
Recursive Programs in the Abstract

Masahito Hasegawa

RIMS, Kyoto University

PRESTO, JST

PPL2004, 13 March 2004



Semantics of Recursive Programs

A recursive program like

fact ≡ λxint. if x = 0 then 1 else x × fact(x−1) : int→ int

can be understood as a fixed point of

F ≡ λf int→int. λxint. if x = 0 then 1 else x × f(x−1)

: (int→ int)→(int→ int)

i.e. fact = F (fact).

Fundamental Idea: Recursive programs are modelled by fixed points on

certain mathematical structures → Denotational Semantics

[[fact]] = [[F (fact)]] = [[F ]] ([[fact]]) =
∞⋃

n=0

[[F ]]n(⊥)

1



fact(2)

(fact = F (fact)) = F (fact)(2)

(def. of F ) = (λf.λx.if x = 0 then 1 else x × f(x−1))(fact)(2)

= if 2 = 0 then 1 else 2 × fact(2−1)

(2 �= 0) = 2 × fact(1)

(fact = F (fact)) = 2 × F (fact)(1)

(def. of F ) = 2 × (if 1 = 0 then 1 else 1 × fact(1−1))

(1 �= 0) = 2 × (1 × fact(0))

(fact = F (fact)) = 2 × (1 × F (fact)(0))

(def. of F ) = 2 × (1 × (if 0 = 0 then 1 else 0 × fact(0−1)))

(0 = 0) = 2 × (1 × 1)

= 2



Criticisms on the Traditional Approach

Nice mathematics, but overly simplified the computational aspects:

lots of sophisticated theories for toy languages which

• cannot explain how recursion is created

• cannot explain how recursion interacts with other features of

programming languages

Wanted: right level of abstraction for studying these issues

(not too abstract, not too concrete –

cf. types, abstract interpretation, attribute grammar)

2



Overview of This Talk

Case studies on the semantics of recursive computation:

I Recursion from Cyclic Sharing

II Recursion and Control

III Recursion and Duality

. . . to convince you that the semantic (and abstract) approaches to

programming languages are interesting and fruitful

3



Part I: Recursion from Cyclic Sharing



Recursion from Cyclic Structure (e.g. Turner, 70’s)

:
:

recursive call = copying of circularly shared resource

Wanted: Semantics which can explain the precise relationship between

recursion and cyclic structures

4



Example: Cyclic Lambda Graphs

(scoped) λ-graphs for fixpoint computation

λf.letrec x be fx in x
?= letrec F be λf.f(Ff) in F

cf. Church’s combinator cf. Turing’s combinator

Y = λf.(λx.f(xx))(λx.f(xx)) Θ = Y (λF.λf.f(Ff))

5



(cf. Launchbury, POPL’93)

6



Analogy to Knot Theory

Mathematicians ask if two knot diagrams represent the same knot

=

?

=

?

and study their algebraic interpretations (knot invariants)

Computer scientists ask if two programs behave in the same way

and study their semantics

7



Example: Jones-Conway Polynomial (with two variables)

There exists a unique map P from the set of all oriented links in R
3 to

the ring Z[x, x−1, y, y−1] such that

(i) (soundness) if L ∼ L′ then P (L) = P (L′)
(ii) P maps the trivial knot to 1
(iii) if (L+, L−, L0) is a Conway triple then

xP (L+) − x−1P (L−) = yP (L0).

Example of Conway Triple

In particular: L, L′ mirror images ⇒ P (L′)(x, y) = P (L)(x−1, y−1)
Though not complete, P helps to distinguish the trefoil knots in the last

slide

8



Traced Monoidal Categories as Models of Cyclic Structure

(Joyal, Street and Verity, 1996)

Categorical structure for cyclic structures like knots and cyclic graphs

Technically: a traced monoidal category is a (balanced) monoidal category

equipped with a trace operator which creates a loop

f : A ⊗ X → B ⊗ X

TrX
A,B(f) : A → B

�� ���

fA �B

subject to a few coherence axioms.

→ use traced monoidal categories for modelling cyclic (λ-)graph

rewriting systems (Hasegawa, TLCA’97 / PhD Thesis, 1997)

9



Knots and Recursion via Traces

Trefoil Knot via Trace (Braid Closure):

�������
� ⇒ ������

�� ���
	



�
�

�

=

�

Recursion via Trace (Cyclic Sharing):

f � ⇒ f �

�� ���

=
�

���
��

f

f


�

�
�

�

�

10



Examples of Traced Monoidal Categories

Linear Algebra

The category of fin. dim. vector spaces and linear maps. For a linear

map f : U ⊗K W → V ⊗K W , its trace TrW
U,V (f) : U → V is given by

(TrW
U,V (f))i,j = Σkfi⊗k,j⊗k

Binary Relations

The category of sets and binary relations. For a relation

R : A × X → B × X the trace TrX
A,B(R) : A → B is given by

TrX
A,B(R) = {(a, b) | ∃x ∈X (a, x)R(b, x)}

Quantum Invariants of Knots

The category of representations of a quasi-triangular Hopf algebra.

11



Recursion from Cyclic Sharing in the Abstract

Under certain conditions, traces give rise to fixed-point operators:

Thm. (Trace-Fixpoint Correspondence, Hyland / Hasegawa) If the

tensor product ⊗ is cartesian, there is a bijective correspondence between

traces and dinatural diagonal (i.e. well-behaved) fixed-point operators.

Example: traditional domain theoretic models

Non-example: cyclic λ-graphs – covered by the generalisation below:

Thm. If there is a trace (for modelling cycles) and suitable adjunction

from a cartesian category (for modelling (weak) λ-abstraction and

application), there exists a dinatural fixed-point operator (and many

other fixed-point like operators).

→ new semantic models for cyclic λ-graphs

12



Semantics of Cyclic Lambda Graphs

Thm. The structure described in the last theorem provides a sound and

complete class of models for the cyclic lambda calculus.

Example: In the category of sets and binary relations

(the non-deterministic interpretation):

fix1 = λf.letrec x be fx in x fix2 = letrec F be λf.f(Ff) in F

[[fix1 M ]] =
⋃

f∈[[M ]]{x | (x, x) ∈ f} [[fix2 M ]] =
⋃

f∈[[M ]]

⋃
f◦A=A A

fix1 works for function closures only (but more efficient), whereas

fix2 for any value (and less efficient) – hence [[fix1]] ⊂ [[fix2]]

13



Part II: Recursion and Control

Hasegawa, Sabry and Filinski



Recursion in Call-by-Value Languages

The naive fixpoint equation fix F = F (fix F ) cannot be justified!

To evaluate fix F , we need to evaluate fix F in F (fix F )
. . . does not stop

Right (well-known) solution:

fixv F = λx.F (fixv F ) x (or fixv F M = F (fixv F ) M)

. . . makes sense, but is it the canonical answer?

Any other better principles?

14



Example: Dinaturality

The dinaturality equation for CBN recursion

fix (g ◦ f) = g (fix (f ◦ g))

cannot be justified for CBV recursion:

- fun F (f:int->int) = (print "Hello\n"; fn x:int => x);

val F = fn : (int -> int) -> int -> int

- fun G (f:int->int) = (print "Bye\n"; fn x:int => x);

val G = fn : (int -> int) -> int -> int

- fix (G o F) 1;

Hello

Bye

val it = 1 : int

- G (fix (F o G)) 1;

Bye

val it = 1 : int



The Wild Nature of Call-by-Value (Führmann, FoSSaCS2002)

where M is called

a value if let x be M in N = N [M/x]

copyable if let x be M in (x, x) = (M, M)

discardable if let x be M in N = N (x �∈ FV (N))

central if let x be M in let y be N in L = let y be N in let x be M in L

(x �∈ FV (N), y �∈ FV (M))

15



Semantics of Call-by-Value and Recursion

Semantics of call-by-value languages using monads (Moggi, LICS’89):

A monad T specifies the semantics of computational effects under

consideration (e.g. non-determinism, exceptions, states, continuations)

TX denotes the type of computation on the type X

Semantics of call-by-value recursion via T -fixpoint operators

(Simpson and Plotkin, LICS2000):

Fixed-point operator with the type (TX → TX) → TX subject to a

uniformity axiom (analogous to that in domain theory)

16



Axioms for Recursion in Call-by-Value

(Hasegawa and Kakutani, FoSSaCS2001)

A type-indexed family of closed values fixv
σ→τ : ((σ → τ) → σ → τ) → σ → τ

is called a uniform call-by-value fixpoint operator if the following conditions

are satisfied:

1. (CBV fixpoint) For any value F : (σ → τ) → σ → τ

fixv
σ→τ F = λxσ.F (fixv

σ→τ F ) x

2. (stability) For any value F : (σ → τ) → σ → τ

fixv
σ→τ F = fixv

σ→τ (λfσ→τ .λxσ.F f x)

3. (uniformity) For values F : (σ → τ) → σ → τ , G : (σ′ → τ ′) → σ′ → τ ′

and H : (σ → τ) → σ′ → τ ′,
if H(λx.M x) = λy.H M y holds for any M : σ → τ and H ◦ F = G ◦ H

holds, then H (fixv
σ→τ F ) = fixv

σ′→τ ′ G

Thm. Sound and complete for the semantics by Simpson and Plotkin.

17



Example: First-Class Continuations

(Thielecke, PhD Thesis, 1997 / Selinger, MSCS 11(2), 2001)

In the presence of first-class continuations (e.g. callcc in SML/NJ),

the situation becomes rather simple:

Its semantics is given by a continuation monad TX = (X → R) → R.

In this setting, we can show that a uniform CBV fixed-point operator

can be derived from a uniform CBV iterator, and vice versa –

via Filinski’s “Recursion from Iteration” construction.

18



Recursion from Iteration (Filinski ’92/Hasegawa and Kakutani ’01)

Let ⊥ be an empty type (i.e. no closed value) and write ¬σ for σ → ⊥.

A CBV iterator: loopσ = λf.(loopσ f) ◦ f : (σ → σ) → ¬σ

In loop f , f is evaluated repeatedly until something happens (as “while”)

Thm. In the presence of first-class continuations, there is a bijective

correspondence between uniform CBV fixpoint operators and uniform

CBV iterators.

Recursion from Iteration in the Abstract

The essential reason why this theorem holds is that, in this setting,

values, central terms, and discardable copyable central terms all agree

(as shown in the last slide) – and this implies that

uniform CBV iterators are modelled by T -fixed point operators in the

semantic models, hence equivalent to uniform CBV fixpoint operators.

19



(* an empty type "bot" with an initial map A : bot -> ’a *)

datatype bot = VOID of bot;

fun A (VOID v) = A v;

(* the C operator, C : ((’a -> bot) -> bot) -> ’a *)

fun C f =

SMLofNJ.Cont.callcc (fn k => A (f (fn x => (SMLofNJ.Cont.throw k x) : bot)));

(* basic combinators *)

fun step F x = C (fn k => F k x);

fun pets f k x = k (f x) : bot;

fun switch l x = C (fn q => l (x,q));

fun switch_inv f (x, k) = k (f x) : bot;

(* step : ((’a -> bot) -> ’b -> bot) -> ’b -> ’a

pets : (’a -> ’b) -> (’b -> bot) -> ’a -> bot

switch : (’a * (’b -> bot) -> bot) -> ’a -> ’b

switch_inv : (’a -> ’b) -> ’a * (’b -> bot) -> bot *)

(* an iterator, loop : (’a -> ’a) -> ’a -> bot *)

fun loop f x = loop f (f x) : bot;

(* recursion from iteration *)

fun fix F = switch (loop (step (switch_inv o F o switch)));

(* fix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b *)

20



Part III: Recursion and Duality

Kakutani and Hyland Selinger



The Filinski-Selinger Duality between CBN and CBV

(Filinski, CTCS’89 / Selinger, MSCS 11(2), 2001 / Wadler, ICFP2003)

Under the presence of first-class continuations, there exists a duality

between call-by-name and call-by-value languages.

Syntactically:

CBN λµ-calculus CBV λµ-calculus

λ-calculus

�Filinski-Selinger duality

������CBN CPS transform

�
������ CBV CPS transform

Semantically, this duality amounts to the categorical duality between

control categories (for CBN) and co-control categories (for CBV).

→ combine Filinski-Selinger duality with the categorical duality

between recursion (fixed-point operator) and iteration

21



Duality between CBN Recursion and CBV Iteration

(Kakutani, CSL’02)

The duality between the CBN recursion

fix f = f ◦ (fix f) = f ◦ f ◦ (fix f) = . . .

and the CBV iteration

loop f = (loop f) ◦ f = (loop f) ◦ f ◦ f = . . .

is smoothly accommodated in the Filinski-Selinger duality:

CBN λµ-calc.+fix CBV λµ-calc.+loop

λ-calc.+recursion

�Filinski-Selinger duality

��������
CBN CPS transform

�
��������

CBV CPS transform

22



Relating CBN Recursion and CBV Recursion

Under the presence of first-class continuations:

• In Part II, we have observed that there is a bijective correspondence

between the CBV recursion and CBV iteration, subject to certain

uniformity conditions (Filinski’s “Recursion from Iteration”).

• In the last slide, we have seen that there is a bijective

correspondence between the CBN recursion and CBV iteration

(“Filinski-Selinger Duality” extended by Kakutani).

→ By combining these two results, we obtain a correspondence

between recursion in CBN and recursion in CBV.

23



Example: Some Principles for Call-by-Value Recursion

Using this correspondence between CBN recursion and CBV recursion,

we can derive principles for CBV recursion from those for CBN recursion.

Example: Dinaturality

The dinaturality equation for CBN recursion

fix (g ◦ f) = g (fix (f ◦ g))

amounts to the following equation for CBV iteration

loop (f ◦ g) = loop (g ◦ f) ◦ g

which corresponds to the CBV dinaturality

fixv (G ◦ (λfy.F f y)) = λz.G (fixv (F ◦ (λgx.G g x))) z

Other examples: mutual recursion (Bekic principle) for CBV

24



Conclusion



Summary

Three cases of the recent investigations on recursive computation:

I Recursion from Cyclic Sharing

II Recursion and Control

III Recursion and Duality

Each of them is supported by the semantic (abstract) structures

behind actual computational phenomena

Lesson: “Programming Languages in the Abstract”

• try to find a right level of abstraction for attacking the problem

• stick to your question, rather than the existing tools

• theoretical elegance does not contradict with practical motivations

25



Further Work . . .

• Part I: Good model construction techniques for traced monoidal

categories needed. Related work include

– constructions for models of asyncronomy (Selinger, MFPS’99)

– constructions via uniformity (Hasegawa, CTCS’02)

• Part II: Interaction between recursion and general computational

effects is yet to be sorted out. Related directions:

– classifying effects (Führmann)

– linearly used effects (Berdine et al./Hasegawa, FLOPS’02 & ’04)

• Part III: Both theoretical analysis and practical applications needed.

– theory: functional completeness (Kakutani and Hasegawa TLCA’03)

– practice: graphical reasoning about CBN/CBV recursion

(Erkök and Launchbury / Schweimeir and Jeffrey)

26



. . . and Speculations

Recursion, Polymorphism and Computational Effects in the Abstract

Missing: Proper denotational (abstract) semantics for

ML-Like polymorphic call-by-value languages (with/without recursion)

Related directions:

• Semantics of polymorphic computational lambda calculus

(on-going work with Alex Simpson)

• Translation into polymorphic linear lambda calculus with recursion

(cf. Plotkin / Pitts et al. / Ryu Hasegawa)

• “Operational semantics determines monads” approach

(Plotkin, Power et al.)

Several issues remain to be sorted out!

27



Thank You


