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Abstract. Isomonodromic deformations of rank 2 logarithmic
connections with singular points 0 , 1, t and \infty over the Riemann

sphere are parametrized by the solutions  q(t) of Painlevé VI equa‐

tion. Some discrete group of symetries of P_{VI} equation naturally
arise from the birational geometry of logarithmic connections. An

extra symmetry was found by Okamoto in -15_{\lrcorner} by direct compu‐

tations. Here, we present a geometric interpretation of this sym‐

metry. After lifting conveniently the connection over the elliptic
curve E_{t} : \{y^{2}=x(x-1)(x-t the variation of the underly‐
ing vector bundle (along isomonodromic deformation) provides a

new solution \tilde{q}(t) of P_{VI} equation, namely the Okamoto symetric
of q(t) . In particular, isomonodromic deformations of the Lamé

connection over E_{t} arise as a particular case of our construction

and we recover in a natural way recent results of S. Kawai and

Levin‐Olshanetsky. All proofs will appear in a forthcoming paper

Introduction

Let \nabla be a rank 2 meromorphic connection over a compact Riemann

surface  X . In general, one cannot explicitly express the monodromy
representation of \nabla in terms of the algebraic datas of \nabla by means of

classical functions. This can be carried out essentially in two cases:

\bullet  X=\mathbb{P}^{1} and \nabla has at most 3 poles counted with multiplicity,
\bullet  X is an elliptic curve and \nabla is regular.

The first case reduces to the Gauss hypergeometric equation (or its

degeneracies); the monodromy can therefore be expressed in terms of

the coefficients by means of trigonometric functions (see [8]). The

second one, due to the fact that the fundamental group is abelian,
reduces to the case of rank 1 connections over the elliptic curve and the

monodromy can be expressed by means of elliptic functions (see [6]).
Beyond these two cases, monodromy becomes no more computable
in general, but still isomonodromic deformations satisfy an explicit
algebraic differential equation.
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1. Painlevé VI equation and isomonodromic deformations

The simplest case, where  X=\mathbb{P}^{1} and \nabla has 4 simple poles, has been

carried out by R. Fuchs in 1907: it leads to the Painlevé VI equation.
One can reduce this study to that of the \mathrm{s}\mathrm{l}(2, \mathbb{C}) ‐Fuchsian system

(1) \displaystyle \frac{dY}{dx}=(\frac{A_{0}}{x}+\frac{A_{1}}{x-1}+\frac{A_{t}}{x-t})Y, A_{i}\in \mathrm{s}\mathrm{l}(2, \mathbb{C})
corresponding to a trace free connection on the trivial vector bundle.

Singular points are 0
, 1, t and \infty where  t\in \mathbb{P}^{1}-\{0, 1, \infty\} is the

deformation parameter. The residual matrix of the singular point at

 x=\infty is given by

(2)  A_{0}+A_{1}+A_{t}+A_{\infty}=0.

Let \displaystyle \pm\frac{$\theta$_{i}}{2} denote the eigenvalues of A_{i} :

(3) A_{i}=\left(\begin{array}{ll}
a_{i} & b_{i}\\
c_{i} & -a_{i}
\end{array}\right) with a_{i}^{2}+b_{i}c_{i}=\displaystyle \frac{$\theta$_{i}^{2}}{4}, i=0 , 1, t, \infty

After change of variable,  Y:=MY with M\in \mathrm{S}\mathrm{L}(2, \mathbb{C}) ,
we normalize

(4) A_{\infty}=(^{\frac{$\theta$_{\infty}}{02}} -\displaystyle \frac{0_{\infty} $\theta$}{2}) ,
or \left(\begin{array}{ll}
0 & 0\\
1 & 0
\end{array}\right) when $\theta$_{\infty}=0.

The zero x=q of the (1, 2)‐coefficient of the system is given by

(5) q=\displaystyle \frac{tb_{0}}{tb_{0}+(t-1)b_{1}}\in \mathbb{P}^{1}
Here, we exclude lower triangular systems for which q is not defined.

Theorem (Fuchs). Assume that system ( has no apparent singular
point. Then a small deformation A(t) normalized by ( is isomon‐

odromic if, and only if, eigenvalue\displaystyle \mathcal{S}\pm\frac{$\theta$_{i}}{2} are constant and q(t) :=\displaystyle \frac{tb_{0}(t)}{tb_{0}(t)+(t-1)b_{1}(t)}
satisfies

(6) \displaystyle \frac{dq}{dt}=-2a_{0}\frac{q-1}{t-1}-2a_{1}\frac{q}{t}+(1-$\theta$_{\infty})\frac{q(q-1)}{t(t-1)}
and the Painlevé VI equation

\displaystyle \frac{d^{2}q}{dt^{2}}=\frac{1}{2}(\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-t})(\frac{dq}{dt})^{2}-(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{q-t})(\frac{dq}{dt})(7)
+\displaystyle \frac{q(q-1)(q-t)}{t^{2}(t-1)^{2}}( $\alpha$+ $\beta$\frac{t}{q^{2}}+ $\gamma$\frac{t-1}{(q-1)^{2}}+ $\delta$\frac{t(t-1)}{(q-t)^{2}}) .

with parameters  $\alpha$=\displaystyle \frac{($\theta$_{\infty}-1)^{2}}{2},  $\beta$=-\displaystyle \frac{$\theta$_{0}^{2}}{2},  $\gamma$=\displaystyle \frac{$\theta$_{1}^{2}}{2} and  $\delta$=\displaystyle \frac{1-$\theta$_{t}^{2}}{2}.
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System ( is uniquely determined up to conjugacy by initial datas

(q(t), q'(t))\in \mathbb{C}^{2} of ( by means of formulae (, (, (, ( and (.
Recall that a singular point of a connection is said apparent when the

connection becomes regular at this point after applying a convenient

gauge transformation; for a simple pole, this is equivalent to say that

the local monodromy is \pm I . When the initial system ( has apparent
singular points, there is a notion stronger than ((isomonodromy� char‐

acterizing the deformation parametrized by the corresponding Painlevé

VI solution.

Roughly speaking, Fuch�s Theorem provides an almost one‐to‐one

correspondence between local meromorphic solutions of the Painlevé

VI equation and isomonodromic local deformations of trace free con‐

nections having 4 simple poles over the Riemann sphere. Poles of q(t)
arise from the fact that the underlying bundle of the connection \nabla_{t} is

no longer trivial, but accidentally \mathcal{O}(1)\oplus \mathcal{O}(-1) (see [3]).

2. Okamoto symetries

Given an isomonodromic deformation \nabla_{t} , parametrized by q(t) ,
one

can apply a permutation  $\sigma$ of the singular points and derive a new

isomonodromic deformation \tilde{\nabla}_{t} ,
and thus a new solution \tilde{q}(t) of Painlevé

VI equation. For instance, the change of variable \tilde{x}=x/t permutes
the role of 1 and t and, via the correspondence above, provides the

new solution \displaystyle \tilde{q}(t)=\frac{q(t)}{t} of Painlevé VI equation with new parameters

(\tilde{ $\theta$}_{0},\tilde{ $\theta$}_{1},\tilde{ $\theta$}_{t},\tilde{ $\theta$}_{\infty})=($\theta$_{0}, $\theta$_{t}, $\theta$_{1}, $\theta$_{\infty}) . The full permutation group S_{4} acts as

birational symetries of Painlevé equation. Other symetries arise from

gauge transformations, that is a combination of a rational transfor‐

mation of the bundle and a tensor product with a convenient rank 1

connection restoring the trace free property. Some of them preserve the

polar divisor of the connection and have the effect to shift the eigenval‐
ues by integers: starting from a solution q(t) of (, one derive for any

given 4‐uple (n_{0}, n_{1}, n_{t}, n_{\infty})\in \mathbb{Z}^{4}, n_{0}+n_{1}+n_{t}+n_{\infty}\in 2\mathbb{Z} ,
a new solu‐

tion \tilde{q}(t) of Painlevé VI equation with new parameters (\tilde{ $\theta$}_{0},\tilde{ $\theta$}_{1},\tilde{ $\theta$}_{t},\tilde{ $\theta$}_{\infty})=
($\theta$_{0}+n_{0}, $\theta$_{1}+n_{1}, $\theta$_{t}+n_{t}, $\theta$_{\infty}+n_{\infty}) .

Finally, an extra symmetry was derived by K. Okamoto in [15] by
direct computations. This symmetry, denoted W_{2} in [15] and s_{4}s_{2}s_{4} in

[14], is an involution and generates, together with the previous geomet‐
ric ones, the full group of birational symetries of Painlevé VI equation.
Here, we will replace W_{2}=s_{4}s_{2}s_{4} by its conjugate s_{1}s_{2}s_{1} (see nota‐

tions of [14]) which shares the same p\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}3 and is easier to describe.



Introducing the new variable

(8) p(t):=\displaystyle \frac{(t-1)q'+$\theta$_{0}}{2q}+\frac{-tq'+$\theta$_{1}}{2(q-1)}+\frac{q'+$\theta$_{t}-1}{2(q-t)} (q'=\frac{dq}{dt}) ,

the Okamoto symetric s_{1}s_{2}s_{1} of a solution q(t) of ( is

(9) \displaystyle \tilde{q}(t)=q(t)-\frac{$\theta$_{0}+$\theta$_{1}+$\theta$_{t}-$\theta$_{\infty}}{2p(t)}
and is a solution of Painlevé VI equation with new parameters:

(\displaystyle \tilde{ $\theta$}_{0},\tilde{ $\theta$}_{1},\tilde{ $\theta$}_{t},\tilde{ $\theta$}_{\infty})=(\frac{$\theta$_{0}-$\theta$_{1}-$\theta$_{t}+$\theta$_{\infty}}{2}, \frac{-$\theta$_{0}+$\theta$_{1}-$\theta$_{t}+$\theta$_{\infty}}{2}, \frac{-$\theta$_{0}-$\theta$_{1}+$\theta$_{t}+$\theta$_{\infty}}{2}, \frac{$\theta$_{0}+$\theta$_{1}+$\theta$_{t}+$\theta$_{\infty}}{2}) .

In [2, 14], the Painlevé VI equation is derived from isomonodromic

deformation of higher rank connections in which the full birational

group (including Okamoto symmetry) arise from geometric transfor‐

mations of the connection. In the rank 2 case, one easily sees from

its action on parameters $\theta$_{i} that even the Galois group of the connec‐

tion is not invariant under Okamoto symmetry: both finiteness and

irreducibility of the Galois group are not preserved.

3. Main result

Consider the isomonodromic deformation \nabla_{t} of the Fuchsian system

( with eigenvalues \displaystyle \pm\frac{$\theta$_{\dot{\mathrm{i}}}}{2} and let q(t) be the corresponding solution

of the Painlevé VI equation. One can lift‐up this connection to the

Legendre elliptic curve E_{t} : \{y^{2}=x(x-1)(x-t)\} via the double

cover  $\pi$ : (x, y)\mapsto x as a logarithmic connection \tilde{\nabla}_{t} having simple
poles over order 2 periodic points $\omega$_{i}=(i, 0)\in E_{t}, i=0 , 1, t, \infty . The

simplest way to do this is a base change, leading to a connection \tilde{\nabla}_{t}^{0}
on the trivial bundle \mathcal{O}_{E_{t}}\oplus \mathcal{O}_{E_{t}} with eigenvalues \pm$\theta$_{i} over $\omega$_{i} . After a

convenient gauge transformation, one can shift all eigenvalues by one

half: we thus obtain a trace free logarithmic connection \tilde{\nabla}_{t} over E_{t}
with poles $\omega$_{i} and eigenvalues \displaystyle \pm($\theta$_{i}-\frac{1}{2}) . Precisely, this is done after 4

elementary transformations (see [4] for definition) and then tensoring
by a rank 1 bundle in order to restore the trace free property. This

construction can be carried out along an isomonodromic deformation

\nabla_{t} ,
and \tilde{\nabla}_{t} is isomonodromic as well. The underlying vector bundle V_{t}

of \tilde{\nabla}_{t} is not trivial anymore.

Following Atiyah (see [1, 5]), almost all rank 2 vector bundles on E_{t}
with trivial determinant are decomposable, i.e. of the form

(10) V=L\oplus L^{\otimes(-1)} with L\in \mathrm{P}\mathrm{i}\mathrm{c}(E_{t}) ;

to complete the list, one has to add 4 extra bundles V_{i}, i=0 , 1, t, \infty.

Semistable bundles are those decomposable ones with L\in \mathrm{P}\mathrm{i}\mathrm{c}^{0}(E_{t}) ,

4



i.e. of the form

(11) V=\mathcal{O}_{E_{t}}([ $\omega$]-[$\omega$_{\infty}])\oplus \mathcal{O}_{E_{t}}([- $\omega$]-[$\omega$_{\infty}]) ,  $\omega$=(x, y)\in E_{t},

together with the 4 indecomposable ones above. The corresponding
moduli space is \mathbb{P}^{1} (see [17]) with quotient map given by

V\mapsto x under notation of (
(12)

 V_{i}\mapsto i i=0, 1, t, \infty

In fact,  V_{i} is, for i=0 , 1, t, \infty
,

the unique non trivial extension

 0\rightarrow L_{i}\rightarrow V_{i}\rightarrow L_{i}\rightarrow 0 ,
where L_{i}=\mathcal{O}_{E_{t}}([$\omega$_{i}]-[$\omega$_{\infty}]) ;

in the quotient, V_{i} is identified with the trivial extension L_{i}\oplus L_{i}.

Theorem 1. Let \nabla_{t} be the isomonodromic deformation of an irre‐

ducible rank 2 connection over \mathbb{P}^{1} having simple poles at i=0 , 1, t, \infty

with eigenvalues \displaystyle \pm\frac{$\theta$_{i}}{2} ; let q(t) be the corresponding solution of Painlevé

VI equation. Let \tilde{\nabla}_{t} be a trace free lift ing of \nabla_{t} on the double cover

E_{t} : \{y^{2}=x(x-1)(x-t)\} with simple poles over i=0 , 1, t, \infty and

eigenvalues \displaystyle \pm($\theta$_{i}-\frac{1}{2}) . Then, for a Zariski open set of parameter t
,

the

underlying vector bundle of \tilde{\nabla}_{t} is semistable and its invariant x(t)\in \mathbb{P}^{1}
defined by ( is given by

(13) x(t)=\tilde{q}, \displaystyle \frac{t}{\tilde{q}}, \displaystyle \frac{\tilde{q}-t}{\tilde{q}-1} or t\displaystyle \frac{\tilde{q}-1}{\tilde{q}-t}
where \tilde{q}(t) is the Okamoto symetric of q(t) defined by (.

In the statement above, the value of x(t) depends on the choice of

the lifting \tilde{\nabla}_{t} : it is well defined up to tensor product by a regular
rank 1 connection whose \otimes‐square is trivial; there are 4 possibilities.
We have seen that \tilde{q} is a solution of Painlevé VI equation; the other

ones are obtained after composition by one of the symetries r_{3}, r_{4} and

r_{1} respectively of [14], corresponding to permutations of the singular
points: they are also solution of Painlevé VI equation.

In the proof of Theorem \mathrm{E} we actually show that the vector bundle

V_{t} is semistable and decomposable whenever x(t)\neq 0 , 1, t or \infty . By
�Zariski open�, we just mean that exceptional values of  t form a discrete

subset of the parameter space, i.e. the universal cover of \mathbb{P}^{1}-\{0, 1, \infty\}.

4. Lamé connections

Let us call Lamé connection any logarithmic trace free connection

on the elliptic curve E_{t} with a single pole at $\omega$_{\infty} . In the special case

($\theta$_{0}, $\theta$_{1}, $\theta$_{t}, $\theta$_{\infty})= (\displaystyle \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}+ $\theta$) of our construction,  $\theta$\in \mathbb{C} ,
the lifted
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connection \tilde{\nabla}_{t} is a Lamé connection with eigenvalues \pm $\theta$ . It turns out

that all irreducible Lamé connections arise by this way and we get

Corollary 2. Let \tilde{\nabla}_{t} be the isomonodromic deformation of a Lamé

connection over the Legendre deformation E_{t} (for local parameter t)
with eigenvalues \displaystyle \pm $\theta$\not\in\frac{1}{2} Z. Then, for a Zariski open set of parameter
t

,
the underlying vector bundle of \tilde{\nabla}_{t} is semistable and its invariant

x(t)\in \mathbb{P}^{1} defined by ( is solution of Painlevé VI equation with

parameters ( $\alpha$,  $\beta$,  $\gamma$,  $\delta$)=(\displaystyle \frac{$\theta$^{2}}{8}, -\frac{$\theta$^{2}}{8}, \frac{$\theta$^{2}}{8}, \frac{1}{2}-\frac{$\theta$^{2}}{8}) .

It is already known that isomonodromic deformation of Lamé connec‐

tions are parametrized by Painlevé VI equation with above parameters:
in [9, 11], isomonodromic deformation equations are directly computed
on the elliptic curve, and the elliptic form of Painlevé VI equation (see
[12]) is recognized.

Our approach of this result is quite different since we lift‐up (isomon‐
odromic deformation of) connections over \mathbb{P}^{1} onto the elliptic curve

instead of lifting Painlevé equation: our reduction of isomonodromic

equations to Painlevé VI equation is therefore the classical one on \mathbb{P}^{1}
due to Fuchs. Moreover, isomonodromic deformations are parametrized
in our case by Painlevé VI equation with parameters ( $\alpha$,  $\beta$,  $\gamma$,  $\delta$)=
(\displaystyle \frac{(2 $\theta$-1)^{2}}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8}) and parameters of [9, 11] are derived from the vari‐

ation of the bundle; Okamoto symmetry is in between. Finally, when

 $\theta$\displaystyle \not\in\frac{1}{2}\mathbb{Z} ,
the Lamé connection is irreducible; the fact that it can be

pushed down to \mathbb{P}^{1} reduces, via the Riemann‐Hilbert correspondence,
to the following:
two elements of A, B\in SL(2, \mathbb{C}) are simultaneously conjugated to their

inverse A^{-1}, B^{-1} provided that A and B generate an irreducible sub‐

group.

When  $\theta$\displaystyle \in\frac{1}{2}\mathbb{Z} , there are Lamé connections that do not come from

our construction. For instance, when  $\theta$\in \mathbb{Z} and the singular point
is not apparent, the monodromy is reducible, non abelian and is not

invariant under the involution of the cover E_{t}\rightarrow \mathbb{P}^{1} : the corresponding
connection cannot be pushed down. Nevertheless, when  $\theta$\displaystyle \in\frac{1}{2}+\mathbb{Z}
and the singular point is not apparent, the connection is irreducible

and the conclusion of Corollary ( still holds. On the other hand,
when the Lamé connection has an apparent singular point, the mon‐

odromy representation is abelian ( $\theta$\in \mathbb{Z}) or quaternionic ( $\theta$\displaystyle \in\frac{1}{2}+\mathbb{Z})
and is invariant under the elliptic involution; however, the monodromy
representation fails to determine the connection in this case and the

connection cannot always be pushed down.
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Finally, in the very special case  $\theta$=0
,

the lifted connection \tilde{\nabla}_{t}
is regular and generically splits into the direct sum of regular rank 1

connections (there are also 4 codimension one sub‐families of unde‐

composable connections having abelian parabolic monodromy). Our

construction coincides in this case with that one of N. Hitchin in [6]
and we retrieve

Corollary 3. Let \nabla_{t} be the isomonodromic deformation of a regular
rank 1 connection on the elliptic curve E_{t} and let \mathcal{O}_{E_{t}}([ $\omega$(t)]-[$\omega$_{\infty}]) be

the underlying line bundle,  $\omega$(t)=(x(t), y(t))\in E_{t} . Then x(t) is solu‐

tion of Painlevé VI equation with parameters ( $\alpha$,  $\beta$,  $\gamma$,  $\delta$)=(0,0,0, \displaystyle \frac{1}{2}) .

This latter corollary, observed in [10], is just a modern translation of

Theorem (Picard [16], see [13]). The general solution of Painlevé VI

equation with parameters ( $\alpha$,  $\beta$,  $\gamma$,  $\delta$)=(0,0,0, \displaystyle \frac{1}{2}) is given by

t\mapsto x(t) where (x(t), y(t)):= $\pi$(c_{0}\cdot$\omega$_{0}+c_{1}\cdot$\omega$_{1}) , c_{0}, c_{1}\in \mathbb{C}

(where  $\pi$ : \mathbb{C}\rightarrow E_{t} is the universal cover and $\omega$_{i}(t) , half‐ periods of E_{t}).

In this sense, Corollary may be viewed as a generalization of Picard

Theorem.

For general parameters ( $\alpha$,  $\beta$,  $\gamma$,  $\delta$) ,
our lifting construction provides

an isomonodromic deformation problem (a Lax pair) for the general
elliptic form of Painlevé VI equation just by considering those rank 2

trace free connections over E_{t} with simple poles over $\omega$_{i}, i=0 , 1, t, \infty,

that moreover commute with the involution  $\sigma$ :  z\mapsto-z (compare [18]).
Thanks: I want to thank the referee who helped me to improve

the text and pointed out some problem arising with apparent singu‐
lar points. I also want to thank Professor Yoshitsugu Takei for his

hospitality and for the very good organisation of the Symposium.
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