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The sixth Painlevé equation for special values of classical parameters ( $\alpha$= $\beta$= $\gamma$=
0,  $\delta$=1/2) was discovered by E.Picard in [10] as an exemple of order two non‐linear

equation without movable singularities. The usual form of this equation is called in this

paper PP_{6} :

y''=\displaystyle \frac{1}{2}(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-x})(y')^{2}+(\frac{1}{x-y}+\frac{1}{1-x}-\frac{1}{x})y'+\frac{y(y-1)}{2x(x-1)(y-x)}.
Among all the P_{6} equations this one has the property to be solved by a formula:

(1) y(x)=\wp(a$\omega$_{1}(x)+b$\omega$_{2}(x);$\omega$_{1}(x), $\omega$_{2}(x))

with a and b two constants, $\omega$_{1,2} a basis of periods of t^{2}=y(y-1)(y-x) and \wp(. ; $\omega$_{1}, $\omega$_{2})
the corresponding Weierstass function. For rational a and b

,
the solution is algebraic but

for other values the solution is not even a classical function in the sense of H.Umemura [12]
despite the formula to express it as it is proved by H. Watanabe in [15]. For a complete
study of this equation, see the article of M.Mazzocco [8].

This is a common belief that this kind of property must be explained by a non‐linear

Galois theory. Two essentially equivalent very general dierential Galoisian theories have

been proposed in the last ten years by H.Umemura [13, 14] and B.Malgrange [6]. Because of

its geometric flavor, we will focus on Malgrange�s Galois groupoid to explain the existence

of a formula to solve PP_{6} . The computation of the Galois groupoid of PP_{6} can be reduced

to computation already done by P.Painlevé in ([9] pp 501−517). Painlevé remarked that

PP_{6} is irreducible in his sense (which is very close to Nishioka‐Umemura denition [11]) but

it admits a system of first integrals in a Picard‐Vessiot extension of the partial dierential

field (\mathbb{C}(x, y, y @=@x; @=@y; @=@y') . The aim of this article is to integrate this remark

from Painlevé in the framework of Malgrange�s Galois groupoid. Solutions of Painlevé

equations describe isomonodromy deformations of rank two Fuchsian systems with four

singularities on \mathbb{C}\mathbb{P}^{1} . Algebraic properties of the monodromy data are related to the

transcendence nature of the corresponding Painlevé solution [4]. In the Picard‐Painlevé

case, the monodromy data are not special but the space of monodromy data and the

non‐linear monodromy are special [8]
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1The Galois groupoid of a vector field in \mathbb{C}^{3}

Let X be a rational vector field in \mathbb{C}^{3} . In general it is not complete and its flows are only
dened on open set small enough. All the dynamic of this vector field is contained in the

pseudogroup of transformations of \mathbb{C}^{3} generated by these local flows. By keeping only the

\mathbb{C}^{3}\mathrm{g}\mathrm{e}\mathrm{r}.\mathrm{m}\mathrm{s}
of dieomorphisms from this pseudogroup one gets a groupoid, TanX

, acting on

The Galois groupoid of X is the Zariski closure of TanX for \mathrm{a} (nearly) obvious em‐

bedding of TanX in an innite dimensional algebraic variety.
This variety is \mathrm{t}\underline{\mathrm{h}\mathrm{e}}space J^{*} of formal dieomorphisms of \mathbb{C}^{3} ,

i.e. the set of formal

invertible maps  $\varphi$ : \mathbb{C}^{3}, a\rightarrow\overline{\mathbb{C}^{3},b} and the embedding is the Taylor expansion of elements

of TanX . The space J^{*} can be presented as the projective limit of the spaces J_{q}^{*} of order

q jets of dieomorphisms. These ones are isomorphic to

\mathbb{C}^{3}\times \mathbb{C}^{3}\times \mathrm{G}1(\mathbb{C}^{3})\times_{ $\alpha$\in \mathbb{N}^{3} ,| $\alpha$|\leq q}\mathbb{C}^{3\mathrm{j}|}
and their coordinates rings

O(J_{q}^{*})=\displaystyle \mathbb{C}[x, y, y', \overline{x}^{ $\alpha$}, \mathrm{y}^{ $\alpha$}, y^{\overline{\prime}^{ $\alpha$}}, \frac{1}{\det(\overline{x}^{$\epsilon$_{\dot{\mathrm{i}}}},\overline{y}^{$\epsilon$_{\dot{\mathrm{i}}}},y^{\overline{\prime}^{$\epsilon$_{\dot{\mathrm{i}}}}})}| $\alpha$\in \mathbb{N}^{3};| $\alpha$|\leq q]
are the rings of partial dierential equations of order q in three functions of three arguments
with non vanishing jacobian. Futhermore these varieties get natural groupoid structures

given by the computation rules for the Taylor expansion of the composition of formal

dieomorphisms. An algebraic subgroupoid of J_{q}^{*} is an algebraic subvariety whose ideal

satises some stability conditions under inversion and composition.
The space J^{*} is \displaystyle \lim_{\leftarrow}J_{q}^{*} and its ring O(J^{*})=\displaystyle \lim_{\rightarrow}O(J_{q}^{*}) is the commutative dier‐

ential ring of non‐linear partial dierential equations on germs of dieomorphisms. The

derivations are given by the natural actions of @=@x, @=@y, @= @y� on partial dierential

equations.

Denition 1.1 (Malgrange [6]) Let G be a subvariety of J^{*} described by a dierential
ideal. It is an algebraic \mathcal{D} ‐groupoid on \mathbb{C}^{3} if there is a subvariety Z\subset \mathbb{C}^{3} such that the

projections of G on the finite order jet spaces dened algebraic subgroupoids on \mathbb{C}^{3}-Z.

Denition 1.2 (Malgrange [6]) The Galois groupoid of X is the smallest algebraic \mathcal{D}-

groupoid on \mathbb{C}^{3} containing TanX.

Roughly speaking, the Galois groupoid of X is the set of all the germs of dieomor‐

phisms of \mathbb{C}^{3} solutions of all the PDE�s vanishing on TanX . Because L_{X}X=0 ,
the Galois

groupoid is a subgroupoid of the groupoid of transformations preserving X i.e. germs  $\varphi$

such that  $\varphi$_{*}X=X . When the vector field is divergence free, one can add the equations
given by the coordinates of $\varphi$^{*}(dx\wedge dy\wedge dy')=dx\wedge dy\wedge dy'.

Near a regular point of X one can choose a flowbox given by two transversal coordinates

t_{1}, t_{2} and a tangent one z . A germ of dieomorphism preserving X can be written

 $\varphi$:\left\{\begin{array}{l}
\overline{t_{1}}(t_{1}, t_{2})\\
\overline{t_{2}}(t_{1}, t_{2})\\
z(z, t_{1}, t_{2}) .
\end{array}\right.
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By looking at the PDE�s of the Galois groupoid in these coordinates, two type of PDE can

be distinguished. The PDE�s vanishing on the germs such that \overline{z}=z are called tangential
equations. The others are the transversal ones. For example, the transversal equations of

the set of PDE : L_{X}X=0 are given by L_{X}X\wedge X=0.

Using Lie‐Cartan local classication of pseudogroups acting on \mathbb{C}^{2} established in [1],
one has the following proposition

Proposition 1.3 ([3]) If X is divergence free and  $\gamma$ is the closed 2‐form vanishing on  X,
i.e. $\iota$_{X} $\gamma$=0 ,

then one of the following situations occurs:

\bullet Gal(X) is imprimitive in codimension one: there exists an algebraic 1‐form  $\theta$ such that

 $\theta$\wedge d $\theta$=0 and  $\theta$(X)=0,

\bullet Gal(X) is transversally ane: there exists two algebraic independent 1‐forms $\theta$_{1,2}
vanishing on X and a traceless matrix of 1‐form ($\theta$_{1,2}^{1,2}) such that d$\theta$_{i}=\displaystyle \sum_{j}$\theta$_{i}^{j}\wedge$\theta$_{j}
and d$\theta$_{i}^{j}=\displaystyle \sum_{k}$\theta$_{i}^{k}\wedge$\theta$_{k}^{j},

\bullet the only transversal equations of Gal(X) are those of invariance of  $\gamma$.

The result presented in this paper is the following.

Theorem 1.4 (Painlevé [9]) The Galois groupoid of PP_{6} is transversally ane.

Transversally ane vector fields admit very special first integrals given by the a ffine

structure out of a codimension one subvariety. These are described in the next section.

The vector field over \mathbb{C}(x, y, y') of PP_{6} is not divergence free for the usual �volume� form

dx\wedge dy\wedge dy' but for the canonical one. All the Painlevé equation can be express as time

dependent Hamiltonians [7]. For PP_{6} ,
the Hamiltonian is :

\left\{\begin{array}{l}
\frac{dq}{dx}=\frac{@K}{@p}\\
\frac{dp}{dx}=-\frac{@K}{@q}\\
K=\frac{1}{x(x-1)}[q(q-1)(q-x)p^{2}-pq(q-1)+\frac{1}{4}(q-x)]\\
q=y \mathrm{a}\mathrm{n}\mathrm{d} p=(\frac{x(x-1)}{2y(y-1)(y-x)})y'+\frac{1}{2(y-x)}.
\end{array}\right.
Let $\theta$_{1} and $\theta$_{2} be the forms dq‐(@K=@p)dx and dp + (@K=@q)dx, $\theta$_{1}\wedge$\theta$_{2}=dq\wedge dp+dH\wedge dx
is a closed 2‐form vanishing on PP_{6}.

2 Classical first integrals and Galois groupoid

The classical functions over \mathbb{C} were introduced in [12] by H.Umemura. A function of one

variable is said to be classical if one can find it in an ordinary dierential fied extension

of the rational functions field \mathbb{C}(x) built by successive strongly normal extensions [5] or

algebraic extensions. In general two successive strongly normal extensions fail to be a

strongly normal one. Umemura�s denition of classical functions of n variables is the

following.

Denition 2.1 (Umemura [12]) Let \mathbb{C}(x_{1}, \ldots, x_{n}) be the partial dierential field of ra‐

tional functions of n arguments with derivations \partial_{x_{1}}\ldots\partial_{x_{n}} and \mathcal{K} be a dierential ex‐

tension of \mathbb{C}(x_{1}, \ldots, x_{n}) . It is said to be classical if one can find a tower of dierential
extensions

\mathbb{C}(x_{1}, \ldots, x_{n})=\mathcal{K}_{0}\subset \mathcal{K}_{1}\ldots\subset \mathcal{K}_{p}=\mathcal{K}
such that K_{i}\subset K_{i+1} is one of the following
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\bullet algebraic,

\bullet Picard‐Ve ssiot:  K_{i+1}=K_{i}(H_{p}^{q}) where the H �s are entries of a fundamental solution

of linear equations \partial_{x\ell}H_{p}^{q}=A_{\ell,p}^{m}H_{m}^{q} with A �s matrices with entries in K_{i},

\bullet �Abelian�: There exists an Abelian function  A of m arguments and f_{1} ,
. . .

; f_{m}\in K_{i},
K_{i+1}=K_{i}<A(f_{1}, \ldots, f_{m})>.

Most of the studies of Painlevé equations focus on their classical solutions (n=1 in

the denition) but it fails to explain the �solvability� of the Picard‐Painlevé equations.
Nevertheless it is well known that this equation has classical first integrals (n=3 in the

denition) ([9]).
One of the basics properties of this type of extension is to have a finite transcendence

degree. From the lemmas 4.4.5 and 4.4.6 of [2] and proposition 1.3 of this article, one

deduces the particular form of the Galois groupoid of a vector field with classical first

integrals.

Proposition 2.2 Let X be a divergence free vector field on \mathbb{C}^{3} with two independent
classical first integrals. Then its Galois groupoid is transversally ane or imprimitive in

codimension one.

In fact all the imprimitive in codimension one cases cannot occur. It is possible to give a

more precise statement for this proposition but it is not needed in this paper.

Conversely any transversally ane vector field has classical first integrals. They are

built by solving the following linear system:

dL_{i}^{j}=\displaystyle \sum_{k}L_{i}^{k}$\theta$_{k}^{j} dH_{i}=\sum_{j}L_{i}^{j}$\theta$_{j}.
These functions are more than classical, they are in a Picard‐Vessot extension of the field

of rationnal functions of \mathbb{C}^{3}.

3 The first integrals of PP_{6}

In this section, computation of special first integrals of PP_{6} is done to prove theorem 1.4.

This computation follows P.Painlevé [9].
The PP_{6} equations was discovered by E.Picard as the pull‐back of a linear order two

equation by a transcendantal function. For this reason it is solvable by the formula 1.

This formula and the pull‐back are given by a integral with x as parameter

\displaystyle \int_{0}^{y(x)}\frac{d $\xi$}{\sqrt{ $\xi$( $\xi$-1)( $\xi$-x)}}=a$\omega$_{1}(x)+b$\omega$_{2}(x) ,

$\omega$_{1,2} form a basis of periods of t^{2}=y(y-1)(y-x) i.e. the right hand side of the equality is

the general solution of the Picard‐Fuchs (PF) equation 4x(x-1)w''-4(2x-1)w'-w=0.
Let X_{PP} and X_{PF} be the vector fields corresponding to the PP_{6} and PF equations on

their phase spaces. X_{PP} is the pull‐back of X_{PF} by the following map:

\left\{\begin{array}{l}
x=x\\
w=\int_{0}^{y}\frac{d $\xi$}{\sqrt{ $\xi$( $\xi$-1)( $\xi$-x)}}\\
w'=\frac{y'}{\sqrt{y(y-1)(y-x)}}+\int_{0}^{y}\frac{d $\xi$}{2( $\xi$-x)\sqrt{ $\xi$( $\xi$-1)( $\xi$-x)}}.
\end{array}\right.
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To get two first integrals for PP_{6} ,
one pull‐backs two first integrals of PF . Because it is a

linear equation, it has first integrals linear on the �bers� i.e. H= $\alpha$(x)w+ $\beta$(x)w' where

(;  $\beta$) is a solution of the PF�s adjoint equation :

\left\{\begin{array}{l}
$\alpha$'= $\beta$\frac{-1}{4x(x-1)}\\
$\beta$'= $\beta$\frac{1-2x}{x(x-1)}- $\alpha$.
\end{array}\right.
Let H_{ $\alpha,\ \beta$} be the function

\displaystyle \frac{y' $\beta$}{\sqrt{y(y-1)(y-x)}}+\int_{0}^{y}( $\alpha$+\frac{ $\beta$}{2( $\xi$-x)})\frac{d $\xi$}{\sqrt{ $\xi$( $\xi$-1)( $\xi$-x)}}.
It turns out that this function is a primitive of a closed 1‐form with coecients in the field

\mathbb{C}(x,  $\alpha$,  $\beta$, y, y'\sqrt{y(y-1)(y-x)}) :

H_{ $\alpha,\ \beta$}=\displaystyle \frac{y' $\beta$}{\sqrt{y(y-1)(y-x)}}
+\displaystyle \int( $\alpha$+\frac{ $\beta$}{2(y-x)})\frac{dy}{\sqrt{y(y-1)(y-x)}}-\frac{ $\beta$ y(y-1)}{2x(1-x)(y-x)}\frac{dx}{\sqrt{y(y-1)(y-x)}}.

The transversally ane structure is given by a sequence of 1‐forms. It is derived from two

first integrals H_{1}=H_{$\alpha$_{1},$\beta$_{1}} and H_{2}=H_{$\alpha$_{2},$\beta$_{2}} with $\alpha$_{1,2} and $\beta$_{1,2} the entries of a fundamental

solution F of the PF�s adjoint equation. The derivatives give

dH_{i}=L_{i}^{1}$\theta$_{1}+L_{i}^{2}$\theta$_{2}

where the  $\theta$ �s are the 1‐forms given by the Hamiltonian form of  PP_{6} . By construction, H_{1}
and H_{2} are linear in $\alpha$_{1,2} and $\beta$_{1,2} and the matrix L equals (\sqrt{y(y-1)(y-x)})^{-1}MF for

a matrix M with entries in \mathbb{C}(x, y, y

The matrix F satises a linear equation dF=F $\Omega$,  $\Omega$ a matrix of 1‐forms with co‐

ecients in \mathbb{C}(x, y, y This implies that dL=L\underline{ $\Omega$} with \underline{ $\Omega$}=-(1/2)(1/y+1/(y-1)+
1/(y-x))dyId +dMM^{-1}+M $\Omega$ M^{-1} ,

Id is the identity matrix. Because d $\Omega$=0 ,
one gets

d\underline{ $\Omega$}=\underline{ $\Omega$}\wedge\underline{ $\Omega$} . The 1‐forms $\theta$_{1,2} and the coecients $\theta$_{1,2}^{1,2} of \underline{ $\Omega$} give the transversally ane

structure.
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