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COHERENCE OF THE DOUBLE INVOLUTION ON
∗-AUTONOMOUS CATEGORIES

J.R.B. COCKETT, M. HASEGAWA AND R.A.G. SEELY

Abstract. We show that any free ∗-autonomous category is equivalent (in a strict
sense) to a free ∗-autonomous category in which the double-involution (−)∗∗ is the
identity functor and the canonical isomorphism A ' A∗∗ is an identity arrow for all A.

1. Introduction

Many formulations of proof nets and sequent calculi for Classical Linear Logic (CLL)
[9, 10] take it for granted that a type A is identical to its double negation A⊥⊥. On the
other hand, since Seely [16], it has been assumed that ∗-autonomous categories [1, 2] are
the appropriate semantic models of (the multiplicative fragment of) CLL. However, in
general, in a ∗-autonomous category an object A is only canonically isomorphic to its
double involution A∗∗. For instance, in the category of finite dimensional vector spaces
and linear maps, a vector space V is only isomorphic to its double dual V ∗∗. This raises the
questions whether ∗-autonomous categories do not, after all, provide an accurate semantic
model for these proof nets and whether there could be semantically non-identical proofs
(or morphisms), which must be identified in any system which assumes a type is identical
to its double negation. Whether this can happen is not completely obvious even when
one examines purely syntactic descriptions of proofs with the isomorphism between A and
A⊥⊥ present such as [14, 11] or the alternative proof net systems of [5] which are faithful
to the categorical semantics.

Fortunately, there is no such semantic gap: in this paper we provide a coherence
theorem for the double involution on ∗-autonomous categories, which tells us that there is
no difference between the up-to-identity approach and the up-to-isomorphism approach, as
far as this double-negation problem is concerned. This remains true under the presence of
linear exponential comonads and finite products (the semantic counterpart of exponentials
and additives respectively). Our proof is fairly short and simple, and we suspect that this
is folklore among specialists (at least everyone would expect such a result), though we are
not aware of an explicit treatment of this issue in the literature.

This result should be compared with the classical coherence theorem for monoidal
categories, as found e.g. in [15, 13]. In fact, we follow the proof strategy by Joyal and
Street in [13]. We first show a weaker form of the coherence theorem which turns a ∗-
autonomous category into an equivalent one with “strict involution” (where A∗∗ is identical
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to A), for which we make use of (a simplified version of) a construction of Cockett and
Seely [8]. We then strengthen it to a form of “all diagrams commute” result by some
additional fairly standard arguments on the structure-preserving functors. In this way,
this work also demonstrates the applicability of the Joyal-Street argument (which actually
can be seen as an instance of a general flexibility result on free algebras of 2-monads
developed by Blackwell, Kelly and Power [4]) to other sorts of coherence problems.

We should warn the reader that there is no particularly novel technique in this short
note, and the result itself is probably unsurprising. The reader who merely wants the
essence of the story should read the definitions and theorems, with the assurance that the
standard proofs that spring to mind do actually work. In other words, our point is just
that the expected approach to this matter does actually work to give the expected result.
Why would one bother? Primarily to guard against the seduction of the obvious: when it
comes to coherence, it is easy to assume “obvious” conclusions are in fact true, whereas in
some cases unpleasant surprises may occur. By taking a little care in the presentation, we
hope to convince the reader that this is not such a case. If as a side-effect we encourage
the reader to investigate the notion of a linear functor [8], we will not be displeased at
that.

This work grew out of discussions during the CTCS’02 conference held at Ottawa on
August 2002. The authors are grateful to the organisers of this fruitful meeting.

2. Preliminaries

Let us first fix our terminology.

2.1. Definition. (∗-autonomous categories [[1, 2]].) A ∗-autonomous category is
a symmetric monoidal closed category C = (C, I, �,−◦) with a contravariant functor (an
involution) (−)∗: Cop → C given by a “dualising object” ⊥: A∗ = A −◦ ⊥, for which the
canonical morphism A → A∗∗ is an isomorphism.

As usual, below we write A O B for (A∗ � B∗)∗; note that we may suppose ⊥ = I∗.

Next we introduce the class of ∗-autonomous categories which supports the “double-
negation identification”.

2.2. Definition. (∗-autonomous categories with strict involution.) A ∗-
autonomous category with strict involution is a ∗-autonomous category in which the func-
tor (−)∗∗ is the identity functor and the canonical isomorphism A ' A∗∗ is the identity
for all A.

To discuss the precise relationship between ∗-autonomous categories, we introduce two
notions of structure-preserving functors: strong (up-to-iso) and strict ones. We will also
need the notion of isomorphisms between these functors.
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2.3. Definition. (strong/strict ∗-autonomous functors.)

• A strong ∗-autonomous functor between ∗-autonomous categories C and D is a
strong symmetric monoidal functor F : C → D equipped with a natural isomor-

phism θA: (FA)∗
'−−→ F (A∗) such that (F (A∗))∗

θA∗−−−→ F (A∗∗)
'−−→ FA agrees with

(F (A∗))∗
θ∗A−−→ (FA)∗∗

'−−→ FA.

• A strict ∗-autonomous functor is a strong ∗-autonomous functor which is strict
symmetric monoidal with θ given by the identity natural transformation (so that
(FA)∗ = F (A∗)).

2.4. Definition. (isomorphisms between strong ∗-autonomous functors.) An
isomorphism between strong ∗-autonomous functors F, G: C → D is a monoidal natural
isomorphism τ : F → G such that θF

A ◦ τ ∗A ◦ θG
A
−1

is the inverse of τA∗.

3. A Weak Coherence Theorem

Our first task, given a ∗-autonomous category, is to construct an equivalent ∗-autonomous
category with strict involution. For this purpose, it turns out that the bi-adjunction be-
tween the 2-category of linearly distributive categories and that of ∗-autonomous cate-
gories in [8] is helpful: any ∗-autonomous category constructed from a linearly distributive
category as the “category of complemented objects” does have a strict involution. Since
a ∗-autonomous category is of course a linearly distributive category, we can apply this
construction to ∗-autonomous categories. Below we recall the construction in a slightly
simplified form. The essential idea is that, to realise a strict involution, for each object
we explicitly specify its “complement”. (See also [6] for a further sophistication of this
construction, called CMap(−), in the context of linear bicategories.)

3.1. Definition. (categories of complemented objects [[8]].) Let C be a ∗-
autonomous category. The category C(C) of complemented objects is defined as follows.

C(C)’s objects are triples A = (A, A′, τA) such that τA: A′ '−−→ A∗ in C. An arrow from
A = (A, A′, τA) to B = (B, B′, τB) in C(C) is just an arrow from A to B in C.

Let us define

I = (I,⊥, id⊥)

A � B =
(
A � B, A′ O B′, A′ O B′ τA O τB−−−−−→ A∗ O B∗ '−−→ (A � B)∗

)
With the obvious action on arrows, this determines a symmetric monoidal structure on
C(C). Moreover, we have an obvious strict involution on C(C) by

A∗ = (A′, A,A
'−−→ A∗∗ τ∗A−−→ A′∗)

(f :A → B)∗ = B′ τB−−→ B∗ f∗−−→ A∗ τ−1
A−−−→ A′
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3.1.1. The Chu construction and C(C). Another way to view the category of com-
plemented objects C(C) is as a full subcategory of the Chu construction Chu(C,⊥) de-
termined by complements and their complementation map (A, B, γ: A � B → ⊥). We
can “thin” this even further, by considering pairs (A, A∗), the complementation map
γ: A � A∗ → ⊥ being implicit. The construction of Chu(C,⊥) requires pullbacks, and
the structure of the tensor and par in Chu(C,⊥) makes essential use of those pullbacks.
However, when restricted to the complemented objects, the pullbacks are in fact all along
isomorphisms, and so exist even if C does not have pullbacks in general. It is easy to verify
that this essentially gives us the multiplicative structure described above. So from this
perspective it is clear that we have constructed a ∗-autonomous category (the “diagonal
elements” of Chu(C,⊥), if the latter exists) which is strongly ∗-autonomous equivalent
to C and has a strict negation.

3.2. Proposition. C(C) is a ∗-autonomous category with strict involution.

The equivalence F : C → C(C) and G:C(C) → C is given by F (A) = (A, A∗, idA∗)
and G(A, A′, τ) = A. Obviously G ◦ F is the identity functor on C, and since any A′ in
(A, A′, τ) is isomorphic to A∗, we can see that F ◦ G ' IdC(C). Also it is immediate to
see that F is strong monoidal and G is strict monoidal. Furthermore, the obvious natural
transformations from (FA)∗ to F (A∗) (realised by the identity arrow idA∗) and (GA)∗ to
G(A∗) (realised by τ−1

A ) satisfy the requirement for strong ∗-autonomous functors. Finally,
we shall note that F is fully faithful (this will be important for showing the coherence
theorem later).

3.3. Theorem.(the weak coherence theorem.) Every ∗-autonomous category is
strongly ∗-autonomous equivalent to a ∗-autonomous category with strict involution.

Note, however, that this equivalence preserves the ∗-autonomous structure only up to
isomorphism (i.e. not “strictly” but only “strongly”) — in particular, it does not strictly

preserve the involution: F (A∗) = (A∗, A∗∗, A∗∗ idA∗∗−−−−→ A∗∗) while (FA)∗ = (A∗, A,A
'−−→ A∗∗). (This remark also applies to the “diagonal elements of the Chu construction”

approach above.) We would like to strengthen this result to obtain the usual coherence
theorem of the form “every diagram (of certain type) commutes”. There are several
arguments which can accomplish this; we shall present a standard one along the lines of
[13] in the next section.

3.3.1. Linearly distributive categories and C(C). If we take (symmetric) linearly
distributive categories with negation as the starting point instead of ∗-autonomous cat-
egories and re-examine the construction given here, we can reformulate this result, and
actually obtain a stronger coherence result. Recall that a linearly distributive category
is a category with two distinguished symmetric monoidal structures (�, I) and (O,⊥)
with certain coherence morphisms expressing linear distributive laws [7]. It has been
shown in [7] that the notion of linearly distributive category with negation and that of
∗-autonomous category coincide. However, unlike most systems for linear logic, in linearly
distributive categories with negation, objects A O B and (A∗ � B∗)∗, and similarly ⊥ and
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I∗, are only canonically isomorphic, and not identified in general. Thus here we need some
more delicacy than just talking about the ∗-autonomous structure. We shall consider this
in the next section.

However, for the moment we shall merely comment that the construction of the cate-
gory of complemented objects can be presented [8] so as to apply to a linearly distributive
category C, and constructs (freely, in an appropriate sense) a ∗-autonomous category
C(C) (with a strict negation) generated by C. If C is in fact ∗-autonomous, then C(C) is
equivalent to it.

3.4. Strictifying other isomorphisms. With the weak coherence theorem, we seem
only to have dealt with the strictness of the double involution, but we ought to remark that
in fact much more is possible. All the isomorphisms we might “expect” to be strict can
be made strict in the sense that there is an equivalent category in which they are strict.
While we cannot expect the commutativity of tensors to be strict, one can “strictify”
the associative and unit isomorphisms. For tensor alone, this result has been known for
decades, although the first published proof seems to be in [13]. However, in our context,
there is a block to applying this result, in that we must “strictify” both tensor and par
if we are to have a strict tensor in C(C) as well. To do that requires a somewhat more
involved construction than the ones we’ve seen so far.

3.5. Proposition. Given a linearly distributive category C, there is a linearly distributive
category W(C) with strict multiplicatives, and satisfies the following.

1. There is a linear equivalence w: C → W(C).

2. If C is ∗-autonomous, then so is W(C).

3. If C is strictly ∗-autonomous, then so is W(C).

Proof. (Sketch) Note that by a “linearly equivalence” we mean that the equivalence is
a linear functor [8]. The objects of W(C) are “words” in the free algebra on the objects
of C on two associative operations (with units) having no interaction. Of course, the
two operations are to be interpreted as tensor and par. We may represent the words
of this algebra by a normal form for terms consisting of objects of C and of alternating
non-singleton lists of such objects, such as

{A1, [A2, {A3, A4}, A5], [ ], [{}, {A6, A7}]}

where we may interpret (for example) [A, B] as the tensor of A, B, and {A, B} as their
par. (For longer lists, we may associate to the right.) If C has negation, this is easily
extended to W(C) by interchanging the two types of brackets and negating the objects,
so the negation of the list above would be

[A∗
1, {A∗

2, [A
∗
3, A

∗
4], A

∗
5}, {}, {[ ], [A∗

6, A
∗
7]}]

This representation is a normal form with respect to a rewriting system which associates
to the right (and makes [ ] and {} the units). (Such a rewriting system is easily shown to be
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Church-Rosser.) Tensor and par for W(C) are defined in the obvious way, as the normal
forms of the induced lists. This essentially means doing the obvious “concatenation”, and
then rewriting to obtain the appropriate normal form.

That W(C) is closed under tensor and par is straightforward, although a little care
is needed to show these operations are functorial (here MacLane’s coherence theorem is
needed in showing that no matter how one normalizes, one obtains the same morphism).
The linearly distributive structure lifts from C, and so one may show that W(C) is linearly
equivalent to C, and has strictly associative and strictly unitary tensor and par, as claimed.

Since the construction of C(C) clearly preserves the strictness of the associative and
unit isomorphisms for tensor and par, in order to have a strict involution as well as
strict associativity and unit isomorphisms, we merely need to strictify the latter first, via
W(C), then construct C(W(C)) from that. In addition, if we start with a ∗-autonomous
category C, we have also strictified the de Morgan isomorphisms, since we define the
other connectives in terms of those as equations. Both C(W(C)) and W(C(C)) are strict
∗-autonomous with strict multiplicatives.

3.6. Corollary. Any ∗-autonomous category is strongly ∗-autonomous equivalent to a
∗-autonomous category with strict associativity and unit isomorphisms as well as strict
involution and strict de Morgan isomorphisms.

Moreover, looking at this construction shows that we can similarly turn a linearly
distributive category with negation into one in which not only are A and A∗∗ identified,
but also AOB and (A∗ �B∗)∗ are identified, and ⊥ and I∗ are identified. Thus, in terms
of linearly distributive categories with negation, we can conclude the following.

3.7. Corollary. Any linearly distributive category with negation is strongly equivalent
to a linearly distributive category with strict associativity and unit isomorphisms as well
as strict involution and strict de Morgan isomorphisms.

Since the notion of linearly distributive category with strict negation and that of
∗-autonomous category with strict involution coincide, this also says that any linearly
distributive category with negation is linearly equivalent to a ∗-autonomous category
(viewed as a linearly distributive category) with strict involution. Since the equivalence is
a linear functor, it preserves linear structure [8], such as the additives and exponentials,
as outlined in the final section of this paper.

In fact, the proof of the coherence theorem in the following section also applies to this
refined setting, thus any free linearly distributive category with negation is equivalent
(in a strict way) to a free linearly distributive category with strict negation. (So, from
mathematical point of view, the title of this paper could be “coherence of the double
negation on linearly distributive categories”.)

3.8. Remark. (other examples) We should note what these results do not say. Not
all monoidal categories are strict; a famous example of Isbell’s is that in the skeleton of
Sets, as a category with finite products, the associativity isomorphisms for the product
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cannot be strict. Isbell’s example works because there is an object A with A � A ∼= A,
together with a strongly epic map !: A → I (in the sense that ! � idX is epic for any
object X). Such an object is present in any ∗-autonomous category which is sufficiently
cocomplete, as one can use

∐
ω I. Abelian groups form another example (with the usual

tensor product). Neither of these categories is free, so the strong coherence theorem in
the next section does not apply; however each can be “strictified”, in that an equivalent
category may be constructed which is strict. Of course, the equivalence will only preserve
the product up to isomorphism. Similar remarks apply to the strictness of involutions. For
example, one can construct simple examples of ∗-autonomous categories whose involution
cannot be strict; one such, a preorder, is illustrated below, being inspired by the four-
element Boolean algebra with a fifth element isomorphic to one of the objects as shown.
There are two objects R,R′ with the same negation L, but L has only one, R, as its
negation. Clearly this negation cannot be strictified.

⊥

L R R′

>

@
@I

�
��

�
��

@
@I

∼=
����1

PPPPi

Finally, we note that although a coherence theorem of the sort in this paper cannot
be expected for the symmetry isomorphisms, there certainly are ∗-autonomous categories
with strict symmetries. A trivial, one-object example is the category with one object,
let us call it k, whose morphisms are all linear endomorphisms of some field k. This is
essentially the sub-∗-autonomous category of finite dimensional vector spaces generated
by the unit; it is clearly strict in “every” sense: the unit, symmetry, associativity, and
double negation isomorphisms are strict. Taking the product of this with any Boolean
algebra (for example) gives non-trivial examples. If we take the product of k with the
preorder given above, then we lose the double negation strictness, while preserving the
rest.

4. The Coherence Theorem

Our weak coherence theorem had the unsatisfactory property that the equivalence did
not preserve the relevant structure “on the nose”. This is a familiar situation, and one
for which well-known standard arguments exist to strengthen the result. There are two
familiar ways to present such an argument: either syntactically or semantically. While
categorical logicians might prefer the former, we shall use the (essentially equivalent)
semantic approach, primarily because it is simpler to present in a self-contained con-
cise manner which requires no informal argument about the nature of isomorphisms and
equalities; to take sufficient care about these matters with a syntactic presentation of the
argument would require a longer development than what follows.
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In order to express the stronger coherence theorem, we first need to introduce the
notions of free ∗-autonomous categories as well as free ∗-autonomous categories with
strict involution.

Let FC denote the free ∗-autonomous category on the category C, with i: C → FC
the unit (i.e. the inclusion of generators); thus for any ∗-autonomous category V with a
functor H: C → V there is a unique strict ∗-autonomous functor H ′:FC → V such that

C FC

V

ppppppppppppppp
?

H ′

@
@

@
@
@R

H

-i

commutes. Also let FsC be the free ∗-autonomous category with strict involution on the
category C. The functor Γ:FC → FsC given by the freeness of FC is strict ∗-autonomous,

and sends the canonical isomorphism A
'−−→ A∗∗ to the identity A

id−−→ A. We claim:

4.1. Theorem. (the coherence theorem.) For every category C, the (strict ∗-
autonomous) functor Γ:FC → FsC is an equivalence.

Intuitively, applying Γ amounts to throwing away all the information on the canonical
isomorphisms A

'−−→ A∗∗. Nevertheless, this theorem (most importantly the faithfulness
of Γ) tells us that there is nothing lost! In the rest of this section, we shall show this
result by adapting the construction in [13].

4.2. Definition. Given functors S, T :A → B, the category of “iso-inserters” Eq(S, T )
has objects (A, h) consisting of an object A of A and an isomorphism h: SA ' TA in B,
and an arrow f : (A, h) → (A′, h′) is an arrow f : A → A′ in A such that Tf ◦ h = h′ ◦ Sf
holds.

There is a projection functor P :Eq(S, T ) → A sending (A, h) to A, and then we have

a natural isomorphism σ: S ◦ P
'−−→ T ◦ P whose (A, h)-component is h.

Eq(S, T )

A A

B

σ'

�
��	
P

@
@@R

S

@
@@R
P

�
��	

T

We are interested in the case where S and T are strong ∗-autonomous functors:

4.3. Lemma. If S, T :A → B are strong ∗-autonomous functors, then Eq(S, T ) supports
a unique ∗-autonomous structure such that P becomes a strict ∗-autonomous functor and
σ becomes an isomorphism of strong ∗-autonomous functors.
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Proof. This result is quite straightforward, although the application to the current sit-
uation requires some obvious extensions of the original discussion in [13]. Explicitly, this
∗-autonomous structure on Eq(S, T ) is described as follows.

I = (I, SI
'−−→ I

'−−→ TI)

(A, h) � (B, k) = (A � B, S(A � B)
'−−→ SA � SB

h � k−−−−→ TA � TB
'−−→ T (A � B))

(A, h)∗ = (A∗, S(A∗)
θS
A
−1

−−−−→ (SA)∗
(h−1)∗−−−−−→ (TA)∗

θT
A−−→ T (A∗))

where θS and θT are the natural isomorphisms associated with S and T respectively.

4.4. Proposition. (flexibility.) Every strong ∗-autonomous functor T :FC → V is
isomorphic to a strict ∗-autonomous functor S:FC → V.

Proof. By freeness, there is a unique strict ∗-autonomous functor S:FC → V such that
S ◦ i = T ◦ i: C → V holds. Also the functor H: C → Eq(S, T ) given by H(C) = (i(C), id)
is the unique H such that P ◦H = i and σH is an identity. So we have a unique strict
∗-autonomous functor H ′:FC → Eq(S, T ) with H ′ ◦ i = H.

C FC

V

ppppppppppppppp
?

S

@
@

@
@
@R

T ◦ i

-i C FC

Eq(S, T )

FC

ppppppppppppppp
?

H ′

@
@

@
@
@R

H

-i

?

P

A
A
A
A
A
A
A
A
A
AAU

i

By freeness of FC, the strictness of P ◦H ′, and the equality

P ◦H ′ ◦ i = P ◦H = i = IdFC ◦ i

we obtain P ◦H ′ = IdFC. Hence we have σH ′: S = S ◦ P ◦H ′ '−−→ T ◦ P ◦H ′ = T , i.e.,
an isomorphism from S to T .

Proof. (of the coherence theorem.) Since Γ is surjective on objects and also full,
it remains to see its faithfulness. The weak coherence theorem gives a faithful strong ∗-
autonomous functor F :FC → C(FC). By the flexibility result, we have an isomorphism
S ' F with S:FC → C(FC) strict ∗-autonomous. By the universal property of FsC and
FC, there is a unique strict ∗-autonomous functor R:FsC → C(FC) such that R ◦Γ = S.
But S is faithful because it is isomorphic to F which is faithful. Then R ◦ Γ = S implies
that Γ is faithful too.
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FsC

FC

C(FC)p p p p p p p p p p p p-
R

?

Γ

j

S

U

F'

In view of the comments we made following Corollaries 3.6, 3.7, we have the following
extension of the strong coherence theorem.

4.5. Corollary. Any free ∗-autonomous category is ∗-autonomous equivalent, via a
strict canonical ∗-autonomous functor, to a free ∗-autonomous category with strict asso-
ciativity and unit isomorphisms as well as strict involution and strict de Morgan isomor-
phisms.

4.6. Remark. More abstractly, Proposition 4.4 follows from the fact that ∗-autonomous
categories are algebras of a 2-monad on the 2-category Catg of (small) categories, functors
and natural isomorphisms (see Remark 5.7 in [4] on the flexibility of free algebras). This
is also the case for the extensions discussed below.

5. Exponentials and Additives

The results above all smoothly extend to the cases with exponentials and additives (hence
full propositional Classical Linear Logic). Below we recall the needed notions and outline
the constructions used in the proofs.

5.1. Definition. (linear exponential comonads [[12]].) A symmetric monoidal
comonad ! = (!, ε, δ, mA,B, mI) on a symmetric monoidal category C is called a linear
exponential comonad when the category of its coalgebras is a category of commutative
comonoids.

In other words (cf. [16, 3]):

• there are specified monoidal natural transformations eA: !A → I and dA: !A →!A�!A
which form a commutative comonoid (!A, eA, dA) in C and there also are coalgebra
morphisms from (!A, δA) to (I,mI) and (!A�!A, m!A,!A ◦ (δA � δA)) respectively, and

• any coalgebra morphism from (!A, δA) to (!B, δB) is also a comonoid morphism from
(!A, eA, dA) to (!B, eB, dB).

The notion of strong functors between ∗-autonomous categories with linear exponential
comonads C and D is defined as strong ∗-autonomous functors F : C → D equipped with
a natural isomorphism κ: !F

'−−→ F ! which is a distributive law and also respects the
comonoid structure. The strict functors between ∗-autonomous categories with linear
exponential comonads are those preserving the structure on the nose.
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First, it is easily seen that the category of complemented objects C(C) has a linear
exponential comonad if C does:

!(A, A′, τA) = (!A, ?A′, ?A′ ?τA−−−→?A∗ '−−→ (!A)∗)

where we write ?A for (!A∗)∗. Therefore Prop. 3.2 remains true under the presence of
linear exponential comonads: if C is a ∗-autonomous category with a linear exponential
comonad, then C(C) is one with strict involution. The equivalence between C and C(C) is
obviously seen to be strong, hence we have the weak coherence theorem for this extension.

The same consideration applies to the case with finite products, where the construction
on the category of complemented objects is

> = (>, 0, id0)

A N B =
(
A N B, A′ � B′, A′ � B′ τA � τB−−−−−→ A∗ � B∗ '−−→ (A N B)∗

)
where 0 = >∗ and A�B = (A∗NB∗)∗. (Note: here we use > for the terminal object and
N for binary products, while 0 and � are the initial object and coproducts respectively.)

5.2. Theorem. (the weak coherence theorem.) Every ∗-autonomous category
with linear exponential comonad and/or finite products is strongly equivalent to one with
strict involution.

To derive the coherence theorem, we need to identify the required structure on the
category Eq(S, T ) for strong functors S and T . This is routinely done as

!(A, h) = (!A, S(!A)
κS

A
−1

−−−−→!(SA)
!h−−→!(TA)

κT
A−−→ T (!A))

> = (>, S> '−−→ > '−−→ T>)

(A, h) N (B, k) = (A N B, S(A N B)
'−−→ SA N SB

h N k−−−−→ TA N TB
'−−→ T (A N B))

By repeating the argument in the last section, now we obtain the coherence theorem
for these extensions. Let FC and FsC denote the free ∗-autonomous category with lin-
ear exponential comonad and/or finite products on the category C and that with strict
involution respectively.

5.3. Theorem. (the coherence theorem.) For every category C, the strict functor
Γ:FC → FsC is an equivalence.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


