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Abstract

In the talk of the conference, a Lax formalism of ¢g-Painlevé equation associated to Agl)—
surface was presented. We can see this result in the paper, [21]. In this article, we see a
rough picture around this problem.
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1 Introduction

Theory of the Painlevé differential equations has developed through two important aspects.
One is the classification of 2nd order algebraic ordinary differential equations of normal type
which satisfy the Painlevé property. The other one is a deformation theory of linear ordinary
differential equations. P. Painlevé and B. Gambier completed the first one and obtained the
six Painlevé differential equations. On the other hand, R. Fuchs reached the sixth Painlevé
equation from completely different problem, deformation theory of linear equations. Going
into detail, we see that the sixth equation appears as the condition that we move the coeffi-
cients of the 2nd order Fuchsian equation having four regular singularities without changing
its monodromy ([4]).

This result of R. Fuchs was generalized afterwards by R. Garnier and L. Schlesinger. A
result of R. Garnier is connected to deformation theory of 2nd order linear equation with
irregular singularities. He obtained the other five Painlevé equations from this consideration
([5]). L. Schlesinger consider the isomonodromic deformation of m x m-linear system of 1st
order differential equations with regular singularities ([22]). At a later time M. Jimbo, T.
Miwa, and K. Ueno established a general theory of monodromy preserving deformation for
the matrix systems of 1st order differential equations with regular and irregular singularities
([7, 8]). In their theory the Painlevé equations are written in the form of a compatibility
condition between a 2 x 2-linear system and an associated deformation system. We call this

description “Lax form” of the Painlevé equations.



We see some merits that we could express the Painlevé equations in their Lax form. First of
all, linear differential equations are easily identified with their data of singularities; in particular,
the classification of the Painlevé equations corresponds to a coalescence of singularities of
linear differential equations. Besides particular solutions of Riccati type appear where the
monodromy of linear equations is reducible; we obtain a key for particular solutions from
studies of associated linear equations.

We can consider these two important aspects on the discrete Painlevé equations. Singularity
confinement, which was presented by A. Ramani and B. Grammaticos et al. is a discretization
of the Painlevé property. Then, how about the other one, Lax form? That is our problem.

The text is organized as follows: in the following section, we see a classification of discrete
Painlevé equations. In Section 3, we consider Lax form of the additive (difference) case, and

in Section 4, the multiplicative (g-difference) case.
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2 Classification of the discrete Painlevé equations

A classification of discrete Painlevé equations with a view of theory of rational surfaces is known
([19]). While the author prefers to call equations by the types of surfaces because of uniqueness
of their correspondence, there are many researchers who call them by their symmetries. Hence
we write down the both of the lists.
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Here we look at the expression of each discrete Painlevé equations. We will briefly get onto
historical notes afterwards.
The most complicated equation is the only one elliptic-difference equation, from which we

can obtain all of the discrete Painlevé equations as degenerations.
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This expression was obtained by M. Murata ([12]), and is easier to write down than before.

Although he considered systematic way to express each discrete Painlevé equations as above,

we look at the other equations in the ordinary expression according to Y.Ohta, A.Ramani,

B.Grammaticos, et al., which can be obtained from Murata’s expression by expanding deter-

minants.
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The parameters a;, b;, b belong to C in the elliptic and the additive (difference) case, and
belong to C* = C\ {0} in the multiplicative (g-difference) case. The parameter s belongs to

the following domain:

type of surface Dfll) Dél) Dél) D%l) Dél) Eél) E%l) Eél)
domain C\{0,1} | C* C* C* C* C C C

We can normalize f and g as § = 1 except ell-P(Ag). Moreover we can reduce parameters
by normalization for some cases. In fact, we can set bsbgbrbs = 1 for ¢-P(A1); b1babsby = 1 for
q—P(AQ); b3bs = bybg = 1 for q—P(Ag); and bs + bg + b7 +bg = 0 for d—P(A”f); bi+bs+b3+bs=0
for d-P(A3).

Remark 2.1. The discrete equations, ¢-P(Ag), ¢-P(A7), d-P(Dg), d-P(D7), and d-P(E7), can

be written in the form of the single equations:
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Remark 2.2. Generally speaking, it is difficult to tell the type of a given discrete Painlevé
equation. The following equations is, actually, d-P(Ds):
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A reliable method to know the types of the equations is to construct the space of initial

conditions. We can identify each dynamical system with an action on Picard group of the space
of the initial conditions.

However, even if two dynamical systems have the same space, we can not correspond one
to the other by a change of variables when two actions on the Picard group are not conjugate
with each other. For example, the following dynamical system has Dél)—surface as its space of
initial conditions; but it is a different system from d-P(Dj5) above. (It is a composition of two

(differently directed) d-P(Ds5).)
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In such a sense, we have infinitely many discrete Painlevé equations on each surfaces.

Now we briefly mention how discrete Painlevé equations were discovered. While discrete
dynamical systems were initially studied in connection with chaos, many interesting results on
discrete integrable systems appeared. Among them, several mappings that naturally appear in
physical applications turned out to be discrete analog of the Painlevé equations. For example,
the calculation of a certain partition function of a 2-dimensional quantum gravity model led

to the following equation (see [2]):

fn+1 + fn + fn—l = (an + b)/fn + c.



This is d-P(Eg) in the above list, whose parameters are restricted, and is called d-P;. Another
2-dimensional gravity model led to the following ([16]):

(an+b)fn+c
1-f

Simirality reduction of a discrete analog of the modified Korteweg-de Vries equation led to the

fac1+ fac1 =

same equation ([13]). This is a certain restriction of d-P(D5)P and is called d-Pyy.

Remark 2.3. At the early phase of studies, the equations were not given in the form of the
system with full-parameters, but given in the form of the single equations as these equations
above. However there are many cases in which we should consider all parameters, for example,
the case that we study symmetry of the equations. Hence the author thinks that we should
study the system in general, and the single equations should be regarded as a certain restric-
tion of the parameters. (In many cases, they are recognized as different systems. The single
equations are called the symmetric type and the systems are called the asymmetric type.)
There is also a delicate matter in the names of systems. The name, like d-Pp, is based on the
existence of a continuous limit. But there exist many different dynamical systems which have
the same differential equation as a continuous limit, and a continuous limit is not unique for
each discrete system. In the case of d-P; and d-Pj1, there are a limit to Py and Py respectively
from the viewpoint of surface theory. When we mention the more direct connection with
differential equations, these are Backlund transformations of Pry and Py respectively. In order

to avoid confusions and misleadings, the author calls the systems by their surfaces in the list.

O

The crucial step in the study of discrete Painlevé equations was made by B. Grammaticos
and A. Ramani, et al. They proposed the singularity confinement test as a discrete counter
part of the Painlevé property ([6]) and this test has led to discovery of several discrete Painlevé
equations ([17]). Let’s see the correspondence between their equations in the paper and our
list:

d—PI d—PH d(q)—PIH d—PI\/ d(q)-P\/
d-P(Es) | d-P(D5) | ¢-P(43) | d-P(A3) | ¢-P(A2)

A. Ramani and B. Grammaticos and their coworkers found almost all discrete Painlevé
equations in the years that were to follow. We refer to only two other papers, although there
are many papers of theirs and earlier works exist (see [18, 14]). The author added the elliptic-
difference Painlevé equation, ell-P(Ay), and finished the classification ([19]).

Remark 2.4. K. Kajiwara, M. Noumi, and Y. Yamada proposed a series of discrete dynamical
systems from a birational representation of the extended Weyle groups W(Af}z)_l X Agll). In
the case of m = 2 and n = 3,4, these difine two dimensional dynamical systems (see [11]).

In the case of m = 2 and n = 3, this system is called ¢-Pry and coincides with ¢-P(Aj), as

is shown in their paper, [10].



In the case of m = 2 and n = 4, this system is called ¢-Py and can be expressed as the

following system:
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T. Takenawa has shown that this system is a composition of two mappings, each of which
is conjugate to ¢-P(As) ([23]).
3 Differential equations and difference equations

It is well known that the Painlevé differential equations are obtained from deformation theory

of linear differential equations. The Painlevé equations are written in the form of compatibility,

0 0
3.1 —A—-—B+[A,B]=0
(31) SA- 2B [A4,B]=0,
between associated linear equation %Y = A(x,t)Y and its deformation equation %Y =

B(z,t)Y.
Associated linear equation is not unique, but there is a correspondence between the Painlevé
equations and certain 2 x 2-linear systems, which are characterized by their singularities. The

following table expresses the Poincaré rank+1 for the each singular points of associated linear
equation, LY = A(z)Y.

Py Py | Pm(Ds) | Pm(Dr) | Pu(Dg) | Pv | Pi| P
Poincaré rank +1 | (LLLL) | 2.L0) | (2.2) | (23/2) | (3/2:3/2) | 3.1) | (a) | (7/2)

On the other hand, the difference Painlevé equations of Dl(l) and El(l) types possess the
same rational surfaces that the Painlevé equations have as a compactification of their space of

initial conditions. Hence difference equations of Dl(l) and El(l)

can be regarded as contiguity
relations, i.e., Backlund transformations of the Painlevé differential equations. (It is because
Bécklund transformations of Painlevé coincide with Cremona actions of the surfaces ([19])
and they generate discrete Painlevé equations.) We can lift up these relations to associated
linear equations; we see them as discrete deformation (Schlesinger transformation) of linear
differential equations. (Although a certain Bécklund transformation might not be a Schlesinger
transformation, the discrete Painlevé of Dl(l) and El(l) turns out to be Schlesinger from the move
of parameters.) Schlesinger transformation is written in the form of the compatibility,

dR
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between associated linear equation, %Y = A(z)Y, and its deformation equation, ¥ = RY.
Additionally, if we have two distinct discrete deformations of the differential equation, then we
have another compatibility,

RiRy = RyRy,

between two deformation equations, Y = R1Y and Y = RyY.
Therefore the discrete Painlevé equations of type Dl(l) and El(l) can be characterized by the

same linear differential equations as the Painlevé differential equations:

d-P(Dy) | d-P(Ds) | d-P(Ds) | d-P(D7) | d-P(Es) | d-P(E7)
Poincaré rank +1 | (LLLL) | (21,1) | (22) | 23/2) | 3.1 (4)

Although the difference equations of types A(()l)**, Agl)*, and Agl)* do not correspond to any

Painlevé differential equation, the author believes that they should correspond to the Garnier
system or degenerated Garnier systems; they should be written in the framework of Schlesinger
transformations, which is generally studied in M. Jimbo and T. Miwa’s paper ([8]). Recently,
D. Arinkin and A. Borodin calculated a Lax pair of difference Painlevé equation of Agl)* type,
which is in the form of compatibility of two linear difference equations, and in fact, they show
that the system can be regarded as a discrete deformation of a linear differential equation,
though they did not give explicit form of this linear differential equation ([1]).

Hence the remained problem is as follows:

Problem A. Write down the discrete Painlevé equations, d-P(A{*), d-P(A}), d-P(A%), in
the form of the Schlesinger transformations. Furthermore, characterize them by the data of

singularities of the linear differential equations.

4 ¢-difference equations

The generalized Riemann problem of ¢-difference equations was studied in the paper of G. D.
Birkhoff ([3]). Hence, a next step was a g-analog of the deformation theory. In the paper, [9],
we consider the Lax pair in the terms of deformation theory of linear ¢-difference equations, and
characterize ¢-P(A3) by the data of the associated linear ¢-difference equation. We also refer
to the earlier result of V. G. Papageorgiou, F. W. Nijihoff, B. Grammaticos, and A. Ramani,
[15]. They constructed 4 x 4 Lax pair of ¢-P(A3).

Consider a m x m matrix system with polynomial coefficients
(4.1) Y(gz) = A(z)Y (x).

More general case of a rational A(x) can be reduced to this case by solving scalar g-difference
equations. Namely, if function f(z) satisfies f(qx) = (1/ [[2,(x—¢;)) f (z), then the ¢-difference

equation A@)
Vigr) = ———2 V(a
e

11



has a solution Y (z) = f(x)Y ().

In the theory of the monodromy preserving deformation of Fuchsian equations, an extra
parameter ¢ = (t;) is introduced denoting the position of regular singular points. In the
formulation, in terms of ¢-difference equations, we put the (discrete) deformation parameters
at zeros of det A(z), the eigen values of the leading term, and the eigen values of the constant
term.

The connection preserving deformation of the linear ¢-difference equation, which is a discrete
counterpart of monodromy preserving deformation, is equivalent to the existence of a linear
deformation equation whose coefficients are rational in z. We express the deformation equation

in the form

(4.2) Y(z) = B(x)Y (x),

and can express the g-Schlesinger equation in the form

(4.3) A@)B(x) = Blw)Alx)

by the compatibility of the deformation equation and the original linear g-difference equation.

In the previous paper, [20], we studied closely in the case of 2 x 2-matrix system. We
assumed the leading coefficient and the constant term to be invertible and semi-simple. In
the case of degree N + 1, 2 x 2 ¢-Shlesinger equation defines a nonlinear discrete dynamical
system on 2N-dimensional space; we call it g-Garnier system (of 2N dimensional). This has
the original Garnier system as its continuous limit.

In differential case, two dimensional Garnier system coincides with the sixth Painlevé equa-
tion, the most generic Painlevé differential equation. On the other hand, two dimensional
g-Garnier system coincides with ¢-P(Ag3); the more generic equations, ¢-P(A3), ¢-P(A1), and
q-P(A{) do not appear. This is the problem.

Problem B. Write down the ¢-Painlevé equations, ¢-P(Az), ¢-P(A1), ¢-P(Af), in the form
of the ¢-Schlesinger equations. Furthermore, characterize them by the data of the associated

linear ¢-difference equations.

Recently, the author constructed a Lax pair of ¢-P(As). This is a special case of the four
dimensional ¢g-Garnier system ([21]). The same problem for ¢-P(A;) and ¢-P(Af) still remains
open.

The following problem, which seems to be easier, also remains.

Problem C. Write down the ¢-Painlevé equations, g-P(Ay4), ¢-P(As), ¢-P(A5)?, ¢-P(Ag), ¢-
P(Ag)*, ¢-P(A7), ¢-P(A%), in the form of the g-Schlesinger equations, through degeneration
from ¢-P(As). Furthermore, characterize them by the data of the associated linear g-difference

equations.

12
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Elliptic-difference equation

We do not know anything about Lax pair of the elliptic-difference Painlevé equation, ell-P(Ay).
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