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Abstract. The λµ-calculus features both variables and names, together
with their binding mechanisms. This means that constructions on open
terms are necessarily parameterized in two different ways for both vari-
ables and names. Semantically, such a construction must be modeled by
a bi-parameterized family of operators. In this paper, we study these
bi-parameterized operators on Selinger’s categorical models of the λµ-
calculus called control categories. The overall development is analogous
to that of Lambek’s functional completeness of cartesian closed cate-
gories via polynomial categories. As a particular and important case,
we study parameterizations of uniform fixed-point operators on control
categories, and show bijective correspondences between parameterized
fixed-point operators and non-parameterized ones under uniformity con-
ditions.

1 Introduction

1.1 Parameterization on Models of λµ-Calculus

The simply typed λµ-calculus introduced by Parigot [9] is an extension of the
simply typed λ-calculus with first-class continuations. In the λµ-calculus, every
judgment has two kinds of type declarations: one is for variables and the other
is for continuation variables, which are often called names. So, it is natural that
an operator (−)† on the λµ-calculus takes the following form:

Γ � M : A | ∆

Γ � M† : B | ∆

The typed call-by-name λµ-calculus (with classical disjunctions) has a sound
and complete class of models called control categories [11]. An interpretation of a
judgment x1 : B1, . . . , xn : Bn � M : A | α1 : A1, . . . , αn : An in a control category
P is a morphism f ∈ P([[B1]]×· · ·× [[Bn]], [[A]]

&

[[A1]]

&· · · &

[[An]]). So, the above
syntactic construction is modeled in a control category P like the following:

f ∈ P(X, [[A]]

&

Y )

f† ∈ P(X, [[B]]

&

Y )
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Parameterizations and Fixed-Point Operators on Control Categories 181

Therefore, from the semantic point of view, operators should be understood
as parameterized construction with two parameters X and Y . We call such a
parameterization bi-parameterization. The study of this sort of parameteriza-
tion on cartesian categories was initiated by Lambek [7], and its significance in
modeling parameterized constructs associated to algebraic data-types has been
studied by Jacobs [5]. The aim of this work is to derive analogous results for
bi-parameterization on control categories.

1.2 Fixed-Point Operators and Parameterizations

Our motivation to study parameterization on control categories comes from our
previous work about fixed-point operators on the λµ-calculi in [4] and [6]. The
equational theories of fixed-point operators in call-by-name λ-calculi have been
studied extensively, and now there are some canonical axiomatizations including
iteration theories [1] and Conway theories, equivalently traced cartesian cate-
gories [3] (see [12] for recent results). Because the λµ-calculus is an extension
of the simply typed call-by-name λ-calculus, it looks straightforward to con-
sider fixed-point operators in the λµ-calculus and indeed we have considered an
appropriate model of the λµ-calculus with a fixed-point operator. In a control
category, however, the possible forms of parameterized fixed-point operators are
various and their relation is sensitive. To understand our problem, let us recall
a folklore construction.

In a cartesian closed category, it is possible to derive a parameterized fixed-
point operator from a non-parameterized one:

X × A
f� A

A
cur(f)� AX

Currying

AX (·)X
� (AX)X A∆

� AX

1
(·)∗
� AX

Fixed point

X
f†
� A

Uncurrying

If we use the simply typed λ-calculus as an internal language of carte-
sian closed categories, this construction amounts to taking the fixed-point of
k : X → A � λxX .f(x, kx) : X → A for x : X, a : A � f(x, a) : A. So, by letting f be
λ(fA→A, xA).fx, we obtain a fixed-point combinator fixA : (A → A) → A. It is
routine to see that this fixA is indeed a fixed-point combinator. In a cartesian
closed category, to give a parameterized fixed-point operator is to give a fixed-
point combinator. Thus, we have a parameterized fixed-point operator from a
non-parameterized one.

In this paper, we investigate such a construction of fixed-point operators on
control categories. Since we have to consider parameters for free names in the
λµ-calculus, a control category has three patterns of parameterizations: one is
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Object constructors:
1 ⊥ A × B BA A

&

B

Morphism constructors:

idA : A → A
�A : A → 1
π1 : A × B → A
π2 : A × B → B
εA,B : BA × A → B
aA,B,C : (A

&

B)

&

C → A

&

(B

&

C)
lA : A → A

&⊥
cA,B : A

&

B → B

&

A
iA : ⊥ → A
∇A : A

&

A → A
dA,B,C : (A

&

C) × (B

&

C) → (A × B)

&

C
s−1
A,B,C : (B

&

C)A → BA &

C

f : A → B g : B → C

g ◦ f : A → C

f : A → B g : A → C

〈f, g〉 : A → B × C

f : A × B → C

cur(f) : A → CB

f : A → B

f

&

C : A

&

C → B

&

C

Fig. 1. Signature of Control Categories

standard parameterization and another is a parameterization for names called co-
parameterization, and the last one is bi-parameterization which has both param-
eterization and co-parameterization. In a control category, a bi-parameterized
fixed-point operator can be derived from a co-parameterized one in analogous
way of the cartesian closed case. Moreover, a bi-parameterized fixed-point op-
erator can be derived from a non-parameterized one under suitable uniformity
principles. An interesting and important observation is that these correspon-
dences are indeed bijective. This result simplifies semantic structure needed in
[6].

1.3 Construction of This Paper

Section 2 is a reminder of control categories and the typed call-by-name λµ-
calculus. In Section 3, we introduce polynomial categories with respect to con-
trol categories. In Section 4, we consider generic parameterized operators on
control categories. The rest of this paper gives observations of parameterized
fixed-point operators on control categories and their uniformity principles. Uni-
formity conditions enable us to prove bijective correspondence between uniform
bi-parameterized fixed-point operators and uniform non-parameterized ones.

2 Preliminaries

2.1 Control Categories

Control categories introduced by Selinger [11] are sound and complete models
of the typed call-by-name λµ-calculus. A control category is a cartesian closed
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x : A ∈ Γ

Γ 	 x : A | ∆ Γ 	 ∗ : � | ∆

Γ, x : A 	 M : B | ∆

Γ 	 λxA. M : A → B | ∆

Γ 	 M : A → B | ∆ Γ 	 N : A | ∆

Γ 	 MN : B | ∆

Γ 	 M : A | ∆ Γ 	 N : B | ∆

Γ 	 〈M, N〉 : A ∧ B | ∆

Γ 	 M : A1 ∧ A2 | ∆

Γ 	 πiM : Ai | ∆

Γ 	 M : ⊥ | α : A, ∆

Γ 	 µαA. M : A | ∆

Γ 	 M : A | ∆ α : A ∈ ∆

Γ 	 [α] M : ⊥ | ∆

Γ 	 M : ⊥ | β : B, α : A, ∆

Γ 	 µ(αA, βB). M : A ∨ B | ∆

Γ 	 M : A ∨ B | ∆ α : A, β : B ∈ ∆

Γ 	 [α, β] M : ⊥ | ∆

Fig. 2. Deduction Rules of λµ-Calculus

category together with a premonoidal structure [10]. In this section, we recall
some definitions about control categories but may omit the detail, which are
found in [11].
Definition 1. A morphism f : A → B in a premonoidal category P is central
if for every morphism g ∈ P(C, D), (B

&

g) ◦ (f

&

C) = (f

&

D) ◦ (A

&

g) and
(g

&

B) ◦ (C

&

f) = (D

&

f) ◦ (g

&

A).

Definition 2. A morphism f : A→B in a symmetric premonoidal category with
codiagonals P is focal if f is central, discardable and copyable [11]. The subcat-
egory formed by the focal morphisms of P is called the focus of P and denoted
by P•.

Remark 1. In general, the focus of a symmetric premonoidal category is not the
same as its center. (For example, detailed analysis are found in [2].) However, in
a control category, the center and the focus always coincide [11].

Definition 3. Suppose P is a symmetric premonoidal category with codiagonals
and also suppose P has finite products. We say that P is distributive if the
projections of products are focal and the functor (−)

&

C preserves finite products
for all objects C.

Definition 4. Suppose P is a symmetric premonoidal category with codiagonals
and also suppose P is cartesian closed. P is a control category if the canonical
morphism sA,B,C ∈ P(BA &

C, (B

&

C)A) is a natural isomorphism in A, B and
C, satisfying certain coherence conditions.

Definition 5. A (strict) functor of control categories is a functor that
preserves all the structures of a control category on the nose.

The structure of control categories is equational in the sense of Lambek
and Scott [8]. The object and morphism constructors of control categories are
shown in Figure 1. Some other canonical morphisms that are not shown here
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(β→) (λxA. M)N = M [N /x] : B
(η→) λxA. Mx = M : B x �∈ FV(M)
(β∧) πi〈M1, M2〉 = Mi : Ai

(η∧) 〈π1M, π2M〉 = M : A ∧ B
(η�) ∗ = M : �
(βµ) [β]µαA. M = M [β /α] : ⊥
(ηµ) µαA.[α] M = M : A α �∈ FN(M)
(β∨) [γ, δ]µ(αA, βB). M = M [γ /α, δ /β] : ⊥
(η∨) µ(αA, βB).[α, β] M = M : A ∨ B α, β �∈ FN(M)
(β⊥) [β] M = M : ⊥
(ζ→) (µαA→B . M)N = µβB . M [[β](−)N /[α](−)] : B
(ζ∧) πi(µαA1∧A2 . M) = µβAi . M [[β]πi(−) /[α](−)] : Ai

(ζ∨) [γ, δ]µαA∨B . M = M [[γ, δ](−) /[α](−)] : ⊥

Fig. 3. Axioms of λµ-Calculus

but definable from the constructors, f × A, wr = iA

&

B ◦ cB,⊥ ◦ lB : B → A

&

B, wl = cB,A ◦ wr : A → A

&

B and so on are also used in this paper. Since
coherence theorems for premonoidal categories have been shown by Power and
Robinson in [10], we may elide not only cartesian structural isomorphisms but
also premonoidal ones.

2.2 λµ-Calculus

According to Selinger, the typed call-by-name λµ-calculus can be considered as
an internal language of control categories [11]. The types and the terms of our
λµ-calculus are defined as follows:

Types A, B : := σ | A → B | � | A ∧ B | ⊥ | A ∨ B,
Terms M, N : := x | ∗ | λxA. M | MN | 〈M, N〉 | π1M | π2M

| µαA. M | [α] M | µ(αA, βB). M | [α, β] M ,

where σ, x and α (β) range over base types, variables and names respectively.
Every judgment takes the form Γ � M : A | ∆, where Γ denotes a sequence of
pairs x : A, and ∆ denotes a sequence of pairs α : A. The typing rules and the
axioms are given by Figure 2 and 3.

3 Parameterizations on Control Categories

3.1 Polynomial Control Categories

Since parameterization is nicely modeled by polynomial categories like the case of
cartesian closed categories (see [7]), we introduce polynomial control categories
and show their functional completeness a la Lambek. Because we have to deal
with not only variables but also names on control categories unlike on cartesian
closed categories, an additional parameter for free names is required.



Parameterizations and Fixed-Point Operators on Control Categories 185

We construct a new category PX
Y from a control category P by

PX
Y (A, B) = P(X × A, B

&

Y ).

The identity arrow of PX
Y is the projection from X × A to A followed by the

weakening arrow to A

&

Y in P. We define g◦X
Y f , the composite of f ∈ PX

Y (A, B)
and g ∈ PX

Y (B, C), by

X × A
∆ × A � X × X × A

X × f� X × (B

&

Y )
wl × (B

&

Y )� (X

&

Y ) × (B

&

Y )
dX,B,Y� (X × B)

&

Y
g

&

Y � C

&

Y

&

Y
C

&∇ � C

&

Y .

Hereafter, we write marhrmd′
A,B,C for dA,B,C ◦ wl × (B

&

C) ∈ P(A × (B

&

C), (A × B)

&

C).

Proposition 1. PX
Y is a control category.

We can regard PX
Y as the polynomial control category obtained from P by

adjoining an indeterminate of X and a name of Y . We call wl : X→X

&

Y in P the
indeterminate variable of PX

Y and π2 : X × Y → Y in P the indeterminate name
of PX

Y . P can be embedded into PX
Y through the weakening functor IXY : P →PX

Y

defined by

IXY (f) = X × A
π2� A

f� B
wl� B

&
Y .

The following theorem justifies to regard PX
Y as a polynomial category with

respect to control categories.

Theorem 1. Let P be a control category. Given a control category O and a
functor of control categories F : P → O with morphisms a ∈ O(1, FX) and k ∈
O•(FY,⊥), there exists a unique functor of control categories F ′ : PX

Y → O such
that it sends the indeterminate variable and the indeterminate name of PX

Y to a
and k respectively and the following diagram commutes:

P IXY � PX
Y

�
�

�
�

�
F

�
O

F ′

�

Proof. (Outline) F ′ is constructed by

F ′f =

FA ∼= 1 × FA
a × FA� FX × FA

Ff� FB

&

FY
FB

&

k� FB

&⊥ ∼= FB

for f ∈ P(X × A, B

&

Y ). ��
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Remark 2. If we introduce a polynomial control category “P[x : X | α : Y ]” syn-
tactically (as in [8]), it is characterized by the universal property above. Hence
we have PX

Y
∼= P[x : X | α : Y ] and the functional completeness of control cat-

egories: for any “polynomial” φ(x, α) ∈ P[x : X | α : Y ](A, B), there exists a
unique morphism f ∈ P(X ×A, B

&

Y ) such that φ(x, α) = (B

&

α)◦f ◦ (x×A).

By trivializing the parameter Y , we obtain a control category PX with
PX(A, B) = P(X × A, B), and by trivializing the parameter X, we obtain a
control category PY with PY (A, B) = P(A, B

&

Y ).
It can be seen easily that PX

Y , (PY )X and (PX)Y are the same control cate-
gory.

It is also useful to see that the mapping (X, Y ) �→ PX
Y gives rise to an

indexed category Pop × P• → ContCat, where ContCat is the category of
small control categories and functors of control categories. Indeed, g ∈ P(X, X ′)
and h ∈ P•(Y ′, Y ) determine the re-indexing functor from PX′

Y ′ to PX
Y which

sends f : X ′ × A → B

&

Y ′ to (B

&

h) ◦ f ◦ (g × A) : X × A → B

&

Y .

Lemma 1. The focus of PY agrees with the focus of P, i.e.,

(PY )•(A, B) = P•(A, B

&

Y ).

For the focus of PX , see the next subsection.

3.2 Currying

The theorem below tells us how an indeterminate variable can be eliminated
with a name, hence gives us a way to reduce the parameterized constructs on
control categories to a simpler form: from the bi-parameterized form to the co-
parameterized form.

Theorem 2. The isomorphisms

P(X × A, B

&

Y )
�−���
�−�

P(A, B

&

Y X)

give rise to isomorphisms of control categories between PX
Y and PY X .

Since a direct proof is very lengthy, we find it much easier to use the λµ-
calculus as an internal language of control categories.

f = x : X, a : A � M : B | γ : Y

�f� = a : A � µβB .[δ](λxX .µγY .[β]M) : B | δ : Y X

g = a : A � N : B | δ : Y X

�g� = x : X, a : A � µβB .[γ]((µδY X

.[β]N)x) : B | γ : Y

It is routine to verify �−� and �−� preserve all the structures of control categories.
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Remark 3. The above theorem suggests that any reasonable parameterized con-
struct on a control category P must be compatible with �−�. Furthermore, the
indexed categorical view mentioned before requires such a construct must be nat-
ural in parameter X in P and parameter Y in P•. This consideration leads us to
introduce the axiomatization of bi-parameterized fixed-point operators shortly.

The following results are part of this theorem, but we shall state them sepa-
rately for future reference.
Lemma 2. �−� and �−� preserve composites:

�g ◦X
Y f� = �g� ◦Y X �f�

�g ◦Y X f� = �g� ◦X
Y �f�

Lemma 3. �−� and �−� preserve focuses:

f ∈ (PX
Y )•(A, B) iff �f� ∈ (PY X )•(A, B)

f ∈ (PY X )•(A, B) iff �f� ∈ (PX
Y )•(A, B)

In particular, from Lemma 1 and 3, we have PX•(A, B) ∼= P•(A, BX).

4 Parameterized Operators on Control Categories

In this section, we introduce three parameterization patterns based on our ob-
servation of polynomial control categories. One is standard parameterization in
cartesian categories, and another parameterization is co-parameterization, which
has a parameter for free names. The last one is bi-parameterization, which com-
bines both parameterization and co-parameterization. Interaction between co-
(bi-)parameterization and focuses of control categories is crucial.
Definition 6. A parameterized operator of type (A1, B1)×· · ·× (An, Bn)→
(A, B) on a control category P is a family of functions of the form

αX : PX(A1, B1) × . . . × PX(An, Bn) → PX(A, B)

indexed by X, such that natural in X in P.

Since a control category is a cartesian closed category, the following propo-
sition holds.
Proposition 2. Parameterized operators of type (A1, B1) × · · · × (An, Bn) →
(A, B) on a control category P are in bijective correspondence with arrows of
P(BA1

1 × . . . × BAn
n , BA).

Definition 7. A co-parameterized operator of type (A1, B1)×· · ·×(An, Bn)
→(A, B) on a control category P is a family of functions of the form

αY : PY (A1, B1) × . . . × PY (An, Bn) → PY (A, B)

indexed by Y , such that natural in Y in P•.
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Proposition 3. Co-parameterized operators of type (A1, B1)×· · ·×(An, Bn)→
(A, B) on a control category P are in bijective correspondence with arrows of
P(BA1

1 × . . . × BAn
n , BA).

Proof. It follows from the isomorphisms PY (A, B) ∼= P•(⊥BA

, Y ) and
P•(⊥A, ⊥A′

) ∼= P(A′, A). ��

Corollary 1. Parameterized operators and co-parameterized operators of the
same type are in bijective correspondence.

The following bi-parameterization is important for control categories as se-
mantic models of the λµ-calculus.
Definition 8. A bi-parameterized operator of type (A1, B1)×· · ·×(An, Bn)
→(A, B) on a control category P is a family of functions of the form

αX
Y : PX

Y (A1, B1) × . . . × PX
Y (An, Bn) → PX

Y (A, B)

indexed by X and Y , such that natural in X in P and natural in Y in P•. A
bi-parameterized operator is strongly bi-parameterized if it is compatible with
currying:

�αX
Y (f1, . . . , fn)� = α1

Y X (�f1�, . . . , �fn�).
The following lemma is immediate from the compatibility.

Lemma 4. Co-parameterized operators and strongly bi-parameterized operators
of the same type are in bijective correspondence.

5 Parameterized Fixed-Point Operators on Control
Categories

5.1 Uniform Co-parameterized Fixed-Point Operators

In this section, general approach to parameterizations in the previous section is
specialized to fixed-point operators on control categories.

First, we define uniform non-parameterized fixed-point operators and uniform
co-parameterized ones, and investigate their bijective correspondence.
Definition 9. A fixed-point operator on a control category P is a family of
functions (−)∗ : P(A, A) → P(1, A) such that f∗ = f ◦ f∗ hold. A fixed-point
operator on P is uniform if h◦f = g ◦h implies h◦f∗ = g∗ for any morphisms
f ∈ P(A, A), g ∈ P(B, B) and h ∈ P•(A, B).

Definition 10. A co-parameterized fixed-point operator on a control cat-
egory P is a family of functions (−)† : P(A, A

&

Y ) → P(1, A

&

Y ) such that the
following conditions hold:

1. (naturality)
(A

&

h) ◦ f† = ((A

&

h) ◦ f)† for any f ∈ P(A, A

&

Y ′) and h ∈ P•(Y ′, Y )
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2. (fixed-point property)
f† = f ◦Y f† for any f ∈ P(A, A

&

Y ), that is,

f† = 1
f†
� A

&

Y
f

&

Y� A

&

Y

&

Y
A

&∇� A

&

Y

It is uniform if h ◦Y f = g ◦Y h implies h ◦Y f† = g† for any morphisms
f ∈ PY (A, A), g ∈ PY (B, B) and h ∈ (PY )•(A, B).

A
f � A

&

Y
h

&

Y� B

&

Y

&

Y

B

&

Y

h
� g

&

Y� B

&

Y

&

Y
B

&∇� B

&

Y

B

&∇
�

⇒ (B

&∇) ◦ (h

&

Y ) ◦ f† = g†

Remark 4. In other words, a (uniform) co-parameterized fixed-point operator
on P is a family of (uniform) fixed-point operators on PY that are preserved by
re-indexing functors.

Remark 5. The word ‘operator’ in this section has not the same meaning as that
of the previous section. In Section 4, a co-parameterized operator is a family of
functions (−)† : P(A, A

&
Y ) → P(1, A

&
Y ) with fixed A, only indexed by Y .

In this section, however, a co-parameterized fixed-point operator is a family of
functions (−)† : P(A, A

&

Y ) → P(1, A

&

Y ) indexed by both A and Y .

Proposition 4. On a control category, uniform co-parameterized fixed-point op-
erators are in bijective correspondence with uniform fixed-point operators.

Proof. Given a uniform fixed-point operator (−)∗, we define a uniform co-para-
meterized operator (−)† by f† = ((A

&∇) ◦ (f

&

Y ))∗ for f ∈ P(A, A

&

Y ).
Though we can directly check the naturality, the fixed-point property and the
uniformity of (−)† through chasing many diagrams, we will give a simpler proof
via adjunctions later.

Conversely, from a uniform co-parameterized fixed-point operator (−)†, we
obtain an operator (−)∗ just by trivializing the parameter. In this case, it is
obvious that (−)∗ is a uniform fixed-point operator.

It is sufficient for a bijective correspondence to show that

((A

&∇) ◦ (f

&

Y ))† = f† : 1 → A

&

Y

holds for a uniform co-parameterized fixed-point operator (−)†. Since (f

&

Y )◦X
Y

(wl ◦ wl) = (wl ◦ wl) ◦X
Y f holds, by the uniformity we have

(f

&

Y )† = (wl ◦ wl) ◦X
Y f† : 1 → A

&

Y

&

Y .

Applying A

&∇ to the both sides of the equation, we get ((A

&∇)◦(f

&

Y ))† = f†.
��
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For the rest of the proof, we consider the weakening functor and the following
results.

Proposition 5. The weakening functor IY : P→PY has a right adjoint UY given
by UY (A) = A

&

Y and

UY (f) = A

&

Y
f

&

Y� B

&

Y

&

Y
B

&∇� B

&

Y .

Moreover UY preserves the focus.

Corollary 2. The weakening functor IXY : P →PX
Y has a right adjoint UX

Y given
by UX

Y (A) = A

&

Y X and UX
Y (f) = UY X (�f�). Moreover UX

Y preserves the focus.

This adjunction gives us a simpler proof of the construction and bijectivity
between uniform fixed-point operators and co-parameterized ones.

As before, we define a uniform co-parameterized operator (−)† from a uni-
form fixed-point operator (−)∗ by f† = ((A

&∇) ◦ (f

&

Y ))∗. This (−)† is just
the same as (UY (f))∗. We show that (−)† is indeed a uniform co-parameterized
fixed-point operator. Now we note that UY (g) ◦ f = g ◦Y f .

– Naturality:
For f ∈ PY (A, A′) and h ∈ P•(Y ′, Y ), (A

&

h) ◦ UY (f) = UY ((A

&

Y ) ◦ f) ◦
(A

&

h) holds. So, the uniformity of (−)∗ gives us the equation (A

&

h)◦f† =
((A

&

h) ◦ f)†.
– Fixed-point property:

The co-parameterized fixed-point property trivially follows from the fixed-
point property of (−)∗:

f† = (UY (f))∗ = UY (f) ◦ (UY (f))∗ = f ◦Y f†

– Uniformity:
We assume h ◦Y f = g ◦Y h holds and h is focal. It follows that UY (h) ◦
UY (f) = UY (g) ◦ UY (h) holds and UY (h) is focal. Therefore the uniformity
of (−)∗ induces UY (h) ◦ f† = g†.

Similar result about the weakening functors and their adjunctions also help
us to understand the relation between uniform fixed-point operators and uniform
parameterized ones such as sketched in the introduction.
Definition 11. A parameterized fixed-point operator on a control category
P is a family of functions (−)# : P(X ×A, A)→P(X, A) such that the following
conditions hold:

1. (naturality)
f# ◦ g = (f ◦ (g × A))# for any f ∈ P(X ′ × A, A) and g ∈ P•(X, X ′)

2. (fixed-point property)
f# = f ◦X f# for any f ∈ P(X × A, A).

It is uniform if h ◦X f = g ◦X h implies h ◦X f# = g# for any morphisms
f ∈ PX(A, A), g ∈ PX(B, B) and h ∈ (PX)•(A, B).
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Proposition 6. The weakening functor IX : P → PX has a right adjoint UX

given by UX(A) = AX and

UX(f) = AX cur(f)X
� (BX)X ∼= BX×X B∆

� BX .

Moreover UX preserves the focus.

We construct a uniform parameterized fixed-point operator (−)# from a
uniform fixed-point operator (−)∗ by f# = ε ◦X IX(UX(f)∗), where ε ∈ P(X ×
AX , A) is the counit of the adjunction. Bijectivity follows from the equation
f# = ε ◦X IX((UX(f))#), which is derived from the uniformity of (−)# from
the focality of ε and ε ◦X IX(UX(f)) = f ◦X ε.

This correspondence is generalized to a relation between uniform co-para-
meterized fixed-point operators and uniform bi-parameterized ones in the next
subsection.

5.2 Uniform Bi-parameterized Fixed-Point Operators

Our goal is to show a bijective correspondence between uniform non-paramete-
rized fixed-point operators and uniform bi-parameterized fixed-point operators
introduced below.
Definition 12. A (strongly) bi-parameterized fixed-point operator on a
control category P is a family of functions (−)‡ : P(X ×A, A

&

Y )→P(X, A

&

Y )
such that the following conditions hold:

1. (naturality)
(A

&

h) ◦ f‡ ◦ g = ((A

&

h) ◦ f ◦ (g × A))‡ for any f ∈ P(X ′ × A, A

&

Y ′),
g ∈ P(X, X ′) and h ∈ P•(Y ′, Y ).

2. (compatibility with currying)
�f‡� = �f�‡ for any f ∈ P(X × A, A

&

Y ).
3. (fixed-point property)

f‡ = f ◦X
Y f‡ for any f ∈ P(X × A, A

&

Y ), that is,

f‡ = X
∆; X × f‡

� X × (A

&

Y )
d′
� (X × A)

&

Y
f

&

Y ; A

&∇� A

&

Y

It is uniform if h ◦X
Y f = g ◦X

Y h implies h ◦X
Y f‡ = g‡ for any morphisms

f ∈ PX
Y (A, A), g ∈ PX

Y (B, B) and h ∈ (PX
Y )•(A, B).

X × A
〈π1, f〉� X × (A

&

Y )
d′

X,A,Y � (X × A)

&

Y

X × (B

&

Y )

〈π1, h〉
� d′

X,B,Y� (X × B)

&

Y
(B

&∇) ◦ (g

&

Y ) � B

&

Y

(B

&∇) ◦ (h

&

Y )
�

⇒ (B

&∇) ◦ (h

&

Y ) ◦ d′
X,B,Y ◦ (X × f‡) ◦ ∆ = g‡
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Remark 6. In other words, a (uniform) bi-parameterized fixed-point operator on
P is a family of (uniform) fixed-point operators on PX

Y that are preserved by
re-indexing functors and compatible with currying.

Proposition 7. On a control category, uniform bi-parameterized fixed-point op-
erators are in bijective correspondence with uniform co-parameterized fixed-point
operators.

Proof. Given a uniform co-parameterized fixed-point operator(−)†, we define a
uniform bi-parameterized fixed-point operator (−)‡ by f‡ = ��f�†�.

(−)‡ satisfies the naturality, the compatibility with �−�, the bi-parameterized
fixed-point property and the uniformity.

– Naturality:

((B

&

h) ◦ f ◦ (g × A))‡

= ��(B &

h) ◦ f ◦ (g × A)�†� definition of (−)‡

= �((B &

hg) ◦ �f�)†� naturality of �−�
= �(B &

hg) ◦ �f�†� naturality of (−)†

= (B

&

h) ◦ ��f�†� ◦ g naturality of �−�
= (B

&

h) ◦ f‡ ◦ g definition of (−)‡

– Compatibility with �−�:
�f‡� = ���f�†�� = �f�† = �f�‡.

– Fixed-point property:

f‡ = ��f�†� = ��f� ◦Y X �f�†� = ��f�� ◦X
Y ��f�†� = f ◦X

Y f‡

follows from Lemma 2.
– Uniformity:

g ◦X
Y h = h ◦X

Y f implies �g� ◦Y X �h� = �h� ◦Y X �f� by Lemma 2. Lemma 3
means that if h is focal, so is �h�. Hence by the uniformity of (−)†, �g�† =
�h� ◦Y X �f�† for f ∈ PX

Y (A, A), g ∈ PX
Y (B, B) and h ∈ (PX

Y )•(A, B) such
that g ◦X

Y h = h ◦X
Y f . �g�† = �h� ◦Y X �f�† implies g‡ = h ◦X

Y f‡.

For bijectivity, it is sufficient to show

��f�‡� = f‡ : X → A

&

Y

for a uniform bi-parameterized fixed-point operator (−)‡, but that is equivalent
to (−)‡’s compatibility with �−�. ��

The following theorem is deduced from Proposition 4 and Proposition 7.

Theorem 3. On a control category, uniform bi-parameterized fixed-point oper-
ators are in bijective correspondence with uniform fixed-point operators.
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6 Fixed-Point Operator in λµ-Calculus

In the previous work [6], we have extended the call-by-name λµ-calculus with a
uniform fixed-point operator. In this section, we recall its definition (including
the syntactic notion of focality which is used for determining the uniformity)
and refine the completeness theorem of [6] using the results from Section 5.

Definition 13. In a call-by-name λµ-theory [11], Γ � H : A → B | ∆ is focal if

Γ, k : ¬¬A � H(µαA. k(λxA.[α] x)) = µβB . k(λxA.[β] Hx) : B | ∆

holds.

This syntactic notion of focus precisely corresponds to the semantic focality.

Proposition 8. Given a control category P, h ∈ PX
Y (A, B) is focal if and only

if the term x : X � λaA.µβB .[β, γ]h〈x, a〉 : A → B | γ : Y in the internal language
is focal in the sense of Definition 13.

Definition 14. A type-indexed family of closed terms {fixA : (A→A)→A} in a
λµ-theory is called a uniform fixed-point operator if the following conditions
hold:

1. (fixed-point property)
fixA F = F (fixA F ) holds for any term F : A → A.

2. (uniformity)
For any terms F : A → A, G : B → B and focal H : A → B, H ◦ F = G ◦ H
implies H(fixA F ) = fixB G.

Indeed, this axiomatization is sound and complete for control categories with
uniform bi-parameterized fixed-point operators [6]. However, since we know that
uniform bi-parameterized fixed-point operators are reducible to non-paramete-
rized ones, we have the following theorem, which strengthens and simplifies the
completeness result under the uniformity conditions.

Theorem 4. Control categories with uniform fixed-point operators provide a
sound and complete class of models of the λµ-calculus extended with a uniform
fixed-point operator.

7 Conclusion

In this paper, we have introduced polynomial categories for control categories,
which are required to deal with not only free variables but also free names, and
shown their functional completeness a la Lambek [7]. Based on those consid-
eration, we defined strongly bi-parameterized operators. Bi-parameterized op-
erators have more complicated forms than standard parameterized ones since
they have both parameterization and co-parameterization. Co-parameterization
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is for free names while usual parameterization is for free variables. Our strongly
bi-parameterized operators can be reduced to co-parameterized operators by the
compatibility with currying.

General approach to parameterizations is specialized to parameterizations
on fixed-point operators. In this paper, we introduced uniform co-parameterized
fixed-point operators and bi-parameterized ones. Our bi-parameterized fixed-
point operators are in bijective correspondence with co-parameterized ones.
As we have shown in the paper, the uniformity conditions imply the bijec-
tive correspondence between bi-parameterized fixed-point operators and non-
parameterized ones.

The technical novelty of this approach is that we closely look at co-parame-
terization and its interaction with the focus of a control category. We believe our
observations are useful not merely for fixed-point operators but also for other
parameterized constructs on control categories and the λµ-calculus, in particular,
for modeling parameterized data-type constructions as in [5].
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