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We study bialgebras in the compact closed category Rel of sets and binary relations.

Various monoidal categories with extra structure arise as the categories of (co)modules

of bialgebras in Rel. In particular, for any group G we derive a ribbon category of

crossed G-sets as the category of modules of a Hopf algebra in Rel which is obtained by

the quantum double construction. This category of crossed G-sets serves as a model of

the braided variant of propositional linear logic.

1. Introduction

For last two decades it has been shown that there are plenty of important examples
of traced monoidal categories (Joyal et al. 1996) and ribbon categories (tortile monoidal
categories) (Shum 1994; Turaev 1994) in mathematics and theoretical computer science.
In mathematics, most interesting ribbon categories are those of representations of quan-
tum groups (quasi-triangular Hopf algebras) (Drinfel’d 1987; Kassel 1995) in the category
of finite-dimensional vector spaces. In many of them, we have non-symmetric braidings
(Joyal and Street 1993): in terms of the graphical presentation (Joyal and Street 1991;
Selinger 2011), the braid c = is distinguished from its inverse c−1 = , and this is
the key property for providing non-trivial invariants (or denotational semantics) of knots,
tangles and so on (Freyd and Yetter 1989; Kassel 1995; Turaev 1994; Yetter 2001) as well
as solutions of the quantum Yang-Baxter equation (Drinfel’d 1987; Kassel 1995), and 3-
dimensional topological quantum field theory (Bakalov and Kirilov 2001). In theoretical
computer science, major examples include categories with fixed-point operators used in
denotational and algebraic semantics (Bloom and Ésik 1993; Hasegawa 1999; Hasegawa
2009; Ştefǎnescu 2000), and the category of sets and binary relations and its variations
used in models of linear logic (Girard 1987) and game semantics (Joyal 1977; Melliès
2004). Moreover, the Int-construction (Joyal et al. 1996) provides a rich class of models
of Geometry of Interaction (Girard 1989; Abramsky et al. 2002; Haghverdi and Scott
2011) and more generally bi-directional information flow, including (Hildebrandt et al.

† This is a revised and expanded version of the work presented at the Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVI) (Hasegawa 2010).
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2004; Katsumata 2008). In most of them, braidings are symmetric, hence is identified
with .

Although it is nice to know that all these examples share a common structure, it
is also striking to observe that important examples from mathematics and those from
computer science are almost disjoint†. Is it just a matter of taste of mathematicians and
computer scientists? Or is it the case that categories used in computer science cannot
host structures interesting for mathematicians (non-symmetric braidings in particular)?

In this paper we demonstrate that we do have mathematically interesting structures
in a category preferred by computer scientists. Specifically, we focus on the category Rel
of sets and binary relations. Rel is a compact closed category (Kelly and Laplaza 1980),
that is, a ribbon category in which braiding is symmetric and twist is trivial. We study
bialgebras and Hopf algebras in Rel, and show that various monoidal categories with
extra structure like traces and autonomy can be derived as the categories of (co)modules
of bialgebras in Rel. As a most interesting example, for any group G we consider the
associated Hopf algebra in Rel, and apply the quantum double construction (Drinfel’d
1987) to it. The resulting Hopf algebra is equipped with a universal R-matrix as well as
a universal twist. We show that the category of its modules is the category of crossed
G-sets (Freyd and Yetter 1989; Whitehead 1949) and suitable binary relations, featuring
non-symmetric braiding and non-trivial twist.

While the results mentioned above are interesting in their own right, we hope that
this work serves as a useful introduction to the theory of quantum groups for researchers
working on semantics of computation, and helps to connect these two research areas
which deserve to interact much more.

Related work

Hopf algebras in connection to quantum groups (Drinfel’d 1987) have been extensively
studied: standard references include (Kassel 1995; Majid 1995). The idea of using Hopf
algebras for modelling various non-commutative linear logic goes back to Blute (Blute
1996), where the focus is on Hopf algebras in the ∗-autonomous category of topological
vector spaces. As far as we know, there is no published result on Hopf algebras in Rel.
Since Freyd and Yetter’s work (Freyd and Yetter 1989), categories of crossed G-sets have
appeared frequently as typical examples of braided monoidal categories. In the standard
setting of finite-dimensional vector spaces, modules of the quantum double of a Hopf
algebra A amount to the crossed A-bimodules (Kassel 1995; Kassel and Turaev 1995),
and our result is largely an adaptation of such a standard result to Rel. However we
are not aware of a characterization of crossed G-sets in terms of a quantum double
construction in the literature.

† An important exception would be dagger compact closed categories used in the study of quantum

information protocols (Abramsky and Coecke 2004), though they do not feature non-symmetric braid-
ings. We shall note that our category of crossed G-sets is actually a dagger tortile category in the
sense of Selinger (Selinger 2011).
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Organization of this paper

In Section 2, we recall basic notions and facts on monoidal categories and bialgebras. In
Section 3, we examine some bialgebras in Rel which arise from monoids and groups, and
study the categories of (co)modules. Section 4 is devoted to a quantum double construc-
tion in Rel. In this development, we give a simplified description of the quantum double
construction in terms of the Int-construction on traced symmetric monoidal categories.
In Section 5 we observe that the ribbon Hopf algebra constructed in the previous sec-
tion gives rise to a ribbon category of crossed G-sets, and look at some elements of this
category. We discuss how this category can be used as a model of braided linear logic in
Section 6. Section 7 concludes the paper.

2. Monoidal categories and bialgebras

2.1. Monoidal categories

A monoidal category (tensor category) (Mac Lane 1971; Joyal and Street 1993) C =
(C,⊗, I, a, l, r) consists of a category C, a functor ⊗ : C × C → C, an object I ∈ C and
natural isomorphisms aA,B,C : (A ⊗ B) ⊗ C

∼→ A ⊗ (B ⊗ C), lA : I ⊗ A
∼→ A and

rA : A⊗I
∼→ A subject to the standard coherence diagrams. It is said to be strict if a, l, r

are the identity morphisms. For the sake of simplicity, in the most places in this paper
we pretend that our monoidal categories are strict.

In the sequel, we will make use of the graphical presentation of morphisms in monoidal
categories (Joyal and Street 1991; Selinger 2011). A morphism f : A1 ⊗A2 ⊗ . . .⊗Am →
B1 ⊗ B2 ⊗ . . . ⊗ Bn in a monoidal category will be drawn as (to be read from left to
right):

f

Am

A2

..

.

A1

Bn

B2

..

.

B1

Morphisms can be composed, either sequentially or in parallel:

X f Y Y g Z 7→ X f Y g Z

g ◦ f

A f B

C g D

7→
A f B

C g D

f ⊗ g

A braiding (Joyal and Street 1993) is a natural isomorphism cA,B : A ⊗ B
∼→ B ⊗ A

such that both c and c−1 satisfy the following “bilinearity” (the case for c−1 is omitted):

(A ⊗ B) ⊗ C A ⊗ (B ⊗ C) (B ⊗ C) ⊗ A

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C) B ⊗ (C ⊗ A)
?

cA,B⊗C

-aA,B.C -cA,B⊗C

?
aB,C,A

-
aB,A,C

-
B⊗cA,C
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For braidings, we shall using the drawings cA,B =
B

A ��
A

B
and c−1

A,B =
A

B
@@

B

A
.

A symmetry is a braiding such that cA,B = c−1
B,A. In that case we simply draw ��@@ ,

hence �� = @@ = ��@@ . A braided/symmetric monoidal category is a monoidal
category equipped with a braiding/symmetry.

A twist or a balance for a braided monoidal category is a natural isomorphism θA :
A

∼→ A such that θI = idI and θA⊗B = cB,A ◦ (θB ⊗ θA) ◦ cA,B hold. Twists are drawn

as θA = and θ−1
A = . A balanced monoidal category is a braided monoidal

category with a twist. Note that a symmetric monoidal category is a balanced monoidal
category with θA = idA for every A.

In a monoidal category, a dual pairing between two objects A and B is given by a pair
of morphisms d : I → A ⊗ B, called unit, and e : B ⊗ A → I, called counit, drawn as® B

A
and

A

B

©ªrespectively, satisfying

®
©ª= and

® ©ª= .

In such a dual pairing, B is called the left dual of A, and A is called the right dual of B.
For an object, its left (or right) dual, if exists, is uniquely determined up to isomorphism.
A monoidal category is left autonomous or left rigid if every object A has a left dual A∗

with unit ηA : I → A ⊗ A∗ and counit εA : A∗ ⊗ A → I. In a left autonomous category,
I∗ ≃ I as well as (A⊗B)∗ ≃ B∗⊗A∗ hold. Also (−)∗ extends to a contravariant functor,
where, for a morphism f : A → B, its dual f∗ : B∗ → A∗ is given as:®f ©ª
A ribbon category (Turaev 1994) (tortile monoidal category (Shum 1994)) is a balanced
monoidal category which is left autonomous and moreover satisfies (θA)∗ = θA∗ . In a
ribbon category, (−)∗ is a contravariant equivalence, and there is a natural isomorphism
A∗∗ ≃ A (hence the left dual of A and the right dual of A are isomorphic). Note that
a ribbon category whose twist is the identity (and braiding is a symmetry) is a familiar
compact closed category (Kelly and Laplaza 1980).

A traced monoidal category (Joyal et al. 1996) is a balanced monoidal category C
equipped with a trace operator TrX

A,B : C(A⊗X,B⊗X) → C(A,B) which will be drawn
as a ”feedback” operator

fA

X

B

X

7→

® ©ª
fA B

satisfying a few coherence axioms. Alternatively, by the structure theorem in ibid., traced
monoidal categories are characterized as monoidal full subcategories of ribbon categories.
Any ribbon category has a unique trace, called canonical trace (Joyal et al. 1996) (for
uniqueness see e.g. (Hasegawa 2009)). For a morphism f : A ⊗ X → B ⊗ X in a ribbon
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category, its trace TrX
A,Bf : A → B is given by

TrX
A,Bf = (idB ⊗ (εX ◦ (idX∗ ⊗ θX) ◦ cX,X∗)) ◦ (f ⊗ idX∗) ◦ (idA ⊗ ηX).® ©ª

f =

® ©ª
f

��

For monoidal categories C = (C,⊗, I, a, l, r) and C′ = (C′,⊗′, I ′, a′, l′, r′), a monoidal
functor from C to C′ is a tuple (F, m, mI) where F is a functor from C to C′, m is a
natural transformation from F (−) ⊗′ F (=) to F (−⊗ =) and mI : I ′ → FI is an arrow
in C′, satisfying three coherence conditions. It is called strong if mA,B and mI are all
isomorphisms, and strict if they are all identities. A balanced monoidal functor from a
balanced C to another C′ is a monoidal functor (F, m, mI) which additionally satisfies
mB,A ◦ cFA,FB = FcA,B ◦ mA.B and F (θA) = θFA.

For monoidal functors (F,m, mI), (G,n, nI) with the same source and target monoidal
categories, a monoidal natural transformation from (F,m, mI) to (G, n, nI) is a natural
transformation φ : F → G such that φA⊗B◦mA,B = nA,B◦φA⊗φB and φI◦mI = nI hold.
A (balanced/symmetric) monoidal adjunction between (balanced/symmetric) monoidal
categories is an adjunction in which both of the functors are (balanced/symmetric)
monoidal and the unit and counit are monoidal natural transformations.

2.2. Monoids, comonoids and (co)modules

A monoid in a monoidal category C = (C,⊗, I, a, l, r) is an object A equipped with
morphisms m : A ⊗ A → A, called the multiplication, and 1 : I → A, called the unit,
such that the following diagrams commute.

A ⊗ A ⊗ A A ⊗ A A A ⊗ A

A ⊗ A A A ⊗ A A

-A⊗m

?
m⊗A

?
m

-A⊗1

?
1⊗A

HHHHHj

id

?
m

-
m

-
m

With notations m = z and 1 = z , these diagrams can be expressed as follows.

z z
=

z z z z = =
z z

When C is symmetric and m ◦ cA,A = m, i.e., z = z holds, we say A is
commutative.

Dually, a comonoid in a monoidal category C is an object A equipped with morphisms
∆ : A → A ⊗ A, called the comultiplication, and ϵ : A → I, called the counit, satisfying

A A ⊗ A A A ⊗ A

A ⊗ A A ⊗ A ⊗ A A ⊗ A A

-∆

?
∆

?
A⊗∆

-∆

?
∆

HHHHHj

id

?
A⊗ϵ

-
∆⊗A

-
ϵ⊗A

They can be drawn as
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§̈§̈ = §̈§̈ j§̈ = =
j§̈

where ∆ = §̈ and ϵ = j. When C is symmetric and cA,A ◦ ∆ = ∆ holds
(graphically: §̈ = §̈ ), we say A is co-commutative.

Suppose that A = (A,m, 1) is a monoid. A gives rise to a monad A ⊗ (−) whose
multiplication is m ⊗ X : A ⊗ A ⊗ X → A ⊗ X and unit is 1 ⊗ X : X → A ⊗ X. An
A-module is an Eilenberg-Moore algebra of this monad. More explicitly, an A-module
consists of an object X and a morphism α : A ⊗ X → X, called the action, satisfying

X A ⊗ X A ⊗ A ⊗ X A ⊗ X

X A ⊗ X X

-1⊗X

HHHHHjid ?
α

?
m⊗X

-A⊗α

?
α

-
α

or, in the graphical presentation, z α = and z α =
α

α .

A morphism of A-modules from (X, α) to (Y, β) is a morphism f : X → Y satisfying

A ⊗ X A ⊗ Y

X Y

-A⊗f

?
α

?
β

-
f

Let us denote the category of A-modules and morphisms by Mod(A).
Dually, given a comonoid A = (A,∆, ϵ), an A-comodule is an Eilenberg-Moore coalge-

bra of the comonad A ⊗ (−) whose comultiplication is ∆ ⊗ X : A ⊗ X → A ⊗ A ⊗ X

and counit is ϵ ⊗ X : A ⊗ X → X. Explicitly, an A-comodule consists of an object
X and a morphism α : X → A ⊗ X, called the coaction, satisfying the axioms dual
to those of modules. A morphism of A-comodules from (X, α) to (Y, β) is then a mor-
phism f : X → Y making the evident diagram commute. We will denote the category of
A-comodules and morphisms by Comod(A).

2.3. Bialgebras and Hopf algebras

Now suppose that C is a symmetric monoidal category with a symmetry cX,Y : X ⊗Y
≃→

Y ⊗X. A bialgebra in C is given by a tuple A = (A,m, 1, ∆, ϵ) where A is an object of C
and (A,m, 1) is a monoid in C while (A,∆, ϵ) is a comonoid in C, satisfying

A ⊗ A A

A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A ⊗ A A ⊗ A

-m

?

∆⊗∆

?

∆

-
A⊗cA,A

-
m⊗m

A ⊗ A A I I I

I A A ⊗ A A

-m

Q
Qsϵ⊗ϵ

´
´́+ ϵ

´
´́+
1 Q

Qs
1⊗1

-id

Q
QQs1-

∆

´
´́3
ϵ

Graphically:
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z§̈ = §̈̈§
zz z§̈ = zz z j= jj z j= idI

We say A is commutative (resp. co-commutative) when it is commutative (resp. co-
commutative) as a monoid (resp. comonoid). For a bialgebra A, we can consider the
category of modules Mod(A) as well as that of comodules Comod(A). The functor A⊗
(−) is both monoidal and comonoidal. Moreover, as a monad A⊗(−) is comonoidal, while
as a comonad it is monoidal. It follows that (cf. (Bruguieres and Virelizier 2006; Pastro
and Street 2009)) both Mod(A) and Comod(A) are monoidal categories. Explicitly, in
Mod(A), the tensor unit is (I,A ⊗ I ≃ A

ϵ→ I) and the tensor product of (X, α) and
(Y, β) is

(X ⊗ Y,A ⊗ X ⊗ Y
∆⊗X⊗Y−→ A ⊗ A ⊗ X ⊗ Y

A⊗cA,X⊗Y−→ A ⊗ X ⊗ A ⊗ Y
α⊗β−→ X ⊗ Y ).

α

β

§̈
The monoidal structure of Comod(A) is given by dualizing that of Mod(A).

A Hopf algebra is a bialgebra A = (A,m, 1, ∆, ϵ) equipped with a morphism S : A → A,
called an antipode, such that

A ⊗ A A ⊗ A

A I A

A ⊗ A A ⊗ A

-S⊗A

Q
QQs
m

Q
QQs∆

´
´́3∆

-ϵ -1

-
A⊗S

´
´́3
m

commutes (see the picture below).

§̈ S
z = §̈ S z = j z

The antipode of a Hopf algebra is unique. In general, an antipode does not have to be
invertible (that is, an isomorphism); see (Takeuchi 1971) for some examples. It is well-
known that the antipode S of any commutative or co-commutative Hopf algebra satisfies
S ◦S = id , hence is invertible. It is also known that any Hopf algebra in a compact closed
category with equalizers has an invertible antipode (Takeuchi 1999), and it is the case for
the category of finite dimensional vector spaces. All concrete examples considered below
have an invertible antipode (see also Remark 3.2).

Lemma 2.1. If C is a compact closed category and A is a Hopf algebra in C, then
Mod(A) is left autonomous, where a left dual of a module (X, α) is

A ⊗ X∗ c→ X∗ ⊗ A
X∗⊗S⊗η−→ X∗ ⊗ A ⊗ X ⊗ X∗ X∗⊗α⊗X∗

−→ X∗ ⊗ X ⊗ X∗ ε⊗X∗

−→ X∗.

@@��
S

§̈
α ¥¦



M. Hasegawa 8

The unit and counit of the dual pairing are given by the unit and counit of the dual
pairing of X and X∗ in C.

Remark 2.1. In this paper we only consider bialgebras and Hopf algebras in symmetric
monoidal categories. However, it completely makes sense to think about bialgebras and
Hopf algebras in braided monoidal categories, and it is the central topic in (Majid 1994).

Remark 2.2. As noted in (Cockett and Seely 1997), the category of modules of a bial-
gebra in a symmetric or braided linearly distributive category is a linearly distributive
category. Similarly, the category of modules of a Hopf algebra in a symmetric or braided
∗-autonomous category is a ∗-autonomous category.

2.4. Braiding and twist on (co)modules of a bialgebra

If a bialgebra A is co-commutative (resp. commutative), the monoidal category Mod(A)
(resp. Comod(A)) has a symmetry inherited from the base symmetric monoidal category.
However, (whether A is (co-)commutative or not) there can be some non-trivial braiding
and twist on Mod(A) or Comod(A): we shall look at the case of Mod(A). Suppose
that Mod(A) is braided with a braiding σ (while we use c for the symmetry of the
base symmetric monoidal category). Since A = (A, m) is an A-module, we have σA,A :
A ⊗ A → A ⊗ A, and cA,A ◦ σA,A ◦ (1 ⊗ 1) : I → A ⊗ A which we shall denote by R.
Conversely, from this R : I → A⊗A we can recover σX,Y : X ⊗ Y → Y ⊗X for modules
X = (X,α) and Y = (Y, β) as

X ⊗ Y
R⊗X⊗Y−→ A ⊗ A ⊗ X ⊗ Y

A⊗cA,X⊗Y−→ A ⊗ X ⊗ A ⊗ Y
α⊗β−→ X ⊗ Y

cX,Y→ Y ⊗ X

α

β

R �
�@
@

provided the base symmetric monoidal category C is closed and the global section functor
C(I,−) : C → Set is faithful — this is the case for all commonly used examples, including
the category of vector spaces and linear maps, as well as Rel. In such cases there is a
bijective correspondence between braidings on Mod(A) and morphisms of I → A ⊗ A

satisfying certain equations (Kassel 1995; Majid 1995; Street 2007). Such a morphism of
I → A ⊗ A is called a universal R-matrix or a braiding element. Explicitly, a universal
R-matrix is a morphism R : I → A ⊗ A which is convolution-invertible (there exists
R◦ : I → A⊗A satisfying (m⊗m) ◦ (A⊗ cA,A ⊗A) ◦ (R⊗R◦) = (m⊗m) ◦ (A⊗ cA,A ⊗
A) ◦ (R◦ ⊗ R) = 1 ⊗ 1) and satisfies the following three equations.

R
@@§̈ @@�
��

z
z =

R
��

§̈
@@

z
z

R §̈ =
R

�
��R @@

@@ z R §̈ =
R

��
R

@@

z
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The convolution-invertibility ensures the invertibility of the braid σ induced from R.
These three graphically presented equations imply that σ is a morphism of modules,
that σ is bilinear, and that σ−1 is bilinear, respectively. A bialgebra equipped with a
universal R-matrix is called a quasi-triangular bialgebra.

Next, let A be a quasi-triangular Hopf algebra in a compact closed category and
suppose that Mod(A) is a ribbon category, i.e., not just braided but also with a twist
θ. We then have a morphism v = θA ◦ 1 : I → A, from which we can recover θX :
X → X for a module X = (X,α) as X

v⊗X−→ A ⊗ X
α−→ X provided the global section

functor of the base compact closed category is faithful. In such cases we have a bijective
correspondence between twists on Mod(A) and certain morphisms v : I → A satisfying
a few axioms (Kassel 1995; Majid 1995; Turaev 1994). Such a v is called a universal
twist or a twist element. Explicitly, a universal twist is a morphism v : I → A which
is convolution-invertible (there exists v◦ : I → A such that m ◦ (v ⊗ v◦) = 1), central
(m ◦ (A ⊗ v) = m ◦ (v ⊗ A)) and satisfies the following three equations.

v j = idI

v §̈ =
R

@@
R @@�

��
z
z

v

v

z
z

v S = v

The convolution-invertibility implies that θ induced from v is invertible, and centrality
says that θ is a morphism of modules. The first two graphical equations amount to two
axioms for twists, while the last one is required for the axiom (θX)∗ = θX∗ . A quasi-
triangular Hopf algebra equipped with a universal twist is called a ribbon Hopf algebra.
In summary, we have the following results:

Proposition 2.1. (Turaev 1994; Kassel 1995; Yetter 2001)

1 If A is a quasi-triangular bialgebra in a symmetric monoidal category C, then Mod(A)
is a braided monoidal category.

2 If A is a ribbon Hopf algebra in a compact closed category C, then Mod(A) is a
ribbon category.

We will give a non-commutative non-co-commutative ribbon Hopf algebra in Rel in
Section 4.

2.5. Examples

We shall look at a few basic cases.

Example 2.1. As a classical example, let us consider the category Vectk of vec-
tor spaces over a field k and linear maps. Vectk is a symmetric monoidal category
whose monoidal product is given by the tensor product of vector spaces, and k (the
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1-dimensional space) serves as the tensor unit. Its full subcategory Vectfin
k of finite di-

mensional vector spaces is a compact closed category; for a finite dimensional V , its left
(and right) dual is the dual vector space V ∗ = hom(V, k) of linear maps from V to k,
with unit given by the dual basis and counit the evaluation map. A monoid in Vectk is
nothing but an algebra in the standard sense. Similarly, a comonoid in Vectk is what is
normally called a coalgebra. Modules, comodules, bialgebras and Hopf algebras in Vectk

and Vectfin
k are exactly those in the classical sense; a detailed account can be found in

(Kassel 1995).

Example 2.2. Let Set be the category of sets and functions. By taking finite products
as tensor products, Set forms a symmetric monoidal category. A monoid in Set is just
a monoid in the usual sense. For any set X, the diagonal map X → X × X and the
terminal map X → 1 give a commutative comonoid structure on X — and this is the
unique comonoid structure on X. Given a monoid M , its modules are just the M -sets,
i.e., sets on which M acts, and Mod(M) is isomorphic to the category M -Set of M -sets
and functions respecting M -actions. For any set X, a comodule (A, α : A → X×A) of the
unique comonoid X = (X, ∆, ϵ) on X is determined by the function π ◦ α : A → X, and
Comod(X) is isomorphic to the slice category Set/X. A bialgebra in Set is a monoid
equipped with the unique comonoid structure. A Hopf algebra in Set is then a group
with the unique comonoid structure, where the antipode is given by the inverse (−)−1.

3. Bialgebras in Rel

Now let us turn our attention to the category Rel of sets and binary relations. Rel is
a compact closed (hence ribbon) category, where the tensor product of sets X and Y is
given by the direct product X × Y of sets and the unit object is a singleton set I = {∗}.
For a set X, its left dual X∗ is X itself, with unit and counit given by

ηX = {(∗, (x, x)) | x ∈ X} : I → X × X,

εX = {((x, x), ∗) | x ∈ X} : X × X → I.

3.1. Bialgebras and Hopf algebras inherited from Set

The easiest cases of bialgebras and Hopf algebras in Rel are those arising from monoids
and groups in Set, respectively. First, we shall note that there is an identity-on-object,
strict symmetric monoidal functor J : Set → Rel sending a set to itself and a function
f : X → Y to a binary relation {(x, f(x)) | x ∈ X} from X to Y , and recall a standard
result:

Lemma 3.1. A strong symmetric monoidal functor preserves the structure of monoids,
comonoids, bialgebras and Hopf algebras.
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From this and Example 2.2, it follows that a monoid M = (M, ·, e) (in Set) gives rise to
a co-commutative bialgebra M = (M, m, 1, ∆, ϵ) in Rel, with

m = {((a1, a2), a1 · a2) | a1, a2 ∈ M} : M × M → M

1 = {(∗, e)} : I → M

∆ = {(a, (a, a)) | a ∈ M} : M → M × M

ϵ = {(a, ∗) | a ∈ M} : M → I.

M is commutative if M is commutative. Similarly, a group G = (G, ·, e, (−)−1) gives
rise to a co-commutative Hopf algebra G = (G,m, 1, ∆, ϵ, S) in Rel, with an antipode
S = {(g, g−1) | g ∈ G} : G → G.

Let us examine the category Mod(G) for a group G = (G, ·, e, (−)−1) (it makes sense
to think about Mod(M) for a monoid M , but when M is not a group the description
of Mod(M) can be rather complicated). A module of G is a set X equipped with a
binary relation α : G × X → X subject to the two axioms given before. It is not hard
to see that α is actually a function, in fact a G-action on X: for g ∈ G and x ∈ X,
by letting g • x be the unique x′ ∈ X such that ((g, x), x′) ∈ α, we have e • x = x

and (g · h) • x = g • (h • x). Therefore we can identify objects of Mod(G) with G-sets:
a morphism from a G-set (X, •) to (Y, •) is then a binary relation r : X → Y such
that (x, y) ∈ r implies (g • x, g • y) ∈ r. Since G is a co-commutative Hopf algebra,
Mod(G) is a compact closed category which is actually very similar to Rel. Explicitly,
the tensor of (X, •) and (Y, •) is (X ×Y, (g, (x, y)) 7→ (g •x, g • y)), while the tensor unit
is ({∗}, (g, x) 7→ ∗). A left dual of (X, •) is (X, •) itself.

Next, we shall look at Comod(M) for a monoid M = (M, ·, e). A comodule of M

is a set X with a binary relation α : X → M × X subject to the comodule axioms
— but the axioms imply that α is a function whose second component is the identity
on X. Hence an object of Comod(M) can be identified with a set X equipped with
a function | | : X → M ; a morphism from (X, | |) to (Y, | |) is then a binary relation
r : X → Y such that (x, y) ∈ r implies |x| = |y|. Comod(M) is a monoidal category,
with (X, | |) ⊗ (Y, | |) = (X × Y, (x, y) 7→ |x| · |y|) and I = ({∗}, x 7→ e).

Proposition 3.1.

1 If G is a group, every object (X, | |) of Comod(G) has a left dual (X, | |−1) (and
Comod(G) is pivotal (Freyd and Yetter 1989)).

2 If G is an Abelian group, Comod(G) is a compact closed category.
3 If M is a commutative monoid, Comod(M) is symmetric monoidal.
4 If M is a commutative cancellable monoid, Comod(M) is a traced symmetric monoidal

category.
5 If M is a left (resp. right)-cancellable monoid, Comod(M) has a left (resp. right)

trace in the sense of Selinger (Selinger 2011).

Thus we can derive a number of monoidal categories with symmetry, duals, and trace as
categories of (co)modules of (the associated bialgebra of) a monoid or a group. However,
they do not have a non-symmetric braiding; in Section 4 we give a Hopf algebra in Rel
whose category of modules has a non-symmetric braiding and a non-trivial twist.
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3.2. Some constructions

There are a number of ways of constructing bialgebras and Hopf algebras in Rel from
the existing ones. Here we shall look at some basic constructions.

Opposite bialgebras and Hopf algebras Given a bialgebra A = (A,m, 1, ∆, ϵ) in Rel, its
opposite bialgebra is the bialgebra Aop = (A,mop, 1, ∆, ϵ) where

mop = m ◦ cA,A = {((x2, x1), y) | ((x1, x2), y) ∈ m}.

If A = (A,m, 1, ∆, ϵ, S) is a Hopf algebra with an invertible antipode S, its opposite
Hopf-algebra is the Hopf algebra Aop = (A,mop, 1, ∆, ϵ, S−1).

Dual bialgebras and Hopf algebras Given a bialgebra A = (A,m, 1,∆, ϵ) in Rel, its dual
bialgebra is the bialgebra A∗ = (A,∆∗, ϵ∗,m∗, 1∗) where

∆∗ = {((y2, y1), x) | (x, (y1, y2)) ∈ ∆}
ϵ∗ = {(∗, x) | (x, ∗) ∈ ϵ}
m∗ = {(y, (x2, x1)) | ((x1, x2), y) ∈ m}
1∗ = {(y, ∗) | (∗, y) ∈ 1}.

If A is a Hopf algebra with antipode S, then A∗ is a Hopf algebra with antipode S∗ =
{(y, x) | (x, y) ∈ S}.

Tensor products When A1 = (A1,m1, 11,∆1, ϵ1) and A2 = (A2,m2, 12, ∆2, ϵ2) are bial-
gebras in Rel, their tensor product is the bialgebra A1⊗A2 = (A1×A2,m12, 112, ∆12, ϵ12)
where

m12 = {(((x1, x2), (y1, y2)), (z1, z2)) | ((xi, yi), zi) ∈ mi}
112 = {(∗, (x1, x2)) | xi ∈ 1i}
∆12 = {((x1, x2), ((y1, y2), (z1, z2))) | (xi, (yi, zi)) ∈ ∆i}
ϵ12 = {((x1, x2), ∗) | (xi, ∗) ∈ ϵi}.

When both A1 and A2 are Hopf algebras with antipode S1 and S2 respectively, then
A1 ⊗ A2 is a Hopf algebra with antipode S12 = {((x1, x2), (y1, y2)) | (xi, yi) ∈ Si}.

By these constructions, one can construct a non-commutative non-co-commutative
bialgebras and Hopf algebras. For example, for a non-Abelian group G, G⊗G

∗
is a Hopf

algebra which is neither commutative nor co-commutative. However, this Hopf algebra
does not have an R-matrix — for which we need a more sophisticated construction, and
it is the topic of the next section.

Remark 3.1. Of course, there are lots of bialgebras and Hopf algebras in Rel which
cannot be obtained by these constructions on M ’s or G’s. For an easy example, let X

be a set and (MX,⊕, 0) be the free commutative monoid on X; or, equivalently, let
MX be the set of finite multisets of elements of X, ⊕ the union of multisets, and 0
the empty multiset. Then there is a bialgebra MX = (MX, m, 1, ∆, ϵ) in Rel where
m = {((x1, x2), x1 ⊕ x2) | xi ∈ MX}, 1 = {(∗, 0)}, ∆ = {(x1 ⊕ x2, (x1, x2)) | xi ∈ MX}
and ϵ = {(0, ∗)}. Obviously MXop and MX∗ are isomorphic to MX.
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Remark 3.2. As of writing this paper, we do not know if all Hopf algebras in Rel
have an invertible antipode. Note that Rel does not have all equalizers, so the result
in (Takeuchi 1999) cannot be applied to Rel. On the other hand, it is not clear if the
construction of a Hopf algebra with a non-invertible antipode in (Takeuchi 1999) can be
carried out in Rel.

4. A quantum double construction in Rel

In the previous section, we have observed that every group G = (G, ·, e, (−)−1) gives
rise to a co-commutative Hopf algebra G = (G,m, 1,∆, ϵ, S) in Rel. For obtaining a
quasi-triangular Hopf algebra, in this section we shall apply Drinfel’d’s quantum double
construction (Drinfel’d 1987; Majid 1990) to G.

4.1. Quantum double construction in compact and traced categories

We shall use the quantum double construction given in terms of Hopf algebras in compact
closed categories:

Proposition 4.1. (cf. (Chen 2000; Kassel 1995; Kassel and Turaev 1995)) Suppose that
C is a compact closed category and A = (A,m, 1, ∆, ϵ, S) is a Hopf algebra in C, where
the antipode S is invertible. Then there exists a quasi-triangular Hopf algebra D(A) on
A∗ ⊗ A.

Before going into the technical detail, let us first explain an outline of the construction
and give some informal remarks. Given a Hopf algebra A = (A,m, 1,∆, ϵ, S) with S

invertible, let Aop∗ = (A∗, ∆∗, ϵ∗, (mop)∗, 1∗, (S−1)∗) be the dual opposite Hopf algebra.
It follows that there are suitable actions of A on Aop∗ and Aop∗ on A, and with them
we can form a bicrossed product (Majid 1990; Majid 1995) of Aop∗ with A, which is the
Hopf algebra D(A). We shall note that D(A) is almost like a tensor product of Aop∗ with
A itself — except some clever adjustment on the multiplication and antipode. Also let us
remark that Mod(Aop∗) is isomorphic to Comod(A), and Mod(D(A)) can be regarded
as a combination of Comod(A) and Mod(A), as we will soon see for the case of G in
Rel below.

Unfortunately, a direct description of D(A) is rather complicated; see (Chen 2000)
for instance. Instead, we shall give an alternative, simpler description using the Int-
construction of Joyal, Street and Verity (Joyal et al. 1996).

Recall that, for a traced monoidal category C, one can construct a ribbon category
Int(C) whose objects are pairs of those of C, and a morphism f : (A+, A−) → (B+, B−)
in Int(C) is a morphism from A+ ⊗ B− to B+ ⊗ A− in C which can be drawn as

f
B−

A+

A−

B+

The composition of f : (A+, A−) → (B+, B−) and g : (B+, B−) → (C+, C−) is
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²± °̄
�

�

f

@
@

g
�

�

The tensor product of (A+, A−) and (B+, B−) is (A+ ⊗ B+, B− ⊗ A−), while the unit
object is (I, I); see (Joyal et al. 1996; Hasegawa 2009) for further details of the structure
of Int(C).

Proposition 4.2. For a Hopf algebra A = (A,m, 1,∆, ϵ, S) with an invertible antipode
S in a traced symmetric monoidal category C, there is a quasi-triangular Hopf algebra
((A,A),md, 1d, ∆d, ϵd, Sd) with a universal R-matrix R in Int(C) given as follows.

md : (A, A) ⊗ (A, A) → (A, A)
§̈ z§ ¦

¨ ¥
φ 1d : I → (A, A) j z

∆d : (A, A) → (A, A) ⊗ (A, A)

z̈
§ ϵd : (A, A) → I j z

Sd : (A, A) → (A, A)

S

S−1

¨
§

¥
¦φ

R : I → (A, A) ⊗ (A, A) j z R◦ : I → (A, A) ⊗ (A, A) j zS−1

where φ : A ⊗ A → A ⊗ A is §̈ S
z§̈ z

.

When C itself is a compact closed category, there is a strong symmetric monoidal
equivalence F : Int(C) → C sending (A+, A−) to F (A+, A−) = A∗

−⊗A+, with the obvious
isomorphism from F (A+, A−) ⊗ F (B+, B−) = A∗

− ⊗ A+ ⊗ B∗
− ⊗ B+ to F ((A+, A−) ⊗

(B+, B−)) = (B− ⊗ A−)∗ ⊗ A+ ⊗ B−. Via this equivalence, this quasi-triangular Hopf
algebra on (A,A) in Int(C) is sent to a quasi-triangular Hopf algebra on A⊗A∗ in C, as
claimed in Proposition 4.1.



Quantum double in Rel 15

4.2. Quantum double of G in Rel

Now we turn our attention to the Hopf algebra G in Rel. Since the antipode S of G

is invertible, we can apply the quantum double construction to G, and we obtain a
quasi-triangular (in fact, ribbon) Hopf algebra D(G).

By Proposition 4.2, the quantum double of G in Int(Rel) is ((G,G),md, 1d, ∆d, ϵd, Sd, R)
where

md = {(((h1, h2), g), (h1h2, (h−1
1 gh1, g))) | g, h1, h2 ∈ G}

1d = {((∗, g), (e, ∗)) | g ∈ G}
∆d = {((h, (g2, g1)), ((h, h), g1g2)) | g1, g2, h ∈ G}
ϵd = {((g, ∗), (∗, e)) | g ∈ G}
Sd = {((h, h−1g−1h), (h−1, g)) | g, h ∈ G}
R = {((∗, (h, g)), ((e, g), ∗)) | g, h ∈ G}

R◦ = {((∗, (h, g−1)), ((e, g), ∗)) | g, h ∈ G}
md §̈ z§ ¦

¨ ¥
φ

g
g

g
h−1
1gh1

h2

h1 h1

h1h2

1d

jg z e

∆d zg1

g2
g1g2

§̈h
h

h

ϵd

jg z e

Sd

Sh

h−1

h−1

S−1h−1g−1h
g−1

g
¨
§

¥
¦φ

R

j zh e

g g

R◦

j zh e

S−1g g−1

φ = §̈ S
z§̈ zu

x
x

x x−1

x

x−1u

x−1ux

x

Via the strong symmetric monoidal equivalence from Int(Rel) to Rel, we obtain:

Theorem 4.1. Suppose that G = (G, ·, e, (−)−1) is a group. There is a ribbon Hopf
algebra D(G) = (G × G,md, 1d,∆d, ϵd, Sd, R, v) in Rel, with

md = {(((g, h1), (h−1
1 gh1, h2)), (g, h1h2)) | g, h1, h2 ∈ G}

1d = {(∗, (g, e)) | g ∈ G}
∆d = {((g1g2, h), ((g1, h), (g2, h)) | g1, g2, h ∈ G}
ϵd = {((e, g), ∗) | g ∈ G}
Sd = {((g, h), (h−1g−1h, h−1)) | g, h ∈ G}
R = {(∗, ((g, e), (h, g))) | g, h ∈ G}
v = {(∗, (g, g)) | g ∈ G}

where R is the universal R-matrix and v is the universal twist.

When G is not Abelian, D(G) is neither commutative nor co-commutative. Below we
shall observe that modules of D(G) can be identified with the crossed G-sets (Freyd and
Yetter 1989; Whitehead 1949).
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5. A ribbon category of crossed G-sets

5.1. Crossed G-sets

Let G = (G, ·, e, (−)−1) be a group. A crossed G-set X = (X, •, | |) is given by a set X

together with a group action • : G × X → X and a function | | from X to G such that,
for any g ∈ G and x ∈ X, |g • x| = g · |x| · g−1 holds. For instance, G itself can be seen
a crossed G-set with g • h = g · h · g−1 and |h| = h. Another trivial example is a G-set
with |x| = e.

Proposition 5.1. For any set X, there is a bijective correspondence between D(G)-
modules on X and crossed G-sets on X.

Indeed, if α : G × G × X → X is a D(G)-module, for any g ∈ G and x ∈ X there are
unique h ∈ G and y ∈ X such that (((h, g), x), y) ∈ α, and X carries the structure of
crossed G-set where g • x is this uniquely determined y and |x| is the unique h such
that (((h, e), x), x) ∈ α. Conversely, a crossed G-set (X, •, | |) gives rise to a module
{(((|g • x|, g), x), g • x) | g ∈ G, x ∈ X} : G×G×X → X. It is not hard to see that this
is a bijective correspondence.

A morphism of crossed G-sets from (X, •, | |) to (Y, •, | |), corresponding to the mor-
phism of D(G)-modules, is a binary relation r : X → Y such that (x, y) ∈ r implies
(g • x, g • y) ∈ r as well as |x| = |y|. The identity and composition of morphisms are just
the same as those of binary relations. Let us denote the category of crossed G-sets and
morphisms by XRel(G) which is isomorphic to Mod(D(G)). We note that the category
G-XSff of crossed G-sets of Freyd and Yetter (Freyd and Yetter 1989) is the subcategory
of XRel(G) whose morphisms are restricted to functions and objects are restricted to
finite ones. A variant of XRel(G) where G is not a group but a commutative monoid
has appeared in (Abramsky et al. 1999).

For any set X, the free crossed G-set over X is given by F(X) = (G × G × X, •, | |)
with g • (h1, h2, x) = (g · h1 · g−1, g · h2, x) and |(h1, h2, x)| = h1. F extends to a functor
from Rel to XRel(G) which is left adjoint to the forgetful functor U : XRel(G) → Rel
which sends (X, •, | |) to X.

5.2. The ribbon structure on XRel(G)

By Proposition 2.1, Mod(D(G)), hence XRel(G), is a ribbon category. In XRel(G),
the tensor unit is I = ({∗}, (g, x) 7→ x, x 7→ e), and the tensor product of X = (X, •, | |)
and Y = (Y, •, | |) is

X ⊗ Y = (X × Y, (g, (x, y)) 7→ (g • x, g • y), (x, y) 7→ |x| · |y|).

The tensor product of morphisms, as well as the coherence isomorphisms a, l, r, are
inherited from Rel. For this monoidal structure we have a braiding σX,Y : X⊗Y

≃→ Y ⊗X

induced by the universal R-matrix R as

σX,Y = {((x, y), (|x| • y, x)) | x ∈ X, y ∈ Y }.
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There is a twist θX : X
≃→ X induced by the universal twist v:

θX = {(x, |x| • x) | x ∈ X}.

For a crossed G-set X = (X, •, | |), its left dual is X∗ = (X, •, | |−1), with unit ηX =
{(∗, (x, x)) | x ∈ X} : I → X ⊗ X∗ and counit εX = {((x, x), ∗) | x ∈ X} : X∗ ⊗ X → I.
We note that the canonical trace on XRel(G) is given just like that on Rel: for f :
A ⊗ X → B ⊗ X, its trace TrX

A,Bf : A → B is

TrX
A,Bf = {(a, b) ∈ A × B | ∃x ∈ X ((a, x), (b, x)) ∈ f}.

5.3. Interpreting tangles in XRel(G)

Since the category of (oriented, framed) tangles is equivalent to the ribbon category
freely generated by a single object (Shum 1994), by specifying a ribbon category and an
object, we always obtain a structure-preserving functor from the category of tangles to
the ribbon category, which determines an invariant of tangles (Yetter 2001). This is also
the case for XRel(G).

For understanding how a crossed G-set gives rise to an invariant of tangles, it is helpful
to consider the rack (Fenn and Rourke 1992) associated to the crossed G-set‡. Given a
crossed G-set (X, •, | |), let us define operators ◃, ◃−1 : X ×X → X as x ◃ y = |y| •x and
x ◃−1 y = |y|−1 • x. Then (X, ◃, ◃−1) forms a rack; that is, the following equations hold§.

(x ◃ y) ◃−1 y = x = (x ◃−1 y) ◃ y (bijectivity of (−) ◃ y)
(x ◃ y) ◃ z = (x ◃ z) ◃ (y ◃ z) (self-distributivity)

Now the braiding and twist can be described in terms of this rack: σX,Y = {((x, y), (y ◃

x, x)) | x ∈ X, y ∈ Y } and θX = {(x, x ◃ x) | x ∈ X}. The interpretation of a tangle
diagram in XRel(G) with a crossed G-set X is then determined by all possible X-
labellings of the segments from an underpass to the next underpass satisfying ”y under
x from left gives y ◃ x” and ”y under x from right gives y ◃−1 x”.

�
���@@
@@R

y

x

x

y ◃ x

@
@@R��
���

x

y

y ◃−1 x

x ZZ~x x ◃ x �� ZZ~x x ◃−1 x

For instance, the self-distributivity justifies the Reidemeister move III:

@@
@

@@
@@ -

�
�� @@

@@R

�
�

�
�

���
x

y

z

x ◃ y

z

y ◃ z

(x ◃ y) ◃ z

∼

@@
@

@@
@@R

@@
@@ �

���
�

�
�

�
��

-x

y

z

x ◃ z

z

y ◃ z

(x ◃ z) ◃ (y ◃ z)

Similarly, the Reidemeister move II is justified by the bijectivity:

‡ Indeed, another name for crossed G-sets coined by Fenn and Rourke is augmented racks. They have

shown that every rack arises from an augmented rack, hence a crossed G-set.
§ However, this does not have to be a quandle in the sense of Joyce (Joyce 1982), since the idempotency

x ◃ x = x does not hold in general.
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x (x ◃ y) ◃−1 y

y y
x ◃ y

∼
-

-

x x

y y
∼ @

@@�
���

��
��@@

@@R

x x

y (y ◃−1 x) ◃ x

y ◃−1 x

The framed version of Reidemeister move I is also justified by the self-distributivity and
bijectivity:

ZZx �� ZZ~
x ◃ x

(x ◃ x) ◃−1 (x ◃ x)
∼

-x x

∼
ZZ~x �� ZZ

x ◃−1 x
(x ◃−1 x) ◃ (x ◃−1 x)

Example 5.1. Consider of the following link:

6 6

Its interpretation in XRel(G) with a crossed G-set X takes a value in XRel(G)(I, I) =
{idI , ∅}, and it is the identity relation idI if there exist x, y ∈ X such that x = x ◃ y and
y = y ◃ x hold; otherwise it is the empty relation ∅.

These invariants are far from complete. For example, the links
m

-
m

- and
m

- always
have the same interpretation for any crossed G-set.

6. A model of braided linear logic

In this section, we outline the notion of models of (fragments of) braided linear logic, and
see how XRel(G) in the previous section gives such a model. For a detailed exposition
on categorical models of linear logic, see (Melliès 2009).

6.1. Models of braided linear logic

By a model of braided multiplicative linear logic (braided MLL), we mean a braided ∗-
autonomous category (Barr 1995); note that a ribbon category is braided ∗-autonomous,
hence is a model of braided MLL. A model of braided multiplicative additive linear logic
(braided MALL) is then a braided ∗-autonomous category with finite products.

For exponential, we employ the following generalization of the notion of linear ex-
ponential comonads (Hyland and Schalk 2003) on symmetric monoidal categories: by a
linear exponential comonad on a braided monoidal category we mean a braided monoidal
comonad whose category of coalgebras is a category of commutative comonoids. A model
of braided MELL is then a braided ∗-autonomous category with a linear exponential
comonad. (An implication of this definition is that braiding becomes symmetry on ex-
ponential objects: σ−1

!X,!Y = σ!Y,!X .) A model of braided LL is a model of MALL with a
linear exponential comonad (or a model of MELL with finite products).
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6.2. XRel(G) as a model of braided linear logic

XRel(G) is a ribbon category with finite products, hence is a model of braided MALL.
There is a strict balanced monoidal functor F : Rel → XRel(G) which sends a set X

to FX = (X, (g, x) 7→ x, x 7→ e). F has a right adjoint U : XRel(G) → Rel which sends
X = (X, •, | |) to UX = {x ∈ X | |x| = e}/∼ where x ∼ y iff g • x = y for some g. By
composing F and U with a linear exponential comonad ! on Rel (e.g. the finite multiset
comonad), we obtain a linear exponential comonad F !U on XRel(G) whose category
of coalgebras is equivalent to that of !. Hence XRel(G) is a model of braided LL. As
a result, there exists a linear fixed-point operator on XRel(G) as given in (Hasegawa
2009).

XRel(G) is degenerate as a model of LL in the sense that it cannot distinguish tensor
from par. As an easy remedy, one may apply the simple self-dualization construction
(Hyland and Schalk 2003) for obtaining a ”non-compact” model. For a braided monoidal
closed category C with finite products, there is a braided ∗-autonomous structure on
C×Cop whose tensor unit is (I, 1) (where 1 is a terminal object and should not be confused
with the unit element of a monoid) and tensor product is given by (U,X) ⊗ (V, Y ) =
(U ⊗ V, U ( Y × V ( X), while the duality is given by (U,X)⊥ = (X, U). By applying
the simple self-dualization construction to XRel(G) we obtain a ”non-compact” model
XRel(G) × XRel(G)op of braided LL. Alternatively, XRel(G) × XRel(G)op arises as
the category of modules of D(G) (or (D(G), ∅) to be more precise) in the ∗-autonomous
category Rel × Relop obtained by the simple self-dualization on Rel.

7. Concluding remarks

We have demonstrated that there are many non-trivial Hopf algebras in the category of
sets and binary relations. In particular, by applying the quantum double construction we
have constructed a non-commutative non-co-commutative Hopf algebra with a universal
R-matrix and a universal twist, and the ribbon category of its modules turns out to be
a category of crossed G-sets.

Technically, most of our results are variations or instances of the already established
theory of quantum groups, and we do not claim much novelty in this regard. What is
much more important in this work, we believe, is that our results show that it is indeed
possible to carry out a substantial part of quantum group theory in a category used for
semantics of computation and logic. Although we have spelled out just a particular case
of Rel, we expect that the same can be done meaningfully in various other settings,
including

— the ∗-autonomous category of coherent spaces and linear stable maps (Girard 1987),
and its variations used as models of linear logic,

— various categories of games, in particular the compact closed category of Conway
games (Joyal 1977; Melliès 2004), and

— the category of sets (or presheaves on discrete categories) and linear normal functors
(Hasegawa 2002), as well as the bicategory of small categories and profunctors.

The first two would lead to models of braided linear logic and some braided variants of
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game semantics. The third should be a direct refinement of our work on Rel, in that
we replace binary relations X × Y → 2 with Set-valued functors X × Y → Set (which
amount to linear normal functors from SetX to SetY ).

Finally, we must admit that the computational significance of braided monoidal struc-
ture is yet to be examined. As far as we know, XRel(G) is the first non-symmetric ribbon
category featuring a linear exponential comonad, allowing non-trivial interpretations of
braidings as well as recursive programs at the same time. If we are to develop a sort of
braided variant of denotational semantics in future, XRel(G) might be a good starting
point. A potentially related direction would be the area of topological quantum computa-
tion (Freedman et al. 2002; Kitaev 2003; Wang 2010; Panangaden and Paquette 2011),
in which modular tensor categories (semisimple ribbon categories with finite simple ob-
jects satisfying an extra condition) (Turaev 1994; Bakalov and Kirilov 2001) play the
central role. Although XRel(G) is not modular, it might be possible to develop a toy
(and suitably simplified) model of topological quantum computation in it.
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