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In this paper we shall study the restriction of holonomic systems of differential
equations.

Let X be a complex manifold and Y a submanifold, and let ¢, and @ be
the sheaf of the holomorphic functions and the sheaf of the differential operators
of finite order, respectively. If a function u on X satisfies a system of differential
equations, the restriction of u onto Y also satisfies the system of differential
equations derived from the system on X. This leads to the following definition.
Let .# be a @ y-Module. The restriction of .# onto Y is, by definition, Oy ® M.

In [4] it is proved that if .# is a coherent Z2y-Module and if Y is non-
characteristic to .#, then the restriction of .# is also a coherent 2,-Module.
However, if Y is characteristic, the restriction is no longer coherent in general.
For examples, if X=C" and Y={x=(x,, ..., x,)eX; x,=0} and 4/ =9, the
restriction #/x, . # is a free &,-Module generated by D}(m=0,1,2,...) and is
not coherent.

We shall prove the following theorems in this paper.

Theorem. Let .# be a holonomic @D y-Module on a complex manifold X and f a
holomorphic map from Y to X. Then O, ® f~'.4 isa holonomic system on Y.
flox
This theorem is proved by Bernstein [1] in the polynomial case.
At the same time, we shall prove

Theorem. If 4 is a holonomic D y-Module, and if ¥ is a coherent Ideal of Oy,
then l_ig(g@a-l’;x (Ox/I™; M) are also holonomic D y-Modules.

Theorem. If # is a holonomic 9 y-Module defined on X and holonomic outside an
analytic subset Y, then M |H° (M) is holonomic on X.

These theorems imply in particular the following: Let & be a coherent
(x-Module and let ¥ be a meromorphic integrable connection on & with a pole

*  This is the second of the series of papers which are concerned with holonomic systems. The

paper [5] is the first of this series
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on a hypersurface Y. Then, 9?},0([,,1(97 ) (i.e,, the sheaf of the meromorphic sections
of # with a pole on Y) is a holonomic 2,-Module (in particular, coherent).
Also, we shall prove the following theorem.

Theorem. For two holonomic 2y-Modules M and N, Exti(M; N) are con-
structible (i.e., dimg 8z (M; V), <00 for any xeX and there is a stratification
on X on each of whose stratum &z¢5( M, N') is locally constant).

However, the author does not know how to stratify X so that &=, (M, A" is
constructible on the strata. This problem is tightly connected with the problem

of determining the characteristic variety of ¢, ® ..
Ox

1 wish to thank J.E.Bjork, J-M. Kantor and B.Malgrange for their kind suggestions and
friendly discussions about these subjects.

§ 1. Algebraic Local Cohomologies

1.1. In this paper we denote by X a complex manifold, by ¢y the sheaf of the
holomorphic functions on X and by 2, the sheaf of the linear differential
operators of finite order.

1.2. Let # be a coherent (¢,-Ideal and Y the support of ¢,/#. For an
Oyx-Module #, we define with [2, 3]

(1.2.1) I—Exm(g'-):Eri1 Homg (I F),
(1.2.2) I}y](f)=1iglfm0x((9x/fm;?).

This definition depends only on Y (not on the choice of .#). We have an exact
sequence:

(123) 0 [[(F) > F — [y F).

Lemma 1.1. If & is a 9y-Module, Iiyy(F) and I;y(F) have a structure of
D y-Modules so that (1.2.3) is @ y-linear.

Proof. We have evidently

F[xm(gt)zlig‘ Homg ( Dy I™; F)

and
F[Y]('g'.)zl_ir_)n fm@x(@){/@x.ﬁ’m; F)
because Py is faithfully flat over O.

We shall define the multiplication of a differential operator P with Iy y(F).
Suppose that P is of order <!l Then we have

Dy I"Pc @y I™t  for mzl.
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This gives the @ y-linear homomorphism
Dy I > Dy I

by the multiplication of P. Hence, we get the homomorphism
Homg (Dy I~ Fo> Homg (D1 5™, F).

Taking the inductive limit on m, we have the homomorphism
[X|Y](’/)4} xiy)(#), which will be the multiplication by P. It is easy to check
that this gives a structure of Zy-Module on [{y(#) and that F — I}y () is
%y-linear. Therefore, the kernel Iy)(#) of this homomorphism has also a
structure of Z,-Module.

We shall denote by H#yy,(F) (resp. H#;,(#)) the k-th derived functor of
Iy (F) (resp. [y (F))

Since a stalk of an injective Z4-Module is injective over a stalk of ¢y, we
have

(L24) Ak (F)=lim Extl (57 F)
(12.5)  H4(F)=lim 8tk (Oy/I™; F).

We denote by RI}y,, RlIyy; the right derived functor in the derived category.
We have the following triangles:

RI;, 7

/N

(1.2.6) F— Ry 7)),
RTix 1y, myalF)

N\ +1!
lRF[XlY]( )®]RF[X|Y2]( )_')IRI—inhuYz](/.)

and we have also the relations

IRF[YU'\YZ]( ) IRI}Yl]]RF[Yﬂ(/)
R Iy )y RIy,(F)=RIy, RIjyy (F),

RIjy R (F)=RIR Iy n(F)=0
Ripx iy Ry (F) =Ry, oy )(F).

(1.2.7)

1.3. Suppose Y is a hypersurface defined by f =0 with a holomorphic function f.
For an 00y-Module #, we shall denote by %, the Oy-Module associated with the
presheal U— I'(U; #);; here I'(U; %), is a localization by f. Then it is easy to
see that

(1.3.1) ]RIE)(“/]('?;)=‘¢}':(9Xf(@gz

Ox



124 M. Kashiwara

Py ; is nothing but the Ring of differential operators with pole on Y.
Although 2, has two structures of Oy -Modules (by the left and the right
multiplications), we obtain the same Iy y(Zy).

1.4. We shall investigate the meaning of Ijy,y; and [}y, from the viewpoint of
systems of differential equations.

Theorem 1.2. Let &' be a complex of right Dy-Modules and 4" a complex of left
D y-Modules. Then, for any analytic subset Y, we have

L L
(14.1) RIyyn(F) gb G = Rl y(F) g?{ R Iy n(¥)
1L
«F @ RIyn(¥)
» L . . L -
(142) RIp(#) ®F <RIy F) ® Rljy()

L
= F @ RI,(4).
Px

L
Here ®is the left derived functor of ® in the derived category.

Proof. First we shall observe that (1.4.1) and (1.4.2) are equivalent. In fact, if
(1.4.1) holds, then

L L
R Iy (#) gb R Iy (&) =R I R Iy (F) 39 4 =0.
Dx

X

L L
This implies RI}(F) @ % <RIy (F) @ RIy(¥). Thus, we obtain
Dx Dx
(1.4.2.). Conversely, if (1.4.2) holds, then

L L
IRF[XIY](?.) 59 ]er(g.) = IRF[Y] ]er Y](f') @@ 4 =0,

which implies (1.4.1).

Now, we shall prove this theorem. The question being local, we may assume
that Y is a finite intersection of hypersurfaces Y;,..., ¥,. We shall prove it by
induction on I

a) When I=1 (i.e, Y is a hypersurface), suppose that Y is defined by f=0.
We may assume that any stalk %] and %] are free 9 -modules. Thus, it is
enough to show (1.4.1) when =9, and ¥=9,. LThen we have Ry y(F)

=Dy ; and Ry y(%)=2Px . We have also Dy  ® Dy =Py . This shows
(1.4.1). Dx

b) When [22. Set Y'=Y,n...nY,. By the hypothesis of the induction, the
theorem is true for Y'. Therefore, we have
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L
RIp(#) @ %

Dx

L
=RTy, Ry y(F) g@ 2 =]RF[Y,](,97')2<) Ry ()
L L
=7 @RI RIy, (¥)=F" @ RI},(¥).

This shows (1.4.2). Q.E.D.
We shall prove the following two theorems in this paper.

Theorem 1.3. Let Y be an analytic subset of a complex manifold X, and M a
coherent 9 y-Module which is holonomic on X —Y. Then #x (M) are holonomic
2 x-Modules.

Theorem 1.4. Under the same assumption as above, if M is holonomic on X, then
Ay (M) are holonomic @ y-Modules.

Together with Theorem 1.2, we have the following theorem.

Theorem 1.5. Let Y be an analytic subset of a complex manifold X, # a coherent
Dy-Module and A a @ y-Module.
a) If A is holonomic on X —Y, then

R Hoom g (R Homg (RIjx 1y R Hom( M ; Dy); Dy); N)
=R Homg (M Ry p(N).

b) If A is holonomic on X, then

R Homg (R Homg (RIy R Hom(M; Dy); Dy); N)
=R Homg (M ; RIy(N).

Proof. Let us prove a). We have
R Hom g (R Homg (RI xR Homg (M Dy); Dx); N)
L
ZIRF[X“/]IR”W?@X(ﬂ; D) QN
Dx

L
=R Homy (M; .@X)gb R Iy yy(A)
=R Hom g (M; RIx y(A)).
b) is obtained in the same way. Q.E.D.

Remark. In [7] we will see that if .# has regular singularity, then
D* @RIy (M)=RI, (D™ @ #), where 2~ is the sheal of the differential
g @

operators of infinite order. However, this relation does not hold when .# has
irregular singularity.

1.5. Let @ be the sheaf of the vector fields. Then @, is an Oy-Algebra generated
by @. Therefore, it is easy to see the following lemma.
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Lemma 1.6. Let & be an Oy-Module. Suppose that a sheaf homomorphism
V: O QR F — F satisfies the following conditions:
C

(1) Y(av ® s)=ay(v®s) (resp. Ylav@s)=Y(v®as) for aeOy, ve@y and
seF.

(i) Yy @as)=ay(v®@a)+v(a)Y(v®s) (resp. Y(av @ s)=ay(v®s)
— (@) Y(v®s)) for acOy, ve®y and se F.

(iii) Y([v;0,]1 @)=y (v, @Y(v, ®3) —Y(v, ®Y (v, @5)) (resp.
Y([vy, 0,1 ®8) =y (v, @Y (v, ®3)) — (v, ®Y(v, ®s)) for v,,v,€O4 and se F.

Then there is a unique structure of the left (resp. right) @ y-Module on % such
that Yy{(v®s)=vs (resp. Y(v®s)=sv) and that the induced structure of the O-
Module coincides with the original one of F.

1.6. Let # and A" be two left D ,-Modules. Then .# &® .4 has the structure of a

Gx
left 2y-Module by (s ® t)=vs ® t+s @ vt for veOy, se M, teN. If M is a
right 9,-Module and A is a left Z-Module, # ® 4" has the structure of a

Ox

right Zy-Module by (s®@ Ho=sv@t—s@uvt. If # and A are right D,-
Modules, then Hom, (M ; A7) has the structure of a left Z,-Module by (vf)(s)
= f(sv)—f(s)v for feHomy (M; N), vE Oy and se.H. If M is a left Dx-Module
and A" is a right Z5-Module, then #om, (M ; ) has the structure of a right
D x-Module by (fv)(s)= f(vs)+ f(s)v for feHom, (M; N'). vE@4 and se.M.

These facts are easily checked by using Lemma 1.6. Since the sheaf (% of the
n-forms (n=dimX) is a right 9y-Module, #—Q & M4 and N+ Hom,,
(Q%; &) give the equivalence of the category of left % ,-Modules and the

category of right & ,-Modules.
The following lemma being easily checked, we leave the proof to the reader.

Lemma 1.7. (i) Let .# be a right (resp. left) Dy-Module, & a left (resp. right)
Dyx-Module and ¥ a right Dy-Module. Then

Hoomg (M@ N LY= Homg (N3 Home (M, L),
Ox

(i) If A is a right Dy-Module and if A" and & are left D y-Modules, then

(ARN)QL=MS(N QL)

Ox Dx Dx Ox

Lemma 1.8. Let 4 (resp. & Y be a complex of right (resp. left) @ y-Modules. Then
L L
R Homg (Qy; M Q N V=M @ N[ —n]
Ox Dx

where n=dim X.

Proof. We have
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L
R Aoy, (QX M ® m‘)
Ox

L L
= (,/% ® /V') ® R Hom( Qs Dy

ox Dx
L L

= (J%@JV) ® Oy —n]
Ox Ix

@ (JV'@@XCOX)[—n]

Dx
L

—M'® N [—n]. QED.
Dx

Lemma 1.9. For a coherent left & y-Module 4 and a @y-Module N,

L
R Homg (M3 N) =R Homy (Ly; R Hoom(M; D) @ N)[n].
Ox

where n=dim X, and QY% is the sheaf of n-forms on X.

In fact, we have
L

R Homg (M; A)=R Hon(M; Dy) @ N

Dx
§ 2. b-Functions

2.1. Let f be a holomorphic function on X and Y the zeros of f. As we
mentioned, .# is not necessarily a coherent Zy-Module even if .# is a coherent
Zx-Module. We shall show that .#, is holonomic if .# is holonomic outside
f~10). Also, we shall show the existence of b-functions, i.e., for a section u of
#, there is a nonzero polynomial b(s) and a differential operator P(s) which is a
polynomial on s satisfying P(s) f** tu=b(s) f*u.
We use the same technique as in [6].
2.2. Let s be an indeterminate. The sheaf @,[s] is, by definition, the sheaf of
rings Z,® C[s], where s commutes with the sections of 2,. Let C[s,t] be the
C

ring generated by s and t with the fundamental commutation relation
[t,s]=t

We denote by Z[s, t] the ring 2 ® C[s,t], in which s and t commute with the
sections of Dy.

Let .# be a coherent & ,-Module holonomic outside f~'(0) and u a section
of . Let ¢ be the Ideal of Z[s] consisting of the P(s) in Z[s] such that

(2.2.1)  f™m=sP(s) f5u=0

for a sufficiently large m.
Note that f™=SP(s) f* belongs to Z[s] for a sufficiently large m, and the
identity (2.2.1) should be understood to hold in C[s]® .#. We will denote by
C
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A the Z[s]-Module 2[s]/# and the modulo class [1] is denoted symbolically
by f*u. Therefore, 4" is generated by f*u as a @[s]-Module.
The following lemma is evident.

Lemma 2.1. The system A" has a structure of a @{s, t]-Module by
r: P(s) fSur— P(s+1) 1w
For any complex numbe{ A, N(s—4) A" is denoted by 4], anc} f*u modulo
(s—2) A'is denoted by f*u. A, is a 2 y-Module generated by f*u.
Lemma 2.2. 2 f°u and N, are coherent & y-Modules.

This lemma is an immediate consequence of the following proposition
proved in [4]. (See also [8].)

Proposition 2.3 ([4]). Let 9,, be the sheaf of differential operators of order <m.
An ldeal J of D is coherent if N2, is a coherent Oy-Module for any m.

2.3. We will take a stratification {X},., of X such that

(23.1) SS(#)c U T Xoun~'(f~40)

acA
Here, T,;’;X signifies the conormal bundle of X,.
(2.3.2) Any X, is either disjoint from f~!(0) or contained in /'~ (0).
1t is clear that there exists such a stratification.

Lemma 2.4. There exists a neighborhood Q of f~1(0) such that, for any X disjoint
Sfrom £=1(0), d(f|X,) does not vanish at any point in QnX,.

Proof. 1f it fails, there exists an analytic path x(t) such that x(0)ef ~*(0), x()e X,
for 0<|t] <1 and that d( f|X,) vanishes at x(t) for 0<|t} < 1. Therefore, f(x(t)) is
a constant function of ¢, which implies that f(x(t))=0. This leads to
contradiction. Q.E.D.

Theorem 2.5. On some neighborhood Q of f~'(0), 2(f*u) (resp. N;) is a
subholonomic (resp. holonomic) D y-Module. (A coherent 9 y-Module is called
holonomic (resp. subholonomic) if the codimension of the characteristic variety is
at least dim X (resp. dimX —1).)

In order to prove this theorem, we note the following proposition.

Proposition 2.6. Let ¥, and &, be two coherent &y-Modules. Suppose that

SS(L,)NSS(¥,) is contained in the zero section of the cotangent bundle T*X.

Then ¥, ® ¥, is also a coherent Dy-Module and its characteristic variety is
Cx

contained in
{(x, &, +&)eT*X; (x,£,)eSS(Z) and (x,&,)eSS(Z,)}

Especially, if &, is holonomic (resp. subholonomic) and &, is holonomic, then
&L, ® Y, is holonomic (resp. subholonomic ).
Ox
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Since %, ®££2 is obtained as the restriction of the system .2, ® L,

on X xX onto the diagonal set. (See Proposition 4.7.) This proposition is a
consequence of Chapter II, Theorem 3.5.3 and Theorem 3.5.9 of [9].

Now, let us prove Theorem 2.5. We take ©Q as in Lemma 2.4. Since
SS(Qu)nSS(D[*) (resp. SS(Zu)nSS(Zf%) is contained in the zero section of
T*X on Q—f~Y0), 2f°® Qu (resp. Df* ® Pu) is subholonomic (resp. holo-
nomic) on Q-f"'0). Since there are surjective homomorphisms
D Q@ Du>D(f*@u—D(f*u) (resp. 2f* R Zu>P(f* @ u)— A4;), we can
conclude that 2(f°u) (resp. .#;) is subholonomic (resp. holonomic) on
Q—f~Y0).

Let &£ (resp. £') be the sub-Module of 2(f*u) (resp. A;) consisting of all w
such that 2w is subholonomic (resp. holonomic). By [4] (cf. [6]), & (resp. £’} is
subholonomic (resp. holonomic) on Q. Therefore, 2(f*u)/¥ and A4,/F are
coherent 9,-Modules supported in f~*(0). Therefore, by Hilbert’s Nullstelen-
satz, there exists an integer m such that /™ fSue ¥ (resp. f™- f*ue#’). There-
fore, D(f™ f*u) (resp. D(f™- f*u)) is a subholonomic (resp. holonomic) system
on Q. However, 2(f™- f*u) is isomorphic to 2(f*u) by the homomorphism ™.
Hence, it follows that 2( f*u) is subholonomic.

2(f™- f*u) and P(f°u) have the same multiplicity at the irreducible com-
ponents of the characteristic variety of 2(f*u). Since the multiplicity is an
additive quantity, the characteristic variety of 2 f*u/2 f™- f*u does not contain
any irreducible component of that of 2 f*u. This implies that 2 f*u/P f™ f*u is
a holonomic Z-Module.

There exists a surjective homomorphism D fSu/P ™ [*u—2(f*u)/2

(f™ f*u), which shows that 2 f*u/2(f™- f*u) is holonomic. Since Z(f™ - f*u)
is holonomic, & f* u is also holonomic. Thus, Theorem 2.5 is proved.
2.4. Since 4" has a structure of a 2[5, t]-Module, we can define the b-function
as in [6]. Recall that the b-function is a generator of the ideal of C[s] consisting
of b(s) such that b(s) /" =t .A". That is equivalent to saying that there exists
P(s)e2[s] such that P(s) f**'u=b(s) f*u. However, we cannot apply [6] directly
in order to prove the existence of nonzero b-functions, because A" is not a
coherent 2-Module in general.

Theorem 2.7. For any point xy€ f~*(0), there exist a nonzero polynomial b(s) of s
and P(s)eD[s],, such that

P(s) S 'u=b{s) f*u.
Proof. We set M'=0¢&.#. Then .4’ is a holonomic 9.-Module on X'=C x X.

We denote by u' the section 1®u of .4 Set f'(y,x)=yf(x)(yeC, xeX).
We have

Do [s1f°u =Dy [0

In fact, we have

6 m
(y 5)_}) rsu/___smf/v ’
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Therefore, /" =2,.[s]f*u is subholonomic by Theorem 2.5 and has a struc-
ture of @y.[s, t]-Module. Therefore, we can apply [6], There exist a polynomial
b(s) and a differential operator P(y, x, D,, D,) defined in a neighborhood of (y, x)
=(0, x,) such that '

(2.3) P(y,x,D,, D) f""*'u'=b(s)f"*u.

Let P, be the homogeneous component of P of degree —1 with respect to y.
Then, comparing the degree of homogeneity of (2.3), we have

Py f**tu' =b(s) f'*u'.
P, has the form
Py=ZAx,D)(yD)D,.
Therefore, we have
(s+ D)X’ A,(x, D) f*fu' =b(s) f°u,
which implies
(s+1)Zs’A,(x, D) f* T u=b(s) f*u. QE.D.
Now, it is easy to see that the canonical homomorphism
N1 — N (A us S f*)

is an isomorphism when b(1)40, because we can construct the inverse
frurs b)) P fA .

Therefore, we get the following

Corollary 2.8. m Ny _m 18 a holonomic 9 y-Module.

Proposition 2.9. For any coherent 9y-Module M, M is a (coherent) holonomic
Dy-Module if M is holonomic outside f~(0).

Proof. Since M+ M, is an exact functor, we may assume without loss of
generality that .# is generated by a section u.
Since .4 is the quotient of lim & f ~™u, .4, is holonomic. Q.E.D.
“m?

§ 3. Proof of Theorem
Proposition 2.9 implies Theorem 1.4 almost immediately. First note the follow-
ing proposition.

Proposition 3.1 ([2], [3]). Let Y, and Y, be two analytic sets. Then there exists a
spectral sequence

ER =AHTy (Hly, (M) = AP I=H] 1 (M),
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In particular, if &4 are holonomic, then #7*? are holonomic. Therefore, if
Theorem 1.4 is true for Y, and Y,, then it is so for Y, nY,. Since Y is locally a
finite intersection of hypersurfaces, we can reduce the theorem to the case in
which Y is a hypersurface by induction. This case is nothing but Proposition
2.9.

More generally, we have the following theorem. The author is grateful to
J.-M. Kantor for kindly pointing out this result.

Theorem 3.1. Let .# be a coherent Dy-Module and Y an analytic set of X.
Suppose that # is holonomic on X —Y. Then %§X|Y](J%) is coherent and holonomic

for any i.
Proof. Let ' be the sub-Module of .# consisting of sections u of .# such that
% yu is holonomic. Then, .#" is a holonomic system. Since .# =.#" outside

X —Y the support of .#/.#" is contained in Y. Therefore, we have R Iy y (4.4’
=0, which implies that

RF[X,Y](,///)zRF[X”](J//’).

Thus, replacing .# with .#', we may assume that .# is holonomic from the
first time. By the exact sequence

0 s (M) M= H M) = ()0
and by the isomorphisms
H (M) = A5 () (=),

this theorem follows from Theorem 1.4. Q.E.D.

§ 4. Restriction of &y,-Modules

4.1. Let X and Y be complex manifolds and f a holomorphic map from Y to X.

As in [4], we define the sheaf @, _ , (resp. %4._,) by Oy ® [~ '%y (resp.
. ) f10x
N2y ® (Q4m¥y®-1) @ Qf™Y), where € signifies the sheaf of the
I lox
j-forms. The sheaf 2, _ , has a structure of right f~!%,-Module by the multi-
plication from the right. We can endow 2, _, y with a structure of left Z,-Module

as follows. For ve®y, f,(1)eOy ® f 'Oy is given Za;® w; with a;e’y and
fotox
w;€0x. Then v(b@P)=2a;b® w;P+v(b)@P.
9y .y has evidently the structure of left f ~! & ,-Module. The structure of right

9y-Module on 9, induces the structure of left 2y-Module on 2 ®(Qd‘mx) -1
and hence

® (Zx® Q") )= Qyﬂx ® /- (9;(59(9‘?“"‘)@")

Sex Ox “lox

has a structure of left 2,-Module. This defines the structure of right 2,-Module on
Dy y.-Thus, Dy_yisa(Dy, f~' Dy)-bi-Module and Dy _y is an (f ~' Dy, Zy)-bi-
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Module. Note that we have
Dy .x :yﬁ‘}i'i]mx(@yxx ® Q()j(imx)
Ox

and
gx.-y=9{ﬁi]mx(ggimy SD(OYXX)'

4.2. Suppose that Yis a submanifold of X of codimension [. Then 2, _y and &,y
are coherent Zy-Modules and faithfully flat over Z . We define for a left
2y-Module 4,

L L
My=Dy @ M=0y® M.
Dx Ox

Theorem 4.1. If .# is a holonomic @y-Module, then FTos]*(Oy, M)=T 017>
ADy_.x, H) is a holonomic 9 -Module for any k.
This theorem is a consequence of the following propositions.

Proposition 4.2. If .# is a coherent 9 y-Module whose support is contained in Y, then
we have

'jl:ngYg@ %ﬂm@x(@xby; ‘lz)s

Homg (Dy._y; M) is a coherent Dy-Module and Extl, (Dy _y; M)=0 for j+0.1f,
moreover, M is holonomic, so is Homgy (Dy _y; H). See [S].

L
Proposition 43, R Homy (Py_y, RIGW(AN[I]=Dy .x ® M  for any
Dy-Module A . Px

Proof. Since
R Homg (Dy . y; RIy (M)
=R Homg (Dy._v; RIy(Dx)) _gé M,
it is enough to show

R Homg (P y; RI( PN =Dy x.
Set n=dim X. Then, by the definition,

L
@Xh},:@X@@(Q';—’@(Q';()@*)_
Hence, we have
R Homgy Py _yv; RI(Zx)[]=R Homg, (& '®E@ne1; R Iy(Z ) 1]

Since Q! ®(2%)® ! is a coherent (¢y-Module supported on Y, we have

R Homo, (™ @ (Q)® 1 RIjy(Zy)) =R Home (& @(Q)° 11 Fy)



On the Holonomic Systems of Linear Differential Equations, 1 133

and the last term equals
L
Réfmox(m"@(%)@“;(9x)0®@x-

Since Ext) (Oy; Ox)=(Qy)® 1 ® Q for j=1 and vanishes for j+1I, we have
R Home (' @ (%) 15 0x) =0, [-1].
Thus we obtain

L
R Homg (Dx.y; RIy(Zx) ] = @Yt@gnglux- Q.E.D.

Now, we can prove Theorem 4.1.

By Theorem 1.4, E}ﬁ’;l(%) are holonomic when .# is holonomic. Then, by
Proposition 4.2, R #Homy, (P y; RIy(#)) has holonomic Zy-Modules as coho-
mologies, Hence, Theorem 4.1 follows immediately from Proposition 4.3.

4.3. Suppose that f: Y— X is a holomorphic map.
Theorem 4.4. If .# is a holonomic 2 y-Module, then

Tor] MOy, [ M)y=Torf*(Dy .y, [~ M)
is a holonomic & y-Module.

Proof. Let A be the holonomic system (/, ® .#. Then 4" is a holonomic Dy« x-
Module. Identifying Y with the graph of f, we shall prove T0:7%X(Dy , y, M)=
Tor?¥* X(Dy ,yvx» &) This implies immediately the desired result.

L
Lemma 4.5. 9, _y . x ® @y ®J/l) Dy .x®@ M.
Dx

Py x x

Proof. Let p, and p, be the projection from Yx X onto Y and X, respectively.

@y§vﬂ=9Yxx ® (p7'Oy@p; ' M.

p;'Dy®@p; ' ox
Thus, we have

L L
Qy-.yXxJ® (G/Y%'/%):@Y—»YXX ® (p7'Oy®p;' )
Dy x x

PP 191/@172 Loy

L
=(Dy-yxx ® P11(9) ® l’z_lﬂ-

. "',y rp'e
Thus, it is enough to show

L
Dy yxx (’? prlOy=Dy x.

pi Dy

It is easy to see

Dyx ® Px YOy @Yxx @ Pz

2%
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We have

L L L
Dyyvx ® Pfl(gyz(((y ® Dyix) ® Pfl@y
p; 12y ¢ p{ 'y

YxX

L L
=0y ® Dy.x ® Pfl(py)
o P Dy

Y xX

=0y ® (Oy,x ®
p;lo

Oy x x

Py’ Zn=0y @ [7'Dx=Dy.x. QED.

X

4.4. We shall prove here the tensor products of two holonomic systems are
holonomic.

Theorem 4.6. Let .# and A~ be two holonomic 9 y-Modules; then TorJ* (M, N) is a
holonomic 2 y-Module for any k.

Proof. First we shall prove

Proposition 4.7. For two Zy-Modules M4 and A", we have

L L
’%®‘/V‘=9X~>XXX ® (*%@W)a

Ox Dx x x

where

e/”®JV=9XxX ® (p7' M @p5'N)

Pi'9x®p;lax
with the first and the second projections p, and p, from X x X onto X.

Proof. Since

DPyvx=0Uxx ® (p7 ' Dx®p5 ' Dy),

Py l0x ®p; 0x
we have

/I@‘/V:@}(xx ® (py' A ®p; ' N).

pyOx ® pyiox

Therefore,
L N L . L
Dxoxxx @ (MRIN)=0x @ (MRN)=0y ® (p7' M @p3tA)
Dx x x Ox x x pl’l(ﬂx%p;‘wx C

L
—M®N. QED.
Ox

Theorem 4.6 is a consequence of this proposition and Theorem 4.1.

4.5. We know that &zt) (M DT Ry, A') is a constructible sheaf for any
holonomic 2y-Modules .# and A" [5]. Here a sheaf % is called constructible if
there is a stratification of X on each of whose strata & is locally constant of finite
rank. 27 is the sheaf of the differential operators of infinite order. Therefore, in
particular, #osm, (M ; A") has a finite-dimensional stalk at each point. Further-
more, by using the previous results, we can prove the following results.
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Theorem 4.8. Let # and A" be two holonomic 9 -Modules. Then &;zgx(.ﬂ; AYisa
constructible sheaf for any j.

Proof. This is a consequence of Lemma 1.8 because

L
R Homg (M N) =R Homy (X R Hom( M ; D) ® N)[n]
6x
and

L
R Aol M, D)@ N
Ox

has holonomic & y-Modules as cohomologies. Therefore the theorem follows from
the result in [5]. Q.E.D.
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