

On the Holonomic Systems of Linear Differential Equations, II *

Masaki Kashiwara

Massachusetts Institute of Technology, Department of Mathematics, Cambridge, Massachusetts 02139, USA

In this paper we shall study the restriction of holonomic systems of differential equations.

Let X be a complex manifold and Y a submanifold, and let \mathcal{O}_X and \mathcal{D}_X be the sheaf of the holomorphic functions and the sheaf of the differential operators of finite order, respectively. If a function u on X satisfies a system of differential equations, the restriction of u onto Y also satisfies the system of differential equations derived from the system on X. This leads to the following definition. Let \mathcal{M} be a \mathcal{D}_X -Module. The restriction of \mathcal{M} onto Y is, by definition, $\mathcal{O}_Y \otimes \mathcal{M}$.

In [4] it is proved that if \mathcal{M} is a coherent \mathcal{D}_X -Module and if Y is noncharacteristic to \mathcal{M} , then the restriction of \mathcal{M} is also a coherent \mathcal{D}_Y -Module. However, if Y is characteristic, the restriction is no longer coherent in general. For examples, if $X = \mathbb{C}^n$ and $Y = \{x = (x_1, ..., x_n) \in X; x_1 = 0\}$ and $\mathcal{M} = \mathcal{D}_X$, the restriction $\mathcal{M}/x_1\mathcal{M}$ is a free \mathcal{D}_Y -Module generated by $D_1^m(m=0, 1, 2, ...)$ and is not coherent.

We shall prove the following theorems in this paper.

Theorem. Let \mathscr{M} be a holonomic \mathscr{D}_X -Module on a complex manifold X and f a holomorphic map from Y to X. Then $\mathscr{O}_Y \bigotimes_{f^{-1}\mathscr{O}_X} f^{-1}\mathscr{M}$ is a holonomic system on Y.

This theorem is proved by Bernstein [1] in the polynomial case. At the same time, we shall prove

Theorem. If \mathscr{M} is a holonomic \mathscr{D}_X -Module, and if \mathscr{I} is a coherent Ideal of \mathscr{O}_X , then $\varinjlim_{\mathscr{O}_X} \mathscr{E}_{\mathscr{O}_X} (\mathscr{O}_X/\mathscr{I}^m; \mathscr{M})$ are also holonomic \mathscr{D}_X -Modules.

Theorem. If \mathcal{M} is a holonomic \mathcal{D}_X -Module defined on X and holonomic outside an analytic subset Y, then $\mathcal{M}/\mathcal{H}_Y^0(\mathcal{M})$ is holonomic on X.

These theorems imply in particular the following: Let \mathscr{F} be a coherent \mathscr{O}_X -Module and let ∇ be a meromorphic integrable connection on \mathscr{F} with a pole

^{*} This is the second of the series of papers which are concerned with holonomic systems. The paper [5] is the first of this series

on a hypersurface Y. Then, $\mathscr{H}^{0}_{[X|Y]}(\mathscr{F})$ (i.e., the sheaf of the meromorphic sections of \mathscr{F} with a pole on Y) is a holonomic \mathscr{D}_{X} -Module (in particular, coherent).

Also, we shall prove the following theorem.

Theorem. For two holonomic \mathscr{D}_X -Modules \mathscr{M} and \mathscr{N} , $\mathscr{E}xt^j(\mathscr{M}; \mathscr{N})$ are constructible (i.e., $\dim_{\mathbb{C}} \mathscr{E}xt^j(\mathscr{M}; \mathscr{N})_x < \infty$ for any $x \in X$ and there is a stratification on X on each of whose stratum $\mathscr{E}xt^j_{\mathscr{A}}(\mathscr{M}, \mathscr{N})$ is locally constant).

However, the author does not know how to stratify X so that $\mathscr{E}_{\mathscr{D}}(\mathscr{M}, \mathscr{N})$ is constructible on the strata. This problem is tightly connected with the problem of determining the characteristic variety of $\mathscr{O}_Y \otimes \mathscr{M}$.

¢_X

I wish to thank J.E. Björk, J.-M. Kantor and B. Malgrange for their kind suggestions and friendly discussions about these subjects.

§1. Algebraic Local Cohomologies

1.1. In this paper we denote by X a complex manifold, by \mathcal{O}_X the sheaf of the holomorphic functions on X and by \mathcal{D}_X the sheaf of the linear differential operators of *finite order*.

1.2. Let \mathscr{I} be a coherent \mathscr{O}_X -Ideal and Y the support of $\mathscr{O}_X/\mathscr{I}$. For an \mathscr{O}_X -Module \mathscr{F} , we define with [2, 3]

(1.2.1)
$$\Gamma_{[X|Y]}(\mathscr{F}) = \varinjlim_{m} \mathscr{H}om_{\mathscr{O}_{X}}(\mathscr{I}^{m}; \mathscr{F}),$$

(1.2.2)
$$\Gamma_{[Y]}(\mathscr{F}) = \varinjlim_{\mathscr{M}} \mathscr{H}om_{\mathscr{O}_X}(\mathscr{O}_X/\mathscr{I}^m; \mathscr{F}).$$

This definition depends only on Y (not on the choice of \mathcal{I}). We have an exact sequence:

$$(1.2.3) \quad 0 \to \Gamma_{[Y]}(\mathscr{F}) \to \mathscr{F} \to \Gamma_{[X|Y]}(\mathscr{F}).$$

Lemma 1.1. If \mathscr{F} is a \mathscr{D}_X -Module, $\Gamma_{[X|Y]}(\mathscr{F})$ and $\Gamma_{[Y]}(\mathscr{F})$ have a structure of \mathscr{D}_X -Modules so that (1.2.3) is \mathscr{D}_X -linear.

Proof. We have evidently

$$\Gamma_{[X|Y]}(\mathscr{F}) = \varinjlim_{\mathcal{M}} \mathscr{H}om_{\mathscr{D}_X}(\mathscr{D}_X \mathscr{I}^m; \mathscr{F})$$

and

$$\Pi_{[Y]}(\mathscr{F}) = \lim_{\stackrel{\longrightarrow}{\longrightarrow}} \mathscr{H}om_{\mathscr{D}_X}(\mathscr{D}_X/\mathscr{D}_X\mathscr{I}^m;\mathscr{F})$$

because \mathscr{D}_X is faithfully flat over \mathscr{O}_X .

We shall define the multiplication of a differential operator P with $\Gamma_{[X|Y]}(\mathscr{F})$. Suppose that P is of order $\leq l$. Then we have

$$\mathcal{D}_{X}\mathcal{I}^{m}P \subset \mathcal{D}_{X}\mathcal{I}^{m-l} \quad \text{for } m \geq l.$$

This gives the \mathcal{D}_{x} -linear homomorphism

 $\mathscr{D}_{\chi}\mathscr{I}^{m} \to \mathscr{D}_{\chi}\mathscr{I}^{m-l}$

by the multiplication of P. Hence, we get the homomorphism

$$\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X}\mathscr{I}^{m-l};\mathscr{F}) \to \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X}\mathscr{I}^{m};\mathscr{F}).$$

Taking the inductive limit on m, we have the homomorphism $\Gamma_{[X|Y]}(\mathscr{F}) \to \Gamma_{[X|Y]}(\mathscr{F})$, which will be the multiplication by P. It is easy to check that this gives a structure of \mathscr{D}_X -Module on $\Gamma_{[X|Y]}(\mathscr{F})$ and that $\mathscr{F} \to \Gamma_{[X|Y]}(\mathscr{F})$ is \mathscr{D}_X -linear. Therefore, the kernel $\Gamma_{[Y]}(\mathscr{F})$ of this homomorphism has also a structure of \mathscr{D}_X -Module.

We shall denote by $\mathscr{H}^{k}_{[X|Y]}(\mathscr{F})$ (resp. $\mathscr{H}^{k}_{[Y]}(\mathscr{F})$) the k-th derived functor of $\Gamma_{[X|Y]}(\mathscr{F})$ (resp. $\Gamma_{[Y]}(\mathscr{F})$).

Since a stalk of an injective \mathscr{D}_X -Module is injective over a stalk of \mathscr{O}_X , we have

(1.2.4)
$$\mathscr{H}^{k}_{[X|Y]}(\mathscr{F}) = \varinjlim_{m} \mathscr{E} x \ell^{k}_{\mathscr{O}_{X}}(\mathscr{I}^{m}; \mathscr{F})$$

(1.2.5) $\mathscr{H}^{k}_{[Y]}(\mathscr{F}) = \varinjlim_{m} \mathscr{E} x \ell^{k}_{\mathscr{O}_{X}}(\mathscr{O}_{X}/\mathscr{I}^{m}; \mathscr{F}).$

We denote by $\mathbb{R}\Gamma_{[Y]}$, $\mathbb{R}\Gamma_{[X|Y]}$ the right derived functor in the derived category. We have the following triangles:

and we have also the relations

$$\mathbb{R} \Gamma_{[Y_1 \cap Y_2]}(\mathscr{F}^{\bullet}) = \mathbb{R} \Gamma_{[Y_1]} \mathbb{R} \Gamma_{[Y_2]}(\mathscr{F}^{\bullet}),$$
(1.2.7)
$$\mathbb{R} \Gamma_{[X|Y_1]} \mathbb{R} \Gamma_{[Y_2]}(\mathscr{F}^{\bullet}) = \mathbb{R} \Gamma_{[Y_2]} \mathbb{R} \Gamma_{[X|Y_1]}(\mathscr{F}^{\bullet}),$$

$$\mathbb{R} \Gamma_{[X|Y_1]} \mathbb{R} \Gamma_{[Y]}(\mathscr{F}^{\bullet}) = \mathbb{R} \Gamma_{[Y]} \mathbb{R} \Gamma_{[X|Y_1]}(\mathscr{F}^{\bullet}) = 0.$$

$$\mathbb{R} \Gamma_{[X|Y_1]} \mathbb{R} \Gamma_{[X|Y_2]}(\mathscr{F}^{\bullet}) = \mathbb{R} \Gamma_{[X|Y_1 \cup Y_2]}(\mathscr{F}^{\bullet}).$$

1.3. Suppose Y is a hypersurface defined by f = 0 with a holomorphic function f. For an \mathcal{O}_X -Module \mathscr{F} , we shall denote by \mathscr{F}_f the \mathcal{O}_X -Module associated with the presheaf $U \mapsto \Gamma(U; \mathscr{F})_f$; here $\Gamma(U; \mathscr{F})_f$ is a localization by f. Then it is easy to see that

(1.3.1)
$$\mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}) = \mathscr{F}_f = \mathcal{O}_{X_f} \underset{\mathscr{O}_X}{\otimes} \mathscr{F}.$$

 $\mathscr{D}_{X,f}$ is nothing but the Ring of differential operators with pole on Y. Although \mathscr{D}_X has two structures of \mathscr{O}_X -Modules (by the left and the right multiplications), we obtain the same $\Gamma_{[X|Y]}(\mathscr{D}_X)$.

1.4. We shall investigate the meaning of $\Gamma_{[X|Y]}$ and $\Gamma_{[Y]}$ from the viewpoint of systems of differential equations.

Theorem 1.2. Let \mathscr{F} be a complex of right \mathscr{D}_X -Modules and \mathscr{G} a complex of left \mathscr{D}_X -Modules. Then, for any analytic subset Y, we have

$$(1.4.1) \quad \mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}^{*}) \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathscr{G}^{*} \xrightarrow{\sim} \mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}^{*}) \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathbb{R}\Gamma_{[X|Y]}(\mathscr{G}^{*})$$

$$(1.4.2) \quad \mathbb{R}\Gamma_{[Y]}(\mathscr{F}^{*}) \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathscr{G}^{*} \xleftarrow{\sim} \mathbb{R}\Gamma_{[Y]}(\mathscr{F}^{*}) \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathbb{R}\Gamma_{[Y]}(\mathscr{G}^{*})$$

$$\xrightarrow{\sim} \mathscr{F}^{*} \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathbb{R}\Gamma_{[Y]}(\mathscr{G}^{*}).$$

Here \otimes is the left derived functor of \otimes in the derived category.

Proof. First we shall observe that (1.4.1) and (1.4.2) are equivalent. In fact, if (1.4.1) holds, then

$$\mathbb{R}\Gamma_{[Y]}(\mathscr{F}^{*}) \bigotimes_{\mathscr{D}_{X}}^{L} \mathbb{R}\Gamma_{[X|Y]}(\mathscr{G}^{*}) = \mathbb{R}\Gamma_{[X|Y]} \mathbb{R}\Gamma_{[Y]}(\mathscr{F}^{*}) \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{G}^{*} = 0.$$

This implies $\mathbb{R}\Gamma_{[Y]}(\mathscr{F}) \bigotimes_{\mathscr{D}_X}^L \mathscr{G}^* \leftarrow \mathbb{R}\Gamma_{[Y]}(\mathscr{F}) \bigotimes_{\mathscr{D}_X}^L \mathbb{R}\Gamma_{[Y]}(\mathscr{G}^*)$. Thus, we obtain (1.4.2.). Conversely, if (1.4.2) holds, then

$$\mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}^{\bullet}) \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathbb{R}\Gamma_{[Y]}(\mathscr{G}^{\bullet}) = \mathbb{R}\Gamma_{[Y]}\mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}^{\bullet}) \underset{\mathscr{D}_{X}}{\overset{L}{\otimes}} \mathscr{G}^{\bullet} = 0,$$

which implies (1.4.1).

Now, we shall prove this theorem. The question being local, we may assume that Y is a finite intersection of hypersurfaces Y_1, \ldots, Y_l . We shall prove it by induction on l.

a) When l=1 (i.e., Y is a hypersurface), suppose that Y is defined by f=0. We may assume that any stalk \mathscr{F}_x^j and \mathscr{G}_x^j are free $\mathscr{D}_{X,x}$ -modules. Thus, it is enough to show (1.4.1) when $\mathscr{F} = \mathscr{D}_X$ and $\mathscr{G} = \mathscr{D}_X$. Then we have $\mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}) = \mathscr{D}_{X,f}$ and $\mathbb{R}\Gamma_{[X|Y]}(\mathscr{F}) = \mathscr{D}_{X,f}$. We have also $\mathscr{D}_{X,f} \bigotimes_{\mathscr{D}_X} \mathscr{D}_{X,f} = \mathscr{D}_{X,f}$. This shows (1.4.1).

b) When $l \ge 2$. Set $Y' = Y_2 \cap ... \cap Y_l$. By the hypothesis of the induction, the theorem is true for Y'. Therefore, we have

$$\begin{split} \mathbb{R} \, \Gamma_{[Y]}(\mathscr{F}^{*}) & \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{G}^{*} \\ &= \mathbb{R} \, \Gamma_{[Y_{1}]} \, \mathbb{R}_{[Y']}(\mathscr{F}^{*}) \bigotimes_{\mathscr{D}_{X}} \mathscr{G}^{*} = \mathbb{R} \, \Gamma_{[Y']}(\mathscr{F}^{*}) \bigotimes_{\mathscr{D}_{X}}^{L} \mathbb{R} \, \Gamma_{[Y_{1}]}(\mathscr{G}^{*}) \\ &= \mathscr{F}^{*} \bigotimes_{\mathbb{R}}^{L} \mathbb{R} \, \Gamma_{[Y']} \, \mathbb{R} \, \Gamma_{[Y_{1}]}(\mathscr{G}^{*}) = \mathscr{F}^{*} \bigotimes_{\mathbb{R}}^{L} \mathbb{R} \, \Gamma_{[Y]}(\mathscr{G}^{*}). \end{split}$$

This shows (1.4.2). Q.E.D.

We shall prove the following two theorems in this paper.

Theorem 1.3. Let Y be an analytic subset of a complex manifold X, and \mathcal{M} a coherent \mathcal{D}_X -Module which is holonomic on X - Y. Then $\mathcal{H}^k_{[X|Y]}(\mathcal{M})$ are holonomic \mathcal{D}_X -Modules.

Theorem 1.4. Under the same assumption as above, if \mathcal{M} is holonomic on X, then $\mathscr{H}^k_{[Y]}(\mathcal{M})$ are holonomic \mathscr{D}_X -Modules.

Together with Theorem 1.2, we have the following theorem.

Theorem 1.5. Let Y be an analytic subset of a complex manifold X, \mathcal{M} a coherent \mathscr{D}_X -Module and \mathcal{N} a \mathscr{D}_X -Module.

a) If \mathcal{M} is holonomic on X - Y, then

$$\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathbb{R} \Gamma_{[X|Y]}\mathbb{R} \mathscr{H}om(\mathscr{M}; \mathscr{D}_{X}); \mathscr{D}_{X}); \mathscr{N})$$

= $\mathbb{R} \mathscr{H}om_{\mathscr{D}_{Y}}(\mathscr{M}; \mathbb{R} \Gamma_{[X|Y]}(\mathscr{N})).$

b) If \mathcal{M} is holonomic on X, then

$$\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathbb{R} \Gamma_{[Y]}\mathbb{R} \mathscr{H}om(\mathscr{M}; \mathscr{D}_{X}); \mathscr{D}_{X}); \mathscr{N}) \\= \mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M}; \mathbb{R} \Gamma_{[Y]}(\mathscr{N})).$$

Proof. Let us prove a). We have

$$\begin{split} \mathbb{R} \, \mathscr{H}om_{\mathscr{D}_{X}}(\mathbb{R} \, \mathscr{H}om_{\mathscr{D}_{X}}(\mathbb{R} \, \Gamma_{[X|Y]} \, \mathbb{R} \, \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M} \, ; \, \mathscr{D}_{X}); \, \mathscr{D}_{X}); \, \mathscr{N}) \\ &= \mathbb{R} \, \Gamma_{[X|Y]} \, \mathbb{R} \, \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M} \, ; \, \mathscr{D}_{X}) \bigotimes_{\mathscr{D}_{X}}^{L} \, \mathscr{N} \\ &= \mathbb{R} \, \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M} \, ; \, \mathscr{D}_{X}) \bigotimes_{\mathscr{D}_{X}}^{L} \mathbb{R} \, \Gamma_{[X|Y]}(\mathscr{N}) \\ &= \mathbb{R} \, \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M} \, ; \, \mathbb{R} \, \Gamma_{[X|Y]}(\mathscr{N})). \end{split}$$

b) is obtained in the same way. Q.E.D.

Remark. In [7] we will see that if \mathscr{M} has regular singularity, then $\mathscr{D}^{\infty} \bigotimes_{\mathscr{D}} \mathbb{R} \Gamma_{[Y]}(\mathscr{M}) = \mathbb{R} \Gamma_{Y}(\mathscr{D}^{\infty} \bigotimes_{\mathscr{D}} \mathscr{M})$, where \mathscr{D}^{∞} is the sheaf of the differential operators of infinite order. However, this relation does not hold when \mathscr{M} has irregular singularity.

1.5. Let Θ be the sheaf of the vector fields. Then \mathscr{D}_X is an \mathscr{O}_X -Algebra generated by Θ . Therefore, it is easy to see the following lemma.

Lemma 1.6. Let \mathscr{F} be an \mathscr{O}_X -Module. Suppose that a sheaf homomorphism $\psi : \Theta \otimes \mathscr{F} \to \mathscr{F}$ satisfies the following conditions:

(i) $\psi(av \otimes s) = a\psi(v \otimes s)$ (resp. $\psi(av \otimes s) = \psi(v \otimes as)$ for $a \in \mathcal{O}_X$, $v \in \mathcal{O}_X$ and $s \in \mathcal{F}$.

(ii) $\psi(v \otimes as) = a\psi(v \otimes a) + v(a)\psi(v \otimes s)$ (resp. $\psi(av \otimes s) = a\psi(v \otimes s)$

 $-v(a)\psi(v\otimes s)$ for $a\in\mathcal{O}_X$, $v\in\mathcal{O}_X$ and $s\in\mathcal{F}$.

(iii) $\psi([v_1 v_2] \otimes s) = \psi(v_1 \otimes \psi(v_2 \otimes s)) - \psi(v_2 \otimes \psi(v_1 \otimes s))$ (resp.

 $\psi([v_1, v_2] \otimes s) = \psi(v_2 \otimes \psi(v_1 \otimes s)) - \psi(v_1 \otimes \psi(v_2 \otimes s)) \text{ for } v_1, v_2 \in \Theta_X \text{ and } s \in \mathscr{F}.$

Then there is a unique structure of the left (resp. right) \mathscr{D}_X -Module on \mathscr{F} such that $\psi(v \otimes s) = vs$ (resp. $\psi(v \otimes s) = sv$) and that the induced structure of the \mathscr{O}_X -Module coincides with the original one of \mathscr{F} .

1.6. Let \mathscr{M} and \mathscr{N} be two left \mathscr{D}_{χ} -Modules. Then $\mathscr{M} \otimes \mathscr{N}$ has the structure of a left \mathscr{D}_{χ} -Module by $v(s \otimes t) = vs \otimes t + s \otimes vt$ for $v \in \mathscr{O}_{\chi}$, $s \in \mathscr{M}$, $t \in \mathscr{N}$. If \mathscr{M} is a right \mathscr{D}_{χ} -Module and \mathscr{N} is a left \mathscr{D}_{χ} -Module, $\mathscr{M} \otimes \mathscr{N}$ has the structure of a

right \mathscr{D}_X -Module by $(s \otimes t) v = sv \otimes t - s \otimes vt$. If \mathscr{M} and \mathscr{N} are right \mathscr{D}_X -Modules, then $\mathscr{H}om_{\mathscr{O}_X}(\mathscr{M}; \mathscr{N})$ has the structure of a left \mathscr{D}_X -Module by (vf)(s) = f(sv) - f(s)v for $f \in \mathscr{H}om_{\mathscr{O}_X}(\mathscr{M}; \mathscr{N}), v \in \mathscr{O}_X$ and $s \in \mathscr{M}$. If \mathscr{M} is a left \mathscr{D}_X -Module and \mathscr{N} is a right \mathscr{D}_X -Module, then $\mathscr{H}om_{\mathscr{O}_X}(\mathscr{M}; \mathscr{N})$ has the structure of a right \mathscr{D}_X -Module by (fv)(s) = f(vs) + f(s)v for $f \in \mathscr{H}om_{\mathscr{O}_X}(\mathscr{M}; \mathscr{N})$. $v \in \mathscr{O}_X$ and $s \in \mathscr{M}$.

These facts are easily checked by using Lemma 1.6. Since the sheaf Ω_X^n of the *n*-forms $(n = \dim X)$ is a right \mathcal{D}_X -Module, $\mathcal{M} \mapsto \mathcal{\Omega}_X^n \otimes \mathcal{M}$ and $\mathcal{N} \mapsto \mathcal{H}_{\mathcal{O}_X}^n \otimes \mathcal{M}_X$; \mathcal{N} give the equivalence of the category of left \mathcal{D}_X -Modules and the category of right \mathcal{D}_X -Modules.

The following lemma being easily checked, we leave the proof to the reader.

Lemma 1.7. (i) Let \mathcal{M} be a right (resp. left) \mathcal{D}_X -Module, \mathcal{N} a left (resp. right) \mathcal{D}_X -Module and \mathcal{L} a right \mathcal{D}_X -Module. Then

$$\mathcal{H}om_{\mathscr{D}_{\mathbf{X}}}(\mathcal{M}\underset{\mathfrak{O}_{\mathbf{X}}}{\otimes}\mathcal{N};\mathcal{L})\cong\mathcal{H}om_{\mathscr{D}_{\mathbf{X}}}(\mathcal{N};\mathcal{H}om_{\mathfrak{O}_{\mathbf{X}}}(\mathcal{M},\mathcal{L})).$$

(ii) If \mathcal{M} is a right \mathcal{D}_{X} -Module and if \mathcal{N} and \mathcal{L} are left \mathcal{D}_{X} -Modules, then

$$(\mathcal{M} \underset{\mathfrak{O}_X}{\otimes} \mathcal{N}) \underset{\mathfrak{D}_X}{\otimes} \mathscr{L} \cong \mathcal{M} \underset{\mathfrak{D}_X}{\otimes} (\mathcal{N} \underset{\mathfrak{O}_X}{\otimes} \mathscr{L}).$$

Lemma 1.8. Let \mathcal{M} (resp. \mathcal{N}) be a complex of right (resp. left) \mathcal{D}_{x} -Modules. Then

$$\mathbb{R} \mathscr{H}_{\mathcal{O}_{\mathcal{D}_{X}}}(\Omega_{X}^{n}; \mathscr{M} \bigotimes_{\mathscr{O}_{X}}^{L} \mathscr{N}) = \mathscr{M} \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{N}[-n]$$

where $n = \dim X$.

Proof. We have

$$\mathbb{R} \mathscr{H}_{OM_{\mathscr{D}_{X}}} \left(\Omega_{X}^{n}; \mathscr{M}^{*} \bigotimes_{\mathcal{O}_{X}}^{L} \mathscr{N}^{*} \right) \\ = \left(\mathscr{M}^{*} \bigotimes_{\mathcal{O}_{X}}^{L} \mathscr{N}^{*} \right) \bigotimes_{\mathcal{D}_{X}}^{L} \mathbb{R} \mathscr{H}_{OM} (\Omega_{X}^{n}; \mathscr{D}_{X}) \\ = \left(\mathscr{M}^{*} \bigotimes_{\mathcal{O}_{X}}^{L} \mathscr{N}^{*} \right) \bigotimes_{\mathcal{D}_{X}}^{L} \mathscr{O}_{X} [-n] \\ = \mathscr{M}^{*} \bigotimes_{\mathcal{D}_{X}}^{L} \left(\mathscr{N}^{*} \bigotimes_{\mathcal{O}_{X}}^{*} \mathscr{O}_{X} \right) [-n] \\ = \mathscr{M}^{*} \bigotimes_{\mathcal{D}_{X}}^{L} \mathscr{N}^{*} [-n]. \quad \text{Q.E.D.}$$

Lemma 1.9. For a coherent left \mathscr{D}_X -Module \mathscr{M} and a \mathscr{D}_X -Module \mathscr{N} ,

$$\mathbb{R} \operatorname{\mathscr{H}om}_{\mathscr{D}_{X}}(\mathscr{M}; \mathscr{N}) = \mathbb{R} \operatorname{\mathscr{H}om}_{\mathscr{D}_{X}}(\Omega_{X}^{n}; \mathbb{R} \operatorname{\mathscr{H}om}(\mathscr{M}; \mathscr{D}_{X}) \bigotimes_{\mathfrak{O}_{X}}^{L} \mathscr{N})[n].$$

where $n = \dim X$, and Ω_X^n is the sheaf of n-forms on X.

In fact, we have

$$\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M}; \mathscr{N}) = \mathbb{R} \mathscr{H}om(\mathscr{M}; \mathscr{D}_{X}) \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{N}.$$

§ 2. *b*-Functions

2.1. Let f be a holomorphic function on X and Y the zeros of f. As we mentioned, \mathcal{M}_f is not necessarily a coherent \mathcal{D}_X -Module even if \mathcal{M} is a coherent \mathcal{D}_X -Module. We shall show that \mathcal{M}_f is holonomic if \mathcal{M} is holonomic outside $f^{-1}(0)$. Also, we shall show the existence of b-functions, i.e., for a section u of \mathcal{M} , there is a nonzero polynomial b(s) and a differential operator P(s) which is a polynomial on s satisfying $P(s)f^{s+1}u=b(s)f^su$.

We use the same technique as in [6].

2.2. Let s be an indeterminate. The sheaf $\mathscr{D}_X[s]$ is, by definition, the sheaf of rings $\mathscr{D}_X \bigotimes_{\mathbb{C}} \mathbb{C}[s]$, where s commutes with the sections of \mathscr{D}_X . Let $\mathbb{C}[s, t]$ be the ring generated by s and t with the fundamental commutation relation

ring generated by s and t with the fundamental commutation relation

[t,s]=t.

We denote by $\mathscr{D}_{X}[s, t]$ the ring $\mathscr{D}_{X} \otimes \mathbb{C}[s, t]$, in which s and t commute with the sections of \mathscr{D}_{X} .

Let \mathscr{M} be a coherent \mathscr{D}_X -Module holonomic outside $f^{-1}(0)$ and u a section of \mathscr{M} . Let \mathscr{J} be the Ideal of $\mathscr{D}[s]$ consisting of the P(s) in $\mathscr{D}[s]$ such that

$$(2.2.1) \quad f^{mn-s} P(s) f^{s} u = 0$$

for a sufficiently large m.

Note that $f^{m-s}P(s)f^s$ belongs to $\mathscr{D}[s]$ for a sufficiently large *m*, and the identity (2.2.1) should be understood to hold in $\mathbb{C}[s] \otimes \mathscr{M}$. We will denote by

 \mathcal{N} the $\mathcal{D}[s]$ -Module $\mathcal{D}[s]/\mathcal{J}$ and the modulo class [1] is denoted symbolically

by $f^s u$. Therefore, \mathcal{N} is generated by $f^s u$ as a $\mathcal{D}[s]$ -Module.

The following lemma is evident.

Lemma 2.1. The system \mathcal{N} has a structure of a $\mathcal{D}[s, t]$ -Module by

t: $P(s) f^s u \mapsto P(s+1) f^{s+1} u$.

For any complex number λ , $\mathcal{N}(s-\lambda)$ \mathcal{N} is denoted by \mathcal{N}_{λ} , and $f^{s}u$ modulo $(s-\lambda)$ \mathcal{N} is denoted by $f^{\lambda}u$. \mathcal{N}_{λ} is a \mathcal{D}_{X} -Module generated by $f^{\lambda}u$.

Lemma 2.2. $\mathscr{D}f^{s}u$ and \mathscr{N}_{λ} are coherent \mathscr{D}_{χ} -Modules.

This lemma is an immediate consequence of the following proposition proved in [4]. (See also [8].)

Proposition 2.3 ([4]). Let \mathscr{D}_m be the sheaf of differential operators of order $\leq m$. An Ideal I of \mathscr{D}_X is coherent if $\mathcal{I} \cap \mathscr{D}_m$ is a coherent \mathscr{O}_X -Module for any m.

2.3. We will take a stratification $\{X_{\alpha}\}_{\alpha \in A}$ of X such that

(2.3.1)
$$SS(\mathcal{M}) \subset \bigsqcup_{\alpha \in A} T^*_{X_{\alpha}} X \cup \pi^{-1}(f^{-1}(0))$$

Here, $T_{X_{\alpha}}^* X$ signifies the conormal bundle of X_{α} .

(2.3.2) Any X_{α} is either disjoint from $f^{-1}(0)$ or contained in $f^{-1}(0)$.

It is clear that there exists such a stratification.

Lemma 2.4. There exists a neighborhood Ω of $f^{-1}(0)$ such that, for any X_{σ} disjoint from $f^{-1}(0)$, $d(f|X_a)$ does not vanish at any point in $\Omega \cap X_a$.

Proof. If it fails, there exists an analytic path x(t) such that $x(0) \in f^{-1}(0), x(t) \in X_{\alpha}$ for $0 < |t| \ll 1$ and that $d(f|X_{\alpha})$ vanishes at x(t) for $0 < |t| \ll 1$. Therefore, f(x(t)) is a constant function of t, which implies that f(x(t)) = 0. This leads to contradiction. Q.E.D.

Theorem 2.5. On some neighborhood Ω of $f^{-1}(0)$, $\mathcal{D}(f^s u)$ (resp. \mathcal{N}_{λ}) is a subholonomic (resp. holonomic) \mathcal{D}_X -Module. (A coherent \mathcal{D}_X -Module is called holonomic (resp. subholonomic) if the codimension of the characteristic variety is at least dim X (resp. dim X-1).)

In order to prove this theorem, we note the following proposition.

Proposition 2.6. Let \mathscr{L}_1 and \mathscr{L}_2 be two coherent \mathscr{D}_X -Modules. Suppose that $SS(\mathscr{L}_1) \cap SS(\mathscr{L}_2)$ is contained in the zero section of the cotangent bundle T^*X . Then $\mathscr{L}_1 \otimes \mathscr{L}_2$ is also a coherent \mathscr{D}_X -Module and its characteristic variety is

contained in

 $\{(x, \xi_1 + \xi_2) \in T^*X; (x, \xi_1) \in SS(\mathscr{L}_1) \text{ and } (x, \xi_2) \in SS(\mathscr{L}_2)\}.$

Especially, if \mathscr{L}_1 is holonomic (resp. subholonomic) and \mathscr{L}_2 is holonomic, then $\mathscr{L}_1 \underset{\mathfrak{G}_{\mathbf{x}}}{\otimes} \mathscr{L}_2$ is holonomic (resp. subholonomic).

Since $\mathscr{L}_1 \bigotimes \mathscr{L}_2$ is obtained as the restriction of the system $\mathscr{L}_1 \bigotimes \mathscr{L}_2$ on $X \times X$ onto the diagonal set. (See Proposition 4.7.) This proposition is a consequence of Chapter II, Theorem 3.5.3 and Theorem 3.5.9 of [9].

Now, let us prove Theorem 2.5. We take Ω as in Lemma 2.4. Since $SS(\mathscr{D}u) \cap SS(\mathscr{D}f^s)$ (resp. $SS(\mathscr{D}u) \cap SS(\mathscr{D}f^{\lambda})$) is contained in the zero section of T^*X on $\Omega - f^{-1}(0)$, $\mathscr{D}f^s \otimes \mathscr{D}u$ (resp. $\mathscr{D}f^{\lambda} \otimes \mathscr{D}u$) is subholonomic (resp. holonomic) on $\Omega - f^{-1}(0)$. Since there are surjective homomorphisms $\mathscr{D}f^s \otimes \mathscr{D}u \supset \mathscr{D}(f^s \otimes u) \rightarrow \mathscr{D}(f^s u)$ (resp. $\mathscr{D}f^{\lambda} \otimes \mathscr{D}u \supset \mathscr{D}(f^{\lambda} \otimes u) \rightarrow \mathscr{N}_{\lambda}$), we can conclude that $\mathscr{D}(f^s u)$ (resp. \mathscr{N}_{λ}) is subholonomic (resp. holonomic) on $\Omega - f^{-1}(0)$.

Let \mathscr{L} (resp. \mathscr{L}') be the sub-Module of $\mathscr{D}(f^s u)$ (resp. \mathscr{N}_{λ}) consisting of all wsuch that $\mathscr{D} w$ is subholonomic (resp. holonomic). By [4] (cf. [6]), \mathscr{L} (resp. \mathscr{L}') is subholonomic (resp. holonomic) on Ω . Therefore, $\mathscr{D}(f^s u)/\mathscr{L}$ and $\mathscr{N}_{\lambda}/\mathscr{L}'$ are coherent \mathscr{D}_X -Modules supported in $f^{-1}(0)$. Therefore, by Hilbert's Nullstelensatz, there exists an integer m such that $f^m \cdot f^s u \in \mathscr{L}$ (resp. $f^m \cdot f^\lambda u \in \mathscr{L}'$). Therefore, $\mathscr{D}(f^m \cdot f^s u)$ (resp. $\mathscr{D}(f^m \cdot f^\lambda u)$) is a subholonomic (resp. holonomic) system on Ω . However, $\mathscr{D}(f^m \cdot f^s u)$ is isomorphic to $\mathscr{D}(f^s u)$ by the homomorphism t^m . Hence, it follows that $\mathscr{D}(f^s u)$ is subholonomic.

 $\mathscr{D}(f^m \cdot f^s u)$ and $\mathscr{D}(f^s u)$ have the same multiplicity at the irreducible components of the characteristic variety of $\mathscr{D}(f^s u)$. Since the multiplicity is an additive quantity, the characteristic variety of $\mathscr{D}f^s u/\mathscr{D}f^m \cdot f^s u$ does not contain any irreducible component of that of $\mathscr{D}f^s u$. This implies that $\mathscr{D}f^s u/\mathscr{D}f^m f^s u$ is a holonomic \mathscr{D}_X -Module.

There exists a surjective homomorphism $\mathscr{D}f^s u/\mathscr{D}f^m \cdot f^s u \to \mathscr{D}(f^{\lambda}u)/\mathscr{D} \cdot (f^m \cdot f^{\lambda}u)$, which shows that $\mathscr{D}f^{\lambda}u/\mathscr{D}(f^m \cdot f^{\lambda}u)$ is holonomic. Since $\mathscr{D}(f^m \cdot f^{\lambda}u)$ is holonomic, $\mathscr{D}f^{\lambda}u$ is also holonomic. Thus, Theorem 2.5 is proved.

2.4. Since \mathcal{N} has a structure of a $\mathscr{D}[s, t]$ -Module, we can define the *b*-function as in [6]. Recall that the *b*-function is a generator of the ideal of $\mathbb{C}[s]$ consisting of b(s) such that $b(s) \mathcal{N} \subset t \mathcal{N}$. That is equivalent to saying that there exists $P(s) \in \mathscr{D}[s]$ such that $P(s) f^{s+1}u = b(s) f^s u$. However, we cannot apply [6] directly in order to prove the existence of nonzero *b*-functions, because \mathcal{N} is not a coherent \mathscr{D} -Module in general.

Theorem 2.7. For any point $x_0 \in f^{-1}(0)$, there exist a nonzero polynomial b(s) of s and $P(s) \in \mathscr{D}[s]_{x_0}$ such that

 $P(s) f^{s+1} u = b(s) f^s u.$

Proof. We set $\mathcal{M}' = \mathcal{O}_{\mathbb{C}} \hat{\otimes} \mathcal{M}$. Then \mathcal{M}' is a holonomic $\mathcal{D}_{X'}$ -Module on $X' = \mathbb{C} \times X$. We denote by u' the section $1 \otimes u$ of \mathcal{M}' . Set $f'(y, x) = y f(x) (y \in \mathbb{C}, x \in X)$. We have

$$\mathscr{D}_{\mathbf{X}'}[s]f^{s}u' = \mathscr{D}_{\mathbf{X}'}f'^{s}u'.$$

In fact, we have

$$\left(y \frac{\partial}{\partial y}\right)^m f'^s u' = s^m f'^s u'.$$

Therefore, $\mathcal{N}' = \mathcal{D}_{X'}[s] f'^s u'$ is subholonomic by Theorem 2.5 and has a structure of $\mathcal{D}_{X'}[s, t]$ -Module. Therefore, we can apply [6], There exist a polynomial b(s) and a differential operator $P(y, x, D_y, D_x)$ defined in a neighborhood of $(y, x) = (0, x_0)$ such that

(2.3)
$$P(y, x, D_y, D_x) f'^{s+1} u' = b(s) f'^{s} u'.$$

Let P_0 be the homogeneous component of P of degree -1 with respect to y. Then, comparing the degree of homogeneity of (2.3), we have

 $P_0 f'^{s+1} u' = b(s) f'^{s} u'.$

 P_0 has the form

$$P_0 = \sum A_i(x, D_x)(yD_y)^j D_y.$$

Therefore, we have

$$(s+1) \Sigma s^{j} A_{i}(x, D_{x}) f^{\prime s} f u^{\prime} = b(s) f^{\prime s} u^{\prime},$$

which implies

$$(s+1)\Sigma s^j A_j(x, D_x) f^{s+1} u = b(s) f^s u.$$
 Q.E.D.

Now, it is easy to see that the canonical homomorphism

 $\mathcal{N}_{\lambda+1} \to \mathcal{N}_{\lambda} \qquad (f^{\lambda+1}u \mapsto f \cdot f^{\lambda}u)$

is an isomorphism when $b(\lambda) \neq 0$, because we can construct the inverse $f^{\lambda} u \mapsto b(\lambda)^{-1} P(\lambda) f^{\lambda+1} u$.

Therefore, we get the following

Corollary 2.8. $\lim_{m \to \infty} \mathcal{N}_{\lambda-m}$ is a holonomic \mathcal{D}_X -Module.

Proposition 2.9. For any coherent \mathscr{D}_X -Module \mathscr{M} , \mathscr{M}_f is a (coherent) holonomic \mathscr{D}_X -Module if \mathscr{M} is holonomic outside $f^{-1}(0)$.

Proof. Since $\mathcal{M} \mapsto \mathcal{M}_f$ is an exact functor, we may assume without loss of generality that \mathcal{M} is generated by a section u.

Since \mathcal{M}_f is the quotient of $\lim_{\overline{m}} \mathcal{D}f^{-m}u$, \mathcal{M}_f is holonomic. Q.E.D.

§ 3. Proof of Theorem

Proposition 2.9 implies Theorem 1.4 almost immediately. First note the following proposition.

Proposition 3.1 ([2], [3]). Let Y_1 and Y_2 be two analytic sets. Then there exists a spectral sequence

$$\mathscr{E}_{2}^{pq} = \mathscr{H}_{[Y_{1}]}^{p}(\mathscr{H}_{[Y_{2}]}^{q}(\mathscr{M})) \Rightarrow \mathscr{H}^{p+q} = \mathscr{H}_{[Y_{1} \cap Y_{2}]}^{p+q}(\mathscr{M}).$$

In particular, if \mathscr{E}_2^{pq} are holonomic, then \mathscr{H}^{p+q} are holonomic. Therefore, if Theorem 1.4 is true for Y_1 and Y_2 , then it is so for $Y_1 \cap Y_2$. Since Y is locally a finite intersection of hypersurfaces, we can reduce the theorem to the case in which Y is a hypersurface by induction. This case is nothing but Proposition 2.9.

More generally, we have the following theorem. The author is grateful to J.-M. Kantor for kindly pointing out this result.

Theorem 3.1. Let \mathcal{M} be a coherent \mathcal{D}_X -Module and Y an analytic set of X. Suppose that \mathcal{M} is holonomic on X - Y. Then $\mathcal{H}^i_{\{X|Y\}}(\mathcal{M})$ is coherent and holonomic for any i.

Proof. Let \mathcal{M}' be the sub-Module of \mathcal{M} consisting of sections u of \mathcal{M} such that $\mathcal{D}_X u$ is holonomic. Then, \mathcal{M}' is a holonomic system. Since $\mathcal{M} = \mathcal{M}'$ outside X - Y the support of \mathcal{M}/\mathcal{M}' is contained in Y. Therefore, we have $\mathbb{R}\Gamma_{[X|Y]}(\mathcal{M}/\mathcal{M}') = 0$, which implies that

 $\mathbb{R}\Gamma_{[X|Y]}(\mathscr{M}) = \mathbb{R}\Gamma_{[X|Y]}(\mathscr{M}').$

Thus, replacing \mathcal{M} with \mathcal{M}' , we may assume that \mathcal{M} is holonomic from the first time. By the exact sequence

$$0 \to \mathscr{H}^0_{[Y]}(\mathscr{M}) \to \mathscr{M} \to \mathscr{H}^0_{[X]Y]}(\mathscr{M}) \to \mathscr{H}^1_{[Y]}(\mathscr{M}) \to 0,$$

and by the isomorphisms

$$\mathscr{H}^{j}_{[X|Y]}(\mathscr{M}) = \mathscr{H}^{j+1}_{[Y]}(\mathscr{M}) \qquad (j \ge 1),$$

this theorem follows from Theorem 1.4. Q.E.D.

§ 4. Restriction of \mathcal{D}_{x} -Modules

4.1. Let X and Y be complex manifolds and f a holomorphic map from Y to X. As in [4], we define the sheaf $\mathscr{D}_{Y \to X}$ (resp. $\mathscr{D}_{X \leftarrow Y}$) by $\mathscr{O}_Y \bigotimes_{f^{-1}\mathscr{O}_X} f^{-1} \mathscr{D}_X$ (resp. $f^{-1}(\mathscr{D}_X \bigotimes (\Omega_X^{\dim X})^{\otimes -1}) \bigotimes_{f^{-1}\mathscr{O}_X} \Omega_Y^{\dim Y})$, where Ω_X^i signifies the sheaf of the *j*-forms. The sheaf $\mathscr{D}_{Y \to X}$ has a structure of right $f^{-1}\mathscr{D}_X$ -Module by the multiplication from the right. We can endow $\mathscr{D}_{Y \to X}$ with a structure of left \mathscr{D}_X -Module as follows. For $v \in \mathscr{O}_Y$, $f_*(v) \in \mathscr{O}_Y \bigotimes_{f^{-1}\mathscr{O}_X} f^{-1} \mathscr{O}_X$ is given $\Sigma a_j \otimes \omega_j$ with $a_j \in \mathscr{O}_Y$ and $\omega_i \in \mathscr{O}_X$. Then $v(b \otimes P) = \Sigma a_j b \otimes \omega_j P + v(b) \otimes P$.

 \mathscr{D}_{X-Y} has evidently the structure of left $f^{-1}\mathscr{D}_X$ -Module. The structure of right \mathscr{D}_X -Module on \mathscr{D}_X induces the structure of left \mathscr{D}_X -Module on $\mathscr{D}_X \bigotimes_{\ell_X} (\Omega_X^{\dim X})^{\otimes -1}$ and hence

$$\mathcal{O}_{Y} \bigotimes_{f^{-1}\mathcal{O}_{X}} (\mathcal{D}_{X} \bigotimes_{\mathcal{O}_{X}} (\Omega_{X}^{\dim X})^{\otimes -1}) = \mathcal{D}_{Y \to X} \bigotimes_{f^{-1}\mathcal{D}_{X}} f^{-1} (\mathcal{D}_{X} \bigotimes_{\mathcal{O}_{X}} (\Omega_{X}^{\dim X})^{\otimes -1})$$

has a structure of left \mathscr{D}_{Y} -Module. This defines the structure of right \mathscr{D}_{Y} -Module on $\mathscr{D}_{X \leftarrow Y}$. Thus, $\mathscr{D}_{Y \to X}$ is a $(\mathscr{D}_{Y}, f^{-1}\mathscr{D}_{X})$ -bi-Module and $\mathscr{D}_{X \leftarrow Y}$ is an $(f^{-1}\mathscr{D}_{X}, \mathscr{D}_{Y})$ -bi-

Module. Note that we have

$$\mathscr{D}_{Y \to X} = \mathscr{H}^{\dim X}_{[Y]}(\mathscr{O}_{Y \times X} \bigotimes_{\mathscr{O}_X} \Omega^{\dim X}_X)$$

and

$$\mathscr{D}_{X-Y} = \mathscr{H}^{\dim X}_{[Y]}(\Omega^{\dim Y}_{Y} \bigotimes_{\mathscr{O}_{Y}} \mathscr{O}_{Y \times X}).$$

4.2. Suppose that Y is a submanifold of X of codimension l. Then $\mathscr{D}_{Y \to X}$ and $\mathscr{D}_{X \to Y}$ are coherent \mathscr{D}_X -Modules and faithfully flat over \mathscr{D}_Y . We define for a left \mathscr{D}_X -Module \mathscr{M} ,

$$\mathcal{M}_{Y} = \mathcal{D}_{Y \to X} \bigotimes_{\mathcal{D}_{X}}^{L} \mathcal{M} = \mathcal{O}_{Y} \bigotimes_{\mathcal{O}_{X}}^{L} \mathcal{M}.$$

Theorem 4.1. If \mathcal{M} is a holonomic \mathcal{D}_X -Module, then $\mathcal{T}or_k^{\mathfrak{G}_X}(\mathcal{O}_Y, \mathcal{M}) = \mathcal{T}or_k^{\mathfrak{G}_X} \circ (\mathcal{D}_{Y \to X}, \mathcal{M})$ is a holonomic \mathcal{D}_Y -Module for any k.

This theorem is a consequence of the following propositions.

Proposition 4.2. If \mathcal{M} is a coherent \mathcal{D}_X -Module whose support is contained in Y, then we have

$$\mathcal{M} = \mathcal{D}_{X \leftarrow Y} \bigotimes_{\mathcal{D}_{Y}} \mathcal{H}om_{\mathcal{D}_{X}}(\mathcal{D}_{X \leftarrow Y}; \mathcal{M}),$$

 $\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X \leftarrow Y}; \mathscr{M})$ is a coherent \mathscr{D}_{Y} -Module and $\mathscr{E}xt^{j}_{\mathscr{D}_{X}}(\mathscr{D}_{X \leftarrow Y}; \mathscr{M}) = 0$ for $j \neq 0$. If, moreover, \mathscr{M} is holonomic, so is $\mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X \leftarrow Y}; \mathscr{M})$. See [5].

Proposition 4.3. $\mathbb{R} \mathscr{H}_{OM_{\mathscr{D}_{X}}}(\mathscr{D}_{X \leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{M}))[l] = \mathscr{D}_{Y \to X} \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{M} \quad for \quad any \\ \mathscr{D}_{X}-Module \ \mathscr{M}.$

Proof. Since

$$\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X\leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{M}))$$

= $\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X\leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{D}_{X})) \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{M},$

it is enough to show

$$\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{D}_{X \leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{D}_{X}))[l] = \mathscr{D}_{Y \to X}.$$

Set $n = \dim X$. Then, by the definition,

$$\mathscr{D}_{X \leftarrow Y} = \mathscr{D}_{X} \bigotimes_{\mathscr{O}_{X}}^{L} (\Omega_{Y}^{n-l} \otimes (\Omega_{X}^{n})^{\otimes -1}).$$

Hence, we have

 $\mathbb{R} \mathscr{H}_{\mathcal{O}\mathcal{M}_{\mathscr{D}_{X}}}(\mathscr{D}_{X \leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{D}_{X}))[l] = \mathbb{R} \mathscr{H}_{\mathcal{O}\mathcal{M}_{\mathscr{O}_{X}}}(\Omega_{Y}^{n-l} \otimes (\Omega_{X}^{n})^{\otimes -1}; \mathbb{R} \Gamma_{[Y]}(\mathscr{D}_{X}))[l].$ Since $\Omega_{Y}^{n-l} \otimes (\Omega_{X}^{n})^{\otimes -1}$ is a coherent \mathscr{O}_{X} -Module supported on Y, we have

$$\mathbb{R} \mathscr{H}om_{\mathscr{O}_{X}}(\Omega_{Y}^{n-l} \otimes (\Omega_{X}^{n})^{\otimes -1}; \mathbb{R} \Gamma_{[Y]}(\mathscr{D}_{X})) = \mathbb{R} \mathscr{H}om_{\mathscr{O}_{X}}(\Omega_{Y}^{n-l} \otimes (\Omega_{X}^{n})^{\otimes -1}; \mathscr{D}_{X})$$

and the last term equals

$$\mathbb{R} \operatorname{\mathscr{H}om}_{\mathscr{O}_X}(\Omega^{n-l}_Y \otimes (\Omega^n_X)^{\otimes -1}; \mathscr{O}_X) \overset{L}{\underset{\mathscr{O}_X}{\otimes}} \mathscr{D}_X.$$

Since $\mathscr{E}_{\mathscr{A}} \mathscr{L}_{\mathscr{O}_X}^j(\mathscr{O}_Y; \mathscr{O}_X) = (\Omega_Y^{n-1})^{\otimes -1} \otimes \Omega_X^n$ for j = l and vanishes for $j \neq l$, we have

$$\mathbb{R} \mathscr{H}_{\mathcal{O}_X}(\Omega_Y^{n-l} \otimes (\Omega_X^n)^{\otimes -1}; \mathcal{O}_X) = \mathcal{O}_Y[-l].$$

Thus we obtain

$$\mathbb{R} \mathscr{H}_{\mathcal{O}_{\mathcal{P}_{X}}}(\mathscr{D}_{X \leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{D}_{X}))[l] = \mathcal{O}_{Y} \bigotimes_{\mathscr{O}_{X}}^{L} \mathscr{D}_{X} = \mathscr{D}_{Y \to X}. \quad \text{Q.E.D.}$$

Now, we can prove Theorem 4.1.

By Theorem 1.4, $\mathscr{H}_{[Y]}^k(\mathscr{M})$ are holonomic when \mathscr{M} is holonomic. Then, by Proposition 4.2, $\mathbb{R} \mathscr{H}_{\mathscr{M}_{X}}(\mathscr{D}_{X \leftarrow Y}; \mathbb{R} \Gamma_{[Y]}(\mathscr{M}))$ has holonomic \mathscr{D}_Y -Modules as cohomologies, Hence, Theorem 4.1 follows immediately from Proposition 4.3. 4.3. Suppose that $f: Y \to X$ is a holomorphic map.

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

Theorem 4.4. If \mathcal{M} is a holonomic \mathcal{D}_X -Module, then

$$\mathcal{T}or_{k}^{f^{-1}\mathcal{O}_{X}}(\mathcal{O}_{Y}, f^{-1}\mathcal{M}) = \mathcal{T}or_{k}^{\mathcal{D}_{X}}(\mathcal{D}_{Y \to X}, f^{-1}\mathcal{M})$$

is a holonomic $\mathcal{D}_{\mathbf{Y}}$ -Module.

Proof. Let \mathcal{N} be the holonomic system $\mathcal{O}_Y \widehat{\otimes} \mathcal{M}$. Then \mathcal{N} is a holonomic $\mathcal{D}_{Y \times X^-}$ Module. Identifying Y with the graph of f, we shall prove $\mathcal{T}_{\mathcal{O}} t_k^{\mathscr{D}_X}(\mathcal{D}_{Y \to X}, \mathcal{M}) = \mathcal{T}_{\mathcal{O}} t_k^{\mathscr{D}_Y \times X}(\mathcal{D}_{Y \to Y \times X}, \mathcal{N})$. This implies immediately the desired result.

Lemma 4.5.
$$\mathscr{D}_{Y \to Y \times X} \bigotimes_{\mathscr{D}_{Y \times X}}^{L} (\mathscr{O}_{Y} \otimes_{\mathfrak{C}}^{\widehat{\otimes}} \mathscr{M}) = \mathscr{D}_{Y \to X} \bigotimes_{\mathscr{D}_{X}}^{L} \mathscr{M}.$$

Proof. Let p_1 and p_2 be the projection from $Y \times X$ onto Y and X, respectively.

$$\mathcal{O}_{\mathbf{Y}} \bigotimes_{\mathbf{C}} \mathcal{M} = \mathscr{D}_{\mathbf{Y} \times \mathbf{X}} \bigotimes_{p_{1}^{-1} \mathscr{D}_{\mathbf{Y}} \otimes p_{2}^{-1} \mathscr{D}_{\mathbf{X}}} (p_{1}^{-1} \mathcal{O}_{\mathbf{Y}} \otimes p_{2}^{-1} \mathcal{M}).$$

Thus, we have

$$\mathcal{D}_{Y \to Y \times X} \bigotimes_{\mathscr{D}_{Y \times X}} (\mathcal{O}_{Y} \otimes \mathcal{M}) = \mathcal{D}_{Y \to Y \times X} \bigotimes_{\substack{p_{1}^{-1} \mathscr{D}_{Y} \otimes p_{2}^{-1} \mathscr{D}_{X} \\ = (\mathcal{D}_{Y \to Y \times X} \bigotimes_{\substack{p_{1}^{-1} \mathscr{D}_{Y} \\ p_{1}^{-1} \mathscr{D}_{Y}} \sum_{p_{1}^{-1} \mathscr{D}_{Y}) \bigotimes_{p_{2}^{-1} \mathscr{D}_{X}} \sum_{p_{2}^{-1} \mathscr{D}_{X}} L$$

Thus, it is enough to show

$$\mathscr{D}_{Y \to Y \times X} \bigotimes_{p_1^{-1} \mathscr{D}_Y}^L p_1^{-1} \mathscr{O}_Y = \mathscr{D}_{Y \to X}.$$

It is easy to see

$$\mathscr{D}_{Y \times X} \bigotimes_{p_1^{-1} \mathscr{D}_Y}^L p_1^{-1} \mathscr{O}_Y = \mathscr{O}_{Y \times X} \bigotimes_{p_2^{-1} \mathscr{O}_X}^L p_2^{-1} \mathscr{D}_X$$

We have

$$\begin{split} \mathscr{D}_{Y \to Y \times X} & \bigotimes_{p_{1}^{-1} \mathscr{D}_{Y}}^{L} p_{1}^{-1} \mathscr{O}_{Y} = (\mathscr{O}_{Y} \bigotimes_{\mathscr{O}_{Y \times X}}^{L} \mathscr{D}_{Y \times X}) \bigotimes_{p_{1}^{-1} \mathscr{D}_{Y}}^{L} p_{1}^{-1} \mathscr{O}_{Y} \\ &= \mathscr{O}_{Y} \bigotimes_{\mathscr{O}_{Y \times X}}^{L} (\mathscr{D}_{Y \times X} \bigotimes_{p_{1}^{-1} \mathscr{D}_{Y}}^{L} p_{1}^{-1} \mathscr{O}_{Y}) \\ &= \mathscr{O}_{Y} \bigotimes_{\mathscr{O}_{Y \times X}}^{L} (\mathscr{O}_{Y \times X} \bigotimes_{p_{2}^{-1} \mathscr{D}_{X}}^{2} p_{2}^{-1} \mathscr{D}_{X}) = \mathscr{O}_{Y} \bigotimes_{f^{-1} \mathscr{O}_{X}}^{L} f^{-1} \mathscr{D}_{X} = \mathscr{D}_{Y \to X}. \quad \text{Q.E.D.} \end{split}$$

4.4. We shall prove here the tensor products of two holonomic systems are holonomic.

Theorem 4.6. Let \mathcal{M} and \mathcal{N} be two holonomic \mathcal{D}_X -Modules; then $\mathcal{T}or_k^{\mathcal{O}_X}(\mathcal{M}, \mathcal{N})$ is a holonomic \mathcal{D}_X -Module for any k.

Proof. First we shall prove

Proposition 4.7. For two \mathcal{D}_x -Modules \mathcal{M} and \mathcal{N} , we have

$$\mathscr{M} \bigotimes_{\mathscr{O}_{X}}^{L} \mathscr{N} = \mathscr{D}_{X \to X \times X} \bigotimes_{\mathscr{D}_{X \times X}}^{L} (\mathscr{M} \widehat{\otimes} \mathscr{N}),$$

where

$$\mathscr{M} \mathbin{\widehat{\otimes}} \mathscr{N} = \mathscr{D}_{X \times X} \underset{p_1^{-1} \mathscr{D}_X \otimes p_2^{-1} \mathscr{D}_X}{\otimes} (p_1^{-1} \mathscr{M} \otimes p_2^{-1} \mathscr{N})$$

with the first and the second projections p_1 and p_2 from $X \times X$ onto X.

Proof. Since

$$\mathscr{D}_{X \times X} = \mathscr{O}_{X \times X} \bigotimes_{p_1^{-1} \mathscr{O}_X \otimes p_2^{-1} \mathscr{O}_X} (p_1^{-1} \mathscr{D}_X \otimes p_2^{-1} \mathscr{D}_X),$$

we have

$$\mathscr{M} \,\widehat{\otimes}\, \mathscr{N} = \mathscr{O}_{X \times X} \underset{p_1^{-1} \mathscr{O}_X \,\otimes\, p_2^{-1} \mathscr{O}_X}{\otimes} (p_1^{-1} \,\mathscr{M} \otimes p_2^{-1} \,\mathscr{N}).$$

Therefore,

$$\mathcal{D}_{X \to X \times X} \bigotimes_{\mathscr{D}_{X \times X}}^{L} (\mathscr{M} \otimes \mathscr{N}) = \mathcal{O}_{X} \bigotimes_{\mathscr{O}_{X \times X}}^{L} (\mathscr{M} \otimes \mathscr{N}) = \mathcal{O}_{X} \bigotimes_{p_{1}^{-1} \mathscr{O}_{X}}^{L} \bigotimes_{\mathfrak{C}}^{p_{2}^{-1} \mathscr{O}_{X}} (p_{1}^{-1} \mathscr{M} \bigotimes_{\mathfrak{C}}^{p_{2}^{-1}} \mathscr{N})$$
$$= \mathscr{M} \bigotimes_{\mathscr{O}_{X}}^{L} \mathscr{N}. \quad \text{Q.E.D.}$$

Theorem 4.6 is a consequence of this proposition and Theorem 4.1.

4.5. We know that $\mathscr{Ext}_{\mathscr{D}_X}^j(\mathscr{M}; \mathscr{D}_X^\infty \otimes_{\mathscr{D}_X} \mathscr{N})$ is a constructible sheaf for any holonomic \mathscr{D}_X -Modules \mathscr{M} and \mathscr{N} [5]. Here a sheaf \mathscr{F} is called constructible if there is a stratification of X on each of whose strata \mathscr{F} is locally constant of finite rank. \mathscr{D}_X^∞ is the sheaf of the differential operators of infinite order. Therefore, in particular, $\mathscr{H}_{\mathscr{D}_X}(\mathscr{M}; \mathscr{N})$ has a finite-dimensional stalk at each point. Furthermore, by using the previous results, we can prove the following results.

Theorem 4.8. Let \mathcal{M} and \mathcal{N} be two holonomic \mathcal{D}_X -Modules. Then $\mathscr{E}_{\mathcal{D}_X}(\mathcal{M}; \mathcal{N})$ is a constructible sheaf for any j.

r

Proof. This is a consequence of Lemma 1.8 because

$$\mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\mathscr{M}; \mathscr{N}) = \mathbb{R} \mathscr{H}om_{\mathscr{D}_{X}}(\Omega_{X}^{n}; \mathbb{R} \mathscr{H}om(\mathscr{M}; \mathscr{D}_{X}) \bigotimes_{\mathscr{C}_{X}}^{\otimes} \mathscr{N})[n]$$

and

$$\mathbb{R} \, \mathscr{H}om(\mathscr{M}, \mathscr{D}_X) \bigotimes_{\mathscr{O}_X}^L \mathscr{N}$$

has holonomic \mathcal{D}_X -Modules as cohomologies. Therefore the theorem follows from the result in [5]. Q.E.D.

References

- 1. Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl. 6, 26-40 (1972)
- 2. Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globeaux (SGA2). Amsterdam: North-Holland Publ. Co. 1968
- 3. Hartshorne, R.: Local Cohomology, Lecture Notes in Math., 41. Berlin-Heidelberg-New York: Springer 1967
- 4. Kashiwara, M.: An algebraic study of systems of partial differential equations, local theory of differential operators (Master's thesis). Sugakushinkokai (in Japanese), 1970
- 5. Kashiwara, M.: On the maximally overdetermined system of linear differential equations, I. Publ. R.I.M.S., Kyoto Univ. 10, 563–579 (1975)
- Kashiwara, M.: B-functions and holonomic systems, rationality of roots of b-functions. Inventiones Math. 38, 33–53 (1976)
- 7. Kashiwara, M., Kawai, T.: On the holonomic systems of micro-differential equations, III. in press (1978)
- Le Jeune-Jalabert, M., Malgrange, B., Boutet de Monvel: Séminaire "Opérateurs différentiels et pseudo-différentiels", I, II, III, IV, Université Scientifique et Médical de Grenoble, Laboratoire de Math. Pures Associé au C.N.R.S., 1975-1976
- Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudodifferential equations, Lecture Notes in Math. Berlin-Heidelberg-NewYork: Springer 287, 265–529 (1973)

Received October 24, 1977/Revised June 19, 1978