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On the fractional parts of powers of algebraic
numbers
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Hajime KANEKO*

Abstract

We study the fractional parts {£a™} of the geometrical progressions £a™ (n = 0,1,...),
where « is an algebraic number greater than 1 and £ is a positive real number. We also consider
the distance ||€a™ || from the number £a™ to the nearest integer. The main purpose of this paper
is to estimate the maximal and minimal limit points of the sequences {{a™} (n =0,1,...) and
l€Ea™]| (n=10,1,...).

§1. Introduction

In this paper we study the fractional parts of geometric progressions. Let a > 1
be a common ratio. Then Koksma [8] proved for almost all real numbers £ that the
sequence £a” (n = 0,1,...) is uniformly distributed modulo 1. Moreover, let £ be any
positive initial value. Then Koksma also showed that for almost all a greater than 1
the sequence £a™ is uniformly distributed modulo 1.

On the other hand, it is generally difficult to show that given geometric progres-
sions are uniformly distributed. In fact, we know little on the fractional parts of given
progressions. For instance, we can not disprove that

lim{e"} =0,

where {2} is the fractional part of a real number z. In the case where « is a transcen-
dental number, it is generally difficult to prove that the sequence {a”} (n = 0,1,...)
has two distinct limit points.
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In the case where « is an algebraic number, there is a criterion to decide whether the
sequence {€a™} (n =0,1,...) has infinitely many limit points. We recall the definition
of Pisot and Salem numbers. Pisot numbers are algebraic integers greater than 1 whose
conjugates except themselves have absolute values less than 1. Note that all integers
greater than 1 are Pisot numbers. Salem numbers are also algebraic integers greater
than 1 satisfying the following: the conjugates except themselves have absolute values
less than or equal to 1; there is at least one conjugate with absolute value 1.

Let o be an algebraic number greater than 1 and let ¢ be a positive real number.
Pisot [9] proved that the sequence {£a"} (n = 0,1,...) has only finitely many limit
points if and only if « is a Pisot number and £ € Q(«). Dubickas [5] gave another proof
of the result of Pisot. However, the limit points of the fractional parts of geometric
progressions are mysterious. For instance, by the result of Pisot, the sequence {(3/2)"}
(n=0,1,...) has infinitely many limit points. However, there is no real number proven
to be the limit point of such a sequence. In what follows, we study ranges of limit points
of the fractional parts of geometric progressions, estimating the maximal and minimal
limit points. Namely, put

F(& a) :=limsup{&a"}, f(&, o) := liminf{{a"}.
n—00 n—0o0
In Section 2, we consider the values F'(§,«) and f(&, «) for fixed algebraic numbers «
greater than 1.
Moreover, we also consider the distance [|z| from a real number to the nearest
integer. Note that

]l = min{{z}, {1 — z}}.

Pisot and Salem numbers are characterized by using the function | - ||. Namely, let «
be a Pisot number. Then we have

lim ||o"| =0.
n—oo
In fact, let oy = @, v, ..., g be the conjugates of «, where |a;| < 1 for any 2 < i < d.

Since, for any nonnegative integer n, the trace af + --- 4 aJ} is a rational integer, we
get

lim_{laf| = flay +--- 4+ ag = 0.
n—oo

Conversely, let a be an algebraic number greater than 1 such that there exists a positive
¢ satisfying

lim [[£a”|| = 0.
n—o0
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Then Pisot’s result above implies that « is a Pisot number and that £ € Q(«).
Let a be a Pisot or Salem number. Then for an arbitrary positive real number &,
there exists a positive £ = £(«, €) depending on « and € such that

limsup [[£a”]] < e.

n—oo
Namely, we have
1.1 inf limsup [[£a™|| = 0.
(1.1 inf limsup [a” |

Conversely, Dubickas showed for an algebraic number greater than 1 that if (1.1) holds,
then « is a Pisot or Salem number. For more details on Pisot and Salem numbers, see

[1].

If « is neither a Pisot nor Salem number, then the value

inf 1i (>0
Inf imsup [|£a™[|(> 0)

n—oo

is not known. Let

D(, o) := limsup [|§a” ||, d(¢, @) := liminf [[£a™].

n—oo

In Sections 3 and 4, we study the values D(&, ) and d(&, «) for fixed algebraic numbers
a.

§2. Limit points of the fractional parts of powers of algebraic numbers

Let a be an algebraic number greater than 1. Then the Koksma’s results mentioned
in Section 1 implies that

F(éaa) =1, f(g,Oé)ZO

for almost all positive real numbers €. On the other hand, let a be a real number greater
than 2. Tijdeman [10] proved the following: there exists a positive number £y = &p(«)
depending on « such that

(2.1) F(éo,0) < ——.

In this section we consider the length of the shortest interval including the limit points
of the sequences {£a™} (n =0,1,...). Namely, we estimate the value

F(f,()é) _f(gaa)

in the case where « is an algebraic number greater than 1.
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We give some notation for algebraic numbers. Let P,(X) = agX d 4 gg 1 X4+
-+ + ag € Z[X] be the minimal polynomial of an algebraic number a. The length of
P,(X) is given by

d

L(Pa(X)) = ) |ail.

1=0

Moreover, let

Li(P, Z max{0,a;}, L_ Z max{0, —

We introduce the reduced length defined in [3]. Put

(o) :== inf{L(B(X)P.(X)) | B(X) € R[X], B(X) is monic}.
Then the reduced length of « is
(2.2) (o) = min{l'(a),!' (™ 1)}.

Let again « be an algebraic number greater than 1 and £ a positive number. Suppose
that £ ¢ Q(«) in the case where « is a Pisot or Salem number. Then Dubickas [3] showed
that

>1

d
> ag-i{¢a™7}
=0

for infinitely many positive integer n. In particular, we have

. 1 1
(23) F(&,2) 2 min { T (Pa(X)) T (Pa(X)) } '

The author [7] improved (2.3) for certain classes of algebraic numbers «.
Dubickas [3] also proved that
1
2.4 F — >
(2.4 (€.0) = fg.0) = 1

In the case where o = b is a rational integer, (2.4) implies that

F(f,b)—f(f,b) 2 -

In the rest of this section we introduce the results by Bugeaud and Dubickas [2] on
irrational numbers ¢ satisfying

F(&vb)_f(gvb):_
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For any bounded sequence of integers w = (wy, )22, put
= w
(W)b = b—:
n=1

Let £ be an irrational number. Then the sequence {¢b™} (n = 0,1,...) lies in a closed
interval of length 1/b if and only if

§=g+& (W)s,

where g, k are integers with 0 < k < b — 2 and w is a Sturmian word on the alphabet
{0,1}. In this case, £ is a transcendental number.

§ 3. The distances between powers of algebraic numbers and those nearest
integers

Let a be an algebraic number greater than 1 and £ a positive real number. Let
P(X)=agX%+aq 1 X1 4+ .-+ ay € Z[X] be the minimal polynomial of a. We use
the same notation on the length and reduced length as that in Section 2. In this section
we study lower bounds of D(&, a) for such o and £. If « is a Pisot or Salem number,
then we assume that £ ¢ Q(«). Then Dubickas [4] showed that

1 1
(3.1) Dit, @) 2 max { LX) 20(a) } '

In the same paper, he also improved the inequality above in the case where « is a
rational number, using a fixed point a substitution. Let 7 : {1,2}* — {1,2} be the
substitution defined by

Then 7 has a unique fixed point

lim 7(2) = 21122211211 ... =: t1t5....

m—0o0

Let A be an empty word. Define the sequence v = (ym)pv=1 by

[N ift, =1,
™= 0 e, = 2.

Moreover, the right infinite word egejes ... is given by

epe1es ... = 1y 1yalyz 1y lys1. ..
— 10T17010T. . .,
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where 1 denotes —1. Let m,r be integers with m > 0,7 > 1. and X1, ..., X, indeter-
minants. Put

pm(Xb S aXr) :

Z X{l ...Xjf

Ly 420
P14 dip=m

and
o0
By (X1, X)) = pi(X1,..., X )es.
=0

In the case of r = 1, Dubickas [4] showed that

1= (- X)[IE, (- X*)

Ey(X) 5 Y
The infinite product
o0 .
v(X)=]Ja-x*)
i=0

is called a Mahler function because it satisfies the functional equation

U(X?) = ;I'E—X)z,

In the case of r > 2, the author [6] proved that

.
1 .
Er(Xl,---,Xr):Z H X _x. X B (X))
i=1 \ 1<i<r 77 J

370

In particular, the power series Eq(Xi,...,Xq) is represented by the Mahler function
U(X).

Now we assume that o = p/q is a rational number, where p and ¢ are relatively
coprime integers with p > ¢ > 0. In the case where « is an integer, then suppose that
€ is a irrational number. Then Dubickas improved (3.1) as follows:

o(ct)> ()

(3.2) is stronger than (3.1). In fact, (3.1) implies that

1
D(&ﬁ) >
q p+q
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1 1
I, (2)__
p p pP+q

_v—a [, (,_Z77(,_2
=~ 214 (1 (1 p2£[1<1 p2i>>>>o.

In the rest of this section we assume that « is quadratic irrational number for simplicity.

We have

Let s be the conjugate of a and as X%+ a1 X +ag € Z[X] be the minimal polynomial of
a, where as > 0 and ged(ag, a1, a9) = 1. In the case of |ag| > 1, the author [6] improved
(3.1), using the function Eo(X1, X2).

First we consider the case of g > 1. If

V5 —1

(3.3) att+ayt < 5
then we have

1 -1 -1
(3.4) D(¢, o) > —Es(a™ ' as ).

Under the conditions (3.3) and as > 1, we have

1 _ _ 1 1
a_OEQ(Of 1,0421) >maX{L(Pa(X))’2l(a)}'

So (3.4) is stronger than (3.1).
Next, assume that as < —1. Define the number ¢ by

CZ{ 1 if a < |asl,

-1 if a > |ag|.

Suppose for i = 0, 1 that

(3.5) 0 < pmsr(Ca™ Co3") < spm(Ca™ Caz?).
Then

(3.6) D(&,a) > |a—10|E2(<°‘_1’<"‘51)'

Under the conditions (3.5) and as < —1, we get

1

— 04_1 a_l max 1 1
] 2060 Gon ) > {L<Pa<x>>’2ua>}‘

Thus, (3.6) is stronger than (3.1). In the case where « is an algebraic number with an
arbitrary degree, see [6].
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We give a numerical example. Let o =4 + v/2. Then we have ay = 4 — /2. (3.1)
implies that

D(¢,4+V?2) >0.0434...

for any positive number £. On the other hand, since a and a4 satisfies (3.3), the lower
bound (3.4) means that

D(&,4+v2) > 0.0581 ...

for all positive numbers &.

In the same way as the proof of (2.1), we can prove following: Let a be any real
number « greater than 2. Then there exists a positive real number §; = &;(a) depending
on « such that

1
200 —2°

D(glv Of) <
Thus, there exists a positive &; such that

0.0581... < D(&,4++2) <0.113....

§4. Main results

In this section we show that if b is an even positive integer, then the value

el P(6:0) = d(&,0)

is described by using certain kinds of substitutions. We introduce some notation. Recall

that, for any bounded sequence of integers w = (w,, ),

(W) = (wrws ... )p = Z %

and that the substitution 7 : {1,2}* — {1,2} is defined by 7(1) = 2 and 7(2) = 211.
Moreover, let k : {1,2}* — {1,2} be the substitution defined by

For any (finite or infinite) word x = (x,,)f_; on the alphabet {1,2}, where 1 < R < o0,

we define the word u(x) = (11 (%)) E1] as follows: Put p(x) := 1 and

— i (x) (if 2, = 1),

S ‘:{ o) (i 0 =),
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for 1 <mn < R. Recall that 77(2) converges to the right-infinity sequence t = (£,,)5 .
Put

and

Moreover, let

Now we state the main results.

Theorem 4.1.  Let b be an even integer greater than 2.
(1) For any irrational number &,

(2) There exists a irrational number &y satisfying

(4.1) D(&o,b) — d(&o,b) = Le.

(3) Suppose that an irrational number & satisfies (4.1). Then

D(Eo,b) = 3 (wi)s, d(€o0,b) = 5(wa)s.

Consequently, we obtain the following:
Corollary 4.2.  Let b be an integer greater than 2. Then

_nf (D(&.b) = d(€.b)) = L.
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