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In this paper we shall study the restriction of holonomic systems of differential 
equations. 

Let X be a complex manifold and Y a submanifold, and let (9 x and D x be 
the sheaf of the holomorphic functions and the sheaf of the differential operators 
of finite order, respectively. If a function u on X satisfies a system of differential 
equations, the restriction of u onto Y also satisfies the system of differential 
equations derived from the system on X. This leads to the following definition. 
Let JC{ be a Dx-Module. The restriction of ~ / o n t o  Y is, by definition, (gr | J//. 

~x 
In [4] it is proved that if Jr is a coherent Dx-Module and if Y is non- 
characteristic to Jg, then the restriction of Jg is also a coherent Dr-Module. 
However, if Y is characteristic, the restriction is no longer coherent in general. 
For examples, if X=II2" and Y = { x = ( x  1 . . . .  , x , ) eX ;  x l = O  } and J g = D x ,  the 
restriction JC[/xlJCl is a free Dr-Module generated by D~(m=0, 1,2,...) and is 
not coherent. 

We shall prove the following theorems in this paper. 

Theorem. Let Jr be a holonomic Dx-Module on a complex manifold X and f a 
holomorphic map from Y to X. Then (9 r | f - l ~  is a holonomic system on Y 

f -  lt~ x 

This theorem is proved by Bernstein [1] in the polynomial case. 
At the same time, we shall prove 

Theorem. I f  Jl{ is a holonomic ~x-Module,  and if J is a coherent Ideal of  (gx, 
then li_mmr ( (gx / f"  ; Jg) are also holonomic ~x-Modules.  

m 

Theorem. I f  JCl is a holonomic Dx-Module defined on X and holonomic outside an 
analytic subset Y, then Jl/l/Jf~ is holonomic on X.  

These theorems imply in particular the following: Let ~ be a coherent 
(_gx-Module and let V be a meromorphic integrable connection on ~ with a pole 

* This is the second of the series of papers which are concerned with holonomic systems. The 
paper [-5] is the first of this series 
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on a hypersurface Y. Then, ~ t ~  (i.e., the sheaf of the meromorphic sections 
of ~ with a pole on Y) is a holonomic ~x-Module (in particular, coherent). 

Also, we shall prove the following theorem. 

Theorem. For two holonomic ~x-Modules J/r and ~,, g.~/i(d/;  JV) are con- 
structible (i.e., dimeg~/J(J / / ;  JIr)x< oo for any x a X  and there is a stratification 
on X on each of whose stratum 6~:l~(dt ', JV) is locally constant). 

However, the author does not know how to stratify X so that g~'~(d//', ~ )  is 
constructible on the strata. This problem is tightly connected with the problem 
of determining the characteristic variety of (9 r | d/. 

d~x 

I wish to thank J.E. Bj6rk, J.-M. Kantor and B. Malgrange for their kind suggestions and 
friendly discussions about these subjects. 

w 1. Algebraic Local Cohomologies 

1.1. In this paper we denote by X a complex manifold, by to x the sheaf of the 
holomorphic functions on X and by @x the sheaf of the linear differential 
operators of finite order. 

1.2. Let d be a coherent (gx-Ideal and Y the support of (~x/d. For an 
Cx-Module ~,, we define with [2, 3] 

(1.2.1) FEx r l ( ~ ) =  lira Jf~m~x(dm; g ) ,  

(1.2.2) rm(~)= lira ~ , ~ ( o x / / m ;  ~). 

This definition depends only on Y (not on the choice of d). We have an exact 
sequence: 

(1.2.3) o- ,  rm(~)-~ ~-~ rt~m(~). 

Lemma 1.1. / f  ~- is a ~x-Module, F~xlrl(~ ) and Ftrl(~ ) have a structure of 
~x-Modules so that (1.2.3) is ~x-linear. 

Proof. We have evidently 

Ftxlyl(~ ) =libra ~ x ( ~ X f " ;  ~) 
m 

and 

Fw(~)  = lim J ~ f f ~ x ( ~ x / ~ x d ~ ;  ~ )  

because ~ x  is faithfully flat over (9 x. 
We shall define the multiplication of a differential operator P with Ftxlrl(~ ). 

Suppose that P is of order __<1. Then we have 

~ x J m P ~ x  d;m-t for m>l .  



On the Holonomic Systems of Linear Differential Equations, II 123 

This gives the ~x-linear homomorphism 

by the multiplication of P. Hence, we get the homomorphism 

~f,~x(~Xd"-~; ~)__, ~%,~,,(~xd"; ~). 

Taking the inductive limit on m, we have the homomorphism 
F~xlvl(~)~F~xlr~(W), which will be the multiplication by P. It is easy to check 
that this gives a structure of ~x-Module on F~xlrl(~ ) and that @--~F~xlrl(~ ) is 
~x-linear. Therefore, the kernel Fm(o~ ) of this homomorphism has also a 
structure of ~x-Module. 

We shall denote by , ,~ l r l (~) ( resp .  ~1(o~))  the k-th derived functor of 
F~xlrl(~ ) (resp. F~yI(~)). 

Since a stalk of an injective ~x-Module is injective over a stalk of (9 x, we 
have 

(1.2.4) 9f~t~ltl(O~-)= ~ #X+~x(Or ~ )  

(1.2.5) ~ ( ~ ) = ~  eXe~x(Cx/d'; ~). 

We denote by IRF~rl, ]RF~xlr ~ the right derived functor in the derived category. 
We have the following triangles: 

IRFtrjff" 

/ y  
(1.2.6) ~"  ' IRFtxlrl(J~'), 

IR q x l r ,  ~ r~l(g') 
,/ \ + '  

~qx~ ~,~(g') | ~'- qx~ ~ ( g ' )  --' ~qx~, ,  ~ ~:~(~-') 

and we have also the relations 

(1.2.7) IP'qx' ~'l~q~2~(g') = aqY:~n~qx' ~'~(~-')' 
q x ~ q ~ j ( ~ ' ) = a q ~ j ~ q x ~ ( g ' ) = 0 .  

1.3. Suppose Y is a hypersurface defined by f = 0 with a holomorphic function f 
For an (gx-Module ~ ,  we shall denote by ~ the Cx-Module associated with the 
presheaf U~--~F(U; ~)y; here F(U; ~)~. is a localization by f Then it is easy to 
see that 

(1.3.1) IR F~xl rl(o~) = J~I = Cx, ~ ~.  
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~x,~ is nothing but the Ring of differential operators with pole on Y. 
Although @x has two structures of (gx-Modules (by the left and the right 
multiplications), we obtain the same F~x I n(~x). 
1.4. We shall investigate the meaning of F~XlV 1 and F m from the viewpoint of 
systems of differential equations. 

Theorem 1.2. Let ~.~" be a complex of right ~x-Modules and ~" a complex of left 
~x-Modules. Then, for any analytic subset Y, we have 

L L 

(1.4.1) I R q x m ( Y )  | ~ ' ~  lRqxlv~(~-') | lRFLxln(aJ ") 
~ x  ~ x  

L 

, ~ "  | IRr~xlr~(~') 
~ x  

L L 

(1.4.2) lRFm(o~" ) | ~#" ~-IRFm(~-') | lRF[rl(aJ') 
~ x  -@x 

L 

~" | lR~y](~'). 
-~x 

L 

Here | the left derived functor of | in the derived category. 

Proof. First we shall observe that (1.4.1) and (1.4.2) are equivalent. In fact, if 
(1.4.1) holds, then 

L L 

~ r m ( ~ ' )  | ~- gx in(~') = ~rEx ~ ~ r m ( Y )  | ~r = 0. 
~ x  ~ x  

L L 

This implies lRFm(~" ) | ~" ~IRFm(W" ) | ~Fm(fr ). Thus, we obtain 
~ x  ~ x  

(1.4.2.). Conversely, if (1.4.2) holds, then 

L L 

~rtx  ~ ~(~')  @ ~ r m ( ~ ' ) =  ~ r  m ~r tx  ~ ~](~') @ ~ ' =  0, 
~ x  ~ x  

which implies (1.4.1). 
Now, we shall prove this theorem. The question being local, we may assume 

that Y is a finite intersection of hypersurfaces II1 .. . . .  Y~. We shall prove it by 
induction on 1. 

a) When 1--1 (i.e., Y is a hypersurface), suppose that Y is defined by f = 0 .  
We may assume that any stalk ~ and f#~ are free ~x,x-modules. Thus, it is 
enough to show (1.4.1) when o ~ = ~  x and .c~=~ x. Then we have IRFtxl~j(~ ) 

L 

= ~ x , s  and NF(xlr](aJ)=~x,s. We have also ~x,Se@x~X,S=~x, s. This shows 
(1.4.1). 

b) When 1>2. Set Y '=  Y2 n ... (~ Yr. By the hypothesis of the induction, the 
theorem is true for Y'. Therefore, we have 
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L 

~x 
L 

= ~,q~,~ ~ . ~ ( ~ ' )  | ~r ~ q~,~(.~-') | ~, q~,~(~r 
~ x  --@x 

L L 
= y |  ~,q~,~ ~,q~,~ (,~')= ~-" | ~,q~1(~'). 

This shows (1.4.2). Q.E.D. 

We shall prove the following two theorems in this paper. 

Theorem 1.3. Let Y be an analytic subset of a complex manifold X,  and J/g a 
coherent ~x-Module  which is holonomic on X - Y .  Then 9f~lrl(//4' ) are holonomic 
~x-Modules. 

Theorem 1.4. Under the same assumption as above, if Jig is holonomic on X,  then 
J{~i~l( J/l) are holonomic ~ x - m  odules. 

Together with Theorem 1.2, we have the following theorem. 

Theorem 1.5. Let Y be an analytic subset of a complex manifold X, Jg a coherent 
~x-Module  and JV a ~x-Module.  

a) I f  J[[ is holonomic on X -  Y, then 

IR Jt~. ,  ~ ,r ~ . ~  ~ ,~(IR Ftx lr I IR ~'~.~.~ (J/l; ~x);  ~x);  W) 

= IR ~ , , , ~ x ( ~ ;  IRqxl rl(W)). 

b) I f  J/d is holonomic on X, then 

= IR ~ , ~  ~ (~ ' ;  IRFtr1(X)). 

Proof Let us prove a). We have 

L 
= IR Ftx lr j IR,g~+~x(~';  ~x) | ~/" 

~ x  
L 

= IR ~ , , ( d r  ~x)  | IR Ftx I r j ( ~ )  
~x 

= IR ~ f , ~  x (~ ' ;  IRqx i r l (~)) .  

b) is obtained in the same way. Q.E.D. 

Remark. In [7] we will see that if J// has regular singularity, then 
~oo |  | ~/), where ~ :  is the sheaf of the differential 

operators of infinite order. However, this relation does not hold when ~# has 
irregular singularity. 

1.5. Let O be the sheaf of the vector fields. Then ~x  is an (gx-Algebra generated 
by 6). Therefore, it is easy to see the following lemma. 
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Lemma 1.6. Let Y be an (gx-Module. Suppose that a sheaf homomorphism 
~: 6) | ~--~ ~ satisfies the following conditions: 

(i) ~9(av|174 (resp. O(av| ]'or a6Ox, re6) x and 
s e ~ .  

(ii) O(v|174174 (resp. ~k(av|174 
-v(a)tl/(v| for aE(gx, veO x and s e ~ .  

(iii) O([v 1 v2] | s) = Ip(v~ | O(v 2 | s)) - O(v 2 | O(v 1 | s)) (resp. 
O([vl, v2] | s) = 0(v 2 | O(v 1 | s)) - O(v 1 | O(v 2 | s)) for vl, v 2 ~ 0 x and s ~ g .  

Then there is a unique structure of the left (resp. right) ~x-Module on ~ such 
that t/J(v| (resp. ~b(v| and that the induced structure of the (9 x- 
Module coincides with the original one of J .  

1.6. Let JC{ and ~2 be two left ~x-Modules.  Then ~ '  | Jf" has the structure of a 
Ox 

left ~x-Module  by v ( s | 1 7 4 1 7 4  for V~Ox, seJd, teJV. If J// is a 
right ~x-Modute  and JV" is a left Nx-Module, JZ" | .A r has the structure of a 

Ox 

right ~x-Module by ( s | 1 7 4 1 7 4  If ~ '  and .A r are right ~x-  
Modules, then ~o.mr162 JV') has the structure of a left ~x-Module  by (vf)(s) 
= f ( s v ) - f ( s )  v for fegC'~ex(dt ' ;  .A/'), v~ 0 x and se Jr If J / i s  a left ~x-Module  
and Y is a right Nx-Module, then ~ x ( J / / ;  JV') has the structure of a right 
@x-Module by ( f v ) ( s )=f (vs )+f ( s )v  for fedt%~x(Jr ~A/'). vEO x and s~./r 

These facts are easily checked by using Lemma 1.6. Since the sheaf ~ ]  of the 
n-forms ( n=d im X)  is a right ~x-Module,  ~'~--*f~]|162 and . / I / '~ - ,~ ,~ ,  x 
(f2]; A/) give the equivalence of the category of left ~x-Modules and the 

category of right ~x-Modules.  
The following lemma being easily checked, we leave the proof to the reader. 

Lemma 1.7. (i) Let ~g be a right (resp. left) ~x-Module, ~ a left (resp. right) 
~x-Module and 5F a right ~x-Module. Then 

o~,.,,~x(~' | Y; ~ ) ~  ~o~,~x(~; ~ r  ~)). 
6~x 

(ii) I f  ~r is a right ~x-Module and if .A ~ and ~ are left ~x-Modules, then 

(~g | ~ )  | ~_~ ~ | ( ~  | 2'). 
r ~ x  ~ x  ~2x 

Lemma 1.8. Let ~//" (resp. J~') be a complex of right (resp. left) ~x-Modules. Then 

L L 

~ x ( ~ ;  ~" |  ~ ' ) = ~ "  | ~ ' [ - n ]  
~x ~ x  

where n = dim X. 

Proof We have 



On the H o l o n o m i c  Systems of L inear  Differential  Equat ions ,  II  127 

( L) 
IR ~ m ~ x  O}; J//" | Y" 

~x 

= ~ "  x "  I R ~ ( O } ;  ~ x )  

= J/l" ~ "  |  
@x 

=J/g" | A/'" 6~x I - n ]  
-~x 
L 

=Jr | JV"E-n] .  Q.E.D. 
~ x  

Lemma 1.9. For a coherent left ~x-Module M[ and a ~x-Module JV, 

L 

IR ~,~,,,,,,~, (Jr A/)  = IR af~-~ , , (Q~;  IR af~,,-,,(~/; ~ x )  | X )  [n].  
~gx 

where n = dim X, and f2~ is the sheaf of n-forms on X. 

In fact, we have 
L 

Nx 

w 2. b-Functions 

2.1. Let f be a holomorphic function on X and Y the zeros of f. As we 
mentioned, Jg l  is not necessarily a coherent ~x-Module  even if ~ is a coherent 
~x-Module .  We shall show that ~ is holonomic if ,///L is holonomic outside 
f -1(0) .  Also, we shall show the existence of b-functions, i.e., for a section u of 
J/r there is a nonzero polynomial b(s) and a differential operator P(s) which is a 
polynomial on s satisfying P(s) f s+ l u=b(s)fSu.  

We use the same technique as in [6]. 

2.2. Let s be an indeterminate. The sheaf ~x[S]  is, by definition, the sheaf of 
rings ~ x |  112 [s], where s commutes with the sections of ~x .  Let C Is, t] be the 

C 
ring generated by s and t with the fundamental commutat ion relation 

It, s l = t. 

We denote by ~xrs,  t] the ring ~ x  | IE[s, t], in which s and t commute with the 
sections of @x. r 

Let M/be  a coherent ~x-Module  holonomic outside f - l ( O )  and u a section 
of Jg. Let J be the Ideal of ~ [ s ]  consisting of the P(s) in ~ rs] such that 

(2.2.1) j " "  ~P(s) f~u=O 

for a sufficiently large m. 
Note that fm-sP(s)f '~ belongs to @Is] for a sufficiently large m, and the 

identity (2.2.1) should be understood to hold in ~ [ s ]  | ,//g. We will denote by 
C 
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Jg" the ~[s]-Module ~ [ s ] / J  and the modulo class [1] is denoted symbolically 
by f~u. Therefore, JV ~ is generated by fSu as a ~[s]-Module.  

The following lemma is evident. 

Lemma 2.1. The system ~A/" has a structure of a ~[s, t]-Module by 

t: P(s) fSu~--~ P(s + 1)f~+lu. 

For any complex number 2, ~ ( s - 2 )  A ~ is denoted by ~Yj., and .f~u modulo 
( s -2)  ~ is denoted by fXu. J~ is a ~x-Module generated by fXu. 

Lemma 2.2. ~fSu  and ~ are coherent ~x-Modules. 

This lemma is an immediate consequence of the following proposition 
proved in [4]. (See also [8].) 

Proposition 2.3 ([4]). Let @,~ be the sheaf of differential operators of order <m. 
An Ideal J of ~x  is coherent if J c~ ~,, is a coherent (fix-Module for any m. 

2.3. We will take a stratification {X,}~ A of X such that 

(2.3.1) SS(,/g)= I I T,~, Xwrc-l( f-~(O)) 
~EA 

Here, T* X signifies the conormal bundle of X,. 

(2.3.2) Any X, is either disjoint from f-~(0)  or contained in f-1(0).  

It is clear that there exists such a stratification. 

Lemma 2.4. There exists a neighborhood f2 o f f -1 (0)  such that, for any X~ disjoint 
from f -l(O), d(flX~) does not vanish at any point in ~2r 

Proof. If it fails, there exists an analytic path x(t) such that x(O)ef-1(0), x(t)cX= 
for 0 < It] ~ 1 and that d(f[X,) vanishes at x(t) for 0 < It} ~ 1. Therefore, f(x(t)) is 
a constant function of t, which implies that f(x(t))=O. This leads to 
contradiction. Q.E.D. 

Theorem 2.5. On some neighborhood f2 of f-l(O), ~(f*u) (resp. ~ )  is a 
subholonomic (resp. holonomic) ~x-Module. (A coherent ~x-Module is called 
holonomic (resp. subholonomic ) if the codimension of the characteristic variety is 
at least dimX (resp. d i m X - 1 ) . )  

In order to prove this theorem, we note the following proposition. 

Proposition 2.6. Let ~ t  and ~2 be two coherent ~x-Modules. Suppose that 
SS(S1)c~SS(~2) is contained in the zero section of the cotangent bundle T*X. 
Then 2f 1 | S 2 is also a coherent ~x-Module and its characteristic variety is 

(r 

contained in 

{(x, ~1 +~2)~T*X; (x, ~l )eSS(~l)  and (x, ~2)sSS(2#2) }. 

Especially, if ~ t  is holonomic (resp. subholonomic) and 5f 2 is holonomic, then 
~1 | 2#2 is holonomic (resp. subholonomic ). 

~x 
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Since 5O1 | 5O2 is obtained as the restriction of the system 5O~ Q 5oz 
~x 

on X x X onto the diagonal set. (See Proposition 4.7.) This proposition is a 
consequence of Chapter II, Theorem 3.5.3 and Theorem 3.5.9 of [9]. 

Now, let us prove Theorem 2.5. We take O as in Lemma 2.4. Since 
SS(~u)c~SS(@f') (resp. SS(~u)mSS(~f~))  is contained in the zero section of 
T * X  on f 2 - f -  t(0), @fs @ @u (resp. ~ f x  | ~u)  is subholonomic (resp. holo- 
nomic) on p _ f - l ( 0 ) .  Since there are surjective homomorphisms 
Nfs  | ~ u  ~ ~( f~  | u)-~-@(flu) (resp. ~ f z  @ -@u ~ -@(fa | u) ~ ~ ) ,  we can 
conclude that ~( f fu )  (resp. ~ )  is subholonomic (resp. holonomic) on 

- f -  '(o). 
Let 5O (resp. 5O') be the sub-Module of ~(f~u) (resp. ~ )  consisting of all w 

such that ~ w is subholonomic (resp. holonomic). By [4] (cf. [6]), 5 ~ (resp. 5O') is 
subholonomic (resp. holonomic) on (2. Therefore, ~ ( f ~ u ) / Y  and JV~/5 ~ are 
coherent .@x-Modules supported in f - l ( 0 ) .  Therefore, by Hilbert's Nullstelen- 
satz, there exists an integer m such that . f"- f~u~so (resp. f" . f~uEso') .  There- 
fore, N ( f " . f f u )  (resp. @(fm.fXu)) is a subholonomic (resp. holonomic) system 
on O. However, ~ ( f m . f f u )  is isomorphic to ~ ( f f u )  by the homomorphism t". 
Hence, it follows that ~( f fu )  is subholonomic. 

~ ( f m . f f u )  and ~( f fu )  have the same multiplicity at the irreducible com- 
ponents of the characteristic variety of ~(f fu) .  Since the multiplicity is an 
additive quantity, the characteristic variety of ~f~u/ -@f" . f lu  does not contain 
any irreducible component of that of -@flu. This implies that ~f~  U/-@fmffu is 
a holonomic ~x-Module.  

There exists a surjective homomorphism ~ f S u / ~ f m . f ~ u - - * ) ( f ~ ' u ) / ~  
�9 (f~" fXu), which shows that -@f~�9 m. f ;u )  is holonomic. Since ~ ( f ~  .fXu) 
is holonomic, -@fx u is also holonomic. Thus, Theorem 2.5 is proved. 

2.4. Since ~ has a structure of a ~ Is, t]-Module, we can define the b-function 
as in [6]. Recall that the b-function is a generator of the ideal of 112 Is] consisting 
of b(s) such that b ( s ) ~  ~ t;ff. That is equivalent to saying that there exists 
P(s)e-@ Is] such that P(s)ff  + ~ u = b(s) f s  u. However, we cannot apply [6] directly 
in order to prove the existence of nonzero b-functions, because .At is not a 
coherent ~-Module  in general�9 

Theorem 2.7. For any point xoej:- 1(0), there exist a nonzero polynomial b(s) of s 
and P(s)e~[s]~ o such that 

P(s)f  "+1 u = b(s)ffu. 

Proof We set ,d4'=(9~@.#. Then ,.#' is a holonomic @x,-Module on X'=q2 x X. 
We denote by u' the section l |  of .-#'. Set f ' ( y , x ) = y f ( x ) ( y e C ,  xEX). 
We have 

Nx, Is] .f~ u' = Nx, f,s u'. 

In fact, we have 
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Therefore, J V ' = @ x , [ s ] f  's u' is subholonomic by Theorem 2.5 and has a struc- 
ture of ~x,[S, t]-Module. Therefore, we can apply r6], There exist a polynomial 
b(s) and a differential operator P(y, x, Dy, Dx) defined in a neighborhood of (y, x) 
=(0, x0) such that 

(2.3) P(y, x, D,,, Dx) f  's+ 1 u'= b(s) f  '~ u'. 

Let Po be the homogeneous component of P of degree - 1  with respect to y. 
Then, comparing the degree of homogeneity of (2.3), we have 

pof '~+lu '=b(s) f 'Su  '. 

Po has the form 

Po = Z A I(x, Dx)(y Dy)J D y. 

Therefore, we have 

(s + 1) Zs~ Aj(x, D~) f ' S f  u'= b(s) f '~u ', 

which implies 

(s+ l)ZsJAj(x, Dx)f~+lu=b(s) fSu.  Q.E.D. 

Now, it is easy to see that the canonical homomorphism 

~2+ 1--+ ~2 ( fZ+lut--of ' f~u) 

is an isomorphism when b(2)4=0, because we can construct the inverse 
f z  u ~---~ b(2)- 1 p(2)fz+ 1 u. 

Therefore, we get the following 

Corollary 2.8. lim JV~_,, is a holonomic ~x-Module. 

Proposition 2.9. For any coherent ~x-Module Mt, Mlf is a (coherent) holonomic 
~x-Module if J4 is holonomic outside f -1(0) .  

Proof. Since ~'w-~ M/f is an exact functor, we may assume without loss of 
generality that J / / i s  generated by a section u. 

Since M/r is the quotient of lim ~ f - m u ,  J/gr is holonomic. Q.E.D. 

w 3. Proof of Theorem 

Proposition 2.9 implies Theorem 1.4 almost immediately. First note the follow- 
ing proposition. 

Proposition 3.1 ([2], [3]). Let Y1 and Y2 be two analytic sets. Then there exists a 
spectral sequence 

? / f P + q - -  21fP+q [ ////~ 
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In particular, if g~q are holonomic, then ~r are holonomic. Therefore, if 
Theorem 1.4 is true for I11 and 112, then it is so for 111 c~ Y2. Since Y is locally a 
finite intersection of hypersurfaces, we can reduce the theorem to the case in 
which Y is a hypersurface by induction. This case is nothing but Proposition 
2.9. 

More generally, we have the following theorem. The author is grateful to 
J.-M. Kantor  for kindly pointing out this result. 

Theorem 3.1. Let Jg be a coherent ~x-Module and Y an analytic set of X. 
Suppose that ~ is holonomic on X - Y. Then ~f~tXlrl(J{) is coherent and holonomic 
for any i. 

Proof Let J / '  be the sub-Module of J / cons i s t i ng  of sections u of ~ / s u c h  that 
~ x  u is holonomic. Then, ~ / '  is a holonomic system. Since ~ / = J g '  outside 
X - y the support of J/g/,//g' is contained in Y. Therefore, we have lRFtxlrl(dg/Jg') 
= 0, which implies that 

IR rm ~ ( ~  ) = IR rtxly ~(~'). 

Thus, replacing Jr Jg',  we may assume that J/{ is holonomic from the 
first time. By the exact sequence 

0---~ 0 ~ ~ 0 ~ ( o ~ )  ~ ~ x ~ ( , z z ) - , ~ ( : g ) - ~ o ,  

and by the isomorphisms 

this theorem follows from Theorem 1.4. Q.E.D. 

w 4. Restriction of ~x-Modules 

4.1. Let X and Ybe complex manifolds and f a holomorphic map from Y to X. 
As in [4], we define the sheaf c~r~ x (resp. C~x~r) by (9 r | . f - l ~  x (resp. 

f - ~ C x  
od~mr~ where (2~ signifies the sheaf of the f - l (~X|174  1) (~ ~Y  1, 

Cx f -  l~x 
j-forms. The sheaf ~ r - x  has a structure of right f - l ~ x - M o d u l e  by the multi- 
plication from the right. We can endow ~ v - x  with a structure of left ~x-Module  
as follows. For w O  r, f , (v)eO r | f - l O  x is given Xaj |  ~ojwith aj~6~r and 

f -  t~ x 
o)j~O x. Then v ( b | 1 7 4  ~o~V+v(b)| 

~ x  ~ r has evidently the structure of left f -  1 ~x-Module.  The structure of right 
~x-Module  on ~ x  induces the structure of left ~x-Module  on ~ x  | (~2:~imX) | 1 
and hence Cx 

- I  ~ (~) ~r | 1) (f~u (~ (~X(~(~dximX)|  (~ f ( X ( X ) 
f l~x C)x f - l ~ x  r 

has a structure of left Dr-Module.  This defines the structure of right Dr-Module  on 
~x+r.  Thus, ~ r ~ x  is a (D r, f -  1 ~x)_bi_Module and ~x~v  is an ( f -  l@x, ~r)-bi-  
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Module. Note that we have 

?~:~d im X ( ( 0 dimX 
~ x = ~ o m  wY• | g?x ) 

(gx 

and 

~6~dim X / o  dim Y t ~  [0 
~ X ~ y : ~ * [ y ]  g ~ y  " v . ~ Y x X ] .  

~v 

4.2. Suppose that Yis a submanifold of X of codimension l. Then Dr~  x and Dx~ r 
are coherent Dx-Modules and faithfully flat over D .  We define for a left 
Dx-Module ~/[, 

L L 
oA//[ y = D r ~ x | oA~/[ = (fi r | ~df  . 

Theorem 4.1. I f  Jr  is a holonomic Dx-Module  , then ,YOT-~r ~ / { ) = ~ - - V ~ k  ~ x  

�9 (Dr_  x, ~g) is a holonomic Dr-Module  for  any k. 

This theorem is a consequence of the following propositions. 

Proposition 4.2. I f  ~/[ is a coherent Dx-Module  whose support is contained in Y, then 
we have 

~ r  

~ ' ~ x ( D x  + r; Jg) is a coherent D r-Module and gXg~x(D x + y; +#) = 0 for  j 4: O. If, 
moreover, ~ is holonomic, so is ~ ' ~ x ( D x ~ r ;  ~ ' ) .  See [5]. 

L 
Proposition 4.3. I R ~ t ' ~ 9 ~ x ( D X ~ y ;  IRFtyI(~))[1] = ~ r ~ x  | J for  any 
D x_Module ///[. ~x 

Proof. Since 

IR ~ . , ~ x ( D x ~  r; IR r m ( ~ ) )  
L 

= 1R ~f~.~,c(Dx ~ r; IR rm(Dx)) | ~ ,  
~ x  

it is enough to show 

~ , , ( D x ~  r; ~, rm(Dx) )  [ I ]  = D r  ~x. 

Set n = dimX. Then, by the definition, 

L 

Dx ~ r = Dx  | ( ~ , - '  | (t2D | - '). 
6x 

Hence, we have 

�9 . ~,~**,~x ( D x .  r; ~R r m ( D x ) ) I t ]  = lR o ~ ,  ~. (t2~-' | (s | - ' ;  1R rm(Dx) )U] .  

Since f2~,-t | (f2~c) |  ~ is a coherent (gx-Module supported on Y, we have 

~ , ~ x ( s  | (s | - ' ;  m rm(Dx))  = m ~ , . ~  x(s | (s | - ' ;  Dx) 
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and the last term equals 

L 
n--1 n Q - l ;  

IR ~'4'~+,~ ~x (s r | (fix)Q~x. 
fix 

Since gXt~x((fir; Cx)= ( ~ - t ) |  | s for j = 1 and vanishes for j 4:1, we have 

n-I -1 l R ~ , ~ x ( O r  | | ; r 1 6 2  

Thus we obtain 
L 

IR o c g ~ , ,  (~ x ~ Y; IRFm(~x)) [/] = Cr @ ~ x  = ~ r ~ x .  Q.E.D. 
(gx 

Now, we can prove Theorem 4.1. 
By Theorem 1.4, ~ l ( J t ' )  are holonomic when ~{ is holonomic. Then, by 

Proposition 4.2, IR ~ , % x ( ~ x  ~ r; IR Fm(.//g)) has holonomic ~r-Modules  as coho- 
mologies, Hence, Theorem 4.1 follows immediately from Proposition 4.3. 

4.3. Suppose that f :  Y--~X is a holomorphic map. 

Theorem 4.4. I f  Jg is a holonomic ~x-Module, then 

~l ~,~k~- f i(gx((~, y, f x J/[)= 3-or  f - l Jr  

is a holonomic ~r-Module. 

Proof. Let ~ be the holonomic system (9 r ~ J/g. Then JV" is a holonomic ~v x x- 
Module. Identifying Y with the graph of f,  we shall prove Y-o~X(~r -x ,  J/g)= 
,h'~"~t k~';~ xtt'7Al, y~g/r.Y• J [ / ' ) .  This implies immediately the desired result. 

L L 

L e m m a  4 . 5 .  ~ Y ~ Y x X  | (CY@J~gf )=~Y~X|  
- ~ v •  C ~ x  

Proof. Let p~ and P2 be the projection from Y• X onto Y and X, respectively. 

(2r @ ~ g = ~ y  • | (p~- 1Cr |  1J//). 
Pl I~Y| l~X 

Thus, we have 

L L 
~r~Y• | ((f;Y@'/~)=~Y~Y• | (pl l (gr|  

~V• X ~ Pl l~v|  pzl ~A?x 
L L 

= ( ~ Y ~ Y x X  | p l l (~Y)  | P2 ~'//g. 
p ~ y  p ~ x  

Thus, it is enough to show 

L 

@ r- r •  | P i - 1 0 r = ~ r - x  �9 p[-l~y 

It is easy to see 

L 

~ r •  | Pi- lCY=Cr•  | p ~- 1..@ x . 
P2- ~ (Vx 
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We have 
L L L 

~ @ Y ~ Y x X  (~  Pl-'Cr=(((r ( ~ ) D r •  ( ~  p l l ( g y  
Pl  1 ~ v  (rr ~ x p~ 1 ~ y  

L L 

= C r  @ ("@r• @ Pi-l(gr) 
d)v• p lacer  

L 

=Cy | (Cr• | P2-1@x)=(fr | f - l ~ x = ~ r ~ x .  Q.E.D. 
~1" ~ x P2 l~x  f -  ld)x 

4.4. We shall prove here the tensor products of two holonomic systems are 
holonomic. 

Theorem 4.6. Let ~ and JV be two holonomic ~x-Modules ; then y~r (~,, ./V') is a 
holonomic ~x-Module for any k. 

Proof. First we shall prove 

Proposition 4.7. For two ~x-Modules ~/  and ~ ,  we have 
L L 

~ r 1 7 4 2 1 5  | ( ~ . / V ' ) ,  
C)X ~X • X 

where 

J / l @ Y = ~ x •  Q ( p ? l ~ Q p 2 1 Y )  
p l I ~ x |  

with the first and the second projections Pl and P2 from X • X onto X. 

Proof Since 

~x•  | (p~ l~x |  
Pt  l(gx | HVx 

we have 

j / j~ jg .=Cx•  x | (p-[1jC/| y ) .  
p11~OX | p2ll~X 

Therefore, 
L L L 

~x~x• | (J/C'~)Y)=(gx | (J/d(~,A/)=(fx | (Pr~,/CJ| ~,/V) 
~X • X CX x g P l  I•X ~) P2" l~/x I~ 

L 

= d / / |  .A/'. Q.E.D. 
~x 

Theorem 4.6 is a consequence of this proposition and Theorem 4.1. 

4.5. We know that r163162 ~ | 1 6 2  .A:) is a constructible sheaf for any 
holonomic ~x-Modules ~ '  and ~ [5]. Here a sheaf Y is called constructible if 
there is a stratification of X on each of whose strata ~ is locally constant of finite 
rank. ~ff  is the sheaf of the differential operators of infinite order. Therefore, in 
particular, ~f~mc(Jr Jf') has a finite-dimensional stalk at each point. Further- 
more, by using the previous results, we can prove the following results. 
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Theorem 4.8. Let ~'l and JV" be two holonomic ~x-Modules. Then E ~ x ( , / / g  ; Y )  is a 
constructible sheaf for any j. 

Proof. This is a consequence of Lemma 1.8 because 
L 

IR Jg~,~ ~ x ( J/g; X )  = IR a~,~,~x ( ~ ;  IR ~,~+~(~'; ~x)  | X )  In] 
and ex 

L 

IR ~ , (  Jr ~x) | .W 
(r 

has holonomic ~x-Modules  as cohomologies. Therefore the theorem follows from 
the result in [5]. Q.E.D. 
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