Appeared in Proc. 3rd International Conference on Typed Lambda Calculi and Applications. Springer LNCS1210, 1997

Recursion from Cyclic Sharing: Traced Monoidal
Categories and Models of Cyclic Lambda Calculi

Masahito Hasegawa

LFCS, Department of Computer Science, University of Edinburgh
JCMB, King’s Buildings, Edinburgh EH9 3JZ, Scotland
Email: mhas@dcs.ed.ac.uk

Abstract. Cyclic sharing (cyclic graph rewriting) has been used as a
practical technique for implementing recursive computation efficiently.
To capture its semantic nature, we introduce categorical models for
lambda calculi with cyclic sharing (cyclic lambda graphs), using notions
of computation by Moggi / Power and Robinson and traced monoidal
categories by Joyal, Street and Verity. The former is used for represent-
ing the notion of sharing, whereas the latter for cyclic data structures.
Our new models provide a semantic framework for understanding recur-
sion created from cyclic sharing, which includes traditional models for
recursion created from fixed points as special cases. Our cyclic lambda
calculus serves as a uniform language for this wider range of models of
recursive computation.

1 Introduction

One of the traditional methods of interpreting a recursive program in a semantic
domain is to use the least fixed-point of continuous functions. However, in
the real implementations of programming languages, we often use some kind
of shared cyclic structure for expressing recursive environments efficiently. For
instance, the following is a call-by-name operational semantics of the recursive
call, in which free z may appear in M and N. We write F = M | V for saying
that evaluating a program M under an environment F results a value V; in a
call-by-name strategy an environment assigns a free variable to a pair consisting
of an environment and a program.

E'FN § V where B' = EU{z — (E', M)}
Erletrecz=MinN | V

That is, evaluating a recursive program letrec z = M in N under an environment
E amounts to evaluating the subprogram N under a cyclic environment E’ which
references itself. One may see that it is reasonable and efficient to implement the
recursive (self-referential) environment E’ as a cyclic data structure as below.

ERE
)

Also it is known that if we implement a programming language using the tech-
nique of sharing, the use of the fixed point combinator causes some unexpected
duplication of resources; it is more efficient to get recursion by cycles than by the
fixed point combinator in such a setting. This fact suggests that there is a gap
between the traditional approach based on fixed points and cyclically created
recursion.

The aim of this paper is to introduce semantic models for understanding
recursive computation created by such a cyclic data structure, especially cyc-
lic lambda graphs as studied in [AK94]. Our task is to deal with the notion of
values/non-values (which provides the notion of sharing) and the notion of cycles
at the semantic level. This is done by combining Moggi’s notions of computa-
tion [Mog88] and the notion of ¢raced monoidal categories recently introduced by
Joyal, Street and Verity [JSV96]. The former has been used for explaining com-
putation and values systematically, which we apply for interpreting the notion of
sharing. The latter has originally been invented for analyzing cyclic structures
arising from mathematics and physics, notably knot theory (e.g. [RT90]); it is
then natural to use this concept for modeling cyclic graph structure. We claim
that our new models are natural objects for the study of recursive computation
because they unify several aspects on recursion in just one semantic framework.
The leading examples are

— the graphical (syntactical) interpretation of recursive programs by cyclic data
structures motivated as above,

— the domain-theoretic interpretation in which the meaning of a recursive pro-
gram letrec x = F(z) in z is given by the least fixed point |J,, (L), and

— the non-deterministic interpretation where the program letrec & = F(x) in
is interpreted by {# | @ = F(x)}, the set of all possible solutions of the
equation ¢ = F(z).

Each of them has its own strong tradition in computer science. However, to
our knowledge, this is the first attempt to give a uniform account on these well-
known, but less-related, interpretations. Moreover, our cyclic lambda calculus
serves as a uniform language for them.

Construction of this paper

We recall the definition of traced monoidal categories in Section 2. In Section
3 we observe that traces and fixed point operators are closely related in two
practically interesting situations - in cartesian categories, and in a special form of
monoidal adjunction known as notions of computation. The motivating examples
above are shown to be instances of our setting. Armed with these semantic
observations, in Section 4 we give the models for two simply typed lambda
calculi with cyclic sharing - one with unrestricted substitution, and the other
with restricted substitution on values. The two settings studied in the previous
section correspond to the models of these calculi respectively; the soundness
and completeness results are stated. As an application, we analyze fixed point
operators definable in our calculi (Section 5).

Related work

On fixed point operators. Axiomatizations of feedback operators similar to
Theorem 3.1 have been given by Bloom and Esik in [BEQB] where they study the
dual situation (categories with coproducts). Also the same authors have con-
sidered a similar axiomatization of fixed point operators in cartesian closed cat-
egories [BE96]. Ignoring the difference of presentations, their “Conway cartesian
categories” exactly correspond to traced cartesian categories (see the remark
after Theorem 3.1). Their “Conway cartesian closed categories” are then traced
cartesian closed categories with an additional condition called “abstraction iden-
tity”.

On cyclic lambda calculi. Our source of cyclic lambda calculi is the version
presented in [AK94]. The use of the letrec-syntax for representing cyclic sharing
is not new; our presentation is inspired by a graph rewriting system in [AA95]
and the call-by-need Ajetrec-calculus in [AF96]. In this paper we concentrate on
the equational characterization of the calculi; the connection between rewriting-
theoretic aspects and our work remains as an important future issue. We think
the relation to operational semantics should be established in this direction,
especially in the connection with the call-by-need strategy [Lau93, AF96]. Also
we note that our approach is applicable not only to cyclic lambda calculi but
also to general cyclic graph rewriting systems.

On action calculi. The syntax and models in this paper have arisen from the
study of Milner’s action calculi [Mil96], a proposed framework for interactive
computation. The use of notions of computation as models of higher-order ac-
tion calculi [Mil94a)] is developed in [GH96], whereas the relation between traced
categories and reflexive action calculi [Mil94b] is studied by Mifsud [Mif96] and
the author - axioms for reflexion are proved to be equivalent to those of trace. In
fact, our cyclic lambda calculus can be seen as a fragment of a higher-order re-
flexive action calculus. A further study of action calculi in this paper’s direction
will appear in the author’s forthcoming thesis (also see Example 3.10).

On Geometry of Interaction. It has been pointed out that several models of
Geometry of Interaction [Gir89] can be regarded as traced monoidal categories
(see Abramsky’s survey [Abr96]). We expect that there are potential applications
of our results in this direction.

2 Traced Monoidal Categories

The notion of trace we give here for symmetric monoidal categories is adopted
from the original definition of traces for balanced monoidal categories [JS93] in
[JSV96].

For ease of presentation, in this section we write as if our monoidal cat-
egories are strict (i.e. monoidal products are strictly associative and coherence
isomorphisms are identities).

Definition 2.1. (Traced symmetric monoidal categories [JSV96])

A symmetric monoidal category (7,®,1,c) (where ¢ is the symmetry; cxy :
X ®Y—Y ® X) is said to be traced if it is equipped with a natural family of
functions, called a trace,

Trip:T(A®X,B® X)—T(A,B)
subject to the following three conditions.

— Vanishing:
Trhp(f)=f:A—>B

where f: A—B, and
Tri%y(f) = Trf,B(Trﬁ@X,B@X(f)) : A—B

where f: A XQ®Y—BRXQY
— Superposing:

Trigaceplidc ® f) =idec @ TrX p(f) :C©® A—C® B

where f: A X—B® X
— Yanking:

Try x(cx,x) =idx : X—X []

We present the graphical version of these axioms to help with the intuition of
traced categories as categories with cycles (or feedback, reflexion). Such graph-
ical languages for various monoidal categories have been developed in [JS91].

Vanishing
— - = —mm- Gy - _(_C)

Superposing Yanking

ol - @ - .

Note that naturality of a trace can be axiomatized as follows.

— Naturality in A (Left Tightening)
Try p((g ®idx); f) = ¢; Tr p(f) : A—B

where f: A/ Q@ X—B® X, g: A—A'

— Naturality in B (Right Tightening)
Tri p(f; (9 @ idx)) = Tr} p/(f);9 : A—B

where f: A X—B' ® X, g: BB—B
— Naturality in X (Sliding)

TrX 5(f; (idp © g)) = Tr% g((ida © g); f) : A—B

where f: A X—B® X', g: X'—X

Left Tightening Right Tightening
=l =l le- T
Sliding

AL = 0.

Remark 2.2. The axiom Superposing is slightly simplified from the original
version in [JSV96]

Trage pop((ida @ cox); (f @ g); (idp ® cx,p)) = TrX g(f) @ g

where f : A X—B ® X, g : C—D. Assuming axioms Left & Right
Tightenings, ours is derivable from this original one, and vice versa. B

Any compact closed category [KL80] is traced, for instance the category of
sets and binary relations, and the category of finite dimensional vector spaces
(see examples in next section). Moreover, the structure theorem in [JSV96]
tells us that any traced symmetric monoidal category can be fully and faithfully
embedded into a compact closed category (which can be obtained by a simple
fraction construction). This fact, however, does not imply that the usage of
traced categories is the same as that of compact closed categories. For the study
of cyclic data structures, we find traced categories more useful than compact
closed categories, as the latter seems to be too strong for our purpose.

3 Recursion from Traces

In this section we observe that traced categories can support recursive computa-
tion under certain circumstances. These results form the basis of our semantic
analysis of “recursion created by cyclic structures” where we regard traced cat-
egories as the models of cyclic sharing.

3.1 Fixed Point Operators in Traced Cartesian Categories

Compact closed categories whose monoidal product is cartesian are trivial. This
is not the case for traced categories. In fact, in [JSV96] it is shown that the
category of sets and binary relations with its biproduct as the monoidal product
is traced. Actually we find traced cartesian categories interesting in the context
of semantics for recursive computation:

Theorem 3.1. A cartesian category C is traced if and only if it has a family of
functions

(=) 1 C(A x X, X)—C(A, X)
(in below, parameters A, X may be omitted) such that

1. (=)' is a parametrized fived point operator; for f : Ax X— X, fl 1 A—X
satisfies f1 = (ida, f1); f.

2. (—)1 is natural in A; for f : Ax X—X and g : B—A, ((9 x idx); f)T =
g; f1: B—X.

3. (=) is natural in X; for f : Ax X—Y and g: Y —X, (f;9)1 = ((ida x
9 Hg: A—X.

4. (=)1 satisfies Beki¢’s lemma; for f : Ax X xY —X and g : Ax X xY —Y,
(f.)t = (ida, (idaxx, g™y) (7 x,91) - A X % Y

Sketch of the proof: From a trace operator T'r, we define a fixed point operator

(—)t by

/= TR) - A

for f : A x X—X. Conversely, from a fixed point operator (—)! we define a
trace T'r by

TrX(f) = (ida, (f;7p x))i fi7Bx + A—B

(equivalently ((ida x 7r}37X);f)T;7rBVX) for f: Ax X— B x X. We note that
these constructions are mutually inverse. O

This theorem was proved by Martin Hyland and the author independently.
There are several equivalent formulations of this result. For instance, in the
presence of other conditions, we can restrict 3 to the case that g is a symmetry
(c.f. Lemmal.1. of [JSV96]). For another — practically useful — example, Hyland
has shown that axioms 1~4 are equivalent to 2 and

— (parametrized) dinaturality: ((ma x, f); 9)! = (ida, (7ay,9); [)1);9: A—
Xforf:AxX—Yandg: AxY—X
— diagonal property. (fI)1 = ((ida x (idx,idx)); f)T for f: Ax X x X—X.

This axiomatization is the same as that of “Conway cartesian categories” in
[BE96]. Further variations are: 2,4 with dinaturality; and 1,2,4 with the sym-
metric form of 4.

Perhaps the simplest example is the opposite of the category of sets and
partial functions with coproduct as the monoidal product; the trace is given
by the feedback operator which maps a partial function f : X — A+ X to
f1: X — A, determined by iterating f until we get an answer in A if exists.
Such a setting is studied in [BE93].

An immediate consequence of Theorem 3.1 is the close relationship between
traces and the least fixed point operators in traditional domain theory.

Ezample 3.2. (the least fixed point operator on domains)
Consider the cartesian closed category Dom of Scott domains and continuous

functions. The least fixed point operator satisfies conditions 1~4, thus determ-
n

ines a trace operator given by TrX (f) = Xa? .7 (f(a, U()\.’I‘X.ﬂ'l(f(a, z)))*(Lx)))
tA— Bfor f: Ax X = Bx X. Since the least fixed point operator is the
unique dinatural fixed point operator on Dom, the trace above is the unique

one on Dom. A

The same is true for several cartesian closed categories arising from domain
theory. In fact, a systematic account is possible. Simpson [Sim93] has shown
that, under a mild condition, in cartesian closed full subcategories of algebraic
cpos, the least fixed point operator is characterized as the unique dinatural
fixed point operator. On the other hand, it is easy to see that the least fixed
point operators satisfy the conditions in Theorem 3.1. Therefore, in many such
categories, a trace uniquely exists and is determined by the least fixed point
operator. However, we note that there are at least two traces in the category of
continuous lattices, an instance which does not satisfy Simpson’s condition; this
category has two fixed point operators which satisfy our conditions — the least
one and the greatest continuous one.

Further justification of our axiomatization of fixed point operator comes from
recent work on ariomatic domain theory which provides a more abstract and
systematic treatment of domains and covers a wider range of models of domain
theory than the traditional order-theoretic approach. For this, we assume some
working knowledge of this topic as found in [Sim92]. Readers who are not familar
with this topic may skip over to next subsection.

Ezample 3.3. (axiomatic domain theory)

Consider a cartesian closed category C (category of “predomains”) equipped
with a commutative monad L (the “lift”) such that the Kleisli category Cr,
(category of predomains and “partial maps”) is algebraically compact [Fre91].
This setting provides a canonical fixed point operator (derived from the fizpoint
object [CP92]) on the category of “domains” (obtained as the co-Kleisli category
of the induced comonad on the Eilenberg-Moore category C*) which satisfies our
axioms — Bekié’s lemma is proved from the algebraic compactness of Cp [Mog95]
(this idea is due to Plotkin). Thus the requirement for solving recursive domain
equations (algebraic compactness) implies that the resulting category of domains
is traced. W

Regarding these facts, we believe that traces provide a good characterization of
fixed point operators in traditional denotational semantics.

We conclude this subsection by observing an attractive fact which suggests
how natural our trace-fixpoint correspondence is (this is rather a digression in
this paper, however). Our correspondence preserves a fundamental concept on
fixed point operators called uniformity, also known as Plotkin’s condition. This
is important because fixed point operators are often canonically and uniquely
characterized by this property.

Proposition 3.4. In a traced cartesian category, the following two conditions
are equivalent for any h : X—Y .

— (Uniformity of the trace operator) For any f and g,
Ax X — Bx X

if Axhl JBxh commutes then TrX (f) = TrY (g).

AxY —g" BxY
— (Uniformity of the fized point operator) For any f and g,
f
AxX — X

if Axh h commutes then ft;h = gt. O

AXY—g"Y

In the case of domain-theoretic categories, the second condition is equivalent
to saying that h is a strict map (L-preserving map). This fact suggests the
possibility of studying the notion of strict maps and uniformity of fixed points
in more general settings as in the following subsection. In particular, the first
condition makes sense in any traced monoidal category.

3.2 Trace and Notions of Computation

Our observation so far says that to have an abstract trace is to have a fixed point
operator in the traditional sense, provided the monoidal product is cartesian.
However, regarding our motivation to model cyclic sharing, this setting is some-
what restrictive — in a cartesian category (regarded as an algebraic theory) ar-
bitrary substitution is justified, thus there is no non-trivial notion of sharing.

To overcome this, we consider a mild generalization. Now our traced category
may not be cartesian, but it is assumed to have a sub-cartesian category such that
the inclusion functor preserves symmetric monoidal structure and has a right
adjoint (examples will be given below). Intuitively, the sub-cartesian category is
the category of “values” which can be substituted freely whereas the symmetric
monoidal category part is the category of all cyclic structures which cannot be
copied in general because they may contain shared resources. In this weaker
setting, there still exists a fixed point operator.

Let F' : C—>7T be a faithful, identity-on-objects strict symmetric monoidal
functor from a cartesian category C to a traced symmetric monoidal category 7,
with a right adjoint. Thus we identify the objects in C and in 7, and F' is identity
as a function on objects. However, for readability, we write A x B and A ® B
for cartesian product in € and tensor product in 7 respectively though they are
identical as F is strict symmetric monoidal. We assume a similar convention for
the terminal object 1 and the unit object 1.

Theorem 3.5. Given F' : C—7T as above, there is a family of functions
(_)TA’X : T(A @ X: X)_>T(A: X)
such that

1. (=)' is a parametrized fived point operator in the sense that, for f : A ®
X—X in T, f1 : A—=X satisfies f1 = Aa;(ida @ f1); f where Ay =

2. (=) is natural in A in C; for f : A® X—X in T and g : B—A in C,

(F(g) @idx); /)T = F(g); f1 : B—X.

) is natural in X in T; for f : A@ X—Y in T and g : Y—X in T,

fi9t=((ida®g); Hlg: A—X.

Sketch of the proof: Let us write U : 7—C for the right adjoint of F, and ex :
UX—X (in T) for the counit. By definition, we have a natural isomorphism
(=) :T(A,B) = C(A,UB). We also define 84 x : Ax UX—U(A® X) inC
by 84 x = (id4 @ ex)*. Now we define (—)T by

3.

o —

=T (F0ax;Uf); Avx)jex - A—X in T
for f: A X—X n7T.0O

Observe that an easier construction (c.f. Theorem 3.1) Tr¥ (f; Ax) : A—X
from f: A® X— X in T does not work as a fixed point operator — the con-
struction in Theorem 3.5 uses the adjunction in a crucial manner.

It is in general impossible to recover a trace operator from a fixed point
operator which satisfies the conditions of Theorem 3.5; for instance, if 7 has
a zero object 0 such that 0 @ A ~ 0 (e.g. Rel below), the zero map satisfies
these conditions. It is an interesting question to ask if we can strengthen the
conditions so that we can recover a trace operator.

A careful inspection of our construction reveals that we need the trace oper-
ator just on objects of the form UX (equivalently F(UX) as F is identity-on-
objects); actually it is sufficient if the full subcategory of 7 whose objects are
of the form of UX; ® ... ® UX,, 1s traced. Thus such a fixed point operator
exists even in a weaker setting. It would be interesting to see if this fixed point
operator determines this sub-trace structure. It would be more interesting to
see if there 1s a good connection between such a fixed point operator and fixed
point operators in models of intuitionistic linear logic as studied in [Bra95].

An observation corresponding to Proposition 3.4 is as follows: for any h in
T, if F(U(h)) satisfies the uniformity condition for the trace operator then h
satisfies the uniformity condition for the fixed point operator.

Note that our setting is equivalent to saying that we have a cartesian category
C with a monad U o F' on it, which satisfies the mono-requirement and has a
commutative tensorial strength 8, such that the Kleisli category 7 is traced.
In other words, we are dealing with some notions of computation in the sense
of Moggi [Mog88] with extra structure (trace). Our definition is inspired by a
recent reformulation of notions of computation by Power and Robinson [PR96].

Definition 3.6. A traced computational model is a faithful, identity-on-object
strict symmetric monoidal functor ¥ : C—7T where C is a cartesian category
and 7 a traced symmetric monoidal category, such that the functor F(—)® X :
C—7T has aright adjoint X = (=) : T—C: thus T(F(-)®X,—) ~ C(—, X=>
-). .

X = Y is the so-called Klewsli exponent; if C is cartesian closed, X = Y is
obtained as (UY)X. As a traced computational model satisfies the assumption
in Theorem 3.5 (a right adjoint of F is given by I = (—)), there is a fixed
point operator in its traced category. The right adjoint X = (=) can be used to
interpret higher-order (higher-type) computation. Thus traced computational
models have enough structure to interpret higher-order recursive computation;
later we see how they can be used as the models of a simply typed lambda
calculus with cyclic sharing.

To help with the intuition, we shall give a selection of traced computational
models below. Most of them have already been mentioned in Section 1.

Ezample 3.7. (traced cartesian closed categories)

A traced cartesian closed category is a traced computational model in which the
cartesian category part and the traced category part are identical. Examples
include many domain-theoretic categories such as Example 3.2. B

FEzample 3.8. (non-deterministic model)

The inclusion from the category Set of sets and functions to the category Rel
of sets and binary relations (with the direct product of sets as the symmet-
ric monoidal product) forms a traced computational model: Rel(A @ X, B) ~
Set(A, Rel(X, B)). The trace operator on Rel, induced by the compact closed
structure of Rel, is given as follows: for a relation R : A ®@ X—B ® X, we
define a relation 7r% (R) : A—B by (a,b) € Tr%(R) iff ((a,z), (b,z)) € R for
an & € X (here a relation from A to B is given as a subobject of A x B). The
parametrized fixed point operator (—)' on Rel is given by

R' = {(a,#) |3SC X S={y |z € S ((a,),y) e R} &z € S} : A—X

for R: A® X—X (and R! is not the zero map!). Note that we can use an
elementary topos instead of Set, which may provide a computationally more
sophisticated model. W

Ezample 3.9. (finite dimensional vector spaces over a finite field)

Let Fy be the field with just two elements (thus its characteristic is 2), and
Vect%r,: be the category of finite dimensional vector spaces (with chosen bases)
over Fy. There is a strict symmetric monoidal functor from the category of
finite sets to Vectf;fwz1 which maps a set S to a vector space with the basis §,
and this functor has a right adjoint (the underlying functor). Since Vectf}rg‘ is
traced (in the very classical sense), this is an instance of traced computational
models. Note that this example is similar to the previous one — compare the
matrix representation of binary relations and that of linear maps. B

Ezample 3.10. (higher-order reflexive action calculi)

Recent work [GH96, Mif96] on action calculi [Mil96] shows that the higher-
order reflexive extension of an action calculus [Mil94a, Mil94b] forms a traced
computational model. In this calculus the fixed point operator (—) is given by

tT = Tﬁﬁn ((T5=>")F(idm ® <T> ’ ape,n) AR copyeﬁn) ’ ape,n I m—n

for t : m @ n—n. Mifsud gives essentially the same operator iters(¢) in his
thesis [Mif96]. Using this, we can present recursion operators in various process
calculi, typically the replication operator. B

4 Semantics of Lambda Calculi with Cyclic Sharing

We introduce two simply typed lambda calculi enriched with the notion of cyclic
sharing, the simply typed Ajetrec-calculus and A, .-calculus in which cyclically
shared resources are represented in terms of the letrec syntax. It is shown that
traced cartesian closed categories and traced computational models are sound

and complete models of these calculi respectively.

4.1 The Syntax and Axioms

. .) . v
As the semantic observation we have seen suggests, the simply typed Al _ -

calculus is designed as a modification of Moggi’s computational lambda calculus
[Mog88]; we replace the let-syntax by the letrec-syntax which allows cyclic bind-
ings.

In this section, we fix a set of base types.

Types
o,7... u= b|o=71 (wherebis a base type)

Syntactic Domains

Variables Ty Yy Z ...
Raw Terms M,N... = z |Xz.M | MN | letrec D in N
Values VW... ou= | Az.M

Declarations D ... w= =M |z =M, D

In a declaration, binding variables are assumed to be disjoint.

Typing
) F,x:a,y:a',F'F—]\l:TE b
F,m:o'l—m:a'vanable Ny:o',o:0l"+M:7 xehange
Lwz:obM:7 I'tM:o=7 I'EN:o -
il R : : “ 9 Applicat
TF oM o7 Abstraction [FMN:7 ppiication
ooy, onionb Mo (1=1,...,n) INz1:01,...,85n:0n - N:7
I'Fletrec o1 = My, ... ,2n =M, n N : 7 letrec
Axioms
Identity letrec z = M in z =M (z¢&FV(M))
Associativity letrec y = (letrec Dy in M), D2 in N = letrec D1,y = M, D> in N
letrec 1)1 in letrec Dy in M = letrec D1, D2 in M
Permutation letrec D1, D2, D in N = letrec Dy, D1, D in N
Commutativity (letrec D in M)N = letrec D in MN
M(letrec D in N) = letrec D in MN
Jé; (Az.M)N = letrec x = N in M
Ty letrec x =V, D[z] in M = letrecx =V, D[V]inM
letrec z = V, D in M([z] = letrecz =V, D in M[V]
letrec & = V in M =M (zgFV(V)UFV(M))
Mo Ar.yx =y

Both sides of equations must have the same type under the same typing context;
we will work just on well-typed terms. We assume the usual conventions on
variables.

We remark that axioms Identity, Associativity, Permutation and Commut-
ativity ensure that two A}, ...-terms are identified if they correspond to the same
cyclic directed graph; thus they are a sort of structural congruence, rather than
representing actual computation. [creates a sharing from a function applica-
tion. o, describes the substitution of values (the first two for the dereference,
the last one for the garbage collection). In M|[z] and DI[z], [z] denotes a free

occurrence of x. From 3, o, and 5y, we have the “call-by-value” Bn-equations:

Lemma 4.1. In A\

Ltrec-calculus, the following are derivable.

B Az M)V = M{V/z}
o (Az.Vz) =V (s ¢ FV(V)) 0O

We think it is misleading to relate this calculus to the call-by-value operational
semantics; restricting substitutions on values does not mean that this calculus
is for call-by-value. Rather, our equational theory is fairly close to the call-
by-need calculus proposed in [AF96], which corresponds to a version of lazy
implementations of the call-by-name operational semantics. We expect that
this connection is the right direction to relate our calculus to an operational
semantics.

Also we define a “strengthened” version in which arbitrary substitution and
n-reduction are allowed (thus any term is a value):

o letrec v = N, D[z] in M = letrecx = N, D[N]inM
letrec x = N, 1D in M[z] = letrecz = N, D inM[N]
letrec z = N in M =M (z¢&FV(M))

n Az. Mz M (z & FV(M))

We shall call this version the simply typed Aetrec-calculus — this corresponds to
the calculus in [AK94] ignoring the typing and the extensionality (n-axiom).

4.2 Interpretation into Traced Computational Models

We just present the case of the AL, _ -calculus; the case of the Ajegrec-calculus is
obtained just by replacing a traced computational model by a traced cartesian
closed category.

Let us fix a traced computational model F' : C—7, and choose an object
[#] for each base type b. The interpretation of arrow types is then defined by
[oc= 7] = [o] = [r]. We interpret a Al ..-term (with its typing environment)
Ty i O1,...,8, : Oy B M : 7 to an arrow [zy : 01,...,2, 0 b M 7] :

[e1] ® ... ® [on]—[7] in T as follows.

[z1:01,...,%n 00 x5 04] = F(m;) where m; is the i-th projection
[I'FAz.M:o=>7] = F(eur([{ z:0+ M :7]))
[I'+M™"N°:7] A ([I'EM:o=7]|Q[I'F N : 7]);ap
[I'Fletrec oy = MY, o = MJ* in N : 7] =

A; (id @ Trled®-8lokl(Ay (M F My :on] @ ... Q[T F My : a1]); A)); [T F N : 7]

where ap, p @ (A= B)®A— B is the counit of the adjoint F(—)®A 4 A= (—),
and cur : T(FA® B,C)—C(A, B = C) the associated natural bijection. In

the last case, I is I',xq : 01, ..., 25 : 0 and Ay is the k-times copy (Aras =
F((id,...,id)) : A— A®...®@ A). Note that values are first interpreted in C
k times k times

(following Moggi’s account, C is the category of values) and then lifted to 7 via
F.

A straightforward calculation shows that traced computational models are
sound for the Al _ -calculus (and the same for traced cartesian closed categories

and the Ajerec-calculus):
Theorem 4.2. (Soundness)

— For any traced computational model with chosen object [b] for each base type
b, this interpretation is sound; if ' M o, ' N : 0 and M = N in the
Motree-calculus then [I'F M : o] = [I'F N : o].

— For any traced cartesian closed category with chosen object [b] for each base
type b, this interpretation is sound; if ' M o, ' N : 0 and M = N n
the Aletrec-calculus then [I'FM o ="' N :0]. O

Ezample 4.3. (domain-theoretic model)
As we already noted, Dom is a traced cartesian closed category (hence also a
traced computational model). The interpretation of a Aletrec-term + letrec z =
M in z : 0 in Dom is just the least fixed point |J,, F*(L) where F : [o]—[c]
is the interpretation of z : o - M : c. R

FEzample 4.4. (non-deterministic model)
In Rel (Example 3.8), a A, ..-term is interpreted as the set of “all possible
solutions of the recursive equation”. The interpretation of - letrec 2 = M inz : o
is just the set {z € [o] | (z,2) € [x : 0 F M : o))} (a subobject of [o] = 1 x [o]).

For instance,

[F letrec z = z in z : o] =[e] :1—[o]
[F letrec # = ® inx :nat] = {0,1}:1—N
[F letrec z =z + 1 in z : nat] = 0 :1—N

(for the latter two cases we enrich the calculus with natural numbers). Note
that this model is sound for the A}, . -calculus, but not for the Aetrec-calculus
— since we cannot copy non-deterministic computation, this model is “resource-

sensitive”. W

Moreover, we can construct a term model (enriched with the unit and product
types) to which the Al ..-calculus (or Aetrec-calculus) is faithfully interpreted.
Actually it is possible to show that the A[, ..-calculus is faithfully embedded into
the higher-order reflexive action calculus (Example 3.10) which is an instance of

traced computational models. Thus we also have completeness:
Theorem 4.5. (Completeness)

—If[I't M :o] =[I'E N : o] for every traced computational model, then
M = N in the A\, ..-calculus.

—If[I’'t M :o] =t N : o] for every traced cartesian closed category,
then M = N in the Aetrec-calculus. O

Remark 4.6. To represent the parametrized fixed point operator given in The-
orem 3.5 we have to extend the Al ..-calculus with a wunit type unit which has
a unique value *:

TFxoumt UMt v o= (V : unit)

The interpretation of the unit type in a traced computational model is just
the terminal object (unit object). The type constructor unit = (—) then plays
the role of the right adjoint of the inclusion from the category of values to the
category of terms. We define the parametrized fixed point operator by

Nr:ob-M:0o
I'Fopz®.M = letrec f"7 = A\y""t (A2 M)(f+))in f+ : o

which satisfies pz. M = (Az.M)(pz. M), but may not satisfy pz. M = M{uz.M/z}
in the AL, ..-calculus because pz.M may not be a value in general. The operator
Y3 in the next section is essentially same as this fixed point operator, except for

avoiding to use unit. W

We could give the untyped version and its semantic models — by a reflexive
object in a traced computational model (or a traced cartesian closed category).
Regarding the results in Section 3, we can establish the connection between the
dinatural diagonal fixed point operator in a model of the untyped Ajetrec-calculus
and the trace operator of the cartesian closed category. It would be interesting to
compare recursion created by untypedness and recursion created by trace (cyclic
sharing) in such models.

5 Analyzing Fixed Points

In the A{;...-calculus, several (weak) fixed point operators are definable — this
is not surprising, because there are several known encodings of fixed point op-
erators in terms of cyclic sharing. However, it is difficult to see that they are
not identified by our equational theory — syntactic reasoning for cyclic graph
structures is not an easy task, as the non-confluency result in [AK94] suggests.
On the other hand, in many traditional models for recursive computation, all of
them have the same denotational meaning mainly because we cannot distinguish
values from non-values in such models.

One purpose of developing the traced computational models is to give a clear
semantic account for these several recursive computations created from cyclic
sharing. Though this topic has not yet been fully developed, we shall give some
elementary analysis using the A, _.-calculus and a traced computational model
(Rel).

We define AL, -terms I' - Y;(M) : o (i = 1,2,3) for given term I' - M :
o= o as follows.

Y = letrec fix("=7=7 = \f™=7_f(fix f) in fix
Y, = Af"7 letrec 7 = fx inx
Ya(M) = letrec g7 = Ay .M (gy) in gN
(N is a closed term of type 7, e.g. letrecx =z inz : 1)

Each of them can be used as a fixed point operator, but their behaviours are
not the same. For instance, it is known that Y5 is more efficient than others,
under the call-by-need evaluation strategy [Lau93]. Y; satisfies the fixed point
equation YV = V(YV) for any value V : 0= 0.

YiM = letrec fix = Af. f(fix f) in fixM Commutativity
= letrec fix = Af.f(fix f) in (Af.f(fix f))M oy
= letrec fix = Af.f(fix f) in letrec f' = M in f'(fix f') B
= letrec f' = M in letrec fix = Af.f(fix f) in f'(fix f') Associativity, Permutation
= letrec f' = M in f'((letrec fix = Af.f(fix f) in fix) f') Commutativity
= letrec f' =M in f'(Vif)
(=M(YaiM) if M is a value)

Y, satisfies YoM = M (Y>M) only when Mz is equal to a value (hence M is

supposed to be a higher-order value). If M = Ay.V for some value V,

YoM = letrec z = (Ay.V)z in By
= letrec z = V{z/y} inz By
= letrec = V{z/y} in V{z/y}
= letrec z = (A\y.V)z in (Ay.V)z S,
= (Ay.V)(letrec z = (Ay.V)z in z) Commutativity
= M(Y>M)

q

v

Y3 satisfies Y3(M) = M (Ya(M)) for any term M : o= o (thus is a “true” fixed
point operator).

Y5 (M) = letrec g = Ay.M(gy) in (Ay. M(gy))N o
= letrec g = Ay.M(gy) in letrec y' = N in]\4(gy' 3
= letrec g = Ay.M(gy) in 1\4((letrec y = N in y')) Commutativity
= M((letrec g = Ay.M(gy) in g(letrec y' = N in y')) Commutativity
= M(letrec g = Ay.M(gy) in gN) Identity
= M(Ys(M))

The interpretation of these operators in a traced computational model is as
follows.

[F 1] = 17424 =>A((cur((id @ A); (ap ® id); c;ap)); 4)
[F 2] = F(cur(Ir"(ap; 4)))
[[F Ys(M)] = (Tr"=*(F(cur(([I' - M : 0= 0] @ ap);ap)); A) @ [F N : 7]); ap

where A = [o] and B = [r]. They have the different interpretations in Rel,
hence are not identified in the A -calculus. Assume that S = [F M : 0=
o] C Rel(4, A). Then

letrec

[FYi(M):o]= | U Al [FYa(M) : o] = | J{z | (z,2) € f}

fES (Al f)=AICA fes

whereas

IF Ya(M): o] = U Al

(AU S)=ACA

(In the definition of Ys, we take N : 7 as letrec e =z in 2 :7.)

6 Conclusion

We have presented new semantic models for interpreting cyclic sharing in terms
of traced monoidal categories and notions of computation, and shown the con-
nections with cyclic lambda calculi and with traditional semantics for recursive
computation. We have also demonstrated that our framework covers a wider
range of models of recursion than the traditional approach. We summarize this
situation, together with examples in this paper, in the diagram below.

/ traced computational models \
e term model of the Afj;,.-calculus (syntactic model) ° Vectf‘vrz‘
¢ higher-order reflexive action calculi
¢ non-deterministic model (Rel)

traced cartesian closed categories

¢ term model of the Ajetrec-calculus (syntactic model)

domain theoretic models

¢ category of domains and cont. functions

o J

Acknowledgements

I am deeply grateful to Martin Hyland and John Power for helpful discussions,
suggestions and encouragement. T also thank Philippa Gardner, Alex Mifsud,
Marcelo Fiore, Alex Simpson and Gordon Plotkin for their comments and en-
couragement.

References

Abr96. S. Abramsky, Retracing some paths in process algebra. In Proc. 7th Int. Conf.
Concurrency Theory (CONCUR’96), Springer LNCS 1119, pages 1-17, 1996.

AA95. 7. Ariola and Arvind, Properties of a first-order functional language with
sharing. Theoretical Computer Science 146, pages 69-108, 1995.

AF96. 7. Ariola and M. Felleisen, A call-by-need lambda calculus. Technical report
CIS-TR-96-97, 1996. To appear in Journal of Functional Programming.

AK94. 7. Ariola and J. Klop, Cyclic lambda graph rewriting. In Proc. 9th Symposium
on Logic in Computer Science (LICS’94), pages 416-425, 1994.

BE93. S. L. Bloom and 7. Esik7 Iteration Theories. EATCS Monographs on Theor-
etical Computer Science, Springer-Verlag, 1993.

BE96. S. L. Bloom and 7. Esik7 Fixed point operators on ccc’s. Part 1. Theoretical
Computer Science 155, pages 1-38, 1996.

Bra95. T. Bratmer, The Girard translation extended with recursion. In Proc. Com-
puter Science Logic 1994 (CS1.°94), Springer LNCS 933, pages 31-45, 1995.

CP92. R. L. Crole and A. M. Pitts, New foundations for fixpoint computations: Fix
hyperdoctrines and the fix logic. Information and Computation 98, pages 171-
210, 1992.

Fre9l. P. Freyd, Algebraically complete categories. In Proc. 1990 Como Category
Theory Conference, Springer LNM 1144, pages 95-104, 1991.

GH96. P. Gardner and M. Hasegawa, On higher-order action calculi and notions of
computation. Draft, LFCS, University of Edinburgh, 1996.

Gir89. J. -Y. Girard, Geometry of interaction I: interpretation of system F. In Logic
Colloquium 88, pages 221-260, North-Holland, 1989.

JS91.
J593.

JSV96.

KLR&O.
Lau93.
Mif96.
Mil94a.
Mil94b.

Mil96.
Mog88.

Mog95.
PR96.

RT90.

Sim92.

Sim93.

A. Joyal and R. Street, The geometry of tensor calculus . Advances in Math-
ematics 88, pages 55-113, 1991.

A. Joyal and R. Street, Braided tensor categories. Advances in Mathematics
102, pages 20-78, 1993.

A. Joyal, R. Street and D. Verity, Traced monoidal categories. Mathemat-
ical Proceedings of the Cambridge Philosophical Society 119(3), pages 447-468,
1996.

M. Kelly and M. L. Laplaza, Coherence for compact closed categories. Journal
of Pure and Applied Algebra 19, pages 193-213, 1980.

J. Launchbury, A natural semantics for lazy evaluation. In Proc. 21st ACM
Symp. Principles of Programming Languages (POPL’93), pages 144-154, 1993.
A. Mifsud, Control structures. PhD thesis, LFCS, University of Edinburgh,
1996.

R. Milner, Higher-order action calculi. In Proc. Computer Science Logic 1992
(CSL’92), Springer LNCS 832, pages 238-260, 1994.

R. Milner, Action calculi V: reflexive molecular forms (with Appendix by O.
Jensen). Third draft, July 1994.

R. Milner, Calculi for interaction. Acta Informatica33(8), pages 707-737, 1996.
E. Moggi, Computational lambda-calculus and monads. Technical report ECS-
LFCS-88-66, LFCS, University of Edinburgh, 1988.

E. Moggi, Metalanguages and applications. Draft, 1995.

A. J. Power and E. P. Robinson, Premonoidal categories and notions of com-
putation. 1996. To appear in Mathematical Structures in Compuler Science.

N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants
derived from quantum groups. Communications in Mathematical Physics 127,
pages 1-26, 1990.

A. Simpson, Recursive types in Kleisli categories. Manuscript, LFCS, Uni-
versity of Edinburgh, 1992.

A. Simpson, A characterisation of the least-fixed-point operator by dinatural-
ity. Theoretical Computer Science 118, pages 301-314, 1993.

