On the Holonomic Systems of Linear Differential Equations, II *

Masaki Kashiwara
Massachusetts Institute of Technology, Department of Mathematics, Cambridge, Massachusetts 02139, USA

In this paper we shall study the restriction of holonomic systems of differential equations.

Let X be a complex manifold and Y a submanifold, and let \mathcal{O}_{X} and \mathscr{D}_{X} be the sheaf of the holomorphic functions and the sheaf of the differential operators of finite order, respectively. If a function u on X satisfies a system of differential equations, the restriction of u onto Y also satisfies the system of differential equations derived from the system on X. This leads to the following definition. Let \mathscr{M} be a \mathscr{D}_{X}-Module. The restriction of \mathscr{M} onto Y is, by definition, $\mathcal{O}_{Y} \otimes \mathscr{M}$. In [4] it is proved that if \mathscr{M} is a coherent \mathscr{D}_{X}-Module and if Y is noncharacteristic to \mathscr{M}, then the restriction of \mathscr{M} is also a coherent \mathscr{D}_{Y}-Module. However, if Y is characteristic, the restriction is no longer coherent in general. For examples, if $X=\mathbb{C}^{n}$ and $Y=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in X ; x_{1}=0\right\}$ and $\mathscr{M}=\mathscr{D}_{X}$, the restriction $\mathscr{M} / x_{1} \mathscr{M}$ is a free $\mathscr{\mathscr { V }}_{Y}$-Module generated by $D_{1}^{m}(m=0,1,2, \ldots)$ and is not coherent.

We shall prove the following theorems in this paper.
Theorem. Let \mathscr{M} be a holonomic \mathscr{D}_{X}-Module on a complex manifold X and f a holomorphic map from Y to X. Then $\mathcal{O}_{Y_{f^{-10_{x}}}}^{\otimes} f^{-1} \mathscr{M}$ is a holonomic system on Y.

This theorem is proved by Bernstein [1] in the polynomial case. At the same time, we shall prove
Theorem. If \mathscr{M} is a holonomic \mathscr{T}_{X}-Module, and if \mathscr{I} is a coherent Ideal of \mathcal{O}_{x}, then $\lim _{\vec{m}} \mathscr{E} x t_{\mathcal{O}_{X}}^{k}\left(\mathcal{O}_{X} / \mathscr{J}^{m} ; \mathscr{M}\right)$ are also holonomic \mathscr{D}_{X}-Modules.
Theorem. If \mathscr{M} is a holonomic \mathscr{D}_{χ}-Module defined on X and holonomic outside an analytic subset Y, then $\mathscr{M} / \mathscr{H}_{Y}^{\circ}(\mathscr{M})$ is holonomic on X.

These theorems imply in particular the following: Let \mathscr{F} be a coherent \mathcal{O}_{X}-Module and let ∇ be a meromorphic integrable connection on \mathscr{F} with a pole

[^0]on a hypersurface Y. Then, $\mathscr{H}_{[X \mid Y]}^{0}(\mathscr{F})$ (i.e., the sheaf of the meromorphic sections of \mathscr{F} with a pole on Y) is a holonomic \mathscr{D}_{X}-Module (in particular, coherent).

Also, we shall prove the following theorem.
Theorem. For two holonomic \mathscr{D}_{X}-Modules \mathscr{M} and $\mathcal{N}, \mathscr{E} x t^{j}(\mathscr{M} ; \mathcal{N})$ are constructible (i.e., $\operatorname{dim}_{\mathbb{C}} \mathscr{E} x t^{j}(\mathscr{M} ; \mathcal{N})_{x}<\infty$ for any $x \in X$ and there is a stratification on X on each of whose stratum $\mathscr{E} x t_{\mathscr{R}}^{j}(\mathscr{M}, \mathcal{N})$ is locally constant $)$.

However, the author does not know how to stratify X so that $\mathscr{E} x t_{\mathscr{g}}^{j}(\mathscr{M}, \mathcal{N})$ is constructible on the strata. This problem is tightly connected with the problem of determining the characteristic variety of $\mathcal{O}_{\mathbf{Y}} \mathbb{O}_{\boldsymbol{O}} \mathscr{M}$.

I wish to thank J.E. Björk, J.-M. Kantor and B. Malgrange for their kind suggestions and friendly discussions about these subjects.

§ 1. Algebraic Local Cohomologies

1.1. In this paper we denote by X a complex manifold, by \mathcal{O}_{X} the sheaf of the holomorphic functions on X and by \mathscr{D}_{X} the sheaf of the linear differential operators of finite order.
1.2. Let \mathscr{I} be a coherent \mathcal{O}_{X}-Ideal and Y the support of $\mathcal{O}_{X} / \mathscr{I}$. For an \mathcal{O}_{X}-Module \mathscr{F}, we define with $[2,3]$
(1.2.1) $\quad \Gamma_{[X \mid Y]}(\mathscr{F})=\underset{m}{\lim _{m}} \mathscr{H}_{\operatorname{mom}_{O_{X}}}\left(\mathscr{I}^{m} ; \mathscr{F}\right)$,

$$
\begin{equation*}
\Gamma_{[Y]}(\mathscr{F})=\underset{m}{\lim } \mathscr{H}_{o m_{\mathcal{O}_{X}}}\left(\mathcal{O}_{X} / \mathscr{I}^{m} ; \mathscr{F}\right) \tag{1.2.2}
\end{equation*}
$$

This definition depends only on Y (not on the choice of \mathscr{I}). We have an exact sequence:

$$
\begin{equation*}
0 \rightarrow \Gamma_{[Y]}(\tilde{F}) \rightarrow \mathscr{F} \rightarrow \Gamma_{[X \mid Y]}(\tilde{F}) \tag{1.2.3}
\end{equation*}
$$

Lemma 1.1. If \mathscr{F} is a \mathscr{D}_{X}-Module, $\Gamma_{[X \mid Y]}(\mathscr{F})$ and $\Gamma_{[Y]}(\mathscr{F})$ have a structure of \mathscr{D}_{X}-Modules so that (1.2.3) is \mathscr{D}_{X}-linear.

Proof. We have evidently

$$
\Gamma_{[X \mid Y]}(\mathscr{F})=\underset{\vec{m}}{\lim } \mathscr{H}_{o m_{\mathscr{D}_{X}}}\left(\mathscr{D}_{X} \mathscr{I}^{m} ; \mathscr{F}\right)
$$

and

$$
\Gamma_{[Y]}(\mathscr{F})=\underset{m}{\lim } \mathscr{H}_{\operatorname{Hom}_{\mathscr{O}_{X}}}\left(\mathscr{D}_{X} / \mathscr{D}_{X} \mathscr{I}^{m} ; \mathscr{F}\right)
$$

because \mathscr{D}_{X} is faithfully flat over \mathcal{O}_{X}.
We shall define the multiplication of a differential operator P with $\Gamma_{[X \mid Y]}(\mathscr{F})$. Suppose that P is of order $\leqq l$. Then we have

$$
\mathscr{D}_{X} \mathscr{I}^{m} P \subset \mathscr{D}_{X} \mathscr{I}^{m-l} \quad \text { for } m \geqq l
$$

This gives the \mathscr{D}_{X}-linear homomorphism

$$
\mathscr{T}_{X} \mathscr{\mathscr { G }}^{m} \rightarrow \mathscr{D}_{X} \mathscr{I}^{m-1}
$$

by the multiplication of P. Hence, we get the homomorphism

$$
\mathscr{H}_{\operatorname{com}_{\mathscr{O}_{X}}}\left(\mathscr{D}_{X} \mathscr{I}^{m-1} ; \mathscr{F}\right) \rightarrow \mathscr{H}_{\text {om }}^{\mathscr{I}_{X}}\left(\mathscr{D}_{X} \mathscr{I}^{m} ; \mathscr{F}\right) .
$$

Taking the inductive limit on m, we have the homomorphism $\Gamma_{[X|Y|}(\mathscr{F}) \rightarrow \Gamma_{[X \mid Y]}(\mathscr{F})$, which will be the multiplication by P. It is easy to check that this gives a structure of \mathscr{D}_{X}-Module on $\Gamma_{[X \mid Y]}(\mathscr{F})$ and that $\mathscr{F} \rightarrow \Gamma_{[X \mid Y]}(\mathscr{F})$ is \mathscr{X}_{X}-linear. Therefore, the kernel $\Gamma_{[Y]}(\mathscr{F})$ of this homomorphism has also a structure of \mathscr{D}_{X}-Module.

We shall denote by $\mathscr{H}_{[X \mid Y]}^{k}(\mathscr{F})$ (resp. $\left.\mathscr{H}_{[y]}^{k}(\mathscr{F})\right)$ the k-th derived functor of $\Gamma_{[X|Y|}(\mathscr{F})$ (resp. $\Gamma_{[Y]}(\mathscr{F})$).

Since a stalk of an injective \mathscr{D}_{X}-Module is injective over a stalk of \mathcal{O}_{X}, we have

$$
\begin{align*}
& \mathscr{H}_{X|Y|}^{k}(\mathscr{F})=\underset{m}{\lim } \mathscr{E} x t_{C_{X}}^{k}\left(\mathscr{I}^{m} ; \mathscr{F}\right) \tag{1.2.4}\\
& \mathscr{H}_{[Y]}^{k}(\mathscr{F})=\underset{m}{\lim } \mathscr{E} x t_{C_{X}}^{k}\left(\mathscr{O}_{X} / \mathscr{Y}^{m} ; \mathscr{F}\right) . \tag{1.2.5}
\end{align*}
$$

We denote by $\mathbb{R} \Gamma_{[Y]}, \mathbb{R} \Gamma_{[X \mid Y]}$ the right derived functor in the derived category. We have the following triangles:

$\mathbb{R} \Gamma_{\left[X \mid Y_{1}\right]}(\mathscr{F}) \oplus \mathbb{R} \Gamma_{\left[X \mid Y_{2}\right]}\left(\mathscr{F}^{*}\right) \rightarrow \mathbb{R} \Gamma_{\left[X \mid Y_{1} \cup Y_{2}\right]}\left(\mathscr{\mathscr { F } ^ { * }}\right)$
and we have also the relations

$$
\begin{align*}
\mathbb{R} \Gamma_{\left[Y_{1} \cap Y_{2}\right]}\left(\mathscr{F}^{*}\right) & =\mathbb{R} \Gamma_{\left[Y_{1}\right]} \mathbb{R} \Gamma_{\left[Y_{2}\right]}\left(\mathscr{F}^{*}\right), \\
\mathbb{R} \Gamma_{\left[X \mid Y_{1}\right]} \mathbb{R} \Gamma_{\left[Y_{2}\right]}(\mathscr{F}) & =\mathbb{R} \Gamma_{\left[Y_{2}\right]} \mathbb{R} \Gamma_{\left[X \mid Y_{1}\right]}\left(\mathscr{F}^{*}\right), \tag{1.2.7}\\
\mathbb{R} \Gamma_{[X|Y| Y]} \mathbb{R} \Gamma_{[Y \mid 1}\left(\mathscr{F}^{*}\right) & =\mathbb{R} \Gamma_{[Y Y} \mathbb{R} \Gamma_{[X|Y|}(\mathscr{F})=0 \\
\mathbb{R} \Gamma_{\left[X \mid Y_{1}\right]} \mathbb{R} \Gamma_{\left[X \mid Y_{2}\right]}(\mathscr{F}) & =\mathbb{R} \Gamma_{\left[X \mid Y_{1} \cup Y_{2]}\right]}\left(\mathscr{F}^{*}\right) .
\end{align*}
$$

1.3. Suppose Y is a hypersurface defined by $f=0$ with a holomorphic function f. For an \mathscr{O}_{X}-Module \mathscr{F}, we shall denote by \mathscr{F}_{f} the \mathscr{O}_{X}-Module associated with the presheaf $U \mapsto \Gamma(U ; \mathscr{F})_{f} ;$ here $\Gamma(U ; \mathscr{F})_{f}$ is a localization by f. Then it is easy to see that

$$
\begin{equation*}
\mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{F})=\mathscr{F}_{f}=\mathcal{O}_{X_{f_{f}}} \otimes \mathscr{F} . \tag{1.3.1}
\end{equation*}
$$

$\mathscr{T}_{X, f}$ is nothing but the Ring of differential operators with pole on Y. Although \mathscr{D}_{X} has two structures of \mathcal{O}_{X}-Modules (by the left and the right multiplications), we obtain the same $\Gamma_{[X \mid Y]}\left(\mathscr{D}_{X}\right)$.
1.4. We shall investigate the meaning of $\Gamma_{[X \mid Y]}$ and $\Gamma_{[Y]}$ from the viewpoint of systems of differential equations.
Theorem 1.2. Let \mathscr{F}^{\prime} be a complex of right \mathscr{D}_{X}-Modules and \mathscr{G} a complex of left \mathscr{D}_{X}-Modules. Then, for any analytic subset Y, we have
(1.4.1) $\quad \mathbb{R} \Gamma_{[X \mid Y]}\left(\mathscr{F}^{\cdot}\right) \stackrel{L}{\otimes} \mathscr{\mathscr { O }}_{X} \mathscr{G}^{\cdot} \xrightarrow{\sim} \mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{F}) \stackrel{L}{\otimes} \underset{\mathscr{D} X}{\otimes} \mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{G})$

$$
\leftarrow \mathscr{F} \cdot \bigotimes_{\mathscr{Q}_{\boldsymbol{X}}}^{L} \mathbb{R} \Gamma_{[X \mid \mathrm{Y}]}\left(\mathscr{G}^{*}\right)
$$

(1.4.2) $\quad \mathbb{R} \Gamma_{[Y]}\left(\mathscr{F}^{*}\right) \stackrel{L}{\otimes} \underset{\mathscr{Q} X}{\otimes} \mathscr{G} \leftarrow \mathbb{R} \Gamma_{[Y]}\left(\mathscr{F}^{\cdot}\right) \stackrel{L}{\otimes} \underset{\mathscr{V}_{X}}{\otimes} \mathbb{R} \Gamma_{[Y]}\left(\mathscr{G}^{*}\right)$

$$
\underset{\rightarrow}{\mathscr{F}} \cdot \stackrel{L}{\otimes} \underset{\mathscr{Q}_{X}}{\otimes} \mathbb{R} \Gamma_{[Y]}(\mathscr{G} \cdot) .
$$

Here $\stackrel{L}{\otimes}$ is the left derived functor of \otimes in the derived category.
Proof. First we shall observe that (1.4.1) and (1.4.2) are equivalent. In fact, if (1.4.1) holds, then

$$
\mathbb{R} \Gamma_{[Y]}(\mathscr{F}) \stackrel{L}{\otimes} \mathbb{R} \Gamma_{[X \mid Y]}\left(\mathscr{Q}_{X}\right)=\mathbb{R} \Gamma_{[X \mid Y]} \mathbb{R} \Gamma_{[Y]}\left(\mathscr{F}^{*}\right) \stackrel{L}{\otimes} \mathscr{\mathscr { O } _ { X }} \boldsymbol{\mathscr { G }}=0 .
$$

This implies $\mathbb{R} \Gamma_{[Y]}\left(\mathscr{F}^{*}\right) \stackrel{L}{\otimes} \mathscr{G}_{\mathscr{G}_{X}} \uparrow \sim \mathbb{R} \Gamma_{[Y 1}\left(\mathscr{F}^{*}\right) \stackrel{L}{\otimes} \underset{\mathscr{D}_{X}}{\otimes} \mathbb{R} \Gamma_{[Y]^{(}}\left(\mathscr{G}^{*}\right)$. Thus, we obtain (1.4.2.). Conversely, if (1.4.2) holds, then
which implies (1.4.1).
Now, we shall prove this theorem. The question being local, we may assume that Y is a finite intersection of hypersurfaces Y_{1}, \ldots, Y_{l}. We shall prove it by induction on l.
a) When $l=1$ (i.e., Y is a hypersurface), suppose that Y is defined by $f=0$. We may assume that any stalk \mathscr{F}_{x}^{j} and \mathscr{G}_{x}^{j} are free $\mathscr{D}_{X, x}$-modules. Thus, it is enough to show (1.4.1) when $\mathscr{F}=\mathscr{D}_{X}$ and $\mathscr{G}=\mathscr{D}_{X}$. Then we have $\mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{F})$ $=\mathscr{D}_{X, f}$ and $\mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{G})=\mathscr{D}_{X, f}$. We have also $\mathscr{D}_{X, f} \stackrel{\mathscr{D}}{X}^{\otimes} \mathscr{D}_{X, f}=\mathscr{D}_{X, f}$. This shows (1.4.1).
b) When $l \geqq 2$. Set $Y^{\prime}=Y_{2} \cap \ldots \cap Y_{l}$. By the hypothesis of the induction, the theorem is true for Y^{\prime}. Therefore, we have

```
\(\mathbb{R} \Gamma_{[Y]}(\mathscr{F} \cdot \stackrel{L}{\otimes} \underset{\mathscr{\mathscr { Z }} \boldsymbol{X}}{\otimes} \mathscr{G}\)
    \(=\mathbb{R} \Gamma_{\left[Y_{1}\right]} \mathbb{R}_{\left[Y^{\prime}\right]}\left(\mathscr{F}^{\prime}\right) \underset{\mathscr{D}_{X}}{\otimes} \mathscr{G}=\mathbb{R} \Gamma_{\left[Y^{\prime}\right]}\left(\mathscr{F}^{\prime}\right) \stackrel{L}{\otimes} \underset{\mathscr{D}_{X}}{\otimes} \mathbb{R} \Gamma_{\left[Y_{1}\right]}\left(\mathscr{G}^{*}\right)\)
    \(=\mathscr{\mathscr { F }} \cdot \stackrel{L}{\otimes} \mathbb{R} \Gamma_{\left[\mathrm{Y}^{\prime}\right]} \mathbb{R} \Gamma_{\left[\mathrm{Y}_{1}\right]}\left(\mathscr{G}^{*}\right)=\mathscr{\mathscr { F }} \cdot \stackrel{L}{\otimes} \mathbb{R} \Gamma_{[Y]}\left(\mathscr{G}^{*}\right)\).
```

This shows (1.4.2). Q.E.D.
We shall prove the following two theorems in this paper.
Theorem 1.3. Let Y be an analytic subset of a complex manifold X, and \mathscr{M} a coherent $\mathscr{D}_{X^{-}}$Module which is holonomic on $X-Y$. Then $\mathscr{H}_{[X \mid Y]}^{k}(\mathscr{M})$ are holonomic \mathscr{D}_{X}-Modules.

Theorem 1.4. Under the same assumption as above, if \mathscr{M} is holonomic on X, then $\mathscr{H}_{[Y]}^{k}(\mathscr{M})$ are holonomic \mathscr{D}_{X}-Modules.

Together with Theorem 1.2, we have the following theorem.
Theorem 1.5. Let Y be an analytic subset of a complex manifold X, \mathscr{M} a coherent \mathscr{D}_{X}-Module and \mathscr{N} a \mathscr{D}_{X}-Module.
a) If \mathscr{M} is holonomic on $X-Y$, then
$\mathbb{R} \mathscr{H}_{\operatorname{OM}_{\mathscr{O}_{X}}}\left(\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{Q}_{X}}}\left(\mathbb{R} \Gamma_{[X \mid Y]} \mathbb{R} \operatorname{H} \operatorname{om}\left(\mathscr{M} ; \mathscr{D}_{X}\right) ; \mathscr{D}_{X}\right) ; \mathcal{N}\right)$
$=\mathbb{R} \mathscr{H}_{o m_{\mathscr{O}_{X}}}\left(\mathscr{M} ; \mathbb{R} \Gamma_{[X \mid Y]}(\mathcal{N})\right)$.
b) If \mathscr{M} is holonomic on X, then
$\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{D}_{x}}}\left(\mathbb{R} \mathscr{H}_{\mathscr{O}_{\mathscr{D}_{x}}}\left(\mathbb{R} \Gamma_{[Y]} \mathbb{R} \mathscr{H} \operatorname{om}\left(\mathscr{M} ; \mathscr{D}_{X}\right) ; \mathscr{D}_{X}\right) ; \mathscr{N}\right)$

Proof. Let us prove a). We have
$\mathbb{R} \mathscr{H}_{0} m_{\mathscr{D}_{X}}\left(\mathbb{R} \mathscr{H}_{o m_{\mathscr{Q}_{X}}}\left(\mathbb{R} \Gamma_{[X \mid Y]} \mathbb{R} \mathscr{H}_{\boldsymbol{H}}{m_{\mathscr{Q}_{X}}}\left(\mathscr{M} ; \mathscr{D}_{X}\right) ; \mathscr{D}_{X}\right) ; \mathcal{N}\right)$
$=\mathbb{R} \Gamma_{[X \mid Y]} \mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{O}_{X}}}\left(\mathscr{M} ; \mathscr{D}_{X}\right) \stackrel{L}{\mathscr{D}_{X}} \stackrel{\mathcal{N}}{ }$
$=\mathbb{R} \mathscr{H}_{o_{0}}^{\mathscr{D}_{X}}\left(\mathscr{M} ; \mathscr{D}_{X}\right) \stackrel{L}{\otimes} \mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{N})$
$=\mathbb{R} \mathscr{H}_{\text {omm }_{\mathscr{G}_{X}}\left(\cdot \mathscr{M} ; \mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{N})\right) .}$
b) is obtained in the same way. Q.E.D.

Remark. In [7] we will see that if \mathscr{M} has regular singularity, then $\mathscr{D}^{\infty} \otimes \mathbb{R} \Gamma_{[Y]}(\mathscr{M})=\mathbb{R} \Gamma_{Y}\left(\mathscr{D}^{\infty} \otimes \mathscr{M}\right)$, where \mathscr{D}^{∞} is the sheaf of the differential operators of infinite order. However, this relation does not hold when \mathscr{M} has irregular singularity.
1.5. Let Θ be the sheaf of the vector fields. Then \mathscr{D}_{X} is an \mathcal{O}_{X}-Algebra generated by Θ. Therefore, it is easy to see the following lemma.

Lemma 1.6. Let \mathscr{F} be an \mathcal{O}_{X}-Module. Suppose that a sheaf homomorphism $\psi: \Theta \otimes \mathscr{F} \rightarrow \mathscr{F}$ satisfies the following conditions:
(i) $\psi(a v \otimes s)=a \psi(v \otimes s)\left(r e s p . \psi(a v \otimes s)=\psi(v \otimes a s)\right.$ for $a \in \mathcal{O}_{X}, \quad v \in \Theta_{X}$ and $s \in \mathscr{F}$.
(ii) $\psi(v \otimes a s)=a \psi(v \otimes a)+v(a) \psi(v \otimes s)(r e s p . \psi(a v \otimes s)=a \psi(v \otimes s)$
$-v(a) \psi(v \otimes s))$ for $a \in \mathcal{O}_{X}, v \in \Theta_{X}$ and $s \in \mathscr{F}$.
(iii) $\psi\left(\left[v_{1} v_{2}\right] \otimes s\right)=\psi\left(v_{1} \otimes \psi\left(v_{2} \otimes s\right)\right)-\psi\left(v_{2} \otimes \psi\left(v_{1} \otimes s\right)\right)(r e s p$. $\psi\left(\left[v_{1}, v_{2}\right] \otimes s\right)=\psi\left(v_{2} \otimes \psi\left(v_{1} \otimes s\right)\right)-\psi\left(v_{1} \otimes \psi\left(v_{2} \otimes s\right)\right)$ for $v_{1}, v_{2} \in \Theta_{X}$ and $s \in \mathscr{F}$.

Then there is a unique structure of the left (resp. right) \mathscr{D}_{x}-Module on \mathscr{F} such that $\psi(v \otimes s)=v s($ resp. $\psi(v \otimes s)=s v)$ and that the induced structure of the $\mathcal{O}_{X^{-}}$ Module coincides with the original one of \mathscr{F}.
1.6. Let \mathscr{M} and \mathscr{N} be two left \mathscr{D}_{X}-Modules. Then $\mathscr{M} \otimes \mathscr{N}$ has the structure of a left \mathscr{D}_{X}-Module by $v(s \otimes t)=v s \otimes t+s \otimes v t$ for $v \in \Theta_{X}, s \in \mathscr{M}, t \in \mathscr{N}$. If \mathscr{M} is a right \mathscr{D}_{X} - Module and \mathscr{N} is a left \mathscr{D}_{X}-Module, $\mathscr{M} \otimes \mathscr{N}$ has the structure of a right $\mathscr{D}_{X^{-}}$-Module by $(s \otimes t) v=s v \otimes t-s \otimes v t$. If \mathscr{M} and \mathscr{N} are right $\mathscr{D}_{X^{-}}$ Modules, then $\mathscr{H}_{\text {om }_{\mathcal{O}_{x}}(\mathscr{M} ; \mathscr{N}) \text { has the structure of a left } \mathscr{D}_{X} \text {-Module by }(v f)(s), ~(\mathscr{N})}$ $=f(s v)-f(s) v$ for $f \in \mathscr{H}_{0} \mathscr{M}_{\mathscr{O}_{x}}(\mathscr{M} ; \mathscr{N}), v \in \Theta_{X}$ and $s \in \mathscr{M}$. If \mathscr{M} is a left \mathscr{D}_{X}-Module and \mathscr{N} is a right \mathscr{D}_{X}-Module, then $\mathscr{H}_{o_{\mathscr{O}_{x}}}(\mathscr{H} ; \mathcal{N})$ has the structure of a right \mathscr{D}_{X}-Module by $(f v)(s)=f(v s)+f(s) v$ for $f \in \mathscr{H}_{\operatorname{om}_{\mathcal{O}_{X}}}(\mathscr{M} ; \mathscr{N}) . v \in \Theta_{X}$ and $s \in \mathscr{M}$.

These facts are easily checked by using Lemma 1.6. Since the sheaf Ω_{X}^{n} of the n-forms $(n=\operatorname{dim} X)$ is a right \mathscr{D}_{X}-Module, $\mathscr{M} \mapsto \Omega_{X}^{n} \otimes \mathscr{M}$ and $\mathscr{N} \mapsto \mathscr{H}_{O_{C_{C}}}$ $\left(\Omega_{X}^{n} ; \mathcal{N}\right)$ give the equivalence of the category of left \mathscr{D}_{X} - Modules and the category of right \mathscr{D}_{X}-Modules.

The following lemma being easily checked, we leave the proof to the reader.
Lemma 1.7. (i) Let \mathscr{M} be a right (resp. left) $\mathscr{D}_{X^{-}}$-Module, \mathcal{N} a left (resp. right) \mathscr{D}_{X}-Module and \mathscr{L} a right \mathscr{D}_{X}-Module. Then
(ii) If \mathscr{M} is a right \mathscr{D}_{X}-Module and if \mathscr{N} and \mathscr{L} are left \mathscr{D}_{X}-Modules, then

$$
\left(\mathscr{M} \underset{\mathscr{O}_{X}}{\otimes} \mathscr{N}\right) \otimes \mathscr{\mathscr { O } _ { X }} \underset{\mathscr{L}}{\mathscr{M}} \underset{\mathscr{O}_{X}}{\otimes}\left(\mathscr{N} \underset{\mathscr{O}_{X}}{\otimes} \mathscr{L}\right) .
$$

Lemma 1.8. Let $\mathscr{M}^{(}$(resp. \mathscr{N}^{\bullet}) be a complex of right (resp. left) \mathscr{D}_{X}-Modules. Then
where $n=\operatorname{dim} X$.
Proof. We have

$$
\begin{aligned}
& \mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{D}_{X}}}\left(\Omega_{X}^{n} ; \mathscr{M}_{\underset{O_{X}}{\otimes}}^{\stackrel{L}{\otimes}}\right) \\
& =\left(\mathscr{M}^{\cdot} \stackrel{L}{\otimes} \underset{\mathscr{U}_{X}}{\otimes} \cdot \mathscr{N} \cdot\right)_{\mathscr{O}_{X}}^{\otimes} \mathbb{R} \mathscr{H} \operatorname{Com}\left(\Omega_{X}^{n} ; \mathscr{D}_{X}\right) \\
& =\left(\mathscr{M} \cdot \stackrel{L}{\otimes} \underset{\mathscr{O}_{X}}{\otimes} \mathcal{N}^{\boldsymbol{\otimes}}\right)_{\mathscr{O}_{X}}^{\otimes} \mathcal{O}_{X}[-n] \\
& \left.=\mathscr{M}^{\stackrel{L}{\otimes}} \underset{\mathscr{O}_{\boldsymbol{X}}}{\stackrel{(}{\mathscr{N}}} \underset{\mathscr{O}_{\boldsymbol{X}}}{\otimes} \mathcal{O}_{X}\right)[-n] \\
& =\mathscr{M}^{\bullet} \stackrel{L}{\otimes} \mathscr{\mathscr { O } _ { X }} \cdot \mathscr{N}[-n] . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 1.9. For a coherent left \mathscr{D}_{X}-Module \mathscr{M} and a \mathscr{D}_{X}-Module \mathscr{N},

$$
\mathbb{R} \mathscr{H}_{o_{\mathscr{D}_{X}}}(\mathscr{M} ; \mathscr{N})=\mathbb{R} \mathscr{H}_{o m_{\mathscr{O}_{X}}}\left(\Omega_{X}^{n} ; \mathbb{R} \mathscr{H} \operatorname{com}\left(\mathscr{A} ; \mathscr{D}_{X}\right){\underset{\mathcal{O}_{X}}{\otimes}}_{\stackrel{L}{\otimes})}[n]\right.
$$

where $n=\operatorname{dim} X$, and Ω_{X}^{n} is the sheaf of n-forms on X.
In fact, we have
$\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{D}_{X}}}(\mathscr{M} ; \mathscr{N})=\mathbb{R} \mathscr{H} \operatorname{com}\left(\mathscr{M} ; \mathscr{D}_{X}\right) \stackrel{L}{\otimes} \mathscr{\mathscr { H } _ { X }} \mathscr{N}$.

§ 2. b-Functions

2.1. Let f be a holomorphic function on X and Y the zeros of f. As we mentioned, \mathscr{M}_{f} is not necessarily a coherent \mathscr{D}_{X}-Module even if \mathscr{M} is a coherent \mathscr{D}_{X}-Module. We shall show that \mathscr{A}_{f} is holonomic if \mathscr{M} is holonomic outside $f^{-1}(0)$. Also, we shall show the existence of b-functions, i.e., for a section u of \mathscr{M}, there is a nonzero polynomial $b(s)$ and a differential operator $P(s)$ which is a polynomial on s satisfying $P(s) f^{s+1} u=b(s) f^{s} u$.

We use the same technique as in [6].
2.2. Let s be an indeterminate. The sheaf $\mathscr{D}_{X}[s]$ is, by definition, the sheaf of rings $\mathscr{D}_{X} \underset{\mathbb{C}}{\otimes} \mathbb{C}[s]$, where s commutes with the sections of \mathscr{D}_{X}. Let $\mathbb{C}[s, t]$ be the ring generated by s and t with the fundamental commutation relation

$$
[t, s]=t
$$

We denote by $\mathscr{D}_{X}[s, t]$ the ring $\mathscr{D}_{X} \underset{\mathbb{C}}{ } \mathbb{C}[s, t]$, in which s and t commute with the sections of \mathscr{D}_{X}.

Let \mathscr{M} be a coherent \mathscr{D}_{X}-Module holonomic outside $f^{-1}(0)$ and u a section of \mathscr{M}. Let \mathscr{J} be the Ideal of $\mathscr{D}[s]$ consisting of the $P(s)$ in $\mathscr{D}[s]$ such that

$$
\begin{equation*}
f^{m n-s} P(s) f^{s} u=0 \tag{2.2.1}
\end{equation*}
$$

for a sufficiently large m.
Note that $f^{m-s} P(s) f^{s}$ belongs to $\mathscr{D}[s]$ for a sufficiently large m, and the identity (2.2.1) should be understood to hold in $\mathbb{C}[s] \underset{\mathbb{C}}{\otimes} \mathscr{M}$. We will denote by
\mathscr{N} the $\mathscr{D}[s]$-Module $\mathscr{D}[s] / \mathscr{J}$ and the modulo class [1] is denoted symbolically by $f^{s} u$. Therefore, \mathscr{N} is generated by $f^{s} u$ as a $\mathscr{D}[s]$-Module.

The following lemma is evident.
Lemma 2.1. The system \mathscr{N} has a structure of a $\mathscr{D}[s, t]-$ Module by
$t: P(s) f^{s} u \mapsto P(s+1) f^{s+1} u$.
For any complex number $\lambda, \mathcal{M}(s-\lambda) \mathcal{N}^{\prime}$ is denoted by \mathcal{N}_{λ}, and $f^{s} u$ modulo $(s-\lambda) \mathscr{N}$ is denoted by $f^{\lambda} u . \mathscr{N}_{\lambda}$ is a \mathscr{D}_{X}-Module generated by $f^{\lambda} u$.

Lemma 2.2. $\mathscr{D} f^{s} u$ and \mathscr{N}_{λ} are coherent \mathscr{D}_{χ}-Modules.
This lemma is an immediate consequence of the following proposition proved in [4]. (See also [8].)

Proposition 2.3 ([4]). Let \mathscr{D}_{m} be the sheaf of differential operators of order $\leqq m$. An Ideal \mathscr{I} of \mathscr{D}_{X} is coherent if $\mathscr{I}_{\cap} \mathscr{D}_{m}$ is a coherent \mathcal{O}_{X}-Module for any m.
2.3. We will take a stratification $\left\{X_{\alpha}\right\}_{\alpha \in A}$ of X such that

$$
\begin{equation*}
S S(\mathscr{M}) \subset \bigsqcup_{\alpha \in A} T_{X_{\alpha}}^{*} X \cup \pi^{-1}\left(f^{-1}(0)\right) \tag{2.3.1}
\end{equation*}
$$

Here, $T_{X_{\alpha}}^{*} X$ signifies the conormal bundle of X_{α}.
(2.3.2) Any X_{α} is either disjoint from $f^{-1}(0)$ or contained in $f^{-1}(0)$.

It is clear that there exists such a stratification.
Lemma 2.4. There exists a neighborhood Ω of $f^{-1}(0)$ such that, for any X_{α} disjoint from $f^{-1}(0), d\left(f \mid X_{\alpha}\right)$ does not vanish at any point in $\Omega \cap X_{\alpha}$.
Proof. If it fails, there exists an analytic path $x(t)$ such that $x(0) \in f^{-1}(0), x(t) \in X_{\alpha}$ for $0<|t| \ll 1$ and that $d\left(f \mid X_{\alpha}\right)$ vanishes at $x(t)$ for $0<|t| \ll 1$. Therefore, $f(x(t))$ is a constant function of t, which implies that $f(x(t))=0$. This leads to contradiction. Q.E.D.

Theorem 2.5. On some neighborhood Ω of $f^{-1}(0), \mathscr{D}\left(f^{s} u\right)$ (resp. \mathcal{N}_{λ}) is a subholonomic (resp. holonomic) \mathscr{D}_{X}-Module. (A coherent \mathscr{D}_{X}-Module is called holonomic (resp. subholonomic) if the codimension of the characteristic variety is at least $\operatorname{dim} X(r e s p . \operatorname{dim} X-1)$.)

In order to prove this theorem, we note the following proposition.
Proposition 2.6. Let \mathscr{L}_{1} and \mathscr{L}_{2} be two coherent \mathscr{D}_{X}-Modules. Suppose that $S S\left(\mathscr{L}_{1}\right) \cap S S\left(\mathscr{L}_{2}\right)$ is contained in the zero section of the cotangent bundle $T^{*} X$. Then $\mathscr{L}_{1} \otimes \mathscr{Q}_{\mathrm{x}} \mathscr{L}_{2}$ is also a coherent \mathscr{D}_{X}-Module and its characteristic variety is contained in

$$
\left\{\left(x, \xi_{1}+\xi_{2}\right) \in T^{*} X ;\left(x, \xi_{1}\right) \in S S\left(\mathscr{L}_{1}\right) \text { and }\left(x, \xi_{2}\right) \in S S\left(\mathscr{L}_{2}\right)\right\}
$$

Especially, if \mathscr{L}_{1} is holonomic (resp. subholonomic) and \mathscr{L}_{2} is holonomic, then $\mathscr{L}_{1} \otimes \mathscr{O}_{X} \mathscr{L}_{2}$ is holonomic (resp. subholonomic).

Since $\mathscr{L}_{1} \otimes \mathscr{L}_{2}$ is obtained as the restriction of the system $\mathscr{L}_{1} \hat{\otimes} \mathscr{L}_{2}$ on $X \times X$ onto the diagonal set. (See Proposition 4.7.) This proposition is a consequence of Chapter II, Theorem 3.5.3 and Theorem 3.5.9 of [9].

Now, let us prove Theorem 2.5. We take Ω as in Lemma 2.4. Since $S S(\mathscr{D} u) \cap S S\left(\mathscr{D} f^{s}\right)\left(\right.$ resp. $S S(\mathscr{D} u) \cap S S\left(\mathscr{D} f^{\lambda}\right)$) is contained in the zero section of $T^{*} X$ on $\Omega-f^{-1}(0), \mathscr{D} f^{s} \otimes \mathscr{D} u$ (resp. $\mathscr{D} f^{\lambda} \otimes \mathscr{D} u$) is subholonomic (resp. holonomic) on $\Omega-f^{-1}(0)$. Since there are surjective homomorphisms $\mathscr{D} f^{s} \otimes \mathscr{D} u \supset \mathscr{D}\left(f^{s} \otimes u\right) \rightarrow \mathscr{D}\left(f^{s} u\right)$ (resp. $\left.\mathscr{D} f^{\lambda} \otimes \mathscr{D} u \supset \mathscr{D}\left(f^{\lambda} \otimes u\right) \rightarrow \mathscr{N}_{\lambda}\right)$, we can conclude that $\mathscr{D}\left(f^{s} u\right)$ (resp. \mathscr{N}_{λ}) is subholonomic (resp. holonomic) on $\Omega-f^{-1}(0)$.

Let \mathscr{L} (resp. \mathscr{L}^{\prime}) be the sub-Module of $\mathscr{D}\left(f^{s} u\right)$ (resp. \mathscr{N}_{λ}) consisting of all w such that $\mathscr{D} w$ is subholonomic (resp. holonomic). By [4] (cf. [6]), \mathscr{L} (resp. \mathscr{L}^{\prime}) is subholonomic (resp. holonomic) on Ω. Therefore, $\mathscr{D}\left(f^{s} u\right) / \mathscr{L}$ and $\mathcal{N}_{\lambda} / \mathscr{L}^{\prime}$ are coherent \mathscr{D}_{x}-Modules supported in $f^{-1}(0)$. Therefore, by Hilbert's Nullstelensatz, there exists an integer m such that $f^{m} \cdot f^{s} u \in \mathscr{L}$ (resp. $f^{m} \cdot f^{\lambda} u \in \mathscr{L}^{\prime}$). Therefore, $\mathscr{D}\left(f^{m} \cdot f^{s} u\right)$ (resp. $\mathscr{D}\left(f^{m} \cdot f^{\lambda} u\right)$) is a subholonomic (resp. holonomic) system on Ω. However, $\mathscr{D}\left(f^{m} \cdot f^{s} u\right)$ is isomorphic to $\mathscr{D}\left(f^{s} u\right)$ by the homomorphism t^{m}. Hence, it follows that $\mathscr{D}\left(f^{s} u\right)$ is subholonomic.
$\mathscr{D}\left(f^{m} \cdot f^{s} u\right)$ and $\mathscr{D}\left(f^{s} u\right)$ have the same multiplicity at the irreducible components of the characteristic variety of $\mathscr{D}\left(f^{s} u\right)$. Since the multiplicity is an additive quantity, the characteristic variety of $\mathscr{D} f^{s} u / \mathscr{D} f^{m} \cdot f^{s} u$ does not contain any irreducible component of that of $\mathscr{D} f^{s} u$. This implies that $\mathscr{D} f^{s} u / \mathscr{D} f^{m} f^{s} u$ is a holonomic \mathscr{D}_{X}-Module.

There exists a surjective homomorphism $\mathscr{D} f^{s} u / \mathscr{D} f^{m} \cdot f^{s} u \rightarrow \mathscr{D}\left(f^{\lambda} u\right) / \mathscr{D}$ $\cdot\left(f^{m} \cdot f^{\lambda} u\right)$, which shows that $\mathscr{D} f^{\lambda} u / \mathscr{D}\left(f^{m} \cdot f^{\lambda} u\right)$ is holonomic. Since $\mathscr{D}\left(f^{m} \cdot f^{\lambda} u\right)$ is holonomic, $\mathscr{D} f^{\lambda} u$ is also holonomic. Thus, Theorem 2.5 is proved.
2.4. Since \mathscr{N} has a structure of a $\mathscr{D}[s, t]$-Module, we can define the b-function as in [6]. Recall that the b-function is a generator of the ideal of $\mathbb{C}[s]$ consisting of $b(s)$ such that $b(s) \mathscr{N} \subset t \mathscr{N}$. That is equivalent to saying that there exists $P(s) \in \mathscr{D}[s]$ such that $P(s) f^{s+1} u=b(s) f^{s} u$. However, we cannot apply [6] directly in order to prove the existence of nonzero b-functions, because \mathscr{N} is not a coherent \mathscr{D}-Module in general.

Theorem 2.7. For any point $x_{0} \in f^{-1}(0)$, there exist a nonzero polynomial $b(s)$ of s and $P(s) \in \mathscr{D}[s]_{x_{0}}$ such that

$$
P(s) f^{s+1} u=b(s) f^{s} u
$$

Proof. We set $\mathscr{M}^{\prime}=\mathscr{O}_{\mathbb{C}} \hat{\otimes}, \mathscr{H}$. Then \mathscr{H}^{\prime} is a holonomic $\mathscr{D}_{X^{\prime}}$-Module on $X^{\prime}=\mathbb{C} \times X$. We denote by u^{\prime} the section $1 \otimes u$ of \mathscr{H}^{\prime}. Set $f^{\prime}(y, x)=y f(x)(y \in \mathbb{C}, x \in X)$. We have

$$
\mathscr{D}_{X^{\prime}}[s] f^{s} u^{\prime}=\mathscr{D}_{X^{\prime}} f^{\prime s} u^{\prime}
$$

In fact, we have

$$
\left(y \frac{\partial}{\partial y}\right)^{m} f^{\prime s} u^{\prime}=s^{m} f^{\prime s} u^{\prime}
$$

Therefore, $\mathscr{N}^{\prime}=\mathscr{D}_{X^{\prime}}[s] f^{\prime s} u^{\prime}$ is subholonomic by Theorem 2.5 and has a structure of $\mathscr{D}_{X^{\prime}}[s, t]$-Module. Therefore, we can apply [6], There exist a polynomial $b(s)$ and a differential operator $P\left(y, x, D_{y}, D_{x}\right)$ defined in a neighborhood of (y, x) $=\left(0, x_{0}\right)$ such that

$$
\begin{equation*}
P\left(y, x, D_{y}, D_{x}\right) f^{\prime s+1} u^{\prime}=b(s) f^{\prime s} u^{\prime} \tag{2.3}
\end{equation*}
$$

Let P_{0} be the homogeneous component of P of degree -1 with respect to y. Then, comparing the degree of homogeneity of (2.3), we have

$$
P_{0} f^{\prime s+1} u^{\prime}=b(s) f^{\prime s} u^{\prime}
$$

P_{0} has the form

$$
P_{0}=\Sigma A_{j}\left(x, D_{x}\right)\left(y D_{y}\right)^{j} D_{y} .
$$

Therefore, we have

$$
(s+1) \Sigma s^{j} A_{j}\left(x, D_{x}\right) f^{\prime s} f u^{\prime}=b(s) f^{\prime s} u^{\prime}
$$

which implies
$(s+1) \Sigma s^{j} A_{j}\left(x, D_{x}\right) f^{s+1} u=b(s) f^{s} u$. Q.E.D.
Now, it is easy to see that the canonical homomorphism

$$
\mathscr{N}_{\lambda+1} \rightarrow \mathscr{N}_{\lambda} \quad\left(f^{\lambda+1} u \mapsto f \cdot f^{\lambda} u\right)
$$

is an isomorphism when $b(\lambda) \neq 0$, because we can construct the inverse $f^{\lambda} u \mapsto b(\lambda)^{-1} P(\lambda) f^{\lambda+1} u$.

Therefore, we get the following
Corollary 2.8. $\underset{\underset{\boldsymbol{m}}{\lim }}{ } \mathscr{N}_{\lambda-m}$ is a holonomic \mathscr{D}_{X}-Module.
Proposition 2.9. For any coherent \mathscr{D}_{X}-Module $\mathscr{M}, \mathscr{M}_{f}$ is a (coherent) holonomic \mathscr{D}_{X}-Module if \mathscr{M} is holonomic outside $f^{-1}(0)$.
Proof. Since $\mathscr{M} \mapsto \mathscr{M}_{f}$ is an exact functor, we may assume without loss of generality that \mathscr{M} is generated by a section u.

Since \mathscr{M}_{f} is the quotient of $\underset{m}{\lim } \mathscr{D} f^{-m} u, \mathscr{M}_{f}$ is holonomic. Q.E.D.

§ 3. Proof of Theorem

Proposition 2.9 implies Theorem 1.4 almost immediately. First note the following proposition.
Proposition 3.1 ([2], [3]). Let Y_{1} and Y_{2} be two analytic sets. Then there exists a spectral sequence

$$
\mathscr{E}_{2}^{p q}=\mathscr{H}_{\left[Y_{1}\right]}^{p}\left(\mathscr{H}_{\left[Y_{2}\right]}^{q}(\mathscr{M})\right) \Rightarrow \mathscr{H}^{p+q}=\mathscr{H}_{\left[Y_{1} \cap Y_{2]}\right]}^{p+q}(\mathscr{M})
$$

In particular, if $\mathscr{E}_{2}^{p q}$ are holonomic, then \mathscr{H}^{p+q} are holonomic. Therefore, if Theorem 1.4 is true for Y_{1} and Y_{2}, then it is so for $Y_{1} \cap Y_{2}$. Since Y is locally a finite intersection of hypersurfaces, we can reduce the theorem to the case in which Y is a hypersurface by induction. This case is nothing but Proposition 2.9.

More generally, we have the following theorem. The author is grateful to J.-M. Kantor for kindly pointing out this result.

Theorem 3.1. Let \mathscr{M} be a coherent \mathscr{D}_{X}-Module and Y an analytic set of X. Suppose that \mathscr{M} is holonomic on $X-Y$. Then $\mathscr{H}_{[X|Y|}^{i}(\mathscr{M})$ is coherent and holonomic for any i.

Proof. Let \mathscr{M}^{\prime} be the sub-Module of \mathscr{M} consisting of sections u of \mathscr{M} such that $\mathscr{D}_{X} u$ is holonomic. Then, \mathscr{A}^{\prime} is a holonomic system. Since $\mathscr{M}=\mathscr{M}^{\prime}$ outside $X-Y$ the support of $\mathscr{M} / \mathscr{M}^{\prime}$ is contained in Y. Therefore, we have $\mathbb{R} \Gamma_{[X \mid Y]}\left(\mathscr{M} \mid \cdot \mathscr{M}^{\prime}\right)$ $=0$, which implies that

$$
\mathbb{R} \Gamma_{[X \mid Y]}(\mathscr{M})=\mathbb{R} \Gamma_{[X \mid Y]}\left(\mathscr{M}^{\prime}\right)
$$

Thus, replacing \mathscr{M} with \mathscr{M}^{\prime}, we may assume that \mathscr{M} is holonomic from the first time. By the exact sequence

$$
0 \rightarrow \mathscr{H}_{[Y]}^{0}(\mathscr{M}) \rightarrow \mathscr{M} \rightarrow \mathscr{H}_{[X \mid Y]}^{0}(\mathscr{M}) \rightarrow \mathscr{H}_{[Y]}^{1}(\mathscr{M}) \rightarrow 0
$$

and by the isomorphisms

$$
\mathscr{H}_{[X \mid Y]}^{j}(\mathscr{M})=\mathscr{H}_{[Y]}^{j+1}(\mathscr{A}) \quad(j \geqq 1),
$$

this theorem follows from Theorem 1.4. Q.E.D.

§ 4. Restriction of $\mathscr{D}_{\mathbf{x}}$-Modules

4.1. Let X and Y be complex manifolds and f a holomorphic map from Y to X.
 $\left.f^{-1}\left(\mathscr{D}_{X} \otimes\left(\Omega_{X}^{\operatorname{dim} X}\right)^{\otimes-1}\right){ }_{\boldsymbol{O}_{X}-1 \mathscr{O}_{X}}^{\otimes} \Omega_{Y}^{\operatorname{dim} Y}\right)$, where Ω_{X}^{j} signifies the sheaf of the j-forms. The sheaf $\mathscr{D}_{Y \rightarrow X}$ has a structure of right $f^{-1} \mathscr{D}_{X}$-Module by the multiplication from the right. We can endow $\mathscr{D}_{Y \rightarrow X}$ with a structure of left \mathscr{D}_{X}-Module as follows. For $v \in \Theta_{Y}, f_{*}(v) \in \mathcal{O}_{Y} \otimes_{f-1 \mathbb{C}_{X}} f^{-1} \Theta_{X}$ is given $\Sigma a_{j} \otimes \omega_{j}$ with $a_{j} \in \mathcal{O}_{Y}$ and $\omega_{j} \in \Theta_{X}$. Then $v(b \otimes P)=\Sigma a_{j} b \otimes \omega_{j} P+v(b) \otimes P$.
\mathscr{D}_{X-Y} has evidently the structure of left $f^{-1} \mathscr{D}_{X}$-Module. The structure of right \mathscr{D}_{X}-Module on \mathscr{D}_{X} induces the structure of left \mathscr{D}_{X}-Module on $\mathscr{D}_{X} \otimes_{\mathscr{O}_{X}}\left(\Omega_{X}^{\operatorname{dim} X}\right)^{\otimes-1}$ and hence
has a structure of left \mathscr{D}_{Y}-Module. This defines the structure of right \mathscr{D}_{Y}-Module on $\mathscr{D}_{X \leftarrow Y}$. Thus, $\mathscr{D}_{Y \rightarrow X}$ is a $\left(\mathscr{D}_{Y}, f^{-1} \mathscr{D}_{X}\right)$-bi-Module and $\mathscr{D}_{X \leftarrow Y}$ is an $\left(f^{-1} \mathscr{D}_{X}, \mathscr{D}_{Y}\right)$-bi-

Module. Note that we have

$$
\mathscr{D}_{Y \rightarrow X}=\mathscr{H}_{[Y]}^{\operatorname{dim} X}\left(\mathcal{O}_{Y \times X}{\left.\underset{\mathscr{O}_{X}}{\otimes} \Omega_{X}^{\operatorname{dim} X}\right)}^{\text {dit }}\right.
$$

and

$$
\mathscr{D}_{X \leftarrow Y}=\mathscr{H}_{[Y]}^{\operatorname{dim} X}\left(\Omega_{Y}^{\operatorname{dim} Y} \underset{\mathscr{O}_{Y}}{\otimes} \mathcal{O}_{Y \times X}\right) .
$$

4.2. Suppose that Y is a submanifold of X of codimension l. Then $\mathscr{D}_{Y \rightarrow X}$ and \mathscr{D}_{X-Y} are coherent \mathscr{D}_{X}-Modules and faithfully flat over \mathscr{D}_{Y}. We define for a left \mathscr{D}_{X}-Module \mathscr{M},

$$
\mathscr{M}_{Y}=\mathscr{D}_{\mathrm{Y} \rightarrow \mathrm{X}} \stackrel{L}{\otimes} \mathscr{\mathscr { O }}_{\boldsymbol{X}} \underset{\mathscr{M}}{\stackrel{L}{\otimes}} \stackrel{\mathcal{O}_{\mathrm{Y}}}{\otimes} \mathscr{\mathscr { O }}
$$

Theorem 4.1. If \mathscr{M} is a holonomic \mathscr{D}_{X}-Module, then $\mathscr{T}_{o r_{k}}^{\mathscr{O}_{x}}\left(\mathcal{O}_{Y}, \mathscr{M}\right)=\mathscr{T}_{o r_{k}^{\mathscr{G}}}$ $\cdot\left(\mathscr{D}_{Y \rightarrow X}, \mathscr{M}\right)$ is a holonomic $\mathscr{D}_{Y^{-}}$-Module for any k.

This theorem is a consequence of the following propositions.
Proposition 4.2. If \mathscr{M} is a coherent \mathscr{D}_{X}-Module whose support is contained in Y, then we have

$$
\mathscr{M}=\mathscr{D}_{X-Y} \otimes \mathscr{H}_{\mathscr{D}_{Y}} \operatorname{om}_{\mathscr{D}_{X}}\left(\mathscr{D}_{X-Y} ; \mathscr{M}\right)
$$

$\mathscr{H}_{o m_{\mathscr{D}_{X}}}\left(\mathscr{D}_{X-Y} ; \mathscr{M}\right)$ is a coherent $\mathscr{D}_{Y^{-}}$Module and $\mathscr{E} x_{x} t_{\mathscr{S}_{X}}^{j}\left(\mathscr{D}_{X+Y} ; \mathscr{M}\right)=0$ for $j \neq 0$. If, moreover, \mathscr{M} is holonomic, so is $\left.\mathscr{H}_{\operatorname{om}_{\mathscr{Q}_{x}}\left(\mathscr{D}_{X-Y} ;\right.} ; \mathcal{M}\right)$. See [5].
$\begin{aligned} & \text { Proposition } \\ & \mathscr{D}_{X} \text {-Module } \mathscr{M} .\end{aligned} \quad \mathbb{R} \mathscr{H}_{o m_{\mathscr{O}_{X}}}\left(\mathscr{D}_{X-Y} ; \mathbb{R} \Gamma_{[Y]}(\mathscr{M})\right)[l]=\mathscr{D}_{Y \rightarrow X} \stackrel{L}{\otimes} \mathscr{\mathscr { D } _ { X }} \quad$ for \quad any
Proof. Since
$\left.\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{Q}_{X}}\left(\mathscr{D}_{X-Y}\right.} ; \mathbb{R} \Gamma_{[Y]}(\mathscr{M})\right)$

$$
=\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathscr{O}_{X}}}\left(\mathscr{D}_{X \leftarrow Y} ; \mathbb{R} \Gamma_{[Y]}\left(\mathscr{D}_{X}\right)\right)_{\mathscr{Z}_{X}}^{\stackrel{L}{\otimes}} \mathscr{M},
$$

it is enough to show

$$
\mathbb{R} \mathscr{H}_{O_{0} \mathscr{D}_{X}}\left(\mathscr{D}_{X+Y} ; \mathbb{R} \Gamma_{[Y]}\left(\mathscr{D}_{X}\right)\right)[l]=\mathscr{D}_{Y \rightarrow X}
$$

Set $n=\operatorname{dim} X$. Then, by the definition,

$$
\mathscr{D}_{X-Y}=\mathscr{D}_{X} \stackrel{L}{\otimes}\left(\Omega_{Y}^{n-l} \otimes\left(\Omega_{X}^{n}\right)^{\otimes-1}\right)
$$

Hence, we have

Since $\Omega_{Y}^{n-1} \otimes\left(\Omega_{X}^{n}\right)^{\otimes-1}$ is a coherent \mathcal{O}_{X}-Module supported on Y, we have
$\mathbb{R} \mathscr{H}_{\text {om }_{\mathcal{O}_{X}}}\left(\Omega_{Y}^{n-l} \otimes\left(\Omega_{X}^{n}\right)^{\otimes-1} ; \mathbb{R} \Gamma_{[Y]}\left(\mathscr{D}_{X}\right)\right)=\mathbb{R} \mathscr{H}_{\operatorname{Com}_{\mathscr{O}_{X}}}\left(\Omega_{Y}^{n-l} \otimes\left(\Omega_{X}^{n}\right)^{\otimes-1} ; \mathscr{D}_{X}\right)$
and the last term equals
$\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathcal{O}_{X}}}\left(\Omega_{Y}^{n-l} \otimes\left(\Omega_{X}^{n}\right)^{\otimes-1} ; \mathcal{O}_{X}\right) \stackrel{\mathcal{O}}{X}_{L}^{\mathscr{D}_{X}}$.
Since $\mathscr{E} x t_{\mathscr{C}_{X}}^{j}\left(\mathcal{O}_{Y} ; \mathcal{O}_{X}\right)=\left(\Omega_{Y}^{n-l}\right)^{\otimes-1} \otimes \Omega_{X}^{n}$ for $j=l$ and vanishes for $j \neq l$, we have
$\mathbb{R} \mathscr{H}_{\operatorname{om}_{\mathcal{O}_{X}}}\left(\Omega_{Y}^{n-1} \otimes\left(\Omega_{X}^{n}\right)^{\otimes-1} ; \mathcal{O}_{X}\right)=\mathcal{O}_{Y}[-l]$.
Thus we obtain
$\mathbb{R} \mathscr{H}_{\operatorname{com}}^{\mathscr{O}_{X}}\left(\mathscr{D}_{X+Y} ; \mathbb{R} \Gamma_{[Y]}\left(\mathscr{D}_{X}\right)\right)[l]=\mathscr{O}_{Y} \stackrel{L}{\otimes} \mathscr{O}_{X}=\mathscr{D}_{\mathbf{Y} \rightarrow X} . \quad$ Q.E.D.
Now, we can prove Theorem 4.1.
By Theorem 1.4, $\mathscr{H}_{[Y]}^{k}(\mathscr{M})$ are holonomic when \mathscr{M} is holonomic. Then, by Proposition 4.2, $\mathbb{R} \mathscr{H}_{\mathscr{M}_{\mathscr{I}_{X}}}\left(\mathscr{D}_{X-Y} ; \mathbb{R} \Gamma_{[Y]}(\mathscr{M})\right)$ has holonomic \mathscr{D}_{Y}-Modules as cohomologies, Hence, Theorem 4.1 follows immediately from Proposition 4.3.
4.3. Suppose that $f: Y \rightarrow X$ is a holomorphic map.

Theorem 4.4. If \mathscr{A} is a holonomic \mathscr{D}_{X}-Module, then

$$
\mathscr{T}_{o r_{k}^{f}}{ }^{-1} \mathscr{O}_{x}\left(\mathcal{O}_{Y}, f^{-1} \mathscr{M}\right)=\mathscr{T} o r_{k}^{\mathscr{E} X}\left(\mathscr{D}_{\mathrm{Y} \rightarrow X}, f^{-1} \mathscr{M}\right)
$$

is a holonomic $\mathscr{D}_{\mathbf{Y}}$-Module.
Proof. Let \mathscr{N} be the holonomic system $\mathcal{O}_{Y} \hat{\otimes} \mathscr{M}$. Then \mathscr{N} is a holonomic $\mathscr{D}_{Y \times X^{-}}$ Module. Identifying Y with the graph of f, we shall prove $\mathscr{T}_{o t_{k}^{\mathscr{T}} x}\left(\mathscr{D}_{Y \rightarrow X}, \mathscr{M}\right)=$

Lemma 4.5. $\mathscr{D}_{Y \rightarrow Y \times X} \stackrel{L}{\otimes} \underset{\mathscr{A}_{Y \times X}}{\otimes}\left(\mathcal{O}_{Y} \underset{\mathbb{C}}{\hat{\otimes}} \mathscr{A}\right)=\mathscr{D}_{Y \rightarrow X} \stackrel{L}{\otimes} \underset{\mathscr{D}_{X}}{\otimes} \mathscr{M}$.
Proof. Let p_{1} and p_{2} be the projection from $Y \times X$ onto Y and X, respectively.

$$
\mathcal{O}_{Y} \underset{\mathbb{C}}{ } \hat{\mathbb{M}} \mathscr{M}=\mathscr{D}_{Y \times X}{ }_{p_{1}^{-1} \mathscr{Q}_{Y} \otimes p_{2}^{-1} \mathscr{C}_{X}}^{\otimes}\left(p_{1}^{-1} \mathcal{O}_{Y} \otimes p_{2}^{-1} \mathscr{M}\right)
$$

Thus, we have

$$
\begin{aligned}
& \mathscr{D}_{Y \rightarrow Y \times X} \stackrel{L}{\otimes}\left(\mathscr{O}_{Y \times X} \underset{\mathbb{C}}{\widehat{\otimes}} \mathscr{M}\right)=\mathscr{D}_{Y \rightarrow Y \times X} \stackrel{L}{\otimes} \stackrel{p_{p_{1}^{1}}}{\otimes}\left(p_{1}^{-1} \mathcal{O}_{Y} \otimes p_{2}^{-1} \mathscr{D}_{X}^{-1} \mathscr{M}\right)
\end{aligned}
$$

Thus, it is enough to show

$$
\mathscr{D}_{Y \rightarrow Y \times X}{\stackrel{\bigotimes}{p_{1}^{-1} \mathscr{D}_{\boldsymbol{Y}}}}_{\stackrel{L}{\otimes}} p_{1}^{-1} \mathcal{O}_{\mathbf{Y}}=\mathscr{D}_{Y \rightarrow X} .
$$

It is easy to see

$$
\mathscr{D}_{Y \times X} \stackrel{L}{\otimes} p_{p_{1}^{-1} \mathscr{D}_{Y}}^{\otimes} p_{1}^{-1} \mathcal{O}_{Y}=\mathcal{O}_{Y \times X}{\underset{p_{2}^{-1} \mathscr{O}_{X}}{\otimes} p_{2}^{-1} \mathscr{D}_{X}}
$$

We have

$$
\begin{aligned}
& =\mathcal{O}_{Y} \stackrel{\mathcal{O}_{Y \times X}}{\otimes}\left(\mathscr{D}_{Y \times X}{ }_{p_{1}^{-1} \mathscr{\mathscr { X } Y}}^{\otimes} p_{1}^{-1} \mathcal{O}_{Y}\right)
\end{aligned}
$$

4.4. We shall prove here the tensor products of two holonomic systems are holonomic.

Theorem 4.6. Let \mathscr{M} and \mathscr{N} be two holonomic \mathscr{D}_{X}-Modules; then $\mathscr{T} \overbrace{k}^{()_{x}}(\mathscr{M}, \mathscr{N})$ is a holonomic \mathscr{D}_{X}-Module for any k.

Proof. First we shall prove
Proposition 4.7. For two \mathscr{D}_{X}-Modules \mathscr{M} and \mathcal{N}, we have

$$
\stackrel{L}{\mathscr{M}} \stackrel{L}{\otimes} \mathscr{N}=\mathscr{D}_{X \rightarrow X \times X} \stackrel{L}{\otimes}(\mathscr{M} \widehat{\otimes} \mathscr{N})
$$

where

$$
\mathscr{M} \hat{\otimes} \mathscr{N}=\mathscr{D}_{X \times X}{ }_{p_{1}^{-1} \mathscr{D}_{X} \otimes p_{2}^{-1} \mathscr{D}_{X}}\left(p_{1}^{-1} \mathscr{M} \otimes p_{2}^{-1} \mathscr{N}\right)
$$

with the first and the second projections p_{1} and p_{2} from $X \times X$ onto X.
Proof. Since

$$
\mathscr{D}_{X \times X}=\mathscr{O}_{X \times X}{ }_{p_{1}^{-1} \mathscr{O}_{X} \otimes p_{2}^{-1} \mathscr{O}_{X}}\left(p_{1}^{-1} \mathscr{D}_{X} \otimes p_{2}^{-1} \mathscr{D}_{X}\right),
$$

we have

$$
\mathscr{M} \hat{\otimes} \mathscr{N}=\mathcal{O}_{X \times X}{ }_{p_{1}^{-1} \mathscr{C}_{X} \otimes p_{2}^{-1} \mathscr{O}_{X}}^{\otimes}\left(p_{1}^{-1} \mathscr{M} \otimes p_{2}^{-1} \mathscr{N}\right) .
$$

Therefore,

$$
\begin{aligned}
& =\mathscr{M} \stackrel{L}{\otimes} \mathscr{\mathscr { O } _ { \mathrm { x } }} \boldsymbol{\mathscr { N }} . \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem 4.6 is a consequence of this proposition and Theorem 4.1.
4.5. We know that $\mathscr{E}_{x} t_{\mathscr{D}_{X}}\left(\mathscr{M} ; \mathscr{D}_{X}^{\infty} \otimes_{\mathscr{D}_{X}} \mathcal{N}\right)$ is a constructible sheaf for any holonomic \mathscr{D}_{X}-Modules \mathscr{M} and \mathscr{N} [5]. Here a sheaf \mathscr{F} is called constructible if there is a stratification of X on each of whose strata \mathscr{F} is locally constant of finite rank. \mathscr{D}_{X}^{∞} is the sheaf of the differential operators of infinite order. Therefore, in
 more, by using the previous results, we can prove the following results.

Theorem 4.8. Let \mathscr{M} and \mathscr{N} be two holonomic \mathscr{D}_{X}-Modules. Then $\mathscr{E}_{x} t_{\mathscr{V}_{X}}^{j}(\mathscr{M} ; \mathcal{N})$ is a constructible sheaf for any j.

Proof. This is a consequence of Lemma 1.8 because
 and

has holonomic \mathscr{D}_{X}-Modules as cohomologies. Therefore the theorem follows from the result in [5]. Q.E.D.

References

1. Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl. 6, 26-40 (1972)
2. Grothendieck, A.: Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globeaux (SGA2). Amsterdam: North-Holland Publ. Co. 1968
3. Hartshorne, R.: Local Cohomology, Lecture Notes in Math., 41. Berlin-Heidelberg-New York: Springer 1967
4. Kashiwara, M.: An algebraic study of systems of partial differential equations, local theory of differential operators (Master's thesis). Sugakushinkokai (in Japanese), 1970
5. Kashiwara, M.: On the maximally overdetermined system of linear differential equations, I. Publ. R.I.M.S., Kyoto Univ. 10, 563-579 (1975)
6. Kashiwara, M.: B-functions and holonomic systems, rationality of roots of b-functions. Inventiones Math. 38, 33-53 (1976)
7. Kashiwara, M., Kawai, T.: On the holonomic systems of micro-differential equations, III. in press (1978)
8. Le Jeune-Jalabert, M., Malgrange, B., Boutet de Monvel: Séminaire "Opérateurs différentiels et pseudo-différentiels", I, II, III, IV, Université Scientifique et Médical de Grenoble, Laboratoire de Math. Pures Associé au C.N.R.S., 1975-1976
9. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudodifferential equations, Lecture Notes in Math. Berlin-Heidelberg-New York: Springer 287, 265-529 (1973)

Received October 24, 1977/Revised June 19, 1978

[^0]: * This is the second of the series of papers which are concerned with holonomic systems. The paper [5] is the first of this series

