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Abstract. We present a rewriting system for the linear lambda calculus
corresponding to the {!, �}-fragment of intuitionistic linear logic. This
rewriting system is shown to be strongly normalizing, and Church-Rosser
modulo the trivial commuting conversion. Thus it provides a simple de-
cision method for the equational theory of the linear lambda calculus.
As an application we prove the strong normalization of the simply typed
computational lambda calculus by giving a reduction-preserving trans-
lation into the linear lambda calculus.

1 Introduction

In the literature, there exist many proposals of linearly typed lambda calculi
which correspond to Girard’s linear logic [7] via the Curry-Howard correspon-
dence. However, only a few of them have studied the equality between terms
(or proofs) seriously. Just like the simply typed lambda calculus with the βη-
equality is sound and complete for semantic models given by cartesian closed
categories [13,5], it is desirable for a linear lambda calculus to be equipped with
an equational theory which is sound and complete for the now well-established
categorical models of linear logic [19,3,4,16].

Barber and Plotkin’s Dual Intuitionistic Linear Logic (DILL) [1,2] is one of
such calculi: its equational theory, determined by the standard βη-axioms and a
few axioms for commuting conversions (for identifying the terms representing the
same proof modulo trivial proof permutations), has been shown to be sound and
complete for the categorical models of the multiplicative exponential fragment
of the intuitionistic linear logic. Together with its natural-deduction style simple
term expressions, DILL can be considered as one of the canonical calculi for this
fragment of linear logic.

However, DILL is not equipped with a rewriting system. There is a symmet-
ric un-orientable axiom for commuting conversions, thus it is not clear if the
equational theory of DILL has a simple decision procedure based on a rewriting
system, while it is the case for many of the standard typed lambda calculi.

Regarding decidability, the answer is actually known: Barber [1] in his PhD
thesis, and independently Ghani [6] in an unpublished manuscript, have shown
that the equational theory of DILL is decidable. However, their proofs are long
and complicated, using some new notations and/or advanced techniques which
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are not always easy to follow. Barber’s approach involves a translation into a net-
like system and rewriting on equivalence classes of expressions. Ghani have used
the η-expansion technique which again is a rather heavy machinery. At least,
they do not present a simple and intuitively understandable rewriting system in
the traditional sense.

Here we propose a simpler solution for the {�, !}-fragment (which is enough
to mimic the simply typed lambda calculus via Girard’s translation as σ → τ =
!σ � τ) by a classical rewriting-theoretic method. Specifically, we appeal to
the seminal result by Huet on reduction modulo equivalence [12]. We provide a
rewriting system � together with a (trivially) decidable equational theory ∼∗

generated by the symmetric commuting conversion ∼ on linear lambda terms
such that (following the terminology of Terese [20])

1. The equivalence relation generated from � and ∼ agrees with the equational
theory of the linear lambda calculus,

2. � is strongly normalizing,
3. � is locally confluent modulo ∼∗, and
4. � is locally coherent modulo ∼∗.

Then Huet’s theorem implies that � is Church-Rosser modulo ∼∗, and deciding
the equality in this linear lambda calculus is reduced to comparing the �-normal
forms up to the easily decidable equality ∼∗.

From rewriting-theoretical point of view, this work does not present much
new idea. However, it does give an interesting case motivated by the study
on the semantic and logical foundations of functional programming languages.
Recent work [8,9,10] suggest that there exist many interesting translations of
various calculi into this linear lambda calculus, including monadic and CPS
translations. As an interesting example, we prove the strong normalization of
the simply typed version of Moggi’s computational lambda calculus by giving a
reduction-preserving translation into the linear lambda calculus. Together with
this result, our work can be considered as a follow-up of the work by Maraist et
al. [15] and Sabry and Wadler [18].

The rest of this paper is organized as follows. We introduce the linear lambda
calculus in Section 2, and our rewriting system in Section 3. Section 4 is a quick
reminder of the classical definitions and result from the theory of reduction
modulo equivalence. Section 5, 6 and 7 are devoted to show the strong nor-
malization, local confluence modulo ∼∗, and local coherence modulo ∼∗, which
jointly imply the Church-Rosser property modulo equivalence. Section 8 gives a
reduction-preserving translation from the simply typed computational lambda
calculus to the linear lambda calculus. Some concluding remarks are given in
Section 9.

2 The Linear Lambda Calculus with � and !

The calculus to be considered below is a dual-context natural deduction system
for the {!, �}-fragment of IMELL, based on DILL of Barber and Plotkin [1,2].
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The identical calculus appears in [8]. In this formulation of the linear lambda cal-
culus, a typing judgement takes the form Γ ; Δ � M : τ in which Γ represents an
intuitionistic (or additive) context whereas Δ is a linear (multiplicative) context.
We assume that all variables in Γ and Δ are distinct. While the variables in Γ
can be used in the term M as many times as we like, those in Δ must be used ex-
actly once. A typing judgement x1 : σ1, . . . , xm : σm ; y1 : τ1, . . . , yn : τn � M : σ
can be considered as the proof of the sequent !σ1, . . . , !σm, τ1, . . . , τn � σ, or the
proposition !σ1 ⊗ . . .⊗!σm ⊗ τ1 ⊗ . . . ⊗ τn � σ.

Types and Terms

σ ::= b | σ � σ | !σ
M ::= x | λxσ.M | M M | !M | let !xσ be M in M

where b ranges over a set of base types. We may omit the type subscripts for
ease of presentation.
Typing

Γ ; x : τ � x : τ
LinAx

Γ1, x : τ, Γ2 ; ∅ � x : τ
IntAx

Γ ; Δ, x : τ1 � M : τ2

Γ ; Δ � λxτ1 .M : τ1 � τ2
� Intro

Γ ; Δ1 � M : τ1 � τ2 Γ ; Δ2 � N : τ1

Γ ; Δ1�Δ2 � MN : τ2
� Elim

Γ ; ∅ � M : τ

Γ ; ∅ �!M :!τ
!Intro

Γ ; Δ1 � M :!τ1 Γ, x : τ1 ; Δ2 � N : τ2

Γ ; Δ1�Δ2 � let !xτ1 be M in N : τ2
!Elim

where ∅ is the empty context, and Δ1	Δ2 is a merge of Δ1 and Δ2 [1,2]. Thus,
Δ1	Δ2 represents one of possible merges of Δ1 and Δ2 as finite lists. More
explicitly, we can define the relation “Δ is a merge of Δ1 and Δ2” inductively
as follows [1]:

– Δ is a merge of ∅ and Δ
– Δ is a merge of Δ and ∅
– if Δ is a merge of Δ1 and Δ2, then x : σ, Δ is a merge of x : σ, Δ1 and Δ2
– if Δ is a merge of Δ1 and Δ2, then x : σ, Δ is a merge of Δ1 and x : σ, Δ2

We assume that, when we introduce Δ1	Δ2, there is no variable occurring both
in Δ1 and in Δ2. We note that any typing judgement has a unique derivation
(hence a typing judgement can be identified with its derivation).

Axioms
β� (λx.M)N = M [N/x]
η� λx.M x = M
β! let !x be !M in N = N [M/x]
η! let !x be M in !x = M
com C[let !x be M in N ] = let !x be M in C[N ]

where M [N/x] denotes the capture-free substitution, while C[−] is a linear con-
text (no ! binds [−]):

C ::= [−] | λx.C | C M | M C | let !x be C in M | let !x be M in C
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The use of linear contexts is crucial: com is not allowed for non-linear contexts,
e.g. the “idempotency equation” [2] !(let !x be M in x) = let !x be M in !x
(which implies the idempotency of !, i.e., !!σ � !σ) is not derivable. The equality
judgement Γ ; Δ � M = N : σ, where Γ ; Δ � M : σ and Γ ; Δ � N : σ,
is defined as the congruence relation on the well-typed terms of the same type
under the same typing context, generated from these axioms.

In the sequel, we work on terms up to the α-congruence. We may write M = N
as a shorthand for the equality judgement Γ ; Δ � M = N : σ, while we will
use M ≡ N for expressing that M and N are the same modulo α-congruence.

The axiom com expresses the commuting conversions. By induction on the
construction of linear contexts, com can be expressed by five explicit instances:

Proposition 1. The axiom com can be replaced by the following five axioms.

com1 (let !x be M in N)L = let !x be M in N L
com2 let !y be (let !x be M in N) in L = let !x be M in let !y be N in L
com3 λy.(let !x be M in N) = let !x be M in λy.N
com4 L (let !x be M in N) = let !x be M in L N
com5 let !x be L in let !y be M in N = let !y be M in let !x be L in N


�

Remark 1. As stated above, we only consider the equality on the well-typed
terms under the same typing contexts. Thus, for example, in com3, y cannot be
free in M ; and in com5, x and y cannot be free in L and M .

Remark 2. As noted in [11], this linear lambda calculus allows a yet simpler
axiomatization:

β� (λx.M)N = M [N/x]
η� λx.M x = M
β! let !x be !M in N = N [M/x]
η′
! let !x be M in L (!x) = L M

While this is very compact, it does not immediately hint a terminating confluent
rewriting system. Nevertheless, we will see later that a rewrite rule similar to
this η′

! is needed for obtaining such a rewriting system.

3 A Rewriting System for the Linear Lambda Calculus

3.1 Motivating the Rewriting Rules

Now let us derive a rewriting system for the linear lambda calculus from its
axioms. As a natural starting point, we orient the βη-axioms from left to right,
as the case of the standard βη lambda calculus. The commuting conversions are
tricky, however. First of all, it is not possible to orient the symmetric axiom
com5, so it needs to be treated separately. Here we follow the tradition of reduc-
tion modulo equivalence: we design our system so that com5-reasoning can be
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postponed after all other rewriting steps are done. For com1∼4, it seems natural
to orient the axioms so that the let-bindings are pulled outside the contexts, i.e.,

com1 (let !x be M in N)L � let !x be M in N L
com2 let !y be (let !x be M in N) in L � let !x be M in let !y be N in L
com3 λy.(let !x be M in N) � let !x be M in λy.N
com4 L (let !x be M in N) � let !x be M in L N

thus flattening the let-expressions as possible as we can. Alas, there is a problem
on these rules and η!:

– η! and com1∼4 give a non-joinable critical pair, e.g.

let !x be M in L (!x) com4←− L (let !x be M in !x)
η!−→ L M

– The same problem happens with com5:

let !x be M in let !y be N in !xcom5←− let !y be N in let !x be M in !x
η!→ let !y be N in M

To overcome this difficulty, we introduce a refined version of η!

η′
! let !x be M in C[!x] � C[M ]

(where C ranges over the linear contexts as before) for which this problem dis-
appears.

3.2 Rewriting System

Our rewriting system features the following rules.

β� (λx.M)N � M [N/x]
η� λx.M x � M
β! let !x be !M in N � N [M/x]
η′
! let !x be M in C[!x] � C[M ]

com1 (let !x be M in N)L � let !x be M in N L
com2 let !y be (let !x be M in N) in L � let !x be M in let !y be N in L
com3 λy.(let !x be M in N) � let !x be M in λy.N
com4 L (let !x be M in N) � let !x be M in L N

We may use � for the compatible relation on the well-typed terms generated by
these rules (one-step rewriting), and �∗ will denote its reflexive transitive closure
(many-step rewriting). We note that the com-rewriting rules can be summarized
as

D[let !x be M in N ] � let !x be M in D[N ]

where D ::= [−] L | let !y be [−] in L | λy.[−] | L [−].
We also have to consider the symmetric rule com5:

com5 let !x be L in let !y be M in N ∼ let !y be M in let !x be L in N

We write ∼ for the compatible relation generated by com5 (one-step reasoning
via com5), and ∼∗ for its reflexive transitive closure. A few easy facts:
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Proposition 2. The reflexive symmetric transitive closure of � ∪ ∼ coincides
with the equality of the linear lambda calculus. 
�

Proposition 3. Each equivalence class of ∼∗ is finite, and thus ∼∗ is decidable.

�

The following result, easily shown by induction, will be useful in proving the
local confluence:

Lemma 1. C[let !x be M in N ] �∗ · ∼∗ let !x be M in C[N ]. 
�

Remark 3. In passing, we shall note that our rewriting system � can simulate
the βη-reduction in the simply typed lambda calculus via Girard translation [7]:
types are translated as b◦ = b and (σ → τ)◦ =!σ◦ � τ◦, and for terms we have

x◦ ≡ x
(λx.M)◦ ≡ λy.let !x be y in M◦

(MN)◦ ≡ M◦(!N◦)

For further details, see e.g. [8]. It is immediate to see that each βη-reduction in
the simply typed lambda calculus is sent to non-trivial reduction in �:

((λx.M)N)◦ ≡ (λy.let !x be y in M◦) (!N◦)
� let !x be !N◦ in M◦ (β�)
� M◦[N◦/x] (β!)
≡ (M [N/x])◦

(λx.M x)◦ ≡ λy.let !x be y in M◦ (!x)
� λy.M◦ y (η′

!)
� M◦ (η�)

4 Rewriting Modulo Equivalence

In the following sections, we will show that our rewriting system together with
∼ gives a decision procedure of the equality on the linear lambda terms. For-
tunately, it turns out that a classical result due to Huet is directly applicable
to our case. Below we recall basic definitions on reduction modulo equivalence
for abstract rewriting systems (ARS’s) and state Huet’s theorem. We follow the
treatment in Terese (Chapter 14.3) [20].

Definition 1. Let (A, →) be an ARS, and ∼ be an equivalence relation on A.
We say:

1. a, b are joinable modulo ∼ if there exist c, d such that a →∗ c, b →∗ d and
c ∼ d.

2. → is locally confluent modulo ∼ if, for any a, b, c, a → b and a → c imply b
and c are joinable modulo ∼.
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3. → is locally coherent modulo ∼ if, for any a, b, c, a → b and a ∼ c imply
that b and c are joinable modulo ∼.

4. → is Church-Rosser modulo ∼ if a ≈ b implies a and b are joinable modulo
∼, where ≈ is (∼ ∪ → ∪ ←)∗.

What we wish to establish for our system on linear lambda terms is the strong
normalization of � and the Church-Rosser property of � modulo ∼∗. The fol-
lowing result provides a sufficient condition for this.

Theorem 1 (Huet [12]). Let (A, �) be an ARS, and ∼ be an equivalence
relation on A. If � is strongly normalizing, locally confluent modulo ∼, and
locally coherent with ∼, then � is Church-Rosser modulo ∼. 
�

In the following three sections, we show that � is (i) strongly normalizing, (ii)
locally confluent modulo ∼∗, and (iii) locally coherent with ∼∗.

5 Strong Normalization

Theorem 2 (strong normalization). � is strongly normalizing.

For proving this, we proceed as follows. First, by showing that a translation into
the simply typed lambda calculus weakly preserves the reduction, we reduce the
problem to that of the smaller rewriting system. We then show the termination
of this subsystem by assigning natural numbers to expressions which are strictly
decreasing with respect to the reduction steps.

5.1 Translation into the Simply Typed Lambda Calculus

There is an obvious translation from the linear lambda calculus into the simply
typed βη-lambda calculus (an inverse to Girard’s translation [8]) which weakly
preserves the reductions.

b• = b
(!τ)• = τ•

(τ1 � τ2)• = τ•
1 → τ•

2

x• ≡ x

(λxτ .M)• ≡ λxτ•
.M•

(M N)• ≡ M• N•

(!M)• ≡ M•

(let !xτ be M in N)• ≡ N•[M•/x]

Straightforward inductions show the following facts:

Lemma 2 (type soundness). Γ ; Δ � M : τ implies Γ •, Δ• � M• : τ•. 
�

Lemma 3 (substitution lemma). (M [N/x])• ≡ M•[N•/x]. 
�
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Now we see how reductions in the linear lambda calculus are related to those on
the simply typed lambda calculus.

Proposition 4. If M � N in the linear lambda calculus, then M• �βη N• or
M• ≡ N• in the simply typed lambda calculus.

Proof. It suffices to look at the reduction rules.

((λx.M) N)• ≡ (λx.M•) N•

�β M•[N•/x]
≡ (M [N/x])• by Lemma 3

(λx.M x)• ≡ λx.M• x
�η M

(let !x be !M in N)• ≡ N•[M•/x]
≡ (N [M/x])•

(let !x be M in C[!x])• ≡ (C[!x])•[M•/x]
≡ (C[M ])•

((let !x be M in N) L)• ≡ N•[M•/x] L•

≡ (let !x be M in N L)•

(let !y be (let !x be M in N) in L)• ≡ L•[N•[M•/x]/y]
≡ L•[N•/y][M•/x]
≡ (let !x be M in let !y be N in L)•

(L (let !x be M in N))• ≡ L• (N•[M•/x])
≡ (let !x be M in L N)•

(λy.let !x be M in N)• ≡ λy.N•[M•/x]
≡ (let !x be M in λy.N)•


�

Corollary 1. Strong normalization of β!, η
′
! , com1, com2, com3 and com4 im-

plies that of �.

Proof. Suppose that � is not strongly normalizing, thus there exists an infinite
strict reduction sequence M0 � M1 � . . . in the linear lambda calculus. We
then have an infinite sequence M•

0 , M•
1 , . . . in the simply typed lambda calculus,

where M•
i �βη M•

i+1 or M•
i ≡ M•

i+1 holds by the last proposition. Since the
βη-reduction of the simply typed lambda calculus is strongly normalizing, there
exists some n such that M•

m ≡ M•
n holds for any m ≥ n. This means that the

infinite reduction sequence Mn � Mn+1 � . . . consists just of the non-β�η�
reductions. 
�

5.2 Termination of the Subsystem

We now complete our proof of strong normalization by showing that β!, η
′
! , com1,

com2, com3, com4 is indeed strongly normalizing.
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Proposition 5. The following set of rewriting rules is strongly normalizing.

β! let !x be !M in N � N [M/x]
η′
! let !x be M in C[!x] � C[M ]

com1 (let !x be M in N)L � let !x be M in N L
com2 let !y be (let !x be M in N) in L � let !x be M in let !y be N in L
com3 λy.(let !x be M in N) � let !x be M in λy.N
com4 L (let !x be M in N) � let !x be M in L N

Proof. We assign a positive natural number |M | to each (possibly non-well-
typed) term M by

|x| = 1
|λxτ .M | = 2|M |
|M N | = 2|M | + 2|N |
|!M | = |M |
|let !xτ be M in N | = 2|M | + |N [M/x]|

(note that the last line is well-defined — compare the depths of let-bindings) and
show that M � N implies |M | > |N |. Note that this assignment is monotone
with respect to each argument. Therefore |L[M/x]| ≥ |L[N/x]| holds if we know
|M | ≥ |N |.

– β!: |let !x be !M in N | = 2|!M |+ |N [!M/x]| = 2|M |+ |N [M/x]| > |N [M/x]|.
– η′

! : |let !x be M in C[!x]| = 2|M | + |C[!M ]| = 2|M | + |C[M ]| > |C[M ]|.
– com1: |(let !x be M in N)L| = 4|M | + 2|N [M/x]| + 2|L|, while

|let !x be M in N L| = 2|M | + 2|N [M/x]| + 2|L|.
– com2:

|let !y be (let !x be M in N) in L|
= 2|let !x be M in N | + |L[let !x be M in N/y]|
= 4|M | + 2|N [M/x]| + |L[let !x be M in N/y]|
≥ 4|M | + 2|N [M/x]| + |L[N [M/x]/y]|

while
|let !x be M in let !y be N in L|

= 2|M | + |let !y be N [M/x] in L|
= 2|M | + 2|N [M/x]| + |L[N [M/x]/y]|

– com3, com4: similar to the case of com1. 
�

6 Local Confluence Modulo Equivalence

Theorem 3 (local confluence modulo ∼∗). � is locally confluent modulo
∼∗: if L � M1 and L � M2 then there exist N1 and N2 such that M1 �∗ N1,
M2 �∗ N2 and N1 ∼∗ N2.

Proof (sketch). There are 16 cases to be considered. Many of them are joinable
without ∼∗, except the following three cases.
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(let !x be K in L) (let !y be M in N)

let !x be K in L (let !y be M in N) let !y be M in (let !x be K in L)N

let !x be K in let !y be M in L N let !y be M in let !x be K in L M

�
��

�
��

� �

com1 com4

com4 com1

∼

Other two cases involve ∼∗ via Lemma 1 (Section 3.2).

(λy.C[y]) (let !x be M in N)

C[let !x be M in N ] let !x be M in (λy.C[y])N

· let !x be M in C[N ]

�
��

�
��

� �

β� com4

Lemma 1
�∗ β�

∼∗

let !y be (let !x be M in N) in C[!y]

C[let !x be M in N ] let !x be M in let !y be N in C[!y]

· let !x be M in C[N ]

�
��

�
��

� �

η′
! com2

Lemma 1
�∗ η′

!

∼∗


�

7 Local Coherence Modulo Equivalence

Theorem 4 (local coherence modulo ∼∗). � is locally coherent modulo ∼∗,
i.e., if L ∼∗ M � N then there exists some L′, N ′ such that L �∗ L′, N �∗ N ′

and L′ ∼∗ N ′.

Proof (sketch). Note that it suffices to show: if L ∼ M � N then there exists
some L′, N ′ such that L �∗ L′, N �∗ N ′ and L′ ∼∗ N ′. There are six cases to
be considered. The first four are rather obvious:

let !x be !L in let !y be M in N

let !y be M in let !x be !L in Nlet !y be M in N [L/x]

�
�

�
��

�
β!

β! ∼
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let !y be M in let !x be !L in N

let !x be !L in let !y be M in Nlet !y be M in N [L/x]

�
�

�
��

�
β!

β! ∼

let !x be L in let !y be M in C[!x]

let !y be M in let !x be !L in C[!x]let !y be M in C[L]

�
�

�
��

�
η′
!

η′
! ∼

let !y be M in let !x be !L in C[!x]

let !x be L in let !y be M in C[!x]let !y be M in C[L]

�
�

�
��

�
η′
!

η′
! ∼

The remaining two cases are less trivial:

let !x be (let !z be L in K) in let !y be M in N

let !y be M in let !x be (let !z be L in K) in N

let !z be L in let !x be K in let !y be M in N let !y be M in let !z be L in let !x be K in N

�
�

�
�

�
��

�
�

�

∼∗

∼

com2

com2

D[let !x be L in let !y be M in N ]

let !x be L in D[let !y be M in N ] D[let !y be M in let !x be L in N ]

let !y be M in D[let !x be L in N ]

let !x be L in let !y be M in D[N ] let !y be M in let !x be L in D[N ]

�
��

�
�

�

�

�

com i ∼

comi

comi

comi

∼

�

Now we can state the fruit of the last three sections, thanks to Theorem 1.

Theorem 5 (Church-Rosser modulo ∼∗). � is Church-Rosser modulo ∼∗;
if M = N , there exist M ′, N ′ such that M �∗ M ′, N �∗ N ′ and M ′ ∼∗ N ′. 
�
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8 Translation from the Computational Lambda Calculus

8.1 The Simply Typed Computational Lambda Calculus λc

The simply typed computational lambda calculus λc (its untyped version was
introduced by Moggi [17]) has the same syntax as the simply typed lambda
calculus plus the let-binding

Γ � M : σ Γ, x : σ � N : τ

Γ � let xσ be M in N : τ

It is a call-by-value calculus however, and its rewriting / equational theory is
valid for reasoning about programs in the call-by-value programming languages
like ML and Scheme. λc features the following reduction rules:

(β.v) (λxσ.M)V � M [V/x]
(η.v) λxσ.V x � V (x �∈ FV(V ))
(β.let) let xσ be V in M � M [V/x]
(η.let) let xσ be M in x � M
(assoc) let yτ be (let xσ be L in M) in N � let xσ be L in let yτ be M in N
(let .1) P M � let xσ be P in xM (P : σ)
(let .2) V Q � let yσ be Q in V y (Q : σ)

where V , W range over values (variables and lambda abstractions) while P , Q
over non-values (applications and let expressions).

8.2 The Kernel Computational Lambda Calculus λc∗

Interestingly, the reductions in the λc-calculus can be simulated within a smaller
sublanguage λc∗ called kernel computational lambda calculus [18]. In λc∗, applica-
tions M N are restricted to those of values V W , and we no longer have reduction
rules (let .1) and (let .2). Its reduction rules are given as follows.

(β.v) (λxσ.M)V � M [V/x]
(η.v) λxσ.V x � V (x �∈ FV(V ))
(β.let) let xσ be V in M � M [V/x]
(η.let) let xσ be M in x � M
(assoc) let yτ be (let xσ be L in M) in N � let xσ be L in let yτ be M in N

Here is a reduction-preserving inclusion (−)∗ from λc into λc∗:

x∗ ≡ x
(λxσ.M)∗ ≡ λxσ.M∗

(P M)∗ ≡ let x be P ∗ in (λy.(y M)∗)x
(V Q)∗ ≡ let y be Q∗ in (λx.V ∗ x) y
(V W )∗ ≡ V ∗ W ∗

(let xσ be M in N)∗ ≡ let xσ be M∗ in N∗
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Lemma 4. If Γ � M : σ is derivable in λc, so is Γ � M∗ : σ in λc∗. 
�

Lemma 5. M∗[V ∗/x] ≡ (M [V/x])∗. 
�

Proposition 6. If M �1 N in λc, then M∗ �1 N∗ in λc∗.

Proof (sketch). The key cases are

(P M)∗ ≡ let x be P ∗ in (λy.(y M)∗)x
β.v
� let x be P ∗ in (xM)∗

≡ (let x be P in xM)∗

(V Q)∗ ≡ let y be Q∗ in (λx.V ∗ x) y
β.v or η.v

� let y be Q∗ in V ∗ y
≡ (let y be Q in V y)∗


�

Corollary 2. λc∗ is strongly normalizing if and only if λc is strongly normaliz-
ing. 
�

Remark 4. This embedding (−)∗ is inspired from the translation ∗1 : λc → λc∗
given by Sabry and Wadler [18], but not quite the same. For ∗1, the translations
of P M and V Q are simply

(P M)∗ ≡ let x be P ∗ in (xM)∗ (V Q)∗ ≡ let y be Q∗ in V ∗ y

while our embedding introduces additional redices so that the reduction steps
are strictly preserved.

8.3 Embedding λc∗ into the Linear Lambda Calculus

Now it is fairly easy to give a reduction-preserving translation (−)� from λc∗ into
the linear lambda calculus (the “call-by-value Girard translation”): let b� = b,
(σ1 → σ2)� = !σ�

1 � !σ�
2 and

x† ≡ x

(λxσ .M)† ≡ λy!σ�
.let !xσ�

be y in M�

V � ≡ !V †

(V W )� ≡ V † W �

(let xσ be M in N)� ≡ let !xσ�
be M� in N�

Lemma 6 (type soundness). If Γ � M : σ is derivable in λc∗, so is Γ � ; ∅ �
M� :!σ� in the linear lambda calculus [18,9]. 
�

Lemma 7 (substitution lemma). M�[V †/x] ≡ (M [V/x])�. 
�
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Proposition 7 (preservation of reduction). If M � N in λc∗, then M� �+

N� in the linear lambda calculus. 
�

Corollary 3 (strong normalization). λc is strongly normalizing. 
�

We note that a different proof of this result via the reducibility argument has
been given by Lindley and Stark [14].

Remark 5. For reasoning about commutative effects like non-termination and
non-determinism, it makes sense to add the commutativity axiom

com let x be L in let y be M in N = let y be M in let x be L in N

We conjecture that our translation also preserves reduction modulo the equiva-
lence relation generated by this com.

9 Concluding Remarks

We have given a rather simple-minded rewriting system on the linear lambda
calculus which enjoys strong normalization and Church-Rosser property modulo
trivial commuting conversion. We hope that this gives a reasonably understand-
able and feasible tool for reasoning about equivalence of terms in the linear
lambda calculus. We shall conclude this paper by a few additional remarks.

9.1 Call-by-Name, Call-by-Value, and the Linear Lambda Calculus

This work can be considered as a refinement of some of the results in [15] where
reduction-preserving translations between the (simply typed) call-by-name, call-
by-value, call-by-need and linear lambda calculi were discussed. In ibid., weaker
non-extensional theories without η-rules were considered. In contrast, here we
have studied the semantically complete theories (DILL-based linear lambda cal-
culus and the computational lambda calculus, as well as the simply typed βη-
lambda calculus) and the translations into the linear lambda calculus. We con-
jecture that the CPS translation from the computational lambda calculus into
the linear lambda calculus [9] also enjoys good property with respect to the
reduction theories.

9.2 Other Connectives

It is natural to ask if this approach would work well for other logical connectives
in DILL, i.e., tensor ⊗ and unit I. While the tensor does not seem to cause
any significant trouble, the unit is really problematic. For example we have
let ∗ be M in N = let ∗ be N in M and M ⊗N = N ⊗M for any M, N : I. For
overcoming this problem with unit, perhaps we need to use the η-expansions as
considered by Ghani [6].
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