RIMS Kôkyûroku Bessatsu sample

Here is a Dedication

By

First AUTHOR* and Second AUTHOR**

Abstract

This is a sample file for the authors of articles which will be submitted to RIMS Kôkyûroku Bessatsu.

§1. Section Name

The aim of this article is to show how to make a T_EX -file for RIMS Kôkyûroku Bessatsu. We use the class file rims-bessatsu.cls which is based on $IAT_EX2\varepsilon$. You can easily make a T_EX -file of your article by using this file as a template. Mathemode can be used as usual:

(1.1) y = f(x)

Please use $\begin{dfn} and \end{dfn} for definitions.$

Definition 1.1. This is an example of a 'definition' element. Let f be a cubic polynomial.

Please use $\begin{thm} and \end{thm} for theorems.$

Received April 20, 202x. Revised September 11, 202x.

²⁰²⁰ Mathematics Subject Classification(s):

Key Words:

Supported by JAPAN SUPPORT

^{*}RIMS, Kyoto University, Kyoto 606-8502, Japan.

e-mail: fffff@kurims.kyoto-u.ac.jp

^{**}RIMS, Kyoto University, Kyoto 606-8502, Japan. e-mail: xxxxxx@kurims.kyoto-u.ac.jp

Theorem 1.2 (Optional argument here [4, p. 999]). This is an example of a 'theorem' element.

Please use \begin{proof} and \end{proof} for proofs.

Proof. Trivial. These \newtheorem 's are defined in the preamble of this file. If you want to use different counters for Definitions, Theorems, etc., please make contact with the editors.

Please use $\begin{lmm} and \end{lmm} for lemmas.$

Lemma 1.3. This is an example of a lemma.

Please use $\begin{crl} and \end{crl} for corollaries.$

Corollary 1.4. This is an example of a corollary.

Please use \begin{prp} and \end{prp} for propositions.

Proposition 1.5. This is an example of a proposition.

Please use $\begin{exa} and \end{exa} for examples.$

Example 1.6. This is an example of an example.

§1.1. Subsection Name

Using of subsection is optional.

Theorem 1.7. This is another example of a theorem.

Proof. Trivial.

1.1.1. Subsubsection Name There will be no vertical space before the first theorem in this subsubsection:

Theorem 1.8.

There will be a vertical space before the second theorem in this subsubsection:

Theorem 1.9.

1.1.2. Subsubsection Name There will be no vertical space before the next subsubsection:

1.1.3. Subsubsection Name If there is a line break like this, there will be a space before the first theorem in this subsubsection:

Theorem 1.10.

FIRSTNAME SURNAME

§2. Section Name

Proposition 2.1. This is another example of a proposition.

Proof.

Example 2.2.

References

- Aoki T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I, Ann. Inst. Fourier (Grenoble), 33 (1983), 227–250.
- [2] Brown, B., On a conjecture of Dirichlet, Amer. Math. Soc., Providence, RI, 1993.
- [3] DeVore, R. A., Approximation of functions, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 34–56.
- [4] Kashiwara, M. and Kawai, T., On the boundary value problem for elliptic systems of linear partial differential equations I-II, Proc. Japan. Acad., 48 (1971), 712–715; ibid., 49 (1972), 164–168.
- [5] Kalf. H., Schmincke, U.-W., Walter, J. and Wüst, R., On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, *Proceedings of the Symposium on Spectral Theory and Differential Equation*, University of Dundee, 1974, *Lecture Notes in Math.*, Springer-Verlag, Berlin, Heidelberg, New York, 448 (1975), 182–226.
- [6] Mori, S. and Kollár, J., Birational Geometry of Algebraic Varieties, Cambridge University Press, 1998.
- [7] Mori, S. and Keel, S., Quotients by groupoids, Ann. of Math., 145 (1997), 193–213.