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Introduction (1/3)

We often talk about traced monoidal categories and

compact closed categories (more generally tortile monoidal categories)

cf. other talks of this workshop.

However, it seems that we have not paid much attention to
traced monoidal closed categories. . .

Google search (14 July 2007) for
"traced monoidal categories": 656 results
"compact closed categories": 722 results

"traced monoidal closed categories": 4 results (all related to this talk)

There are a few “reasons’.




Introduction (2/3)

There are a few “reasons’:

1. lack of good examples: many important traced monoidal closed

categories known so far are either

(a) cartesian closed categories with fixed-point operator

(via the trace-fixpoint correspondence), or

(b) compact closed /tortile.

. lack of motivations: trace and closedness seem to be rather
orthogonal concepts, and can be discussed separatedly.

. another reason: Int-construction. In any case one may obtain
compact closed/trotile categories from traced categories for free

via the Int-construction.




Introduction (3/3)

In this talk | will explain some observations on traced monoidal closed
categories, and try to convince you that they are in fact interesting.

We will revisit the notions of traced monoidal categories and
Int-construction, and give a (hopefully new) characterisation of
traced monoidal closed categories as monoidal co-reflexive full
subcategories of tortile monoidal categories.

Applications to models of linear logic, models of recursive computation,
and program transformations will then be presented.

Caution: Whenever possible, | will talk about
{traced balanced (braided) monoidal categories, tortile monoidal categories}

rather than just about

{traced symmetric monoidal categories, compact closed categories}

following the original development by Joyal, Street and Verity.




Part |: Traced Monoidal Categories




Preliminaries: Monoidal Categories

A monoidal category (tensor category) C = (C,®, I, a,l,r) consists of

a category C, a functor ® : C x C — C, an object I € C and natural
isomorphisms a4 5.0 (AQB)®@C 5 A® (BRC),la:1® A= A and
ra:A® IS A such that the following two diagrams commute:

(A®B)®C)® D—»(A® B)® (C® D)

a®Dl

(A®(B®C))®D

a
Y

A®(B®C)®D)5=+A® (B® (C® D))

(AR I) @ B—+A® (I ® B)

7"®B\ /4®l

A® B

(In practice, one may forget a, ¢, r, and identify (A ® B) ® C with
A ® (B ® (') etc — thanks to the coherence theorem.)




Preliminaries: Braidings, Symmetries and Twists

A braiding is a natural isomorphism c4 5 : A® B — B ® A such that both ¢

and ¢! -1

satisfy the “bilinearity” diagrams (the case for ¢™ " is omitted):
(A B)® C —— A®(B®C) —— (BRC)® A

c®C

w®AWM%——>B®M®Oy—5>B®W®A)

A symmetry is a braiding such that ca 5 = ¢’ ,.

A braided/symmetric monoidal category is a monoidal category equipped with

a braiding/symmetry.

A twist or a balance for a braided monoidal category is a natural isomorphism
04 : A 5 A such that 0;r = 1d; and 9A®B = CB,A © (93 X HA) O CA,B hold.

A balanced monoidal category is a braided monoidal category with a twist.




Geometry of Monoidal Categories
(Geometry of tensor calculus, Joyal and Street / string diagrams, Penrose)

A morphism f: A1 ® A2 ®...® A, — B1 ® B, ®...% B, can be drawn as:
| g

52
—

Morphisms can be composed, either sequentially or in parallel:

&g pR

o = gz

f p&

golf

Braids: ¢ = y>~.. ¢ = k’_ Twists: § =2 (7' =S




Traced Monoidal Categories (Joyal, Street and Verity, 1996)

Categorical structure for cyclic structures like knots and cyclic graphs

A traced monoidal category is a balanced monoidal category C equipped

with a family of functions, called trace operator

Tryp:C(A® X,B®X) — C(A, B)

S I . ¢
A _@_HA

subject to a few coherence axioms.




Axioms for Trace (1/2)
(slightly simpler than the original version)

Tightening (Naturality)
Tri p/((k®idx)o fo

Yanking

Try x(cx,x) o Oy =idx = Tr)}g,x(c)_(,lx) °0x




Axioms for Trace (2/2)

Superposing
Tré(@A,C@B(idc ® f) =1idc ® Trff’B(f)

Exchange

TT%,B(TTX@)X,B@X(JC))
T"“X,B(TTX@Y,B@Y((MB ®cy,x)o folt
<




Exercise: Sliding (Dinaturality)

Proposition. The following equation is derivable.

(cont. to the next slide)
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Using Superposing and Tightening, we have

(cont. to the next slide)
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Thanks to the naturality of braidings, this is equal to the following.

(cont. to the next slide)
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By Yanking

(QED)

"Vanishing for tensor” is also derivable by a similar argument.
(" Vanishing for unit” is redundant in the original axiomatisation.)

Cf. similar axioms used by Milner / Blute, Cockett and Seely
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Examples of Traced Monoidal Categories

Linear Algebra (the classical example)
The category of fin. dim. vector spaces and linear maps. For a linear
map f:U®xg W =V @x W, its trace Tr(}\,(f) : U — V is given by

(Trily ()i = Sk fiokjor

Quantum Invariants of Knots
The category of representations of a quasi-triangular Hopf algebra,
which gives rise to the knot (ribbon) invariants.

sooc: - (G - €

Various interesting knot invariants arise in this way.
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Examples of Traced Monoidal Categories (cont.)

Trace-Fixpoint Correspondence (Hyland /Hasegawa)?
A category with finite products (products taken as the monoidal

structure) is traced if and only if it has a fixed-point operator
satisfying the dinaturality and diagonal property, or the Bekic property
(Conway fixed-point operator in the sense of Bloom and Esik).

P

:f+:‘_:fza e

Thus many categories in denotational/algebraic semantics are traced.

For example, the category Cppo of pointed cpo’s and continuous
functions is traced, where trace determined by the least fixed-points.

aCf. mathematically equivalent observations by Bloom and Esik / Stefdnescu
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Part |l: The Int-Construction




Tortile Monoidal Categories

A tortile monoidal category® is a balanced monoidal category with
an A* for each object A, unit / —+ A® A* and counit A* ® A — |
subject to a few equations (saying (—) ® A 4 (—) ® A™ and 07 = 0+;

(—)" extends to a contravariant equivalence).

(Note: tortile symmetric monoidal categories = compact closed categories)

The following result is important for applications in knot theory:

Theorem (Shum). The tortile category freely generated by a
single object is equivalent to the category of framed tangles.

Therefore, tortile categories give rise to invariants for tangles.

"Abstract is concrete” (Hyland)

dother names: ribbon category, braided compact closed category, ...
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Traced Categories vs Tortile Categories

Any tortile category has a unique trace (called canonical trace),

hence is also a traced monoidal category.

It follows that a monoidal full subcategory of a totile category is traced.

In fact, every traced monoidal category arises in this way:

given a traced monoidal category C, we can construct

a tortile category Int C to which C fully faithfully embeds,

via the Int-construction of Joyal, Street and Verity —

an abstract version of “Geometry of Interaction” of Girard/Abramsky.
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The Int Construction (Joyal, Street and Verity)

Given a traced monoidal category C, we construct a category Int C as follows.
Objects: pairs of objects of C

Arrows: Int C((AT,A7),(BT,B7))=C(AT® B ,BT @ A7)

The identity on (A", A7) isid,+ @ 0,0 € C(AT @ A7, AT @ A7).

The composition of f € Int C((AT, A7), (BT, B7))=C(AT®B ,BT®A")
and g € IntC((B",B7),(CT,C7))=C(B"®@C~,C" ® B™) is given by

C , )

AN

AT
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The Int Construction (cont.)

Monoidal structure: we define tensor and unit by
(AT, A7)®@(BT,B")=(AT®B",B-®A )and I = (I,I).
For f1: (A, A7) = (B,By) and fo: (AS,A)) — (B, B;),

define f1 ® fo by
X

yuL,

Braids and twists (not quite obvious for non-symmetric case):
S
_L\/\/:
<

N >

(Exercise: what are ¢! and 61 ?)

o XX

CcC =
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Duality: (AT, A7)" = (A", AT)
For f: (AT, A7) — (B",B ") define f[*: (BT,B7)* — (AT, A7)" as
e

AU,

The unit s+ a—) : [ — (AT, A7)®@ (AT, A7)" is given by id+ ® 61
The counit 4+ 4y : (AT, A7) @ (AT, A7) = Tisids- @04+

A_.

Theorem (Joyal, Street and Verity).

These data determine a tortile monoidal structure on Int C.
Moreover, the functor N : C — Int C sending A to (A, I) strongly
preserves the traced monoidal structure, and is full faithful.

In fact, Int-construction is universal, as shown by JSV: it gives a left biadjoint
to the forgetful 2-functor from the 2-category of tortile categories to that of

traced monoidal categories.
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The Canonical Trace on IntC

Explicitly, the canonical trace on Int C can be given as follows.
(It is not entirely obvious for the non-symmetric case.)

For [ : (AT A‘) (X“L X7) = (BT,B7)® (XT,X7), its trace
TrX X0 f — (BT,B7) is

<

<

RS
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Answers to the exercise
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Trying to realize Int-construction with my son

25



Part Ill: Traced Monoidal Closed Categories




Closed Structure
So far we have not thought much about closed structure, or higher-types.

Recall that a monoidal category C is closed if
— ® A :C — C has a right adjoint A — —:

C(X®AY)~C(X,A—-oY)

In particular, tortile categories are closed, with A — B = B ® A*.

In the context of linear logic, being symmetric monoidal closed means
that we can interpret the intuitionistic multiplicative fragment

(tensor ®, unit T, and linear implication —o) in C.

In the rest of this talk, we will see that, for a traced monoidal category,
closedness has yet another reading in terms of the Int-construction,
related to the modality ! and linear decomposition A — B =!A4 — B.
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A Folklore on Monoidal Closed Categories

It is known that a monoidal co-reflective full subcategory

of a monoidal closed category is also closed

(although the closed structure may not be preserved by the inclusion):

Lemma (folklore*).  Let C 2 D be a monoidal adjunction.

If F is full faithful and D is closed, then C is also closed, with
A —OcC B = U(fA —OD fB)

Proof: C(C® A,B)

Y

D(F(C® A),FB)
D(FC ® FA,FB)
D(FC,FA — FB)
C(C,U(FA — FB))

F is full faithful
JF is strong monoidal

D is closed

FAu

Note: an adjunction F - U/ is a monoidal adjunction iff F is strong monoidal (Kelly).

At the workshop, Hyland told me that this result was due to Day.
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Main Observation

Below we present a variation for traced monoidal categories. It
characterizes closedness in terms of an adjunction associated to the

Int-construction.

Theorem.

Let C be a traced monoidal category, and N : C — IntC be
the canonical inclusion from C into IntC (i.e. N (A) = (A, I)).
Then C is closed if and only if A/ has a right adjoint.

Thus every traced monoidal closed category arises as a monoidal
co-reflexive full subcategory of a tortile monoidal category.
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Proof: “if" follows from the previous folklore lemma, as A\ is full faithful
and strong symmetric monoidal. Note that, by the lemma,

A—o¢ B ~ UNA —omie NB) = U(A,I)* @ (B,I)) ~ UB,A)

where U/ is right adjoint to V. This suggests how we proceed to show
the “only if" part.

Thus, if C is closed, define U(AT, A7) = A" — AT,
For f: (AT, A7) = (B",B7), letU(f): (A~ — AT) — (B~ — B™T)
send k: A= — AT to Trg:’B+(f o(k® B )ocg- a-): B~ — BT,

S

B~ A= AT BT
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In other words, /() describes “composition with f in IntC" in C.

f

Q <
sz K1 X
1

AT
It is immediate to see that {/ is a functor.
Finally, it is easy to see the adjointness:

Int C(N(A),(BT,B7)) = IntC((A,I),(BT,B7))
= C(A® B~,BT®I)
~ C(A, B~ — B™)
= C(A,U(B*,B™)).
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Corollary: Monoidal Comonad

Below we consider only the case with symmetry.

Note that the adjunction in this theorem gives rise to an idempotent
symmetric monoidal comonad NI/ on Int C which sends (AT, A7) to
(A= —o AT, T). Thus we have:

Corollary. For any traced symmetric monoidal closed category C,
there is an idempotent symmetric monoidal comonad on IntC
such that its co-Kleisli category is equivalent to C.

Let us apply this to models of linear logic, having in mind that
linear decompostion amounts to taking co-Kleisli categoies of
certain comonads corresponding to !.
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Corollary: Linear Decomposition is an Inverse to Int

A symmetric monoidal adjunction between a category with finite
products and a symmetric monoidal category gives rise to a comonad
which models the exponential ! of linear logic

(linear exponential comonad in the sense of Hyland and Schalk).

Corollary. For any traced cartesian closed category C, there is an
idempotent linear exponential comonad on Int C such that its co-Kleisli

category is equivalent to C.
Explicitly, this comonad sends (A7, A7) to (A~ = AT, 1).

Together with the trace-fixpoint correspondence:

Corollary. Any CCC with a Conway fixed point operator is equivalent to
one arising from a compact closed model of multiplicative exponential
linear logic via the co-Kleisli construction.
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Corollary: More Exponentials on Int C

Since monoidal adjunctions are closed under composition,
Int-construction actually send a traced model for IMELL
to a compact closed model for MELL:

Corollary. Let C be a traced symmetric monoidal closed category

with a linear exponential comonad ! (i.e. a model of IMELL).
Then Int C is equipped with a linear exponential comonad !

given by '(A+, A=) = N(I{U(A*, A7) = ((A~ —o A+), I),

N
' C ¢ 1 ImtC
U
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Int-construction in Program Transformations

Katsumata and Nishimura (ICFP'06) introduced a program

transformation technique called (semantic) higher-order removal.

Roughly, their technique transforms a higher-order function

g: (A = A") = (B~ = B™) (created in the process of dealing with
fusions of functions with accumulating parameters, which involves
certain bi-directional information flow) to a first-order function

f: AT x BT = BT x A” such that U(f) = g, where U/ is right adjoint
to V.

They give a syntactic condition which ensures that ¢ is in the image of
U in their semantic models, and presented a procedure for identifying f
such that U(f) = g¢.
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Int-construction and Attribute Grammars

More recently, Katsumata has shown that a substantial part of the
theory of attribute grammars (Knuth 1968) can be carried out very
cleanly in terms of traced monoidal categories and Int-construction.

In his work, the adjuntion N -/ provides the equivalence between
attribute grammars and synthesized attribute grammars.

(Ask Shin-ya Katsumata for more detail!)
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Linear Fixed-Points

In my paper in TLCA'97, it is shown that

F
Theorem.  Given a symmetric monoidal adjunction C 2 D between

U
a category C with finite products (taken as the monoidal structure) and a

traced symmetric monoidal category D, there exists a family of functions

(=)' :D(FA® X,X) — D(FA,X)

which is natural in A and dinatural in X.

In particular, the fixed-point equation
fJr — fo(lFA(X)fT)O’rLOFAA
holds (where n: F(Ax A) = FA® FAand A: A — A x A).

This result has been used for providing semantics of recursion in
lambda calculi with cyclic sharing ( “recursion from cyclic sharing”).
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Using functorial boxes of Mellies (CSL'06)?, which are a convenient
notation for monoidal functors and monoidal natural transformations,
this fT can be expressed as follows (to be read from the bottom).

QO
7

§o)
-2
Y

2First introduced by Cockett and Seely as "monoidal functor boxes” (JPAA 1999)
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Linear Fixed-Points (cont.)

In terms of linear logic (or traced symmetric monoidal closed categories

with a linear exponential comonad):

there is a linear fixed-point operator Y :!(X —o X) —o X such that

Y(f) = FYQA)) (f: X —X)
(Note: not (!X — X)) — X))

As we have seen, if C is a traced symmetric monoidal closed category
with a linear exponential comonad (traced model of IMELL), then Int C
is a compact closed category with a linear exponential comonad

(compact model of MELL).
Both C and Int C admit interpretations of such linear fixed-points.
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More Considerations — (Negative) Conway Games

An interesting (non)example:

the category )V~ of negative Conway games (Mellies, 2004) is a
symmetric monoidal full subcategory of the compact closed category )/
of Conway games (Joyal 1977). The inclusion from )~ to ) has a right
adjoint. Thus (by the folklore lemma) )~ is a traced symmetric
monoidal closed category. (Cf. multi-bracketed version in LICS'07 paper)

Y~ is one of very few interesting traced symmetric monoidal closed categories

which are nether cartesian closed nor compact closed.

Int )~ is not equivalent to )J — thus it does not really fit in our result.
But the difference is subtle, and deserves further study.
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Conclusion

We looked at some elements of traced monoidal categories, and
observed that closedness is equivalent to an adjointness associated to
the Int-construction. This result has a number of applications.

| hope that these provide some good reasons/motivations to study
traced monoidal closed categories.

Questions

e s there a good concrete description of free traced monoidal closed
categories? (Sort of "higher-order tangles”?)

e (Related to above) Good syntax for traced (symmetric) monoidal
closed categories? (Term calculi? Proof nets?)

e Constructions on traced monoidal closed categories? (Uniformity?)

e Other traced monoidal closed categories of games?
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End of Slides — Thank You.
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