(mn)〉)([[N2]])
−1〉)([[N1]])

−1))

= D(λk.A((λm.〈(λn.〈k(mn)〉)N2〉)N1)) (by I.H.)

= D(λk.A(〈k(N1N2)〉)) (by βΩ-reset-1 twice)

= D(λk.A(k(N1N2))) (by A-reset)

= D(λk.k(N1N2)) (by D-abort)

= N1N2 (by D-current,D-elim)

(Case M ≡ 〈N〉)

([[〈N〉]])−1

≡ D(λk.A(Dλγ.(λv.γ〈kv〉)〈([[N ]]J)−1〉))
= D(λk.A(Dλγ.γ〈k〈([[N ]]J)−1〉〉)) (by βΩ-reset-2)

= D(λk.A〈k〈([[N ]]J)−1〉〉) (by D-current, D-elim)

= D(λk.k〈([[N ]]J)−1〉) (by A-reset,D-abort)

= 〈([[N ]]J)−1〉 (by D-current,D-elim)

≡ 〈(λx.〈D(λγ.γx)〉)[[N ]]−1〉
= 〈(λx.x)[[N ]]−1〉 (by D-current,D-elim,reset-value)

= 〈[[N ]]−1〉 (by βΩ)

= 〈N〉 (by I.H.)

(Case V ≡ x or V ≡ λx.M1)
Easily shown.
(Case V ≡ D)

(D∗)−1

≡ λx.D(λk.A(k(x(λv.D(λk′.A(kv))))))

= λx.D(λk.A(k(x(λv.kv)))) (by D-abort,D-elim)

= λx.D(λk.k(xk)) (by ηv ,D-abort)

= λx.D(λk.xk) (by D-current)

= D (by ηv twice)

(Case V ≡ A)

(A∗)−1 ≡ λx.D(λk.A(D(λγ.γx)))

= λx.Ax (by D-current,D-elim twice)

= A (by ηv)

5. REDUCTIONS IN THE TARGET CAL-
CULUS

The CPS- and the inverse-translations give a syntactic
correspondence between the source and the target calculi. In
this section, we establish the correspondence in the equality-
level. Namely, we show the equality in the target calculus
(the full βη-equality) is preserved through the inverse trans-
lation.

5.1 Substitution and Inverse Translation
In this subsection, we prove three lemmas which essen-

tially say that a substitution and the inverse-translation
commute. We have three such lemmas corresponding to
three classes of variables (an ordinary variable, a continua-
tion variable, and a metacontinuation variable).

The first substitution lemma is for an ordinary variable x.

Theorem 4. Let X be one of T -, Q-, R-, W -, K-, G-
terms, and W be a W -term.

Then we have:

λDA � (X{x := W})−1 = X−1{x := W−1}

The proof is straightforward.
The second substitution lemma is for a continuation vari-

able k.

Theorem 5. Let X be one of T -, R-, W -, G-terms, and
Y be one of Q-, K-terms.



Then we have:

λDA � (X{k := K})−1 = X−1{k := λf.A(K−1[f ])}
λDA � 〈(Y {k := K})−1〉 = 〈Y −1{k := λf.A(K−1[f ])}〉
λDA � A(Y {k := K})−1 = A(Y −1{k := λf.A(K−1[f ])})

Proof. The theorem is proved by simultaneous induction
on X and Y . We prove only the interesting cases here.

The second equation for Y ≡ k can be proved as follows:

LHS ≡ 〈K−1〉
RHS ≡ 〈(λf.A(K−1[f ]))[ ]〉

= 〈A(K−1)〉 (by βΩ)

= 〈K−1〉 (by reset-A)

Note that, A(K−1) is a p-context, hence we can apply βΩ

in the above derivation.
The third equation for Y ≡ k can be proved similarly,

using A-lift instead of reset-A.

The third substitution lemma is for a metacontinuation
variable γ. Since γ does not appear free in T -, Q-, W -, and
K-terms, we need to consider R- and G-terms only.

Theorem 6. Let R be an R-term, and G, G2 be G-terms.
Also let M be a term in the source calculus λDA. Then we
have:

λDA � (R{γ := G2})−1 = G−1
2 [〈D(λγ.R−1)〉]

λDA � (G{γ := G2})−1[〈M〉] = G−1
2 [〈D(λγ.G−1[〈M〉])〉]

Proof. The theorem is proved by simultaneous induction
on R and G.

(Case: R ≡ QG)
Note that Q does not contain γ free.

LHS ≡ (Q(G{γ := G2}))−1

≡ (G{γ := G2})−1[〈Q−1〉]
= G−1

2 [〈D(λγ.G−1[〈Q−1〉])〉] (by I.H.)

RHS ≡ G−1
2 [〈D(λγ.(QG)−1)〉]

≡ G−1
2 [〈D(λγ.G−1[〈Q−1〉])〉]

(Case: R ≡ GW )
Note that W does not contain γ free.

LHS ≡ ((G{γ := G2})W )−1

≡ (G{γ := G2})−1[W−1]

= (G{γ := G2})−1[〈W−1〉] (by reset-value)

= G−1
2 [〈D(λγ.G−1[〈W−1〉])〉] (by I.H.)

= G−1
2 [〈D(λγ.G−1[W−1])〉] (by reset-value)

RHS ≡ G−1
2 [〈D(λγ.(GW )−1)〉]

≡ G−1
2 [〈D(λγ.G−1[W−1])〉]

(Case: G ≡ γ)

LHS ≡ G−1
2 [〈M〉]

RHS ≡ G−1
2 [〈D(λγ.γ〈M〉)〉]

= G−1
2 [〈〈M〉〉] (by D-current,D-elim)

= G−1
2 [〈M〉] (by reset-reset)

(Case: G ≡ λx.R)
We may assume x �∈ FV (G2).

LHS ≡ (λx.(R{γ := G2})−1)〈M〉
= (λx.G−1

2 [〈D(λγ.R−1)〉])〈M〉 (by I.H.)

= (λx.G−1
2 [〈(λx.D(λγ.R−1))x〉])〈M〉 (by βv)

= G−1
2 [〈(λx.D(λγ.R−1))〈M〉〉] (by βΩ-reset-2)

= G−1
2 [〈D(λγ.(λx.R−1)〈M〉)〉] (by D-tail)

RHS ≡ G−1
2 [〈D(λγ.(λx.R−1)〈M〉)〉]

Hence, we are done.

5.2 The βη-Reductions and the Inverse Trans-
lation

We are ready to prove that the βη-equality is preserved
by the inverse translation.

Theorem 7. Let Xi be T -, R- or W -terms, Yi be Q- or
K-terms, Gi be G-terms in the target calculus, for i = 1, 2.
Let M be a term in λDA. Then we have the following:

λβη � X1 = X2impliesλDA � X−1
1 = X−1

2

λβη � Y1 = Y2 impliesλDA � 〈Y −1
1 〉 = 〈Y −1

2 〉, and

λDA � A Y −1
1 = A Y −1

2

λβη � G1 = G2 impliesλDA � G−1
1 [〈M〉] = G−1

2 [〈M〉]

Proof. Note that the second equation for Yi can be de-
rived from the first one for Yi. Assuming λDA � 〈Y −1

1 〉 =

〈Y −1
2 〉, we have λDA � A Y −1

1 = A〈Y −1
1 〉 = A〈Y −1

2 〉 =

A Y −1
2 , by using A-reset twice.

Note also that it suffices to prove the theorem when the
equality in the target calculus (the βη-equality) is obtained
by one-step β- or η-reduction. Then the theorem is proved
by structural induction on X1, Y1, and G1. Again it suffices
to prove the term in consideration is the redex, since the
inverse translation commutes with hole-filling of contexts,
namely, (C[M ])−1 = C−1[M−1] if we appropriately define
C−1 for a context C.

We first consider the cases for β-reduction. If the sub-
stituted variable is an ordinary variable (x), or a metacon-
tinuation variable (γ), then we can immediately prove these
cases from the first and the third substitution lemmas. For
instance, let us consider the case where Y1 ≡ (λx.Q3)W and
Y2 ≡ Q3{x := W}. Then we can prove the second equation
as:

〈Y −1
1 〉 ≡ 〈(λx.〈Q−1

3 〉)W−1〉
= 〈〈Q−1

3 {x := W−1}〉〉 (by βv)

= 〈〈(Q3{x := W})−1〉〉 (substitution lemma)

= 〈(Q3{x := W})−1〉 (by reset-reset)

The most difficult case is that we substitute a K-term
for a continuation variable k, namely, the case where Y1 ≡
(λk.Q3)K and Y2 ≡ Q3{k := K}. We can calculate as:



〈Y −1
1 〉

≡ 〈K−1[D(λk.AQ−1
3 )]〉

= 〈A(K−1[D(λk.AQ−1
3 )])〉 (by reset-A)

= 〈D(λk′.A(K−1[(λk.AQ−1
3 )(λf.k′(A(K−1[f ])))]))〉

(by D-lift)

= 〈D(λk′.A(K−1[A(Q−1
3 {k := λf.k′(A(K−1[f ]))})]))〉

(by βv)

We can use D-lift in the derivation above, since A(K−1) is
a p-context.

We also calculate a subterm in the last equation as:

A(Q−1
3 {k := λf.k′(A(K−1[f ]))})

= A(Q−1
3 {k := λf.A(K−1[f ])}) (by A-lift)

= A((Q3{k := K})−1) (by substitution lemma)

Using this equality, we can proceed the calculation as:

〈D(λk′.A(K−1[A((Q3{k := K})−1)]))〉
= 〈A(K−1[A((Q3{k := K})−1)])〉 (by D-elim)

= 〈A((Q3{k := K})−1)〉 (by A-lift)

= 〈(Q3{k := K})−1〉 (by reset-A)

≡ 〈Y −1
2 〉

In the derivation, A-lift is applicable, since A(K−1) is a
p-context.

For the cases of η-reduction, the proofs are almost straight-
forward. We pick up two cases here.
(Case: Y1 ≡ λγ.Q2γ and Y2 ≡ Q2)

Let us note that γ �∈ FV (Q2).

〈Y −1
1 〉 ≡ 〈D(λγ.γ〈Q−1

2 〉)〉
= 〈〈Q−1

2 〉〉 (by D-current,D-elim)

= 〈Q−1
2 〉 (by reset-reset)

(Case: G1 ≡ λx.G2x and G2)
Let M be a term in λDA, then we have:

G−1
1 [〈M〉] ≡ (λx.G−1

2 [x])〈M〉
= G−1

2 [〈M〉] (by βΩ-reset-2)

6. MAIN THEOREMS
In this section, we give the main theorems of this paper.

6.1 Soundness and Completeness of λDA

Theorem 8 (Soundness & Completeness of λDA).
Let M1 and M2 be terms in λDA. Then we have:

λDA � M1 = M2 if and only if λβη � [[M1]] = [[M2]]

Proof. The soundness (the only-if direction) has already
been proved. We prove the completeness (the if-direction).
Suppose λβη � [[M1]] = [[M2]]. Since [[Mi]] is a T -term (for
i = 1, 2), we have λDA � [[M1]]

−1 = [[M2]]
−1 by Theorem 7.

Since λDA � [[Mi]]
−1 = Mi (for i = 1, 2) by Theorem 3, we

have λDA � M1 = M2.

6.2 Soundness and Completeness of λS
So far we have been concentrating on the analysis of the

calculus with reset, D- and A-operators. Now we come back
to our original motivation, and turn our attention to the
calculus with shift and reset. Instead of directly deriving a
theory for them as we did for λDA, our strategy here is to
relate these two calculi and prove the theory for shift and
reset can prove the same set of equations as that for λDA.

To relate λDA and λS , we define a syntactic translation
( )◦ from λDA terms to λS terms, which replaces the con-
stants D and A by their “definitions” with S. It merely re-
places these constants, and preserves other constructs. For
the opposite direction, the translation ( )† replaces S by its
“definition” with D and A. We list the interesting cases
below:

( )◦ : λDA → λS
D◦ = λz.S(λk.k(z(λx.A◦(kx))))

A◦ = λz.S(λd.z)

( )† : λS → λDA
S† = λz.D(λk.A(z(λx.〈kx〉)))

The following lemma states that these translations are
sound with respect to the CPS-translation, and that they are
inverses to each other modulo the equality theories. Recall
that the CPS-translation for λS was defined at the same
time as that for λDA in Section 2.

Lemma 3. Let M be a term in λDA, and N be a term in
λS . Then we have:

λβη � [[M ]] = [[M◦]]

λβη � [[N†]] = [[N ]]

λDA � M◦† = M

λS � N†◦ = N

Proof. We only prove the key case of the last equation
where N = S.

S†◦ ≡ λz.D◦(λk.A◦(z(λx.〈kx〉)))
= λz.S(λk.k(A◦(z(λx.〈A◦(kx)〉)))) (by βv)

= λz.S(λk.A◦(z(λx.〈kx〉))) (by A◦-lift,reset-A◦)

= λz.S(λk.〈z(λx.〈kx〉)〉) (by S-reset,reset-A◦)

= λz.S(λk.z(λx.〈kx〉)) (by S-reset)

= λz.Sz (by S-nat)

= S (by ηv)

In the derivation above, we used A◦-lift (F [A◦M ] = A◦M)
and reset-A◦ (〈A◦M〉 = 〈M〉), which follow from reset-S,
S-tail, S-nat, and βv .

The next lemma states the soundness of these transla-
tions.

Lemma 4. (i) Let M1 and M2 be terms in λDA. Then
λDA � M1 = M2 implies λS � M1

◦ = M2
◦.

(ii) Let N1 and N2 be terms in λS . Then λS � N1 = N2

implies λDA � N1
† = N2

†.



The proof of this lemma can be found in the appendix.
By combining these two lemmas with Theorem 8, we ob-

tain the completeness of λS .

Theorem 9 (Soundness & Completeness of λS).
Let N1 and N2 be terms in λS . Then we have:

λS � N1 = N2 if and only if λβη � [[N1]] = [[N2]]

Proof. The soundness has already been proved.
For the completeness, let us suppose λβη � [[N1]] = [[N2]].

By Lemma 3, λβη � [[N1
†]] = [[N2

†]]. By the completeness
of λDA, we have λDA � N1

† = N2
†. Then by Lemma 4,

λS � N1
†◦ = N2

†◦. From this, we can deduce λS � N1 =
N2 using Lemma 3.

6.3 Languages with Basic Constants
We remark that our results can be modified to the source

calculi which have non-functional (basic) constants, such as
natural numbers. One may wonder if our results can be
applied to more realistic programming languages, such as
Scheme [1], since the axiom ηv does not hold in general in
this case. We can, however, give a sound and complete ax-
iomatization for this calculus in the same manner as Sabry
and Felleisen’s work [25], that is, by simultaneously restrict-
ing ηv in the source calculus and η in the target calculus.
We omit the details here due to space limitation.

7. IMPLICATIONS OF AXIOMATIZATION
AND INDEPENDENCE

In this section, we examine the axioms in λDA to get
some insight on the calculus.

7.1 Conservativity
As we already mentioned in Section 3, the first three

axioms βv , ηv , and βΩ in Figure 1 correspond to Moggi’s
computational lambda calculus, and the axioms D-elim, D-
current, D-abort, and D-lift correspond to Sabry-Felleisen’s
axiomatization for callcc if we identify the D-operator with
callcc. In other words, the D-operator in λDA behaves in

the same way as callcc3. The remaining axioms are needed
to axiomatize the delimiter (the reset operator) and the A-
operator. All but the axiom reset-lift appear in Sabry’s
axiomatization for shift and lazy reset [24], but the actual
meaning of axioms are not quite the same, since a term in
the form 〈M〉 is a value in his calculus, but not a value in our
calculus. Sabry’s theory may be obtained by adding axioms
to λDA in an obvious way4.

An immediate but non-trivial consequence of our axiom-
atization is that the theory of delimited continuations is a
conservative extension of that of first-class (unlimited) con-
tinuations, which can be shown below. Since Sabry and
Felleisen’s axioms [25] for first-class continuations (that is,
without delimited continuations) are derivable from our λDA
(where we replace callcc by D), it follows that any valid equa-
tion in Sabry and Felleisen’s theory is also derivable in λDA.
As a reverse direction, let M = N be a provable equation
in λDA, where M and N do not contain the reset-operator.
Then M = N is provable in Sabry’s theory for lazy reset

3Filinski [11] already mentioned this correspondence.
4For each axiom in our theory which refers to a value V , we
add a new axiom which is obtained by replacing V by 〈M〉
in the original axiom.

[24], since it is stronger than λDA. By carefully examin-
ing Sabry’s work, we can see Sabry’s theory for shift and
lazy reset is conservative over Sabry and Felleisen’s theory
for first-class continuations (see the discussion in the con-
clusion below), hence M = N is also provable in Sabry and
Felleisen’s theory. It thus follows that

Theorem 10 (Conservative Extension). The theory
λDA is a conservative extension of Sabry and Felleisen’s
theory of first-class continuations [25] (when we identify D
with callcc).

Note that this is not a trivial observation, as the CPS-
translations of the A-operator are not quite the same in
these theories (while callcc and D do have the same trans-
lation). However, as one intuitively expects, this difference
can be ignored as long as we do not use the reset operator.

7.2 Independence of Axioms
We already mentioned that many theories in the literature

(such as Moggi’s computational lambda calculus and Sabry
and Felleisen’s theory for callcc) contain redundant axioms,
namely, some axioms are derivable from others. A natural
question is whether λDA consists of independent axioms.
We cannot fully answer this question, but as a partial an-
swer, we can show all but one new axioms are independent
from other axioms, thus they are not redundant.

In our equational setting, we say an axiom A is indepen-
dent from a theory T if A is not derivable from T , and
T ∪ {A} is consistent, where an equational theory T is con-
sistent if M = N is not provable from T for some M and
N .

Theorem 11 (Independence of Axioms). Let ax be
one of A-lift, A-top, A-reset, and reset-value. Then ax is
independent from λDA − {ax}.

Proof. From the soundness theorem (Theorem 1) and
the consistency of λβη, we have λDA is consistent.

To show the underivability of the axioms, we define a mod-
ified CPS-translation from λDA to λβη, under which only
one axiom becomes unsound while the others remain sound.
For a term M and a value V , we write ([M ]) and V ‡ for the
modified versions of CPS-translations [[M ]] and V ∗, respec-
tively. We will define four modified CPS-translations, but
use the same symbols for all the cases.

For the axiom A-lift, we modify the following two defini-
tions of the CPS-translation:

([〈M〉]) = ([M ])

A‡ = λxk.kx

The definitions for other terms are unchanged, for instance,
([V ]) = λk. kV ‡ and x‡ = x. It is easy to see only A-lift is
unsound and all the other axioms are sound with respect to
this modified CPS-translation, which implies that A-lift is
not derivable from other axioms.

For the axiom A-top, we change the following one:

([〈M〉]) = ([M ])

For the axiom A-reset, we change the following one:

([〈M〉]) = λk. k(λxk′γ. ([M ])J(λv.vxk′γ))



The term in the right hand side may look rather complex,
but it is the result of first expanding the term [[λx.〈M〉x]],
then replacing [[M ]] by ([M ]) (after some β-reductions).

For the axiom reset-value, we change the following one:

([〈M〉]) = ([AM ])

In all cases, the unsoundness of the specified axiom and
the soundness of all the other axioms can be shown eas-
ily.

We do not know if the remaining axiom reset-lift is inde-
pendent or not, although we believe so.

8. CONCLUSION
The shift and reset operators attract many researchers’

interest because of its expressiveness and rigorous semantics
via CPS-translation. However, there are theoretically not
pleasant features in these operators. For instance, if we try
to have a type system as an extension of the standard simply
typed lambda calculus, and we allow the type of the reset
terms to be higher-order, then the CPS-translation does not
preserve typing, and the calculus is not strongly normalizing.
There are several attempts to remedy this defect including
Murthy’s work [21] and ours [19]. However, due to its simple
semantics, most researchers use the original shift and reset
operators. In this paper, we return to the original shift and
reset, and have given a sound and complete axiomatization
for the calculus with shift and reset, and an equivalent cal-
culus with D, A, and reset. The latter calculus λDA is not
only useful for expressing the inverse translation used in the
completeness proof, but also interesting on its own right,
as it is a conservative extension over Sabry and Felleisen’s
theory for first-class continuations.

Having a very similar motivation in mind, Sabry [24] ax-
iomatized a calculus with shift and lazy reset, which is a
close, but different calculus than Danvy and Filinski’s. He
invented an elegant technique to prove the completeness of
such an axiomatization and obtained a complete axiomati-
zation which is very similar to ours. In fact, the only differ-
ences of his axioms and ours are that (i) 〈M〉 is a value in
his calculus, and (ii) our calculus has an extra axiom reset-
lift. If we regard 〈M〉 as values, then the axiom reset-lift is
derivable, so the essential difference is (i). In practice, we are
interested in evaluating the inside of reset-terms, namely, M
in the term 〈M〉 while Sabry’s lazy reset suspends evaluation
of reset-terms, so the practical importance of his calculus
remains uncertain. We have axiomatized the very calculus
Danvy and Filinski proposed and many followers have been
using, in which sense we can say our axiomatization should
be more useful. However, our proof technique is based on
Sabry and Felleisen’s work [25], and it consists of a lot of
syntactic calculations. On the other hand, Sabry’s new tech-
nique is much more elegant. In order to apply Sabry’s proof
technique to our case, we have to carefully formalize the
target calculus in such a way that the evaluation is in call-
by-value in the interpretation of the shift operator, and in
call-by-name in manipulating continuation parameters. We
did not take this approach in this paper, since it is not clear
that the target calculus Danvy and Filinski’s originally de-
fined coincides with such a “hybrid” system.

We briefly state some future work. Firstly, we should
extend our work to include the full CPS-hierarchy, which

involve not only continuation and metacontinuation param-
eters, but also metameta-continuation parameters and so on
(in general, metan-continuation parameters for n > 1). In
this work, we have treated the simplest case of n = 1, which
means we allow only one kind of shift and reset operators.
In some applications [30], one wants to use many different
kinds of shift/reset operators which do not interact, thus
extending our result to such a general case seems necessary.
Since we have used the linearity of the metacontinuation
variable γ, a straightforward extension of our proof is not
possible for the case of n > 1.

Secondly, we have considered equational theories in this
paper, and not considered reduction theories, namely, we
did not orient equations. As Sabry and Wadler [26] and
Barthe et al [3] pointed out, we should also study reduction
theories, in particular, we want to know if there is a set
of reduction rules for shift and reset which is sound and
complete with respect to CPS-translation. It is already a
difficult problem for the case of first-class continuations. We
should at least consider optimized (administrative redex-
free) CPS-translation in the sense of Plotkin [22], Steele [28],
Danvy-Filinski[6], Sabry-Felleisen [25], and Danvy-Nielsen
[8].

Finally, we wish to obtain a deeper, more semantics-oriented
understanding of the delimited continuations and our com-
pleteness proof. The second author has started to study this
direction [16] by replacing the target calculus by (models of)
a linear lambda calculus with a recursive type. Let us fix the
answer type R, and let D be the recursive type defined by
D = D → (D → RD) → RD where RX = (X → R) � R
(the linearly-used continuations monad [15]), then the tar-
gets of the CPS-translation in Section 4 can by typed as:

(terms) (D → RD) → (D → R)� R

(pre-values) RD

(answers) R

(values) D (= D → (D → RD) → RD)

(continuations) D → RD

(metacontinuations) D → R

Note that the linearity condition of the metacontinuation
variable is expressed by the linear implication �. This ap-
proach also seems to be closely related to a recent work by
Thielecke [31].
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APPENDIX
(Proof of Lemma 1)

(β-lift, assuming x �∈ FV (F ) ∪ FV (M))

(λx.F [N ])M

= (λx.(λy.F [y])N)M (by βΩ)

= (λx.(λy.F [y])((λx.N)x))M (by βv)

= (λy.F [y])((λx.N)M) (by βΩ)

= F [(λx.N)M ] (by βΩ)

(reset-reset)

〈〈M〉〉 = 〈A〈M〉〉 (by A-top)

= 〈AM〉 (by A-reset)

= 〈M〉 (by A-top)



(D-top)

〈DM〉 = 〈A(DM)〉 (by reset-A)

= 〈D(λk.A(M(λf.k(Af))))〉 (by D-lift)

= 〈D(λk.A(M(λf.Af)))〉 (by D-abort)

= 〈A(M(λf.Af))〉 (by D-elim)

= 〈M(λf.Af)〉 (by reset-A)

= 〈MA〉 (by ηv)

(D-tail)
Putting F ≡ [ ] in D-lift, we have DM = D(λk.Mk).

Then we can derive:

(λx.D(λk.M1))M2

= D((λx.λk.M1)M2) (by β-lift)

= D(λz.(λx.λk.M1)M2z) (by the above equation)

= D(λz.(λk.(λx.M1)M2)z) (by β-lift)

= D(λk.(λx.M1)M2) (by βv)

(βΩ-reset-1)

〈(λx.〈F [x]〉)M〉
= 〈(λx.D(λk.k〈F [x]〉))M〉 (by D-elim,D-current)

= 〈D(λk.(λx.k〈F [x]〉)M)〉 (by D-tail)

= 〈A(D(λk.(λx.k〈F [x]〉)M))〉 (by reset-A)

= 〈D(λk.(λx.(λf.k(Af))〈F [x]〉)M)〉 (by D-lift)

= 〈D(λk.(λx.(λf.Af)〈F [x]〉)M)〉 (by D-abort)

= 〈(λx.A(〈F [x]〉))M〉 (by D-elim,ηv)

= 〈(λx.A(F [x]))M〉 (by A-reset)

= 〈A(F [M ])〉 (by βΩ)

= 〈F [M ]〉 (by reset-A)

(βΩ-reset-2)
We prove (λx.E[x])〈M〉 = E[〈M〉] by induction on E.

The only interesting case is E = 〈E1〉.

(λx.E[x])〈M〉
≡ (λx.〈E1[x]〉)〈M〉
= 〈(λx.E1[x])〈M〉〉 (by reset-lift)

= 〈E1[〈M〉]〉 (by I.H.)

≡ E[〈M〉]

(Proof of Lemma 2)
We can prove S-nat as follows:

F [SM ] = S(λk.k(F [SM ])) (by S-elim)

= S(λk.〈k(F [SM ])〉) (by S-reset)

= S(λk.〈M(λx.〈k(F [x])〉)〉) (by reset-S)

= S(λk.M(λx.〈k(F [x])〉)) (by S-reset)

Other equations follow from S-nat.
(Proof of Lemma 4)

We can prove that each axiom in λDA is translated to
a provable equation in λS , and vice versa. Here we give a
proof of the most interesting case, namely, we will verify the
axiom D-lift is translated to a provable equation in λS .

(F [DM ])◦

≡ F ◦[D◦M◦]

= F ◦[S(λk.k(M◦(λx.A◦(kx))))] (by S-tail,βΩ)

= S(λh.(λk.k(M◦(λx.A◦(kx))))(λx.〈hF ◦[x]〉))
(by S-nat)

= S(λh.(λx.〈hF ◦[x]〉)(M◦(λx.A◦〈hF ◦[x]〉)))
(by βv)

= S(λh.(λx.hF ◦[x])(M◦(λx.A◦〈hF ◦[x]〉)))
(by S-lift-reset)

= S(λh.hF ◦[M◦(λx.A◦〈hF ◦[x]〉)]) (by βΩ)

= (D(λh.F [M(λx.hF [x])]))◦ (by βv, βΩ)

In the derivation we used the following equation as S-lift-
reset:

S(λk.(λx.〈N〉)M) = S(λk.(λx.N)M)

which can be proved by S-tail and S-reset.


