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Abstract

The dependence of the sixth equation of Painlevé on its four parameters (2 $\alpha$, -2 $\beta$, 2 $\gamma$, 1-

2)=($\theta$_{\infty}^{2}, $\theta$_{0}^{2}, $\theta$_{1}^{2}, $\theta$_{x}^{2}) is holomorphic, therefore one expects all its Lax pairs to display such a

dependence. This is indeed the case of the second order scalar �Lax� pair of Fuchs, but the

second order matrix Lax pair of Jimbo and Miwa presents a meromorphic dependence on $\theta$_{\infty}

(and a holomorphic dependence on the three other $\theta$_{j} ). We analyze the reason for this feature

and make suggestions to suppress it.
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1 Introduction

Consider a second order linear ordinary dierential equation for  $\psi$(t) with five Fuchsian singula‐
rities, one of them t=u being apparent (i.e. the ratio of two linearly independent solutions

remains single valued around it) and the four others having a crossratio x . The condition that the

ratio $\psi$_{1}/$\psi$_{2} of two linearly independent solutions be singlevalued when t goes around any of these

singularities results in one constraint between u and x
,
which is [2] that the apparent singularity u,

considered as a function of the crossratio x
, obeys the sixth Painlevé equation P6. In its normalized

form (choice (\infty, 0,1, x) of the four nonapparent Fuchsian singularities), this ODE is [2]

E(u) \displaystyle \equiv -u^{0/}+\frac{1}{2}[\frac{1}{u}+\frac{1}{u-1}+\frac{1}{u-x}]u^{02}-[\frac{1}{x}+\frac{1}{x-1}+\frac{1}{u-x}]u^{0}
+\displaystyle \frac{u(u-1)(u-x)}{x^{2}(x-1)^{2}}[ $\alpha$+ $\beta$\frac{x}{u^{2}}+ $\gamma$\frac{x-1}{(u-1)^{2}}+ $\delta$\frac{x(x-1)}{(u-x)^{2}}]=0,
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its four parameters  $\alpha$,  $\beta$,  $\gamma$,  $\delta$ representing the dierences  $\theta$_{j} of the two Fuchs indices at the four

nonapparent singularities t=\infty, 0 , 1, x,

(2 $\alpha$, -2 $\beta$, 2 $\gamma$, 1-2 $\delta$)=($\theta$_{\infty}^{2}, $\theta$_{0}^{2}, $\theta$_{1}^{2}, $\theta$_{x}^{2}) . (1)

The proof by Poincaré [11] of the impossibility to remove the apparent singularity in the second

order scalar isomonodromic deformation certainly motivated Jimbo and Miwa to consider, in place
of the scalar isomonodromy problem, the matrix isomonodromy problem of the same order (two),

\partial_{x} $\psi$=L $\psi$, \partial_{t} $\psi$=M $\psi$ , [@ x
— L

; @t
— M ] =0 . (2)

There indeed exists a choice [5] of second order matrices (L, M) whose isomonodromy condition

also yields P6, in which the singularities of the monodromy matrix M in the t complex plane are

four Fuchsian points of crossratio x
,
without the need for an apparent singularity.

This beautiful result however presents the drawback to have a meromorphic dependence on one

of the four monodromy exponents $\theta$_{j} ,
while u^{0/} in P6 has a holomorphic such dependence. The

purpose of this work is to explore several directions in order to remove this drawback from matrix

Lax pairs.
A possibility to achieve that is to consider some simple physical system admitting a Lax pair and

a reduction to P6. The corresponding reduction of its Lax pair could then provide a holomorphic
Lax pair of P6. One such system if the three‐wave resonant interaction, but the resulting Lax

pair has third order, and its reduction to second order still encounters some obstacles [1]. The

Maxwell‐Bloch system [12] could be a better candidate because its Lax pair is second order.

The paper is organized as follows. In section 2, we recall the scalar (Lax� pair of Richard

Fuchs, because its expression is required later on.

In section 3, we point out the meromorphic dependence in the second order Lax pair obtained

by matrix monodromy.
In section 4, we dene in some detail the small amount of required computations in order to

obtain a holomorphic Lax pair.
In section 5, we explore the simplest possibility beyond the assumption of Jimbo and Miwa.

The resulting Lax pair is linked to a type studied by Kimura [6] and the matrix elements are

algebraic functions of u^{0}, u, x while in the JM case they are rational functions.

2 Holomorphic Lax pair by scalar isomonodromy
This pair [2, 3], as more nicely written in Ref. [4], is characterized by the two homographic

invariants (S, C) ,

@_{t}^{2} $\psi$+(S/2) $\psi$=0 , (3)

\partial_{x} $\psi$+C@_{t} $\psi$-(1/2)C_{t} $\psi$=0 , (4)

with the commutativity condition,

X\equiv S_{x}+C_{ttt}+CS_{t}+2C_{t}S=0 , (5)

where

-C=\displaystyle \frac{t(t-1)(u-x)}{(t-u)x(x-1)} , (6)

-\displaystyle \frac{S}{2}=\frac{3/4}{(t-u)^{2}}+\frac{$\beta$_{1}u^{0}+$\beta$_{0}}{(t-u)t(t-1)}+\frac{[($\beta$_{1}u^{0})^{2}-$\beta$_{0}^{2}]\frac{u-x}{u(u-1)}+f_{\mathrm{G}}(u)}{t(t-1)(t-x)}+f_{\mathrm{G}}(t) , (7)

$\beta$_{1}=-\displaystyle \frac{x(x-1)}{2(u-x)}, $\beta$_{0}=-u+\frac{1}{2} , (8)

f_{G}(z)=\displaystyle \frac{a}{z^{2}}+\frac{b}{(z-1)^{2}}+\frac{c}{(z-x)^{2}}+\frac{d}{z(z-1)} , (9)

(2 $\alpha$, -2 $\beta$, 2 $\gamma$, 1-2 $\delta$)=(4(a+b+c+d+1), 4a+1,4b+1,4c+1) . (10)
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Like u^{0/} in the denition of P6, this scalar Lax pair depends holomorphically on the four $\theta$_{j},
and also on their squares. Its singularities in the complex plane of t are the five Fuchsian points
t=\infty, 0 , 1, x, u

, among which t=u is apparent.

3 Meromorphic Lax pair by matrix isomonodromy
Let us introduce the Pauli matrices $\sigma$_{k}

$\sigma$_{1}=\left(\begin{array}{ll}
0 & 1\\
1 & 0
\end{array}\right), $\sigma$_{2}=\left(\begin{array}{ll}
0 & -i\\
i & 0
\end{array}\right), $\sigma$_{3}=\left(\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right), $\sigma$_{j}$\sigma$_{k}=$\delta$_{jk}+i$\epsilon$_{jkl}$\sigma$_{l} , (11)

$\sigma$^{+}=\left(\begin{array}{ll}
0 & 1\\
0 & 0
\end{array}\right), $\sigma$^{-}=\left(\begin{array}{ll}
0 & 0\\
1 & 0
\end{array}\right).
As proven in [5], the apparent singularity of the scalar Lax pair can be removed by considering

a second order matrix Lax pair,

\partial_{x} $\Psi$=L $\Psi$, \partial_{t} $\Psi$=M $\Psi$ , (12)

and dening the monodromy matrix  M as the sum of four Fuchsian singularities t=\infty, 0 , 1, x,

M=\displaystyle \frac{M_{0}(x)}{t}+\frac{M_{1}(x)}{t-1}+\frac{M_{x}(x)}{t-x}, M_{\infty}+M_{0}+M_{1}+M_{x}=0 . (13)

However, in order to integrate the dierential system of the monodromy conditions,

\forall t:L_{t}-M_{x}+LM-ML=0 . (14)

the choice of L is not unique and the type of dependence of L(x, t) on t must be an input. With

the very convenient choice [5] of a simple pole at the crossratio t=x,

L=-\displaystyle \frac{M_{x}}{t-x}, M=\frac{M_{0}(x)}{t}+\frac{M_{1}(x)}{t-1}+\frac{M_{x}(x)}{t-x}, M_{\infty}+M_{0}+M_{1}+M_{x}=0 , (15)

and after minor transformations [10] mainly aimed at making all entries (L_{jk}, M_{jk}) algebraic (not
only with algebraic logarithmic derivatives), one obtains the traceless, algebraic Lax pair,

L = -\displaystyle \frac{M_{x}}{t-x}+L_{\infty}, M=\frac{M_{0}}{t}+\frac{M_{1}}{t-1}+\frac{M_{x}}{t-x} , (16)

L_{\infty} = -\displaystyle \frac{($\Theta$_{\infty}-1)(u-x)}{2x(x-1)}$\sigma$_{3} , (17)

2M_{\infty} = $\Theta$_{\infty}$\sigma$_{3} , (18)

2M_{0} = z_{0}$\sigma$_{3}-\displaystyle \frac{u}{x}$\sigma$^{+}+(z_{0}^{2}-$\theta$_{0}^{2})\frac{x}{u}$\sigma$^{-} , (19)

2M_{1} = z_{1}$\sigma$_{3}+\displaystyle \frac{u-1}{x-1}$\sigma$^{+}-(z_{1}^{2}-$\theta$_{1}^{2})\frac{x-1}{u-1}$\sigma$^{-} , (20)

2M_{x} = (($\theta$_{0}^{2}-z_{0}^{2})\displaystyle \frac{x}{u}-($\theta$_{1}^{2}-z_{1}^{2})\frac{x-1}{u-1})$\sigma$^{-}-\frac{u-x}{x(x-1)}$\sigma$^{+}
-($\Theta$_{\infty}+z_{0}+z_{1})$\sigma$_{3} , (21)

z_{0} = \displaystyle \frac{1}{2$\Theta$_{\infty}x(u-1)(u-x)}[(x(x-1)u^{0}-(u-1)(u-$\Theta$_{\infty}(u-x)))^{2}
-($\Theta$_{\infty}^{2}+$\theta$_{0}^{2})x(u-1)(u-x)+$\theta$_{1}^{2}(x-1)u(u-x)-$\theta$_{x}^{2}x(x-1)u(u-1)],

z_{1} = \displaystyle \frac{-1}{2$\Theta$_{\infty}(x-1)u(u-x)}[(x(x-1)u^{0}-u(u-1-$\Theta$_{\infty}(u-x)))^{2}
+($\Theta$_{\infty}^{2}+$\theta$_{1}^{2})(x-1)u(u-x)-$\theta$_{0}^{2}x(u-1)(u-x)-$\theta$_{x}^{2}x(x-1)u(u-1)],
(2 $\alpha$, -2 $\beta$, 2 $\gamma$, 1-2 $\delta$)=(($\Theta$_{\infty}-1)^{2}, $\theta$_{0}^{2}, $\theta$_{1}^{2}, $\theta$_{x}^{2}) .
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The origin of the meromorphic dependence in (16), as displayed in z_{0} and z_{1} ,
seems to be the

simplifying assumption [5] that the residue M_{\infty} can be chosen diagonal,

M_{\infty}=\displaystyle \frac{$\Theta$_{\infty}}{2}$\sigma$_{3} . (22)

Indeed, when $\Theta$_{\infty} vanishes, the residue also vanishes and one singular point is lost, thus preventing
to obtain P6 which requires four nonapparent singular points.

As an additional motivation of the present work, this meromorphic feature is also present in

many discrete Lax pairs of discrete P6 equations, for instance in the Lax pair found by Jimbo and

Sakai [8], as an output to the matrix discrete isomonodromy problem

Y(x, qt)=A(x, t)Y(x, t) , (23)

A=A_{0}(x)+A_{1}(x)t+A_{2}(x)t^{2} , (24)

where x is the independent variable, t is the spectral parameter, and the matrix A denes four

singular points in the t complex plane. If the residue A_{2} at  t=\infty is chosen diagonal [8, Eq. (10)],

 A_{2}=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\kappa$_{1}, $\kappa$_{2}) , (25)

then the Lax pair contains the denominator $\kappa$_{1}-$\kappa$_{2} and, when $\kappa$_{1}=$\kappa$_{2} ,
the isomonodromy problem

cannot yield a q—P6 equation.

4 Towards a holomorphic matrix Lax pair

In order to get rid of this unwanted meromorphic dependence, let us change the assumptions on

the matrix Lax pair (L, M) along the lines explored in Ref. [9]. For the assumption (13) on M,
which must be kept, we adopt the convention

tr M_{j}=0, \displaystyle \det M_{j}=-\frac{$\theta$_{j}^{2}}{4} = constant; j=\infty, 0 , 1, x
, (26)

and we represent the four residues so as to preserve the invariance under permutation,

M_{j}=\displaystyle \frac{1}{2} (_{($\theta$_{j}+z_{j})u_{j}^{-1}}z_{j} ($\theta$_{j}-z_{j})u_{j}-z_{j}) , j=\infty, 0, 1, x , (27)

in which z_{j}, u_{j} are functions of x.

After an assumption has been chosen for the dependence of L(x, t) on t
,

there is no need to

integrate the monodromy conditions (14). Indeed, one a priori knows that their general solution

is expressed in terms of a P6 function. Therefore a (lazy� method to perform the integration is

to first convert the matrix Lax pair (12) to scalar form, then to identify the result with the scalar

Lax pair (3)-(4) .

Let us denote  $\Psi$={}^{\mathrm{t}}($\psi$_{1}$\psi$_{2} ) the base vectors of the matrix Lax pair after rotation by an

arbitrary constant angle  $\varphi$,

 P=\left(\begin{array}{ll}
\mathrm{c}\mathrm{o}\mathrm{s} $\varphi$ & \mathrm{s}\mathrm{i}\mathrm{n} $\varphi$\\
-\mathrm{s}\mathrm{i}\mathrm{n} $\varphi$ & \mathrm{c}\mathrm{o}\mathrm{s} $\varphi$
\end{array}\right), @_{x} $\Psi$=P^{-1}LP $\Psi$, @_{t} $\Psi$=P^{-1}MP $\Psi$ . (28)

After elimination of  $\psi$_{2} and removal of the first derivative $\psi$_{1}^{0} in the resulting second order linear

ODE for $\psi$_{1} ,
the identication of the two sets of coecients (S, C) will provide L and M in terms

of asolution u of P6.

Whatever be the assumption for L
,

the three scalar conditions of zero sum for the residues,

M_{\infty}+M_{0}+M_{1}+M_{x}=0 , (29)
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under the condition that u_{0}, u_{1}, u_{x} are all dierent, are first solved for z_{0}, z_{1}, z_{x},

\left\{\begin{array}{l}
\frac{J}{u_{1}-u_{x}}z_{0}=z_{\infty}(u_{1}^{-1}+u_{x}^{-1})-($\theta$_{\infty}-z_{\infty})u_{\infty}u_{1}^{-1}u_{x}^{-1}-($\theta$_{\infty}+z_{\infty})u_{\infty}^{-1}\\
+$\theta$_{0}(u_{0}u_{1}^{-1}u_{x}^{-1}-u_{0}^{-1})+$\theta$_{1}(u_{x}^{-1}-u_{1}^{-1})+$\theta$_{x}(u_{1}^{-1}-u_{x}^{-1}) ,\\
\frac{J}{u_{x}-u_{0}}z_{1}=z_{\infty}(u_{x}^{-1}+u_{0}^{-1})+($\theta$_{\infty}-z_{\infty})u_{\infty}u_{x}^{-1}u_{0}^{-1}-($\theta$_{\infty}+z_{\infty})u_{\infty}^{-1}\\
+$\theta$_{1}(u_{1}u_{x}^{-1}u_{0}^{-1}-u_{1}^{-1})+$\theta$_{x}(u_{0}^{-1}-u_{x}^{-1})+$\theta$_{0}(u_{x}^{-1}-u_{0}^{-1}) ,\\
\frac{J}{u_{0}-u_{1}}z_{x}=z_{\infty}(u_{0}^{-1}+u_{1}^{-1})+($\theta$_{\infty}-z_{\infty})u_{\infty}u_{0}^{-1}u_{1}^{-1}-($\theta$_{\infty}+z_{\infty})u_{\infty}^{-1}\\
+$\theta$_{x}(u_{x}u_{0}^{-1}u_{1}^{-1}-u_{x}^{-1})+$\theta$_{0}(u_{1}^{-1}-u_{0}^{-1})+$\theta$_{1}(u_{0}^{-1}-u_{1}^{-1}) ,
\end{array}\right. (30)

in which J denotes the Jacobian

J\displaystyle \equiv\frac{D(M_{\infty,11},M_{\infty,12},M_{\infty,21})}{D(z_{0},z_{1},z_{x})}=-\frac{(u_{0}-u_{1})(u_{1}-u_{x})(u_{x}-u_{0})}{u_{0}u_{1}u_{x}} . (31)

5 A Kimura‐type Lax pair

Following (16) and [9, Eq. (4.18)], let us assume

L=-\displaystyle \frac{M_{x}}{t-x}+L_{\infty}, L_{\infty}=m(x)M_{\infty} , (32)

which denes the dierential system

\left\{\begin{array}{l}
M_{0}^{0}=\underline{[M_{x},M_{0}]}-m[M_{\infty}, M_{0}],\\
M_{1}^{0}=\frac{[M_{x}^{X}M_{1}]}{x-1}-m[M_{\infty}, M_{1}],\\
M_{x}^{0}=-\frac{[M_{x},M_{0}]}{x}-\frac{[M_{x},M_{1}]}{x-1}-m[M_{\infty}, M_{x}].
\end{array}\right. (33)

Such a choice ensures that M_{0}+M_{1}+M_{x} is a first integral, and therefore M_{\infty} a constant. The

system (33) is equivalent to

z_{j}^{0}=\displaystyle \frac{P_{j}(u_{k},z_{k},$\theta$_{k},m)}{x(x-1)u_{0}u_{1}u_{x}}, u_{j}^{0}=\frac{Q_{j}(u_{k},z_{k},$\theta$_{k},m)}{x(x-1)u_{0}u_{1}u_{x}}, j\in\{0, 1, x\}, k\in\{\infty, 0, 1, x\} , (34)

in which P_{j}, Q_{j} denote polynomials of their arguments, and the closure conditions z_{j}^{0}=(z_{j})^{0}
between the systems (34) and (30) are identically satised.

The identication of the two C �s of the two scalar Lax pairs of the type (3)-(4) is equivalent
to the two relations

\left\{\begin{array}{l}
[m+\frac{u-x}{x(x-1)}][z_{\infty}-$\theta$_{\infty}\frac{(\cos 2 $\varphi$+1)u_{\infty}+(\cos 2 $\varphi$-1)u_{\infty}^{-1}}{(\cos 2 $\varphi$+1)u_{\infty}-(\cos 2 $\varphi$-1)u_{\infty}^{-1}-2\sin 2 $\varphi$}]=0, (35)\\
\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}  $\varphi$=0 : (z_{\infty}-$\theta$_{\infty})u_{\infty}u(u-x)+(z_{0}-$\theta$_{0})u_{0}(u-x)-(z_{x}-$\theta$_{x})u_{x}(x-1)u=0,
\end{array}\right.
in which, for brevity, the rotation angle  $\varphi$ has been set to  0 in the second relation.

Solving the first equation in (35) for the second factor would result in the vanishing of M_{\infty}
with $\theta$_{\infty} ,

hence in the same singularity of the Lax pair at $\theta$_{\infty}=0 than in (16). Therefore this first

equation is solved for m
,

and in the second one can eliminate z_{0}, z_{1}, z_{x} with (30),

\left\{\begin{array}{l}
m=-\frac{u-x}{x(x-1)},\\
F(z_{\infty}, u_{\infty}, $\theta$_{\infty}, u_{0}, $\theta$_{0}, u_{x}, $\theta$_{x}, u, x, e^{i $\varphi$})=0,
\end{array}\right. (36)

in which F is a polynomial of its arguments, of degree two in u and each u_{j}.

5



Before transformation to the normalized form (3), the second order ODE for $\psi$_{1} is then

(t-u)p_{1}(t)\displaystyle \frac{\mathrm{d}^{2}$\psi$_{1}}{\mathrm{d}t^{2}}+\frac{p_{4}(t)}{t(t-1)(t-x)}\frac{\mathrm{d}$\psi$_{1}}{\mathrm{d}t}+\frac{p_{6}(t)}{[t(t-1)(t-x)]^{2}}$\psi$_{1}=0 , (37)

in which p_{j} denotes polynomials of degree j whose dependence on x has been omitted. The

condition that (t-u)p_{1}, p_{4}, p_{6} have a common zero t (otherwise there would be two apparent

singularities) results in (when  $\varphi$=0 ),

(z_{\infty}-$\theta$_{\infty})u_{\infty}=(z_{0}-$\theta$_{0})u_{0}\displaystyle \frac{x}{u^{2}}=(z_{1}-$\theta$_{1})u_{1}\frac{x-1}{(u-1)^{2}}=(z_{x}-$\theta$_{x})u_{x}\frac{x(1-x)}{(u-x)^{2}} , (38)

and these relations imply p_{1}(t)=t-u and a multiplicity two for the zero t=u of the element M_{12}
of the monodromy matrix M . As proven in [7], this results in a dierence of 3 between the two

Fuchs indices at the apparent singularity t=u
,

not 2 like in (7). The Schwarzian associated to

(37), which cannot be identied to (7), must then be identied to the Schwarzian of the equation
labelled \mathrm{L}_{\mathrm{V}1}^{n} in [6]. The resulting matrix Lax pair will probably be holomorphic in the four $\theta$_{j} but

surely not rational in u, u', x
,

since the transformation between the apparent singularities of \mathrm{L}_{\mathrm{V}1}^{n}
and (3) is not birational [7]. Therefore its explicit expression will not be given.

6 Conclusion

In order to build a second order matrix Lax pair of \mathrm{P}6(u, x) at the same time holomorphic in $\theta$_{j}
and rational in u(x) , u'(x) ,

x
,

it is necessary to make an assumption for L which is dierent from

(32), probably by adding to L a term linear in t like in [6, \mathrm{X}6] and [9, Eq. (4.18)]. This will be the

subject of future research.
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