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1 Introduction

The Painlevé equation can be obtained by an isomonodromic deformation of a linear
equation. We call the monodromy data of the linear equation a linear monodromy of the
Painlevé function. In general, the linear monodromy cannot be calculated explicitly, and
we will study Painlevé functions whose linear monodromy can be explicitly determined.
In this paper we call such Painlevé functions monodromy solvable. 1t is A.V. Kitaev who
first found the monodromy solvable solution with any value of parameter which is included
in the Painlevé equation [9]. He constructed the so-called symmetric solution with any
value of parameter « for the second Painlevé equation. By using his method, we have
found the monodromy solvable solutions with any values of parameters for the fourth,
fifth and sixth Painlevé equations [4],[5],[6]. In [6], the author has found twelve sets of
meromorphic solutions around a fixed singularity for the sixth Painlevé equation
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and calulated the linear morodromy explicitly using Garnier-Okamoto’s second order sin-
gle equation as isomonodromic deformation equation [10].

In this paper we will give the same results for the sixth Painlevé equation using Jimbo-
Miwa’s 2 x 2 matrix type equation as isomonodromic deformation equation, which has
the same polynomial Hamiltonian system as Garnier-Okamoto’s single equation. For the
calculation of the monodromy and asymptotic expansion of 7-function, it is convenient to
normalize the linear equation so that the linear monodromy belongs to SL(2,C). In [8],
the normalized Jimbo-Miwa’s 2 x 2 matrix type equation is introduced but its explicit
form is not presented. In section 2.2 we explicitly write down the normalized Jimbo-
Miwa’s equation, which is a rational Hamiltonian system. Between these two kinds of
Jimbo-Miwa’s systems, there is a canonical transformation.

For the sixth Painlevé equation, A.D. Bryuno and 1.V. Goryuchkina construct asymp-
totic solutions around the fixed singularity [2] and D. Guzzetti presents the leading term
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of the critical behavior at the fixed singularity [3]. We construct four meromorphic solu-
tions of (1.1) at ¢t = 0 for generic values of parameters «, (3,7, . By using some Bécklund
transformations we obtain four meromorphic solutions at the other singular points t = 1
and t = oo as well. These twelve meromorphic solutions are invariant under the action of
the Backlund transformation group and further, monodromy solvable. It is pointed out
by K. Iwasaki that these twelve solutions pass through the intersection points of 24 lines
among 27 lines included in Fricke’s cubic surface.

One of our solutions includes Umemura’s algebraic solution y = +/t for the param-
eters « + 3 = 0,7+ 6 = 1/2. Some of our solutions also include one of the Riccati
solutions|[11],[6].

2 Isomonodromic deformation equations of Py

There are two types of isomonodromic deformation equations of Py;. One is Garnier-
Okamoto’s second order single type equation [10] and the other is Jimbo-Miwa’s 2 x 2
matrix type equation [7]. In this paper we use Jimbo-Miwa’s equation.

2.1 Jimbo-Miwa’s form

In this section we recall Jimbo-Miwa'’s form [7] for isomonodromic deformation equation
in terms of 2 X 2 matrices. We denote the following system by L{.
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We define A,y and z as follows:
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where y, 2, z;,u; and k are functions of ¢, and 6,(j = 0,1,¢,00) are parameters. In what
follows, instead of #;, we mainly use the parameters a;(i = 0,1,2,3,4) defined by the
following relations:

80 = Qy, ‘91 = Qs3, Gt = Qp, ‘900 =1- (e5] (O!() + oy + 20&2 +oa3+ oy = 1) (25)



From the integrability condition of (2.1) and (2.2), we have

=102 = 2ey(y = 1)y~ 1)~ auly — Dy~ 1) ~ asyly ~

— (w0 —1yly-1), (2.6)
t(t — 1)% = (=3 +21+t)y—t) 2"+ {(23/ — 11—ty + 2y —t)ag

+ 2u—1)(ap—1)|z— ag(as + as). (2.7)

Eliminating z, we have (1.1) with
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The system of equations (2.6) and (2.7) can be written as a Hamiltonian system with the
polynomial Hamiltonian Hy; given by

tt—DHyr = yly—1)(y—1)2" — [ouly — 1)y —t) + asy(y —t) + (oo — Ly(y — 1) | 2
+ (a4 az)(y — ). (2.9)

Remark 1 This polynomial Hamiltonian system is the same as Garnier-Okamoto’s Hamil-
tonian system. Putting ¥ = *(¢1,15) and eliminating 1 from (2.1), we have the same
second order single equation as Garnier-Okamoto’s equation [10].

2.2 Normalized Jimbo-Miwa’s form

In this section, we give the normalized Jimbo-Miwa’s isomonodromic deformation equa-
tion whose linear monodromy belongs to SL(2,C). We denote this system by L{¥

OV (z, 1) - - - A ay (o, t) ap(x,t)
= Az, t)¥ A(x,t) = — = ’ ’ 2.1
Ox (1), (z, %) Fozltx—j (am(%t) dga (1) (2.10)
A; = C ) G=01n,
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We define A,y and 7 as follows:
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where y, Z, Z;, 1, k are functions of ¢, and 6;,0,, are parameters. Hereinafter we use «;
which are defined by (2.5). From the integrability condition of (2.10) and (2.11), we have

dy

tt—1)— = 2yly—Dly -7 +yly-1), (2.14)
t(t — 1)% = [-3*+2(1+t)y—t]2*— (2y— 1)z
l—a} of t o t—1 a tt—1)
+[‘T‘I'WIW‘IW} (2.15)

Eliminating z, we again obtain (1.1) with (2.8). The system of equations (2.14) and (2.15)
is a rational Hamiltonian system with the Hamiltonian Hy; defined by
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Remark 2 There is the following canonical transformation between LA and LIAT which

keeps y invariant

[1—04% i t ok t—1 o tt-1)

}. (2.16)

dz ANdy — dHy A dt = dz A dy — dHyp A dt. (2.17)

3 Meromorphic solutions around the fixed
singularities

In this section we will classify all of the meromorphic solutions around a fixed singularity.
We consider a solution of (2.14) and (2.15) (and that of (2.6) and (2.7) simultaneously)
around ¢t = 0:

y(t) =t'> at’, z(t) =" bt', () =t"> ct' (I m,n € Z). (3.1)
=0 =0 =0

Theorem 3 For generic values of parameters, the sizth Painlevé equation has the follow-
ing four meromorphic solutions around t = 0:

' B ay oy [—1 — a2 + a3 + (ag — ap)?] 5 5
(-0 yt) = oy — aot L [1— (g — a)?] (as — ap)? FHol), (32)
S — 1—al+a2— (g —ap)?
1) = R o), (3.3)
() = M4 - D Lo, (3.4)
‘ oy —apay [1+af —af — (ay + ag)?] 5
O y(e) = ot SHR I B o), (3
s = Lmaitas—(atao g (3.6)

41 — (a4 + ap)?]
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as(aq + o)

‘  otoag | —ag[l+af —af — (g + ay)?] )
(0-I11) = y(t) = o + o[ — (s T ag)? t+ O(t?), (3.8)
E(t) = m + O(t), Z(t) = oy + o + O(t), (39)
'  m—ag  ag[l4of —af — (o —as)?] )
(0-IV): y(t) = o + 2 1= (o1 = o) t+ O(t), (3.10)
2(t) = 2((;—‘1‘1&) +O0(t), 2(t)= W +O(t). (3.11)

These solutions satisfy the system (2.6), (2.7) and (2.14), (2.15) and they are convergent
since (2.6) and (2.7) are of Briot-Bouqet type at ¢t = 0 [1]. We gave a proof of the conver-
gence for the fifth Painlevé transcendents in [5]. For generic values of parameters, there
are no meromorphic solutions around ¢ = 0 except for these four solutions. The solution
(0-1) exists for ay —ag ¢ Z.

Let o1 and o9 be the Béacklund transformations for the Py defined as follows:

T Qo | oy | ag | ag| oy Y Z t
o1(z) |ao | |z |ag|az |1 —y —z 1—t

1 1

09 (LI?) Qo | Qg | Qg | Qi3 | O Y —y(yz + Oég) n

If we let oy and o9 act on the solutions (0-I), (0-1I), (0-III) and (0-IV), we then obtain
the meromorphic solutions of the system (2.6), (2.7) and (2.14), (2.15) which are mero-
morphic around t = 1 and ¢t = oo.

Theorem 4 The sizth Painlevé equation has the following meromorphic solutions
around t =1 and t = oco.
(1) Around ¢t =1,

1D : yt) = 1+ —2 (1)

o — Q3
apas [—1 — af + af + (ap — as)?]

Y A= (- el —ag? D FOSD) G2
Z(t) = L Zh—'__ozzo__(ao(jg));]&g) +O0((1—1)), (3.13)
A(t) = O‘i:‘:g' +O((1-1)°), (3.14)
(1-11): y(t) :1+%f;u—ﬂ

apas [1+ad —a? — (ap + az)?]
2 [1 — (Olo + 053)2] (Oé() + 013)2
1—a?+ai— (a+az)?

zZ(t) = T = (oot a9 +O0((1—1)), (3.16)

1—-t)*+0((1—-1)?, (3.15)
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() = %Jrom—t)), (3.17)

as | aq[l+af —af — (o + o)’

(I-I0) = y(t) = o + 2o 1= (on T o)) (1—1)+0((1-1)%),(3.18)
) = m LO((1—1), =2(t) = a?f; FO((1—1), (3.19)

' oy~ 1403 — o — (g —a)? )
(1-1V) = yt) = - + 20Tl (on — )] (1—1)+ 0 ((1—1)%)(3.20)
) = —L 4 0((1—1), 2(t) = alastar) O((1 —1))(3.21)

2(ay — aq) Q) — Oy
(2) Around t = oo,

2

aq

(co-):  y(t) = 1;1 %t + Sor Tl Ton— o
+ O((t™), (3.22)
) = 2(&:—3‘1%)% FO(t), () = —% +O(t™?),  (3.23)
—ay [(1+ a3+ af—af — (ap+a)?) (%>2 +1+ oz%]
(03] + (%)) l 1
(co-I1) 1 y(t) = o t+ T
+ O((t™h), (3.24)
) = m:—%% +O(), s =L % L0, (3.25)
. B ay —azay [—1+ad — a2 + (a3 + 044)2]1 L
(OO_III) ' y(t) - Qy -+ (6% + 2 [1 — (063 + a4)2] (063 + 054)2 t + O(t )’ (326)
0 = i e O o0
o) = % : % +0(t7%), (3.28)
‘ B ay azay [—1+af — a2 + (az — a4)2]1 L
(co-1V) :  y(t) = P + 3= (a5 — )2 (a5 —an)? 1 +O(t™7), (3.29)
0 = a0 620
Z(t) = Q4 — Q3+ O(t_l). (331)

Observation 5 If we assume the meromorphy of a solution around t =0 and t = 1, y(t)
and Z(t) inevitably become holomorphic there.

Thorem 6 These twelve meromorphic solutions are invariant under the action of the
Backlund transformation group.
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Figure 1: The Bécklund transformations of the twelve solutions

4 The linear monodromy for the solution (0-I)

For a solution of the sixth Painlevé equation, let AM;(j = 0,¢,1,00) be the monodromy
matrices of the equation (2.10) along the path around z = j shown in Figure 2.

X

M M M M

Figure 2: The paths going around regular singular points with the base point .
Note that M;(j = 0,1, 1, 00) satisfy
Mo MMMy = Is. (4.1)

We can then calculate the linear monodromy { My, My, My, M.} explicitly for the solution
(0-I) by the method given in [§].

Theorem 7 The linear monodromy of (2.10) for the solution (0-1) is as follows [6]:

e—m’a4 O em'ao 0
MO = ( 0 em’a4 ) ) Mt = ( 0 e—m‘ao > ’ (42)

—TiQs O

- e _ _em'al O
Ml = F()ll ( 0 €7ri()£3 ) F017 Moo = Poolo ( O _6—7ria1 ) FOOO' (43)
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where

I(1+ao—aa)T(as) I'(1+aa—ao)l(as)
_ IF'l-a1—as—as)l(1—az—as) TI'(l—ap—a1—a2)(1—ag—a2)
P = ( I(1+a0—as)T(—as) (14 —ag)T(—as) ; (4.4)
T'(ao+ai+a2)l(ao+az) (o +az+aa)T (az+a)
elaotorto)mip(14ag—aq)l(—ay)  el@rteete) ™oy —ag)l(—ar)

F — F(ao—l—t)z)F(l—Cﬂ —ag—a4) I‘(a2+a4)F(1—ao—a1—a2) (4 5)

0co el@0+e2) ™D (14ag—aq)T(a1) ele2 2™ (14 a0y —ao)l(a1)

I'(aot+ar+a)I(1—as—a4q) T'(a1+as+aa)T(1—ap—a2)

We remark that ag — aq ¢ Z if the solution (0-1) exists.

In a similar way, we can calculate the linear monodromy explicitly for all of the twelve
solutions in Theorem 3 and Theorem 4.

Theorem 8 The twelve solutions in Theorem 3 and Theorem 4 are monodromy solv-
able.

If we define p;j=trM; and pj,=trM;M; for the monodromy matrices, they satisfy the
following relation which is called Fricke’s cubic surface:

PorPuPio + PE + P+ ph — (Pop1 + PiPoc)Por — (P1Pr + PoPoo )1t
—(popt + P1Poo)Pio + Do + Pi + P} + D + PoP1PiPoc — 4 = 0. (4.6)

For the monodromy matrices (4.2) and (4.3), we have

P = 2cosaum, P;=2C0SQuT, P =2C0SQ3T, Poo = —2COSQT, (4.7)
2 . .
Po1 = - , cos(ag + ay)msin(ag + ag + ay)msin(ag + ay)w
sin(ay — )7 sin azm
— cos(ag — ay)msin(ap + ag + ag)msin(ag + ag)w] , (4.8)
2 . :
P = — - {cos(ao — az)mwsin(ag + ag + ay)wsin(ag + ag)w
sin(ay — )7 sin azm
— cos(a + az)msin(ag + ag + ag)msin(ag + O!Q)?T] , (4.9)
pro = 2cos(ap — au)T. (4.10)

Remark 9 Twenty-seven lines are included in Fricke’s cubic surface. Twelve solutions
in Theorem 3 and Theorem 4 pass through the intersetion points of 24 lines among them.
This is pointed out by K. Iwasak:.
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