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Abstract. We develop a notion of Kripke-like parameterized logical
predicates for two fragments of intuitionistic linear logic (MILL and
DILL) in terms of their category-theoretic models. Such logical pred-
icates are derived from the categorical glueing construction combined
with the free symmetric monoidal cocompletion. As applications, we ob-
tain full completeness results of translations between linear type theories.

1 Introduction

Suppose that a model of Multiplicative Intuitionistic Linear Logic (MILL) —
the propositional fragment of linear logic [12] with I, ® and — - is given.
Also suppose that there is a property on elements of the model which is closed
under tensor product and composition (cut) and other structural rules, and
covers the interpretations of base types and constants. We show that such a
property can be extended to the interpretation of all types so that it covers all
MILL-definable elements. We also give a parallel result for Dual Intuitionistic
Linear Logic (DILL) of Barber and Plotkin [5], which is an extension of MILL
with the modality !. To achieve such results, we first give a suitable notion of
such “predicates” on models of MILL and DILL, upon which we develop logical
predicates and state the Basic Lemma. We then show that the construction
above is an instance of our logical predicates.

To see why we need to introduce a property closed under tensor and so on, it
would be instructive to observe that the standard logical predicates for models
of simply typed lambda calculus do not work well with the linear calculi and
their models. We may have a predicate P, C A for each base type b, where A,
is a set in which the closed terms of type o are interpreted. As the standard
logical predicates, we hope to define a predicate P, C A, for every type ¢ in an
inductive way. However, we soon face a difficulty in constructing P, g, from P,
and P;. The naive construction P,g, = {a®b | a € P,,b € P;} makes sense but
can miss some interesting “undecomposable” elements of A,g;; in particular
assume a constant of type o ® 7, then its interpretation may not belong to P,gr
for any P, and P,. The same trouble appears when we construct P, from P,.

We solve this problem by parameterizing the predicates on the tensor-closed
property (in the similar way to the Kripke logical relations [2]), so that the
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parameter indicates the linearly used resource (or the linear context). Such pa-
rameterized predicates form a model of MILL and serve as a basis for construct-
ing logical predicates for MILL. The problem of tensor types disappears if each
interesting element satisfies the tensor-closed property.

The construction is based on a few category-theoretic tools, specifically the
presheaf construction (free symmetric monoidal cocompletion [15]) for symmetric
monoidal categories and also a glueing (sconing, Freyd covering) construction
[16,21] on symmetric monoidal closed categories. It is known that a setting for
standard logical predicates can be obtained by glueing a cartesian closed category
to Set [21, 14]; ours is derived by glueing a symmetric monoidal closed category
to the presheaf category of a small symmetric monoidal category (which specifies
the tensor-closed property mentioned above). For DILL we further use a glueing
construction of symmetric monoidal adjunction to accommodate the modality.
However in this paper we leave these abstract idea rather implicit (except in
Sect. 4) and describe all constructions concretely.

By applying our logical predicates method, we obtain the full completeness
of syntactic translations between linear type theories. For instance, it is an im-
mediate corollary of the Basic Lemma that MILL is a full fragment of DILL
(Example 3), in the sense that, for any DILL-term ) ; A+ M : ¢ withno !in A
nor o, there always exists an MILL-term A+ N : g suchthat ) ; A M =N:o
holds. See Example 2 and 4 for other examples.

Though the existing syntax for linear type theories are rather diverging, their
semantic models are now well-established and related each other, in terms of sym-
metric monoidal (closed) categories and adjunctions [6,8, 5], and our approach
based on such categorical models is likely to apply to many other linear type the-
ories as well. In fact it is routine to modify our technique for non-commutative
linear logic and monoidal (bi)closed categories (see [17]). Furthermore, by com-
bining our approach with Hyland and Tan’s double glueing construction [23] (see
Example 5) we can deal with a classical linear type theory (MLL). These results,
proofs and further category-theoretic analysis are reported in the full paper [13].

Also it might be fruitful to adapt our method to programming languages, see
for example the complexity-parameterized logical relation used in [11]. Another
interesting direction is to combine our approach to other techniques of specifying
properties of semantic categories, for instance that of specification structures [1].

Acknowledgements I thank Gordon Plotkin for discussions at the initial
stage of this work.

2 Multiplicative Intuitionistic Linear Logic

We recall a simple fragment of intuitionistic linear logic (Multiplicative Intu-
itionistic Linear Logic, MILL) together with the associated term calculus. The
category-theoretic models are given as symmetric monoidal closed categories,
for which soundness and completeness are known (e.g. [7]). See [10,8] for the
category-theoretic concepts used in this paper.



2.1 Syntax of MILL

We briefly recall the syntax of MILL. The detail is discussed e.g. in [7]; our
presentation is chosen so that it will be compatible with DILL (Sect. 5). A set
of base types (write b for one) and also a set of constants are fixed throughout
this paper.

Types and Terms

cu=b|l|oc®c|o—0
Ma=cM)|z| * |let xbeMinM|MQM |letzQx be M inM |
Ae.M | MM

We assume that each constant ¢ has a fixed arity ¢ — 7, where ¢ and 7 are types
which do not involve —o. (This restriction on arity is for ease of presentation and
not essential.)

Typing
c:o=o17 AFM:o .
tant _
AF (D) 7 (Constant) P — (Variable)
AMFM:TI AyF-N:o
I-*:I(II) AlﬂAzl-let*beMinN:a(IE)
MFM:09T
AMEM:o AZI—N:T(®I) Ap,z:0,y:THN:0 (@E)
AfAs F M QN :0QT AfAsHletx @y be Min N : 6
Ax:oFM:T (= T) MEM:0—oT1 AQI—N:U(_OE)
A Xz M:0—oT AfAsF MN = 7

where A;§A; is a merge of Ay and A, (this notation is taken from [5]). We note
that any typing judgement has a unique derivation.

Axioms

let *x be x in M =M let * be M inx=M
let 2@y be M ®N in L =L[M/z,N/y] letz@ybe Minzy=M
(A.M)N = M[N/z] Ae.Mz =M

Cllet = be M in N] =let = be M in C[N]
Cllet @y be M in N =let z ®y be M in C[N]

In the above C[—] indicates a (well-typed) context — we assume suitable condi-
tions on variables for avoiding undesirable captures. The equational theory of
MILL is defined as the congruence relation on the terms with typing judgement
generated from these axioms.



2.2 Semantics of MILL

Let C be a symmetric monoidal closed category with tensor product ®, unit
object I and exponent —o. Assume that there is an object [b] for each base type
b and an arrow [c] : [o] — [r] for each constant ¢ : ¢ — 7, where [o] is defined by
[I] =1, [e®7] = [e]®[r] and [o — 7] = [o] —o [7]. For each typing judgement
AF M : 7, we define its interpretation [A - M : 7] : [|A|] = [7] in C as follows,
where |A] = (... (Jo1] ® [o2]) - ..) @ [on] for A=21 : 01,22 : 02,...,2Zp : Op.
[AFM:0o] Iel
[AF (M) : 7] =[|A]] —— [o] — [7]
[w:an:a]]z[a]]mﬂ[a]]
[F*:1]=151
[AifAs Flet « be M in N:o] =

[141845]] 5 [1A1]] ® [|A]]
[A18As F MQN 0@ 7] =

[A1FM:I|®[A2+N:a] ~
—— I®[o] = [o]

~ [A1FM:o]Q[A2FN:7]
[[A:184:(] = [lA ] @ [|142]] ————— el ®[7]
[AifAs Flet z @y be M in N: 6] =

~ |[A1|—M:a'®‘r]]®'idmA2|]]
[[A:84:]] = [|A ] @ [|22]] @ ———
[Az,z:0,y:7HN:0]

([el@ D) @ [|A:1 = (Al @ [e]) @ [[] —— [6]
[AFAzM o —or] =[A] =2 (5] = 1]
[AiAs F MN : 7] = [|A18A2]] 5

[A1FEM:0—7]®[A2FN:0o] ev
[Ale @14l ———— (el —IrD @ o] — [7]
where “~” denotes a (uniquely determined) canonical isomorphism. We write ev
for the counit of the adjunction — ® C 4 C ——, and A(f) : A = C —o B for the
adjoint mate of f: A® C — B.

Proposition 1. This semantics is sound and complete. O

3 Logical Predicates for MILL

We introduce parameterized predicates on objects of a symmetric monoidal
closed category, and show that such predicates give rise to another symmetric
monoidal closed category. We then define the logical predicates as type-indexed
families of the predicates (inductively determined on the type structure), and
state the Basic Lemma. We also give the canonically determined logical pred-
icate which is used in showing full completeness of translations between linear
type theories. We conclude this section by sketching the generalization to logical
relations.



3.1 Co-Predicates

Let Cy be a small symmetric monoidal category, C; a locally small symmetric
monoidal closed category and I be a strict symmetric monoidal functor from Cy
to (Cl .

Definition 1. An Obj(Cy)-indexed set P = {P(X)}xec, is a Co-predicate on
A e C, when

— P(X)CC(IX,A) for X € Cy, and
— for f e G(X,Y), g € P(Y) implies go 1 f € P(X). O

We may intuitively think that C; (IX, A) represents the set of proofs of a se-
quent X - A, and Cy (imported into C; via I) determines a property on proofs
which is closed under tensor, composition and structural constructions. Unlike
the traditional non-linear calculi and logical predicates over them, we explicitly
state the “resource” X, which plays some significant role in our work. Then, for
a Co-predicate P on A, P(X) is a predicate on the proofs of X + A. The second
condition tells us that P is stable under the change of resource along a proof of
X FY, provided that it satisfies the property Cy.

Definition 2. Define the category of Cqy-predicates CoPRED as follows:

— an object of CoPRED is a pair (P, A) where P is a Co-predicate on A € C;;
— an arrow from (P, A) to (Q, B) is an arrow h € C; (A, B) such that g € P(X)
implies ho g € Q(X). O

Definition 3. For Cy-predicates P on A and QQ on B, define Cq -predicates PQQ
on A® B and P — @) on A — B as follows.

(P& Q)(X) = {«g@h)oﬂf) g€ P(Y), heQ(2)

HKZGQ)f€Q¢&Y®@}

(PﬂQNﬂ={feQ®KAﬂB)

VY € G a€ P(Y) implies
evo(f®a)eQRQ(X®Y)

O

The definition of P ® @) above is derived from a few category-theoretic tools,
which will be explained in Sect. 4; for now, we shall give a proof-theoretic ex-
planation. A sequent X - A ® B can be derived as

P 11y,
Iy : :
: YFA ZFB(®D
XFY®Z KZFA@B(E)
XFrAxB ®

where X FY ® Z splits a resource X to Y and Z which are used to prove A
and B respectively. In general, such a splitting of resource is not unique, so we



consider all possible cases such that (i) the proof IT; of the splitting satisfies the
“tensor-closed property” Co and (ii) the proofs ITy of Y + A and I}, of Z + B
satisfy the predicates P(Y) and Q(Z) respectively — in such cases we say that
the derivation satisfies the property (P ® Q)(X).

The definition of P — (@ is in spirit the same as the usual definition of
logical predicates; M : A = B satisfies P = @ if and only if M N : B belongs
to @ for any N : A satisfying P. However, since our type theory is linear, we
have to deal with the resources of terms linearly, and we explicitly state them
in the definition: intuitively, A F M : A — B satisfies P — @ if and only if
A, A"+ MN : B satisfies Q for any A’ - N : A satisfying P.

Lemma 1. For each X, A € Cy define P4(X) ={1f | f € Co(X,A)}. Then

— Py is a Cy-predicate on TA.
— [ :(P4,IA) = (Pp,IB) in CGPRED iff f =1g for some g € Cy(4, B).
— Py @Pp =Pygs. a

Proposition 2. CoPRED forms a symmetric monoidal closed category by the
following data: the unit object is (Pr,I), tensor is given by (P,A) ® (Q,B) =
(P®Q,A® B), and exponent (P,A) — (Q,B) = (P — @, A — B). Moreover
P extends to a strict symmetric monoidal functor from Cy to Co PRED which is
full. O

Remark 1. If Cy is closed and T preserves exponents strictly, then so is P — in
particular we have P4_,p = P4 — Pp. O

Ezample 1 (Subsconing). If Cy is equivalent to the one object one arrow cate-
gory, a Co-predicate on A is just a subset of C; (I, A), thus is a predicate on the
global elements of A. For predicates P on A and ) on B, we have

PRQ={(goh)o~ | g€ P,heQ}
P—oQ={feC(I,A—-oB)|evo(f®g)o~€eQ for any g € P}

where ~ indicates the canonical isomorphism I 5 I ® I. Following [21] we call
this category of predicates the subsconing of C; and write C; for it. O

3.2 Logical Cy-Predicates

Suppose that we have Cy, C; and T: Cy — C; as before. Also we fix an inter-
pretation [—]; of MILL in C; .

Definition 4. A type-indezed family {P,} is a logical Co-predicate if

— P, is a Cy-predicate on [o]1,
- P =Py, P0'®T =P, ®F;, P, o =P, — P, and
— [e : (Ps,[o]1) = (Pr,[7]1) for each constant c:o — 7. |



Note that a logical Cy-predicate is determined by its instances at base types.
Given a logical Cy-predicate {P,}, we can interpret MILL in CoPRED by [b] =
(P, [[b]1) for each base type b and [c] = [c]1 : (Py,[c]1) = (Pr,[7]1) for each
constant ¢ : ¢ — 7. Thus we have

Lemma 2 (Basic Lemma for MILL). Let {P,;} be a logical Cy-predicate.
Then, for any term A = M : 7, [A = M : 1)1 : (Pa, [|A]) = (P, [r]h)
holds. O

Co itself determines a logical Cy-predicate in a canonical way, provided that

— for each base type b there is an object [b]o € Co, and
— for each constant ¢ : 0 — 7 there is an arrow [c]o € Co ([¢]o, [7]o)

where [o]o is defined inductively by [I]o = I and [e®7]o = [6]o®[7]o- Then we
automatically have an interpretation [—]; in C; determined by [b]1 = I([b]o) and
[cli = 1([c]o)- Now define the canonical logical Cy -predicate {P}} by Py = Pry,.
Basic Lemma, for the canonical logical Cy-predicate implies that, at —o-free types
(at any types if Cy and I are closed) a definable element is in the image of I.

3.3 Binary Logical Cy-Relations

It is straightforward to generalize (or specialize) our logical predicates to multiple
arguments, i.e. logical relations, in the same way as demonstrated in [21]. Here we
spell out the case of binary ones. Suppose that Cy is a small symmetric monoidal
category, C; and C; are locally small symmetric monoidal closed categories and
that Iy : Gg — C; and I : Cy — G, are strict symmetric monoidal functors. A
binary Cy-relation is just a Cy-predicate obtained by replacing C; by G x G
and I by (I1,I) : Co — C; x Cy. Explicitly:

Definition 5. An Obj(Cy)-indezed set R = {R(X)}xec, is a Co-relation on
(A,B) € C; x Cy when R(X) C C, (11X, A) x C(I.X, B) for X € Cy, and, for
f € (CO(XaY)) (gah') € P(Y) implies (go]llfaho]l2f) € P(X) 0

Definition 6. Define the category of Cy-relations CoREL as follows: an object
of CGoREL is a triple (A, B, R) where R is a Cy-relation on (A, B); and an arrow
from (A,B,R) to (A", B',R') is a pair (h € C, (4, A",k € C5(B, B")) such that
(f,9) € R(X) implies (ho f,kog) € R'(X). O

Proposition 2 tells us that Cy REL is a symmetric monoidal closed category. More
explicitly, for Cy-relations R on (4, B) and R' on (A’, B'), we have Cy-relations
RR on (A A/, B® B') and R — R' on (A — A', B —o B') as follows.

(R® R)(X) = {((g®g’) olLf, (h@h') o I2f)

W, Z2eC feG(X,Y®2),
(9,h) € R(Y),(¢', 1) € R'(Z)

VY € Cy (a,b) € R(Y) implies }

(R—R)(X) = {(f’g) (evo (f®a) evo(gab) € R(X@Y)

Now fix interpretations [—]; and [—]2 of MILL in C; and C; respectively.



Definition 7. A type-indezed family {R,} is a logical Cy-relation if

— Ry is a Cy-relation on ([o]1,[o]2),
— Ri(X)={(1f,1of) | f €Co(X, )}, Rowr =Ry ® Ry, Ry—or =Ry —R; and
~ (e, [12): (Iol. [712 Ro) = (7l [la, Br) for each constantc: o 7. O

Lemma 3 (Basic Lemma, binary version). Let {R,} be a logical Cy -relation.
Then, for any A M : 7, ([AF M : 7)1, [AF M : 7]2) : ([|Al]1, |[|A|]]2,R|A|) —
(I711,[7]2, R+) holds. m|

4 Categorical Glueing

We sketch the categorical glueing constructions used in our development; the
detailed category-theoretic analysis is found in [13].

We write (D | I') for the comma category [19] (or the “glued category”) of a
functor I' : C — . An object of (D | I') isa triple (D e D,C € C,f : D = I'C).
An arrow from (D,C, f) to (D',C",f')isapair (d : D — D',c: C = (")
satisfying I'co f = f' o d. We note that there is a projection functor p : (D |
I'y - C given by p(D, C, f) = C and p(d,c) = c.

Lemma 4. Suppose that C and D are symmetric monoidal closed categories and
that I' : C — D is a symmetric monoidal functor. Moreover suppose that D has
pullbacks. Then the comma category G = (D | I') can be given a symmetric
monoidal closed structure, so that the projection p : G — C is strict symmetric
monoidal closed.

Proof (sketch). We define the symmetric monoidal structure on G by

Ig = (IDJI(::mI)
D,C, /oD ,C' fH)=DeD,CaC' mec o (f®f))
de)@(d,d)=ded,cad)

where my : In = I'Ic and mc,cr : I'C @ I'C' — I'(C ® C") are the coherent
morphisms of the symmetric monoidal functor I'. Exponents are defined as

(D707f) —° (Dlacl7fl) = ((D —° DI) XD—orc! F(C—O Cl)a C—o Cl: 7T2)
which is given by the following pullback in D.
(D — D') Xp_orcr T'(C — C') — 2 rC—c)
Q lA(FeVC,CI [e] mC%C’,C)

T I'cC —r1rc'
lf—OFC'
D — D! D=f D —TIC' -



This result seems to be folklore. Notice that the glueing functor I" does not have
to be strong.

In the situation of the last section, by letting I" : C; — Set®’ be the
functor which sends X to C; (I—,X), we obtain the setting for the category of
Co-predicates. The symmetric monoidal closed structure of Set®’ is given by

X,Y
I(-) = Co(= 1), (F® G)(-) =/ FX x GY x Cy(—, X ®Y) and (F —o

G)(=) = Set™ (F(=),G(-® =)) (see [15]), for which I" becomes symmetric
monoidal. For describing the predicates, we are interested in the full subcategory
of the glued category whose objects are subobjects in Set®’ . This is precisely
the category Cy PRED, which is again symmetric monoidal closed; the definition
of unit and tensor are patched in the obvious way (this is possible because Set®’
admits epi-mono factorization), resulting the concrete descriptions in Sect. 3.

Lafont has shown that, using the glueing for cartesian closed categories, a
small cartesian category fully and faithfully embeds to the cartesian closed cat-
egory freely generated from the former [16]. We can use Co PRED for showing a
parallel result:

Example 2. Let Cy be a small symmetric monoidal category and C; be the sym-
metric monoidal closed category freely generated from Cy. Then the embedding
I:Cy — C; is full faithful. Faithfulness is easily shown by constructing a sym-
metric monoidal closed category to which Cy faithfully embeds. Fullness follows
from the commutative diagrams

C

G

where P* is the uniquely determined strict symmetric monoidal closed functor
making the upper triangle commute, and the right triangle commutes because
of the universal property of I. Since both P and p are full, so is T =po P. O

Syntactically, this implies that the I, ®-fragment of MILL is full in MILL; we
can show it by applying the Basic Lemma to the canonical logical predicate
(where Cy is the term model of the I, ®-fragment), which in fact is a concrete
reworking of Example 2.

For interpreting the modality ! of DILL in the following section, we will need
to determine a symmetric monoidal adjunction between the glued categories:



Lemma 5. Suppose that C; (L Cy and Dy "Dy are (symmetric monoidal)
U U’

adjunctions, with (symmetric monoidal) functors It : C; = Dy and I3 : Cy —
Dy together with a (monoidal) natural isomorphism 7 : U'Iy ~ INU. For G, =
(Dy | 1) and Go = (D, | ), there are functors F : G — Go and U : Go — Gy
given by

F(D,C,f)=(F'D, FC, oco F'f), F(d,c)=(F'd,Fc),
U(Y, X; 9) = (U’Y) UX: TX © Ulg)a U(y,w) = (U'y,UfI})

where oc = EIFQFC ) FITEé o F'Inng : F'INC — ILFC (n is the unit of F 41U
and ¢' is the counit of F' 4 U'). F is (strong symmetric monoidal and) left
adjoint to U. Moreover the projections p1 : G1 — C; and p2 : Go = Cy give a

F F
map of adjunction [19] from G (L’ Go to C; (= C. o
u U

5 Dual Intuitionistic Linear Logic

Now we enrich our logic and calculus with the modality !. There are many
possible choices for this, see for instance [7]. Here we choose the formulation
due to Barber and Plotkin, called Dual Intuitionistic Linear Logic (DILL) [5]
for its simple syntax and equational theory, as well as for the well-established
category-theoretic models of DILL in terms of symmetric monoidal adjunctions.
Alternatively we could use Benton’s Linear Non-Linear Logic (LNL Logic) [6]
which has essentially the same class of category-theoretic models as DILL. In
DILL a typing judgement takes the form I"; A+ M : ¢ in which I” represents an
intuitionistic (or additive) context whereas A is a linear (multiplicative) context.

5.1 Syntax of DILL
Types and Terms

ou=b|l|o®c|o—o0c|lo
Mao=cM)|z| * |let xbeMinM|MQM |letzQx be MinM |
Ax.M | MM | M | let !z be M in M

Typing
cC:0—T F;A}—M:U(C tant) Variabl
onstan _ i
I'; Are(M): T F;m:o!—x:a( ariablelin)
' A,z M:1I I'; AsFN:o
- II ) )
I’;(Z)I—*:I( ) F;AlﬂAgl-let*beMinN:a(IE)
I'; i-M:oQ7
s A7/F-M:o F;AQI-N:T(®I) I'; As,z:0,y:THN:6 (®E)
I'; AMMoFMQN:o®T I'; AifAsFletx®y be M in N : 0
r'; Aixz:ob-M: T I s AAzWM:o—o1 I' AyF-N:o E
—o —o
I’;A}—)\x.M:a—or( ) I'; AjffAs - MN : 7 ¢ )



Variable;x,
F1,w:a,1”2;@|_$:a( ariableint )

', 0r-M:o s AzbrMile TINw:o; Ay N1

Sl B e A 1
Ir; 0F'M:lo (D) I'; AMifAsklet!lzbe Min N7 (‘E)
Axioms
let x be x in M =M let * be M inx=M
let z®y be M®N in L=L[M/x,N/y| letz@ybe Minz®@y=M
(A.M)N = M[N/z] Ax.Mz =M
let !z be !M in N = N[M/z] let lz be M inlz =M

Cllet = be M in N] =let = be M in C[N]
Cllet z®@y be M in Nl =let x ®y be M in C[N]
Cllet 'z be M in N] = let !z be M in C[N]

where C[—] is a linear context (no ! binds [-]).

5.2 Semantics of DILL

Let C be a cartesian category (category with finite products), I a symmetric
F

monoidal closed category and (C<I>]D) a symmetric monoidal adjunction; we
U

understand that the symmetric monoidal structure on C is given by (a choice
of) the terminal object and binary product. Assume that there is an object
[b] € D for each base type b and an arrow [c¢] € D([o],[r]) for each constant
¢: 0 — 7, where [o] € D is inductively defined by [I] = I, [o @ 7] = [o] @ [7],
[c — 7] = [o] — [7] and [lo] = FU[o]. For each typing judgement I" ; A+
M :o0,wedefine [I'; A+ M :o]:[|I"; A|] = [7] in D as follows, where
|I"; Al = |'I, A| in which II"' = z1 Hloy,...,zp o, for ' =21 : 01,...,2, 1 Oy
First eight cases are dealt with as in MILL, with care for discarding or duplicating
the intuitionistic context, using

discardr Ao :[|I"; Al = [|1AN]
ity a, [T 5 AitAsl] = 15 A @ [T 5 Aaf]

which are defined in terms of projections and diagonal maps in C and imported
into D via F'. For last three cases we have

[I,z:0,I5; OFx:0]=
[y,2:0,03]] 3 F(..x Ulo] x...) 28 FU[0] 5 [0]

[T 0FM o] = [IT; 0] = ®, FU[oi] ﬂ)& FUFU[o;] =

~ FU[I' ; 0-M:0]
FU(Q, FU[o;]) = FU[|I" ; 0] ——— FUJ[o]
[I"; AifAs Flet Iz be M inN:7] =
;. Ar-M:lo]®id

[117; AigAs] SN [ allell; Azﬂ] it ]]
Iyx:o ; AskN:T
[le] @ [IT"; A2l 35 [z :0; A2|]] — [7]



where proj is a suitable projection in C, € and § are the counit and comultipli-
cation of the comonad FU while m is an induced coherent morphism.

Proposition 3. This semantics is sound and complete [5]. |

5.3 Logical Predicates for DILL

Consider the following commutative diagram of functors

Co —2+ Dy

Hl

G T’Dl

J

in which Cy and C; are cartesian categories, Iy symmetric monoidal and Iy
symmetric monoidal closed; and Fg, Fi are strong symmetric monoidal while I,
J are strict symmetric monoidal. Moreover assume that F; has a right adjoint
Uy:D — (Cl .

As in Sect. 3, we define the categories of Cy- and Dy-predicates — let us
call them CyPRED and Iy PRED respectively. Note that Co PRED is a cartesian
category with products given by (P x Q)(X) = {{f,9)|f € P(X),g € Q(X)}
for Co-predicates P and @ (which coincides with P ® ) in Definition 3).

Now we give functors between Cy PRED and Iy PRED. For a Cy-predicate P
on A € Cy, define a Dy-predicate L(P) on F1 A € Dy by

LP)Y) = {Figolf|3X e C feDy(Y,FxX),g€ P(X)}
and, for a Dy-predicate Q on B € Iy, a Cy-predicate ﬁB(Q) on U1 B € C; by
R(Q)(X) = {f* € CL(IX,U1B) | f € Q(FpX) C Dy (JFoX, B) = Dy (R IX, B)}

where f* :IX — U; B is the adjoint mate of f : F;1X — B.

Proposition 4. L and ﬁ; extend to functors between CoPRED and Do PRED.
Moreover L is strong symmetric monoidal, and left adjoint to Fy. O

Therefore we have a symmetric monoidal adjunction between a cartesian cate-
gory CoPRED and a symmetric monoidal closed category Dy PRED. Let ! be the
induced comonad on Dy PRED, that is, we define a Dy-predicate |P on F1U; A by

(IP)Y) = {Fig*olf|3X e Cy feDy(Y,FoX),9 € P(FoX)}

for a My -predicate P on A. These are derived from a category—theoreptic construpc—
tion (left Kan extension [19] gives a left adjoint of (—) o Fp : Set™ — Set®")

. . RN P P
together with Lemma 5 (for glueing C; 2Dy to Set® z Set™0 ), but here
Uy (=)oFy



let us motivate !P more intuitively. A sequent @) ; Y F!A can be proved as

Hg
I; :
: X ; Q)I—A(I)
0: YFX X;0HA
0; YI—'A ('E)

where ) ; Y F!X converts a linear resource Y to !X which is used non-linearly
in X ; @ A to produce !A. Taking all such possible cases into account, we say
that the proof satisfies (!P)(Y") when IT; belongs to Iy and II, satisfies P(X).

F
Now let us fix an interpretation [—]; of DILL in C; <11>]I))1.
Uy

Definition 8. A type-indezed family {P,} is a logical (Co 5 Dy )-predicate if
— P, is a Dy-predicate on [o]1,
- P =P, Pog: =P, Py, P,_o, = P, — P, and P, =!P, hold, and
— [eli : (Ps, o)1) = (Pr,[7]1) for each constant c:o — 7. |

Lemma 6 (Basic Lemma for DILL). Let {F,} be a logical (Cy 5 Dy)-
predicate. Then, for I' ; A= M 7, [I"; A-M:71]i: (Pr; a,[1; Alh) =
(Pr,[7]1) holds. |

(Co 5 Dy ) itself determines the canonical logical (Co 5 Dy )-predicate when

— for each base type b there is an object [b]o € Dy, and
— for each constant ¢ : 0 — 7 there is an arrow [c]o € Do ([o]o, [7]o)

where [o]o is defined inductively by [I]o = I and Jo ® 7]o = [o]o ® []o. In
such cases we automatically have an interpretation [—]; in Iy determined by

[6]: = J([b]o) and [c]; = J([c]o), and the canonical logical (Co 3 Dy )-predicate
{P;} is determined by P = Ppy,-

Ezample 3 (From MILL to DILL). Let Dy be the term model of MILL and Gy
F
equivalent to the one object one arrow category, and C; <11)ID)1 be the term

model of DILL with the same base types and constants. Ai)plying the Basic
Lemma, to the canonical logical (Cy — Dy )-predicate it follows that MILL is a
full fragment of DILL; note that P, o, = P, — P, holds for !-free types ¢ and
7 (see Remark 1). |

Ezample 4 (From action calculi to DILL). Suppose that Cy Iy Dy is the term
P,
model of an action calculus [20,22] and C; (_]D)l is that of the corresponding

DILL (alternatively the LNL Logic of Benton [6]) with I and J induced by the
translation from the action calculus to DILL. If we have only non-parameterized
constants, Basic Lemma applied to the canonical logical predicate implies that
the translation is full. In fact we can deal with parameterized constants (control
operators) as well (see [13]), so together with the conservativity [4] we have the
full completeness of DILL (LNL) over (static) action calculi. |



6 Related Work, Further Work

6.1 Categorical Logical Predicates

Our treatment of logical predicates in category-theoretic framework is inspired
by Hermida’s work on fibrations and logical predicates [14], and also influenced
by Mitchell and others’ work, in particular [21]. However, all these results are for
typed lambda calculi. Blute and Scott [9] do consider a linear variant, and the
intuition behind their work seems close to ours, though their work is on classical
linear logic and better understood in connection with Tan’s recent work (see
below). We also note that Ambler [3] has studied some relevant idea. The fact
that our construction yields (bi)fibrations has some significance in our glueing
constructions; we leave this categorical analysis to the full paper [13].

6.2 Classical Linear Type Theories

So far we have only considered “intuitionistic” linear type theories. It is natural
to expect that our construction works equally well in the settings with duality,
i.e., classical linear theories. Here is a relevant construction explored by Tan:

Ezample 5 (Double Glueing). An attractive use of categorical glueing is devel-
oped in Tan’s thesis [23]. Let C be a x-autonomous category (typically a com-
pact closed category). Because of the duality, C°P is also #-autonomous and

we have subscones (Example 1) C and C°P with projections p; : C - C and
po : CoP — C°P. Hyland noticed that the category GC obtained by the following
pullback is a s*-autonomous category.

GC — o

Pa

(C P (C

Explicitly, GC’s object is a triple A = (|4| € C, A, C C(1,|A]), A € C(|4], 1))
and an arrow f : A - Bin GCis an arrow f : |A| — |B| in C satisfying foa € B;
for a € A; and also bo f € A; for b € By (this generalizes Loader’s “linear
logical predicates” [18]). The duality between C and Cor " induces a duality on
GC which determines a *-autonomous structure. Tan calls this construction a
double glueing, from which she has obtained various full completeness results for
multiplicative linear logic (MLL). m|

In fact it makes sense to replace the subscones in double glueing by Cy PRED for
some suitably chosen symmetric monoidal category Cy. Using this we can derive
a notion of logical predicates for MLL and, for example, can show that MILL is
a full fragment of MLL. See [13] for an exposition.
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