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ABSTRACT. Deligne�s regularity criterion for an integrable connection

\nabla on a smooth complex algebraic variety  X says that \nabla is regular along
the irreducible divisors at innity in some fixed normal compactication
of  X if and only if the restriction of \nabla to every smooth curve on  X is

fuchsian ( i. e . has only regular singulanties at innity). The �only if�

part is the difcult implication. Deligne�s proof is transcendental and

uses Hironaka�s resolution of singulanties.
Following [1], we present a purely algebraic proof of this implication

which does not use resolution beyond the case of plane curves. It relies

upon a study of the formal structure of integrable connections on sur‐

faces with (possibly irregular) singularities along a divisor with normal

crossings.

1. INTRODUCTION: FUCHSIAN CONNECTIONS.

1.1. Let X be a connected algebraic complex manifold, and let \mathcal{E} be an

algebraic vector bundle on X endowed with an integrable connection \nabla.

When X is a curve, the dichotomy between regular and irregular sin‐

gularities (at innity) goes back to the 19th century. The connection \nabla is

said to be fuchsian if all singularities (at innity) are regular, see Manin�s

classical paper [8]. This is obviously a birational notion.

In higher dimension, one may consider a normal compactication \overline{X} of

X and look at the irreducible components Z_{j} of \partial\overline{X}=\overline{X}\backslash X of codimen‐

sion one in \overline{X} . The local subring \mathcal{O}_{X,Z_{j}} of \mathrm{C}(X) is a discrete valuation

ring with residue field \mathcal{O}_{X,Z_{j}}/\mathfrak{m}_{X,Z_{j}}=\mathrm{C}(Z_{j}) . One is then in the famil‐

iar one‐dimensional situation, over \mathrm{c}(\mathrm{Z}) instead of \mathrm{C} , and the notion of

regularity of \nabla along  Z_{j} is dened in the usual way. Namely, consider a

germ of vector field $\theta$_{j} on X- viewed as a derivation of \mathrm{C}(X)- which pre‐
serves \mathfrak{m}_{X,Z_{j}} , but does not send it into \mathfrak{m}_{X,Z_{j}}^{2} , and which acts trivially on

the residue field. Then \nabla is said to be regular along  Z_{j} if there is an \mathcal{O}_{X,Z_{j}}-
lattice in the generic fiber \mathcal{E}_{\mathrm{C}(X)} which is stable under \nabla() (this condition

does not depend on $\theta$_{j} , cf. [2, \mathrm{I}.3.3.4] )1^{\cdot}



In order to obtain a birational notion of fuchsianity, one is then led to say
that \nabla is fuchsian if for any (\overline{X}, Z_{j}) as before, \nabla is regular at  Z_{j}.

At first look, this denition is rather forbidding, since it requires to con‐

sider all divisorial valuations of \mathrm{C}(X) at the same time. Fortunately, it

turns out that it sufces to consider only one normal compactication \overline{X}.

Indeed, according to P Deligne, one has the following characterizations of

fuchsianity.

1.1.1. Theorem. [5, II.4.4, 4.6] The following are equivalent:

i) \nabla is fuchsian,

ii) for some normal compactication \overline{X}, \nabla is regular along all irre‐

ducible components of \partial\overline{X} ofcodimension one in \overline{X},

iii) for any smooth curve C and any locally closed embedding h :  C\rightarrow

 X , hr is fuchsian,

iv) for any smooth Y and any morphism f : Y\rightarrow X,  f^{*}\nabla is fuchsian,

v) for some dominant morphism  f : Y\rightarrow X with Y smooth,  f^{*}\nabla is

fuchsian.

Note that we do not assume that \partial\overline{X} has normal crossings. The difcult

implication is ii ) \Rightarrow iii ). The implication iii)) i ) is comparatively easy to

establish (cf. e.g. [2, I. 3.4.7]), and the other implications follow very easily
from these two. The difculty with ii ) \Rightarrow iii ) arises when the closure of

C in \overline{X} does not meet \partial\overline{X} transversally. A closely related difculty, with

ii)\Rightarrow i) , is to show that \nabla remains regular at the exceptional divisor when

one blows up a subvariety of \partial\overline{X}.

1.2. Deligne�s proof (as contained in the erratum to [5]) is not elemen‐

tary: it relies upon certain transcendental complex‐analytic arguments on

one hand, and upon Hironaka�s resolution of singularities on the other hand.

Recently, inspired by part of Sabbah�s work on asymptotic analysis in

dimension 2 [9], the author has found a purely algebraic proof of Deligne�s
regularity criterion, as a consequence of a more general result about the

semicontinuity of the Poincaré‐Katz rank [1].
The aim of this text is to explain this argument in the simplied form

needed for 1.1.1, i.e . in the context of algebraic connections which are reg‐
ular at innity. We do not use resolution of singularities beyond resolution

of plane curves.

We refer to [4] for a nice introduction to the background and the event‐

ful story of this problem. Its difculty is related to the fact that the stan‐

dard techniques of logarithmic lattices break down in this algebraic context;

along the way, it becomes necessary to go beyond the framework of regular
connections.
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1.3. More precisely, we present an algebraic proof of the following local

rened form of Deligne�s regularity criterionl

1.3.1. Theorem. Let X be a normal connected algebraic variety over C.

Let U be a smooth open subset ofX , with complement @X=X\backslash U, and let

Q be a closed point of@X. Let Z_{1} ,
. . .

; Z_{t} be the irreducible components of
@X of codimension one in X which pass through Q.
Let C be a smooth connected curve, P\in C be a closed point, and  h:C\rightarrow

 X be a morphism such that h(C\backslash P)\subset U and h(P)=Q.
Let \mathcal{E} be a vector bundle on U with an integrable connection \nabla . If (\mathcal{E}, \nabla) is

regular along each Z_{j} , then the vector bundle h^{*}(\mathcal{E}, \nabla) on C\backslash P is regular
at P.

1.4. Warning. What does regularity actually mean? Quot capita tot sen‐

sus: in the literature, one can find analytic denitions (moderate growth of

solutions of meromorphic connections), algebraic denitions (such as the

items in 1.1.1, reducedness of the characteristic variety, and many others

[2]), as well as mixed denitions (of GAGA type: formal/algebraic versus

analytic properties of connections).
The occurrence of so many different denitions is an obvious sign of the

richness of the concept, but at the same time an amazing source of confu‐

sion. All of them are supposed to be equivalent in their common domains

of application, but this is often a matter of folklore or belief, as a complete
and precise dictionary is still lacking (especially in the sensitive case where

the polar divisor has non‐normal crossings). A strange situation, indeed, for

a supposedly well‐understood classical notion!

It is thus essential to keep in mind the denition which we have adopted
right at the beginning in order to understand what we do in this paper: com‐

paring, in a purely algebraic way, a few of the existing algebraic denitions

of regular connections. The wit is that the core of the paper deals with

irregular connections.

2. REDUCTION TO THE PLANE CASE.

2.1. In this section, we reduce 1.3.1 to the case where X is the projective
plane2

We may assume \dim X\geq 2 , otherwise the theorem is essentially triv‐

ial. Replacing X by a quasi‐projective neighborhood of Q and taking the

lthis statement appears in [2, I.5.4] , but the argument given there works only in case the

polar divisor has normal crossings. Indeed, as was pointed out by J. Bernstein, lemma 5.5

of op. cit. on which it relies does not hold in greater generality.
2the next two lemmas are joint work wih F Baldassarri.
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normalization of its Zariski closure in some projective embedding, we may
assume that X is projective.

2.1.1. Lemma. Let X\subset \mathrm{P}_{\mathrm{C}}^{N} be a closed normal connected subvariety of
dimension d\geq 2 . Let U, Z_{j}, Q, h:C\rightarrow X, P be as in 1.3.1.

For any suciently large integer  $\delta$, there exists an irreducible complete
intersection  Y\subset \mathrm{P}_{\mathrm{C}}^{N} of dimension N-d+2 and multidegree (;. ::,  $\delta$)
such that:

(i) Y contains h(C) (with reduced induced structure) and cuts U transver‐

sally at its generic point $\eta$_{h(C)} ;

(ii) Y\cap X is an normal connected surace and Y cuts U\backslash (h(C)\backslash Q)
transversally;
(iii) in a neighborhood of Q, Y cuts each Z_{j}\backslash Q transversally and does

not cut any irreducible component of@X ofcodimension >1 in X , nor the

singular locus of Z:=\cup Z_{j} , except in Q.

Proof. This is more or less standard, but, for lack of adequate reference,
we give some detail. For short, we change a little notation and now write C

for the closure of h(C) in X , with reduced structure (an integral, possibly
singular, curve). Let  $\pi$ : \tilde{\mathrm{P}}\rightarrow \mathrm{P}^{N} be the blow‐up centered at C , and let

E\subset\tilde{\mathrm{P}} the exceptional divisor.

We set \mathcal{I}_{C}=\mathrm{K}\mathrm{e}\mathrm{r}(\mathcal{O}_{\mathrm{P}^{N}}\rightarrow \mathcal{O}_{C}) . Then {\rm Im}($\pi$^{*}\mathcal{I}_{C}\rightarrow \mathcal{O}_{\mathrm{P}}-)=O(E)
and, for  $\delta$>>0, $\pi$^{*}(\mathcal{O}_{\mathrm{P}^{N}}( $\delta$))\otimes O(E) is very ample: a basis of sections

denes an embedding of \tilde{\mathrm{P}} into P. On the other hand, since  $\pi$ is birational

and \mathrm{P}^{N} is normal, one has $\pi$_{*}\mathcal{O}_{\mathrm{P}}-=\mathcal{O}_{\mathrm{P}^{N}} . It follows that the two natural

arrows

\mathcal{I}_{C}\rightarrow$\pi$_{*}({\rm Im}($\pi$^{*}\mathcal{I}_{C}\rightarrow O_{\mathrm{p}}-))=$\pi$_{*}\mathcal{O}(-E)\rightarrow$\pi$_{*}\mathcal{O}_{\tilde{\mathrm{P}}}=\mathcal{O}_{\mathrm{P}^{N}}
are inclusions of ideals of \mathcal{O}_{\mathrm{P}^{N}} . Let D\subset C be the closed subscheme

corresponding to $\pi$_{*}\mathcal{O}(-E) . If D\neq C, D would be punctual and  1\in

\mathcal{O}_{\mathrm{P}^{N}\backslash D^{red}} would correspond to a function on \tilde{\mathrm{P}}\backslash ($\pi$^{-1}(D))^{red} vanishing on

E\backslash ($\pi$^{-1}(D))^{red} , a contradiction. Hence D=C and therefore $\pi$_{*}\mathcal{O}(-E)=
\mathcal{I}_{C} . From the projection formula, one deduces

$\pi$_{*}($\pi$^{*}(\mathcal{O}_{\mathrm{P}^{N}}( $\delta$))\otimes \mathcal{O}(-E))\cong \mathcal{O}_{\mathrm{P}^{N}}( $\delta$)\otimes \mathcal{I}_{C}\cong \mathcal{I}_{C}( $\delta$) ,

whence

\mathrm{K}\mathrm{e}\mathrm{r}(H^{0}(\mathrm{P}^{N}, \mathcal{O}_{\mathrm{P}^{N}} \rightarrow H^{0}(C, \mathcal{O}_{C} =H^{0}(\mathrm{P}^{N}, \mathcal{I}_{C}

=H^{0}(\tilde{\mathrm{P}}, $\pi$^{*}(\mathcal{O}_{\mathrm{P}^{N}}( $\delta$))\otimes \mathcal{O}(-E)) ,

and the linear system of hypersurfaces of degree  $\delta$ in \mathrm{P}^{N} containing C gives
rise to a locally closed embedding

\mathrm{P}^{N}\backslash C\mapsto \mathrm{P}^{M}=\mathrm{P}(H^{0}(\mathrm{P}^{N}, \mathcal{I}_{C} ;
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with Zariski closure \tilde{\mathrm{P}} . The canonical bijection between hyperplanes \mathcal{H}

of \mathrm{P}^{M} and hypersurfaces H of degree  $\delta$ in \mathrm{P}^{N} containing C , is such that

the intersection \mathcal{H}\cap(\mathrm{P}^{N}\backslash C) (in \mathrm{P}^{M} ) equals H\backslash C . So, the intersection

of X\backslash C with a general complete intersection Y of multidegree (;. ::,  $\delta$)
( 1\leq s\leq d-1 entries) in \mathrm{P}^{N} containing $\eta$_{C} , is the intersection of X\backslash C
with a general linear subvariety \mathcal{Y} of codimension s in P. By [3, \mathrm{E}\mathrm{x}\mathrm{p}.
XI, Thm. 2.1. (i)], Y cuts X\backslash C (resp. the smooth part of Z\backslash (C\cap Z) )
transversally and intersects properly any irreducible component of @X \backslash 
(C \backslash @X). Since s<d , Bertini�s theorem shows that the intersection of

\mathcal{Y} with the strict transform of X in \mathrm{P}^{M} is normal and connected. On the

other hand, since $\eta$_{\mathrm{C}} is a simple point of X , it is well‐known that a general
complete intersection of s hypersurfaces of degree  $\delta$ in \mathrm{P}^{N} containing $\eta$_{C},
intersects X transversally at this point.

Applying these considerations for s=d-2 , one obtains (i), (ii) and

(iii). \square 

2.1.2. Corollary. There exists a normal quasi‐projective irreducible neigh‐
borhood X' of Q in Y\cap X , containing an open subset of h(C) , such that

U':=X'\cap U is smooth, the distinct irreducible components ofcodimension

one of@X'=X'\backslash U' passing through Q, are precisely Z_{1}\cap X' ,
.

::, Z_{t}\cap X'.
\square 

If (\mathcal{E}, \nabla) is regular along each Z_{1} ,
. . : Z_{t} , so is its pullback (\mathcal{E}, \nabla)_{|U'}

along Z_{1}\cap X' ,
.

::, Z_{t}\cap X' (cf. [2, I.3.4.4]). This reduces theorem 1.3.1 to

the case where X is a normal surface, or even a projective normal surface

(by the same argument as in the beginning of this section).

2.1.3. Lemma. In the notation of lemma 2.1.1, let us further assume that

d=2 . There exists a morphism g : X\rightarrow \mathrm{P}_{\mathrm{C}}^{2} , which is finite in a neigh‐
borhood V ofQ , such that g(h(C)\cap V) is not contained in the branch locus,
and such that, for any irreducible component T of @X ofdimension 1 with

Q\not\in T, g(Q)\not\in g(T) .

Proof. Let \mathrm{G}(\mathrm{N}-3_{;} \mathrm{P}^{N}) be the Grassmannian of linear subvarieties of

\mathrm{P}^{N} of codimension 3, and let G be its dense open subset consisting of

linear subvarieties which do not intersect X.

For any  $\gamma$\in G, X may be considered as a closed subvariety of the blow‐

up \tilde{\mathrm{P}}_{ $\gamma$} of \mathrm{P}^{N} at  $\gamma$ , and the projection with center  $\gamma$

 p// $\gamma$:\tilde{\mathrm{P}}_{ $\gamma$}\rightarrow \mathrm{P}^{2}
induces a morphism

g_{ $\gamma$}:X\rightarrow \mathrm{P}^{2}
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Let  $\Lambda$\subset \mathrm{G}(\mathrm{N}-2_{;} \mathrm{P}^{N})\times \mathrm{G}(\mathrm{N}-3_{;} \mathrm{P}^{N}) the incidence subvariety (locus
of (;  $\alpha$) such that  $\lambda$ contains  $\alpha$ ), and let  p_{2}, p_{3} be the natural projections.
Notice that p_{3} is a fibration with fiber \mathrm{P}^{2} and admits a section above G :

there is a unique $\lambda$_{ $\gamma$}\in \mathrm{G}(\mathrm{N}-2_{;} \mathrm{P}^{N}) of \mathrm{P}^{N} of codimension 2 passing
through Q and containing  $\gamma$ . Then  $\gamma$ varies, the  $\lambda$_{ $\gamma$} form (via p_{2} ) a dense

open subset of \mathrm{G}(\mathrm{N}-2_{;} \mathrm{P}^{N}) .

On the other hand, $\lambda$_{ $\gamma$} may be identied with the fiber of  p// $\gamma$ above

 g_{ $\gamma$}(Q)\in \mathrm{P}^{2} , and $\lambda$_{ $\gamma$}\cap X with g_{ $\gamma$}^{-1}(g_{ $\gamma$}(Q)) .

By Bertini, one deduces that there is an open dense subset G'\subset G such

that for any  $\gamma$\in G', g_{ $\gamma$} is finite in a neighborhood of Q.
Moreover, if there exists  $\lambda$\in p_{3}^{-1}() which intersects X transversally

and cuts h(C)\cap V (resp. which passes through Q and avoids the T' \mathrm{s}), then

g_{ $\gamma$}(h(C)\cap V) is not contained in the branch locus of g_{ $\gamma$} (resp.  g_{ $\gamma$}(Q)\not\in
 g_{ $\gamma$}(T)) .

One deduces that there is an open dense subset G''\subset G' such that for

any  $\gamma$\in G g=g_{ $\gamma$} satises the conditions in the lemma. \square 

In the situation of theorem 1.3.1 with X a projective surface, g induces

an tale morphism

X'=V\backslash (g_{|V}^{-1}(B)\cup g_{|V}^{-1}(g(\partial X))))\rightarrow \mathrm{P}_{\mathrm{C}}^{2}\backslash (B[g(@X))
which is finite over its image. Up to replacing C by a suitable neighborhood
of P, h(C\backslash P)\subset U\cap X'.

Moreover, using [2, I.3.2.5] and 2.1.3, one sees that the push‐forward
g_{*}((\mathcal{E}, \nabla)_{|U\cap X'}) on g(U\cap X') is regular along each 1‐dimensional irre‐

ducible components of \mathrm{P}_{\mathrm{c}}^{2}\backslash g(U\cap X') passing through g(Q) (which are

either the g(Z_{j}) �s or else are contained in B).
On the other hand, if the connection (go h)^{*}g_{*}((\mathcal{E}, \nabla)_{|U\cap X'}) on C\backslash P is

regular at P , the same is true for its subconnection h^{*}((\mathcal{E}, \nabla)_{|U\cap X'}) .

Therefore, in order to prove the theorem, one may substitute to X any
Zariski neighborhood of g(Q) in the projective plane.

2.1.4. Corollary. Statement 1.3.1 holds in general if it holds when X is an

affine neighborhood of the origin Q in the complex plane and @X=Z:=

Z_{1}\cup\ldots\cup Z_{t}. \square 

2.2. By the classical embedded resolution of plane curves, there is a se‐

quence of blow‐ups

 $\pi$:X'=X_{N}\rightarrow\cdots\rightarrow X_{0}=X

such that $\pi$^{-1}(h(C)[Z ) (with its reduced structure) has strict normal cross‐

ings. We denote by C', Z_{j}' the strict transforms of h(C) , Z_{j} respectively;
they are smooth curves on X' , and h lifts to a morphism C\rightarrow C'.
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We set U'=X'\backslash $\pi$^{-1}(Z) . We denote by E_{i}, i=1
,

. .

:;
s

,
the irreducible

components of the exceptional divisor $\pi$^{-1}(Q) , and set E_{i}^{0}=E_{i}\cap U'.
We denote by (\mathcal{E}', \nabla') the inverse image of (\mathcal{E}, \nabla) on U'.

2.2.1. Proposition. (\mathcal{E}', \nabla') is regular along every E_{i}.

Via 2.1.4, it is clear that 1.3.1 follows from this assertion, whose proof
will occupy the next three sections.

3. POINCARÉ‐KATZ RANK AND THE TURRITTIN‐LEVELT

DECOMPOSITION.

3.1. Let K be a field of characteristic 0 , and let M_{K} be a differential mod‐

ule over K((x)) , i.e. a vector space over K((x)) of finite dimension  $\mu$

endowed with an action \nabla() of $\theta$_{x}=x\displaystyle \frac{d}{dx} satisfying the Leibniz rule.

3.1.1. Example. K=\mathrm{C}(E_{i}^{0})\cong \mathrm{C}(y) , x is a local coordinate on X' such

that x=0 denes E_{i}^{0}, y is a local coordinate on E_{i} , and M_{K} is the generic
fiber of \mathcal{E}' tensored with \mathrm{C}(E_{i}^{0})((x)) over the subeld \mathrm{C}(X') , endowed

with the induced action of \nabla

According to the Turrittin‐Levelt theorem, there is a finite extension

 K'/K and a positive integer e such that, putting x'=x^{1/e} , one has a canon‐

ical decomposition of differential modules

(3.1) M_{K}\otimes K'((x'))=\oplus L_{j}\otimes_{K'((x'))}R_{j}
where

-R_{j} is regular, i.e. admits a basis in which the matrix of \mathrm{r}() has entries

in K'[[x']],
-L_{j}=K'((X)) with \displaystyle \nabla($\theta$_{x})(1)=$\varphi$_{j}\in\frac{1}{x}K'[\frac{1}{x}] (and the $\varphi$_{j} �s are distinct).

We denote by $\mu$_{j} the dimension of the differential module R_{j}.
Moreover, if one gathers together the summands L_{$\varphi$_{j}}\otimes R_{j} according to

the slope, i.e . the negative of the (fractional) degree of $\varphi$_{j} , the resulting
coarser decomposition descends to K((x)) and gives the slope decomposi‐
tion

(3.2) M_{K}=\oplus_{ $\sigma$\in \mathrm{Q}}M_{K,( $\sigma$)}.
We denote by $\mu$_{( $\sigma$)} the dimension of the differential module M_{K,( $\sigma$)} , so that

 $\mu$=\displaystyle \sum$\mu$_{( $\sigma$)}.

3.2. The highest slope is the Poincaré‐Katz rank of M , denoted by  $\rho$(M)
or  $\rho$ for short. If  $\varphi$_{j} is of slope  $\rho$ , we write it in the form

 $\varphi$_{j}=$\varphi$_{j,- $\rho$}.x^{- $\rho$}+h.0.t., $\varphi$_{j,- $\rho$}\in K'.
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If  $\rho$ > 0 , the coefcients $\varphi$_{j,- $\rho$} may be calculated as follows: one

takes a cyclic vector m for M_{K} . Then the matrix of \mathrm{r}() in the ba‐

sis (m, x^{ $\rho$}\nabla($\theta$_{x})(m), . ::, x^{( $\mu$-1) $\rho$}\nabla()(m)) of M_{K}\otimes K'((x)) is of the

form x^{- $\rho$}H where H(x)\in M(K[[X]]) and the $\varphi$_{j,- $\rho$} �s are the non‐zero

eigenvalues of H(0) (cf. \mathrm{e}.\mathrm{g}. [1, \mathrm{X}2

3.3. Let us now assume that K is the function field of a smooth afne

curve Spec A, and that M_{K} comes from a differential module M over

A((x)) (as in example 3.1.1, where A=\mathcal{O}(E_{i}^{0}) is a localization of \mathrm{C}[y] ).
Let A' be the normalization of A in K'.

It is not true in general that in the above decompositions, one may replace
K and K' by A and A' respectively (this is the well‐known problem of

turning points). However, this becomes true if one restricts to a suitable

dense open subset of the curve (see [1, \mathrm{X}3] for a detailed analysis of this

point).
More precisely, there exists f\in A\backslash \{0\} such that A'[\displaystyle \frac{1}{f}] is finite etale

over A[\displaystyle \frac{1}{f}], $\varphi$_{j}\displaystyle \in A'[\frac{1}{f}]((X)) , and the decompositions (3.1) and (3.2) come,

respectively, from decompositions

(3.3) M\displaystyle \otimes A'[\frac{1}{f}]((x'))=\oplus L_{j}\otimes_{A[\frac{1}{f}]((x))}R_{j}
(3.4) M\displaystyle \otimes A[\frac{1}{f}]((x))=\oplus_{ $\sigma$\in \mathrm{Q}}M_{( $\sigma$)}.
3.4. In general, $\varphi$_{j}\not\in A((X)) , but one always has $\varphi$_{j,- $\rho$}\in A' , due to the

above interpretation of these coefcients (cf. 3.2).
Denoting by $\mu$_{j} the rank of R_{j}^{3} , a simple Galois argument then shows

that  $\varphi$(x) :=\displaystyle \prod(x^{ $\rho$}-$\varphi$_{j,- $\rho$})^{$\mu$_{j}} lies in A[x] . For  $\rho$>0 , this allows to dene

the effective divisor D=( $\varphi$(x)) on Spec A [x] , which is finite of degree
 $\mu$_{( $\rho$)}. $\rho$ over Spec A. If  $\rho$=0 , we set D=0.

3.5. When M comes from an integrable connection, to the effect that there

is an action \mathrm{r}() of $\theta$_{y}=y\displaystyle \frac{d}{dy} commuting with \mathrm{r} all the above de‐

compositions are automatically stable under \mathrm{r} i.e. are decompositions
of integrable connections.

3.5.1. Example. Let us come back to example 3.1.1, and take M=

\mathcal{E}\otimes \mathcal{O}(E_{i}^{0})((x)) . In the sequel, we shall have to deal with all the

E_{i} �s simultaneously, so we emphasize the index i and write $\rho$_{i} for the

3_{\mathrm{n}\mathrm{o}\mathrm{t}} to be confused with the dimensions $\mu$_{( $\sigma$)} introduced in 3.1. Notice that $\mu$_{( $\rho$)}=

\displaystyle \mathrm{o}\mathrm{f}M\sum$\mu$_{j} .where
the sums runs over all j �s such that L_{$\varphi$_{j}} is of slope  $\rho$ , the Poincaré‐Katz rank
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Poincaré‐Katz rank of \mathcal{E} along E_{i} , and $\mu$_{($\rho$_{i})}, $\varphi$_{i,j}, $\mu$_{i,j}, $\varphi$_{i,j,-$\rho$_{i}}, D_{i} ,
instead

of $\mu$_{( $\rho$)}, $\varphi$_{j}, $\mu$_{j}, $\varphi$_{j,- $\rho$}, D.

Geometrically, for $\rho$_{i}>0 , the divisor

(3.5) D_{i}=(\displaystyle \prod(x^{$\rho$_{i}}-$\varphi$_{i,j,-$\rho$_{i}})^{$\mu$_{i,j}})
has an intrinsic meaning as a divisor on the normal bundle  N_{E_{\mathrm{i}}^{0}}X'\cong
Spec A [x] (the point is that the term of lower degree of $\varphi$_{i,j} has an intrinsic

meaning independent of the choice of the transversal derivation at E_{j}^{0} by
means of which one identies N_{E_{\mathrm{i}}^{0}}X' and Spec A [x] ). It is finite of degree

$\mu$_{($\rho$_{i})}.$\rho$_{i} over E_{i}^{0}.

4. FORMAL DECOMPOSITIONS AT CROSSINGS.

4.1. Let us now consider a crossing point Q' of E_{i} with another component
of $\pi$^{-1}(Z) (which is either another component E_{j} or one of the Zj�s). Let

x, y be etale coordinates at Q' such that E_{i} is dened by x=0 and the other

component by y=0.
The formalization of (\mathcal{E}', \nabla') at Q' then gives rise to a differential module

\tilde{M} over \displaystyle \mathrm{C}[[x, y]][\frac{1}{xy}] (with mutually commuting actions of $\theta$_{x} and $\theta$_{y} ).
We shall say that (\mathcal{E}', \nabla') has nice formal structure at Q^{\prime 4} if, after rami‐

cation along xy=0 , there is a decomposition

(4.1) \tilde{M}=\oplus\tilde{L}_{\tilde{ $\varphi$}_{k},\tilde{ $\psi$}_{k}}\otimes\tilde{R}_{k}
where

-\tilde{R}_{j} is regular, i.e. admits a basis in which the matrix of \tilde{\nabla}($\theta$_{x}) and \tilde{\nabla}($\theta$_{y})
have entries in \mathrm{C}[[x, y

-\displaystyle \tilde{L}_{\overline{ $\varphi$}_{k},\overline{ $\psi$}_{k}}=\mathrm{C}[[x, y]][\frac{1}{xy}] with

\tilde{\nabla}($\theta$_{x})(1)=\tilde{ $\varphi$}_{k}, \displaystyle \tilde{\nabla}($\theta$_{y})(1)=\tilde{ $\psi$}_{k}\in \mathrm{C}[[x, y]][\frac{1}{xy}], $\theta$_{x}(\tilde{ $\psi$}_{k})=$\theta$_{y}(\tilde{ $\varphi$}_{k}) .

Without loss of generality, one may then assume that the pairs (\tilde{ $\varphi$}_{k},\tilde{ $\psi$}_{k}) are

distinct modulo \mathrm{C}[[x, y]] (which ensures unicity of the decomposition).

4.2. For K=\mathrm{C}((y)) , let us compare a decomposition (4.1) with the

Turritin‐Levelt decomposition of the differential module

M_{K}:=\tilde{M}\otimes_{\mathrm{C}[[x,y]][\frac{1}{xy}]}K((x)) .

One has a canonical decomposition

\displaystyle \frac{\mathrm{C}[[x,y]][\frac{1}{xy}]}{\mathrm{C}[[x,y]]}\cong\frac{1}{x}\mathrm{C}[[y]][\frac{1}{x}]\oplus\frac{1}{xy}\mathrm{C}[\frac{1}{x}, \frac{1}{y}]\oplus\frac{1}{y}\mathrm{C}[[x]][\frac{1}{y}]
4this is equivalent to saying that Q^{0} is semi‐stable for (\mathcal{E}^{0}, \nabla^{0}) in the sense of [1], but

weaker than saying that (\mathcal{E}', \nabla') has a good formal structure in the sense of [9].
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and the projection onto the first two terms can be written

 $\varpi$:\displaystyle \frac{\mathrm{C}[[x,y]][\frac{1}{xy}]}{\mathrm{C}[[x,y]]}\rightarrow\frac{1}{x}K[\frac{1}{x}].
The decomposition (4.1) of \tilde{M} thus gives rise, by tensorisation with K((x)) ,

to a decomposition of M_{K} which renes (3.1) (taking into account the unic‐

ity of the latter):

(4.2) L_{$\varphi$_{j}}\displaystyle \otimes R_{j}=\bigoplus_{k, $\varpi$(\tilde{ $\varphi$}_{k})=$\varphi$_{j}}(\tilde{L}_{\tilde{ $\varphi$}_{k},\tilde{ $\psi$}_{k}}\otimes\tilde{R}_{k})\otimes K((x))
.

4.3. Whereas it is not always the case that (\mathcal{E}', \nabla') has nice formal struc‐

ture at Q' , this can be fixed by blowing up:

4.3.1. Proposition. After blowing up finitely many times some crossing
points, (\mathcal{E}', \nabla') acquires a nice formal structure at every crossing point of
the inverse image of Z.

This was first proved by C. Sabbah [9, III, 4.3.1], using a generalization
in dimension 2 of the nilpotent orbit method of Babbitt‐Varadarajan. In [1,
5.4.1], we have given a simpler and more straightforward proof (which is

nevertheless too long to be repeated here).

5. PROOF OF2.2.1.

We assume from now on, as we may by 4.3.1, that (\mathcal{E}', \nabla') has a nice

formal structure at all crossing points of $\pi$^{-1}(Z) lying on the exceptional
divisor.

5.1. Let P(N_{E_{\dot{\mathrm{i}}}}X') be the projectivization of the normal bundle N_{E_{\mathrm{i}}}
and let (1) be the section at innity over E_{i} . Taking Zariski closure,
the effective divisor D_{i} on N_{E_{\mathrm{i}}^{0}}X' gives rise to an effective divisor \overline{D}_{i} on

P(N_{E_{\dot{\mathrm{i}}}}X') , which is finite over E_{i} (of degree $\mu$_{($\rho$_{i})}.$\rho$_{i} ). It is clear from equa‐
tion (3.5) that \overline{D}_{i} does not meet (1) above E_{i}^{0}.
5.1.1. Lemma. i) Above E_{i}\cap Z_{j}', \overline{D}_{i} does not meet (1).
ii) Above Q'=E_{i}\cap E_{i'} , the intersection multiplicity of \overline{D}_{i} and (1) is

\leq$\mu$_{($\rho$_{i})}.$\rho$_{i'}.

Proof. Let us use coordinates x, y as in 4.1. Replacing them by x^{1/e}, y^{1/e} if

necessary, one may assume that one has a decomposition (4.1). One reads

on equation (3.5) that the intersection mutiplicity of \overline{D}_{i} and (1) above Q'
is

\displaystyle \max(0, -\sum_{10}j,\mathrm{o}\mathrm{r}\mathrm{d}_{x}$\varphi$_{j}=-$\rho$_{i}$\mu$_{i,j}.\mathrm{o}\mathrm{r}\mathrm{d}_{y}$\varphi$_{j})
.



It thus sufces to show that −ordy $\varphi$_{j}\leq$\rho$_{i'} . Coming back to 4.1, it is clear

that

‐ordx \tilde{ $\varphi$}_{k}\leq$\rho$_{i}, -\mathrm{o}\mathrm{r}\mathrm{d}_{y}\tilde{ $\psi$}_{k}\leq$\rho$_{i';}
and by the integrability condition $\theta$_{x}(\tilde{ $\psi$}_{k})=$\theta$_{y}(\tilde{ $\varphi$}_{k}) , one gets

‐ordy \tilde{ $\varphi$}_{k}\leq$\rho$_{i'}, -\mathrm{o}\mathrm{r}\mathrm{d}_{x}\tilde{ $\psi$}_{k}\leq$\rho$_{i},
whence (via  $\varpi$)−ordy  $\varphi$_{j}\leq$\rho$_{i'} (which is 0 in case i) of the lemma, since

(\mathcal{E}, \nabla) is assumed to be regular along Z_{i} \square 

5.1.2. Lemma. For every i,

(5.1) (E_{i}, E_{i}).$\rho$_{i}\displaystyle \geq \sum_{j,E_{j}\cap E_{\mathrm{i}}} $\rho$_{j}
Proof. This follows from the general formula

 $\delta$\deg(N_{E_{i}}X')=\overline{C}.(0)-\overline{C}.(\infty)
which holds for any curve (or 1‐cycle) \overline{C}\subset P(N_{E_{i}}X') whose projection to

E_{i} is finite of degree  $\delta$ . One applies this to \overline{C}=\overline{D}_{i} , taking into account the

previous lemma, noting that  $\delta$=$\mu$_{($\rho$_{i})}.$\rho$_{i} in that case, and that deg(N_{E_{i}}X')
is the intersection number (E_{i}, E_{i})\leq 0. \square 

5.2. To finish, let us indicate how 5.1.2 implies 2.2.1. Let A be the matrix

with entries A_{ij}=(E_{i}, E_{j}) . We may rewrite inequality (5.1) in the form

(5.2) \displaystyle \sum_{j}A_{ij}.$\rho$_{j}\geq 0.
Now, it is well‐known that A is a negative denitive symmetric matrix.

Since $\rho$_{j}\geq 0 , this together with (5.2) imply that $\rho$_{j}=0 , i.e. (\mathcal{E}', \nabla') is

regular along E_{j}. \square 

6. EXPONENTS.

6.1. Let us come back to the situation of 1.3.1, assuming X smooth. There

is a maximal open subset V\subset X containing U such that the complement
of U in V is a smooth divisor (whose components are open subsets of the

Z_{j}' \mathrm{s}) .

There is a purely algebraic construction of a logarithmic lattice, i.e. \mathrm{a}

locally free extension Eog of \mathcal{E} from U to V endowed with a logarithmic
connection \nabla_{\log} extending \nabla with poles at  Z\cap V , cf. [2, I].

\mathrm{n}



6.1.1. Remark. Let j : V\mapsto X be the open embedding. Since the com‐

plement of V in X is of codimension \geq 2, j_{*}\mathcal{E}_{\log} is a coherent reexive

module on X , hence locally free if X is a surface. The difculty of 1.3.1 is

related to the fact that around P, h^{*}\nabla_{\log} is not a logarithmic connection on

h^{*}(j_{*}\mathcal{E}_{\log}) in general (there is a counterexample by J. Bernstein in the case

where Z is the union of 3 lines in the plane meeting at the origin Q , cf. [4]).

The exponents of \nabla at  Z_{j} are the eigenvalues of the residues of \nabla_{\log} at

Z_{j}\cap V modulo \mathrm{Z} (the images of these eigenvalues in \mathrm{C}/\mathrm{Z} do not depend
on the logarithmic lattice). The following theorem is due to M. Kashiwara.

6.1.2. Theorem. [6][7] The exponents modulo \mathrm{Q} ofhr at P belong to the

\mathrm{Q} ‐subspace of \mathrm{C}/\mathrm{Q} generated by the exponents of \nabla at the  Z_{j} �s. 5

This is easily seen to be true if the polar divisor has normal crossings, but

this is more difcult beyond this case. One can reduce via 2.1.1 to the case

where X is a surface, or even an afne neighborhood of the origin in the

complex plane. Actually, [6] deals only with the case of rational exponents,
but a straightforward modication of Gabber�s proof in [7] gives 6.1.2 as

stated.

Here is a brief sketch of Gabber�s argument, coming back to the notation

of 2.2. One fixes a \mathrm{Q} ‐linear map  $\kappa$ : \mathrm{C}/\mathrm{Q}\rightarrow \mathrm{Q} which sends the exponents
of \nabla at the  Z_{j} �s to 0 . One has to show that  $\kappa$ sends the exponents of \nabla' at

the E_{k} �s to 0.

Let U_{k} be a tubular neighborhood of E_{k} in X'(\mathrm{C}) and set  U_{k}^{0}=U_{i}\cap
 U'(\mathrm{C}) . Then $\pi$_{1}(U_{k}^{0}) is generated by elements $\alpha$_{i} (turning around E_{i}, i=
1

,
. .

:; s) and elements $\beta$_{j} (turning around Z_{j;}' j=1 ,
.

::,
t), such that $\alpha$_{k} is

central and

$\gamma$_{k}:=$\alpha$_{1}^{(E_{1}.E_{k})}\ldots$\alpha$_{i}^{(E_{s}.E_{k})}$\beta$_{1}^{(Z_{1}'.E_{k})}\ldots$\beta$_{i}^{(Z_{t}'.E_{k})}
is a commutator. The monodromy representation of $\pi$_{1}(U_{k}^{0}) attached to

(\mathcal{E}', \nabla') admits subrepresentations V_{k} and v_{k} where the function

 $\chi$:= $\kappa$\displaystyle \circ(\frac{1}{2 $\pi$ i}\log)
applied to the eigenvalues of $\alpha$_{k} takes its maximal value M_{k} (resp. minimal

value m_{k} ). One has to show that M_{k}=m_{k}=0 . One has

 $\chi$(det($\gamma$_{k|V_{k}}))= $\chi$(det($\gamma$_{k|v_{k}}))=0
(since $\gamma$_{k} is a commutator) and

 $\chi$(det($\beta$_{j|V_{k}}))= $\chi$(det($\beta$_{j1v_{k}}))=0

5again, this statement appears in [2, I.6.5], but the argument given there works only in

case the polar divisor has normal crossings, for the same reason as in footnote 1.
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(by denition of  $\chi$). Using the denition of (M_{k}, m_{k}) , this gives

\displaystyle \sum_{j}A_{ij}M_{j}\geq 0, \sum_{j}A_{ij}m_{j}\leq 0.
Since the intersection matrix A is negative denite, one concludes that

M_{j}=m_{j}=0 for every j.

6.1.3. Remark. It would be interesting to give an algebraic version of this

argument in the spirit of the previous section, using residues instead of mon‐

odromy.
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