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In [7], D. Kazhdan and G. Lusztig gave a conjecture on the multiplicity of 
simple modules which appear in a Jordan-H61der series of the Verma modules. 
This multiplicity is described in the terms of Coxeter groups and also by the 
geometry of Schubert cells in the flag manifold (see [8]). The purpose of this 
paper is to give the proof of their conjecture. 

The method employed here is to associate holonomic systems of linear 
differential equations with R.S. on the flag manifold with Verma modules and 
to use the correspondance of holonomic systems and constructible sheaves. 

Let G be a semi-simple Lie group defined over • and g its Lie algebra. We 
take a pair (B,B-) of opposed Borel subgroups of G and let T=B~B-  be a 
maximal torus and W the Weyl group. Let b, b -  and f the corresponding Lie 
algebras and 9l the nilpotent radical of b. Let us denote by Jg the category of 
holonomic systems with R.S. on X=G/B whose characteristic varieties are 
contained in the union of the conormal bundles of Xw=BWB/B (we W). On 
the other hand, let (9 denote the category of finitely-generated U(g)-modules 
which are Tl-finite. By (gtrlv we denote the category of the modules in (9 with 
the trivial central character. 

We shall prove that J / / a n d  (~trlv are equivalent by the correspondances S0l 
~--*F(X;gJI) and M~--~,~| Here ~ is the sheaf of differential operators 
on X. Let us denote by M w the Verma module with highest weight -w(p)-p  
and let ~Jl w be the dual g -module  of ~codimXwt/~ ~ Then, ~ w  and Mw ~ [X~] ~,~X]"  

correspond by the above correspondence. For any 9 J l e ~ ,  we can calculate the 
character of F(X; 93l) by the formula 

ch (F(X; 9Jl)) = y" ( - l )  c ~  x w  Xw(~ ) ch(Mw) 
w ~ W  

where 
Xw(~) = ~- ( - 1) J dim e gxt~(Ox, ~). 

This formula can be proved by reduction to the case 9)l= 9J/w. Let L w be 
the simple module with highest weight -w(p)-p.  By the formula above, 
ch(Lw) is calculated if we know IRHome(C,~| We shall show this 
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complex coincides with rcxw[-codimXw],  where rCxw is the complex intro- 
duced by Deligne [2]. 

This paper is divided into three parts. In the first part we give a review of 
holonomic systems with R.S. In the second part we establish the equivalence of 
~ '  and (gtriv" After these preparations, we shall give the proof of the conjecture 
of Kazhdan-Lusztig in the third part. 

It should be mentioned that the idea of ontroducing sheaves of modules 
over ~ in an apparently unrelated problem on g-modules, was arrived at after 
a careful study of Kempf's work [-9], where he interprets the Bernstein- 
Gelfand-Gelfand resolution of a finite dimensional g-module, as being dual to 
the Cousin resolution for the associated invertible sheaf on X, with respect to 
the stratification X = LI xw. It was already glaringly apparent there that the 

w ~ W  

Verma module M w was "corresponding" to the Bruhat cell X w or, put other- 
wise, to the constructible sheaf II~x~ on X which has fibre C over X~ and 0 
over X - X  w. But some time was needed to realize that holonomic ~-modules  
could serve as a bridge between constructible sheaves and Verma modules. 

We wish to thank Michel Demazure for conversations on the geometry of 
X as related to Kempfs  paper, Patrick Delorme for various interesting infor- 
mation on the category (9, and Jean-Louis Verdier for pointing out to the first 
author the possibly use of a theorem of Macpherson giving a characterization 
of the complex zy, for any singular variety Y a 

w 1. Holonomic Systems With Regular Singularities 

1.1. In this section, we shall summarize the results on holonomic system of 
linear differential equations with R.S. (abbreviation of regular singularities). 

For the details and proofs, we refer the reader to [6, 15-17]. 

1.2. Throughout this section, we shall denote by X a complex manifold, C = C x 
the sheaf of holomorphic functions on X, o--odlmX the sheaf of holomorphic 

- -  ~ X  

dim X-forms and ~ x  (resp. @~) the sheaf of differential operators of finite order 
(resp. infinite order). In the sequel a ~x-module  means a left ~x-module  if not 
otherwise mentioned. 

Let ~x(m) denote the sheaf of differential operators of degree at most m. 
Then Specan ( |  coincides with the cotangent bundle T * X  of 

J 
X. For a coherent @x-module 99/, an increasing sequence {9)lj}j~ z of coherent 
sub-Cx-modules of 99l is called a good filtration if it satisfies 

(1.2.1) ~(m) 9Jl~ c 9Jlj+m, 

(1.2.2) @(m)gJlj=931j+ m for j>>0 locally on X, 

(1.2.3) 9)l = UgJ/~. 

1 After this article was written, we learnt that Beilinson and Bernstein also solved the Kazhdan- 
Lusztig conjecture by using methods similar to ours 
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The support of the coherent sheaf on T * X  associated with @ (~fJ~/~JSj_l) i~ 
j=>0 

called the characteristic variety of 9Jl, which will be denoted by Ch(gJ~); this 
does not depend on the choice of a good filtration. The characteristic variety is 
a closed homogeneous involutory subvariety of T*X. If the dimension of the 
characteristic variety of 9)l is as minimal as possible, i.e. dim X, then we call ~0~ 
holonomic. We say that a holonomic ~x-module 9J5 has R.S. if 99l has a good 
filtration {gJ/j} of 9J5 satisfying the condition: 

(1.2.4) For any open set U and any differential operator Pe~x(m)(U),  if its 
principal symbol cr,,(P) vanishes on Ch(gJl), then P~JJljcgJSj+,,_ 1 for anyj .  

1.3. For a holonomic ~x-module we have: 

(1.3.1) SXt~x(O2R, ~x)  = 0 for j # n = d i m X  

and gxt~x(OJS,@x) is a coherent right ~x-module. Hence 

~J~* = gXt~x (gJl, ~x)  | O| - 1 
def ~)x 

has a structure of left ~x-module. We call 9~* the dual of 9J/. 

Proposition 1.1. (1) * is an exact contravariant functor from the category of 
holonomic ~x-modules in itself. 

(2) (935*)* ~gJl for a holonomic ~x-module 9~. 

(3) Ch(gJ/*)= Ch(gJl) for a holonomic ~x-module ~Jl. 

(4) / f  ~l is a holonomic ~x-module with R.S., then so is 935" (4). 
For two holonomic ~x-modules 9Jl and 93l' we have IR~om~(99/',g35) 

IR Home(OJl* , 93l' *). 

1.4. For a closed analytic subset Y of X and an Cx-module ~, we shall denote 
by Fcr](J ~)  the Cx-module l im~omcox(Cx/J~,~ ) and by FLxlr](~ ) the C x- 

module lim~fome, x(J~',0~-) where J r = { f e C x ;  f lY=0 } .  If Y is a locally 

closed subset of X such that ~" and ~ ' - Y  are analytic, we set 

We denote by ~g'~f~(~) its j-th derived functor. If Y is a ~x-module,  J t~ ; (~ )  
has a structure of ~x-module. 

Suppose that X and Y are algebraic. Let us denote by (Xa~g,C x ,,) the 
corresponding algebraic variety over IlS and let j be the morphism of'ringed 
spaces (X, Cx)--,(X,~g,Cx.,, ). Then, for any quasi-coherent (gx., -module ~ we 
have 

(1.4.1) IR Qr]U* ,~)=J* IRrr,,~(~) 

1.5. For a closed submanifold Y of codimension l, we set 
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We have: 

Proposition 1.2. (1) ~r lx  is a holonomic  Nx-module  with R.S., and the charac- 
teristic variety of Nrfx coincides with the conormal  bundle T * X  of Y. 

(2) For  a coherent Nx-module  9J/ such that Ch(gJI)c T* X,  the sheaf 
~ o m ~ x ( ~ r l x ,  9)l) is a locally constant  sheaf of  finite rank on Y and we 
have an isomorphism 

~rrx  | ~ ~  9)l) ~ , 91)l. 
c 

(3) In particular, if Y is connected, then any coherent Nx-sub-module  of 
Nrlx is either (9 or ~r lx .  

1.6. We shall give the properties of  holonomic N-modules  with R.S. In the 
statements, ~gl ~ stands for N ~  | g)l. Note  that N ~  is fairthfully flat over N x. 

Nx 

Proposition 1.3. (1) For any holonomic N-module with R.S., its coherent sub-N- 
modules, its coherent quotients are also with R.S. 

(2) Any holonomic N-module with R.S. has globally a good filtration which 
satisfies the condition (1.2.4). 

(3) I f  ~lR'---~fOl--~l)~" is an exact sequence of  coherent N-modules and if dR' 
and gJl" are holonomic N-modules with R.S., then so is flJl. 

(4) I f  fOl and fO~' are holonomic Y-modules with R.S. then 

P. g o m ~  (93l, 9J/') = IR Yfom~ (93l, 9J/' oo). 

I f  X = U X~ is a stratification of Whitney such that Ch(gJI)~ Ch(gJI')c U T* X,  
then ~ x t ~ ( ~ , ~ ' ) l X  is a locally constant sheaf of  finite rank. 

(5) For any holonomic Y-module 931, there exists a unique sub-N-module 9)lreg 
of gJi ~ such that 9J/r~g ~ ~gJl ~ and that 9J/red is a holonomic N-module with R.S. 

(6) For any holonomic N-module 9)l, we have 

IR ~fome(P,  ~,~eome (gJ/, 60), (9) =gJl ~ 

(7) For any difference Y of closed analytic subsets of  X and any holonomic 
N-module 9Jl with R.S., the ~Jrj(gJl) are also holonomic N-modules with R.S., and 
we have 

j o o ~  j c~ ~ ( ~ )  = ~ ( ~  ). 

(8) For a holonomic N-module 91l, we have 

P. o~om~(gJ/, (gx)= IR o~om~ ((.9 x, ~/*) 
= IR oVfome(lR J'f'om~(9)l*, (fix), IEx) 
= IR ~ o m r  ~fom~((9 x, 9J/), (Ex). 

(9) For two holonomic N-modules 9Jl and 9Jl', we have 

lR ~ o m e  (gJl, 9)l' oo) = IR ~fome(IR o~fome ((9 x, 9)1), IR ~f'om~((gx, ~01')) 

= IR ~ o m e ( l R  o~(fom~ (gJ/', (gx), IR ~"om~ (93l, (gx)). 
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(10) Let fir be a holonomic ~-module with R.S., and Y and a difference of 
closed analytic subsets. I f  X = L[ x ~ is a Whitney stratification satisfying 

(a) Ch(?Ol)c U T ~ X  and 

(b) Y =  U{X~; X , c  r} ,  
then we have 

Ch(~j(~)) = U TL x .  
X~=u 

By (4) and (7) of the preceding proposition, we have: 

Proposition 1.4. For two holonomic ~-modules with R.S. 9X and 9Jr, we have 

IRFr (IR ~om~(gX, 93l')) = R  ~fbm~(gX, RFtrl(TJl'), 

By (5) and (6) of Proposition 1.3, we have: 

Proposition 1.5. Let ?05 and 9Jl' be two holonomic ~x-modules with R.S. I f  
IR Xomg(9~, (9) ~ IR Jfom~(gJV, (fi), then ~Jl ~- 93l'. 

We shall give here one of the characterizations of R.S. 

Proposition 1.6. Let ~ be a holonomie ~x-module. Then, ?JR has R.S. if and only 
r 

Sxt~ (~J~, (fi~) ~ Sxt~(gR, (~) 

is an isomorphism for any x e X and any j. Here (~x is the Krull completion of the 
local ring (fix. 

Proposition 1.7. I f  Y is a submanifold of X and if ~ is a holonomic ~x-module 
with R.S., then 

IR 9ffom~ x (~R, ~rlx) = ~ ~ o m r  (IR 3ffom~x (@x, ~J~) I r, C r) [-codim Y] 

Proof. We have ~r lx=~Fm((gx)  [codlin Y]. Therefore, Proposition 1.4 implies 

IR 9f~Om~x (gX, ~r l  x) = ]REin (IR ~Om~x (gJ~, (fix)) [codim Y] 

By Proposition 1.3 (8), we have 

1RF r (1R ~om~(gJ / ,  (fix)= 1R F v IR ~r ,)fOm~x((gx, ~.R), Cx) 
= IR 9 fomc(~  Yt~om~r ((fix, ffJ~), lRrr(~x) ). 

Proposition follows from IRFr(~x)=C v [ - 2 c o d i m  Y]. Q.E.D. 

w 2. The Category (9 

2.1. Let g be a semi-simple Lie algebra defined over ~, f a Cartan subalgebra 
of g and let A be the corresponding root system. We fix an ordering of A and 
let A + and A-  be the set of positive and negative roots, respectively. 
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For c~EA, we take a non zero X~ in g whose weight is ~. We set 
9 l=  ~ (I?X~, 9 l - =  ~ ~x~, b = [ ( ~ g l  and b - = f O g l - .  Let W be the Weyl 

ctEA + ~EA-  

group and w o the longest element of W. For ~ A, let s, be the corresponding 
reflection. 

Let U=U(g)  be the enveloping algebra of g and 3 its center. We shall 
denote by I the ideal of U generated by 3n  U(g)g and by R the quotient ring 
U/I. 

Set p=�89 y" ~ and let Mw be the Verma module with highest weight 
~EA + 

- w(p) - p ; i.e. 
Mw=U/UOI+ ~ U(H+<w(p)+p,H)) .  

HE[ 

Let L w be the simple U-module with highest weight - w ( p ) - p .  
Let us denote by (~ the category of finitely generated U-modules M such 

that any u ~ M satisfies dime U(b) u < oc. 
The following lemma is immediate. 

Lemma 2.1. (1) Any submodule and any quotient of a module in ~ belong to C. 

(2) I f  M'--~ M---~ M" is an exact sequence of U-modules and if M' and M" 
belong to C, then so does M. 

Remark that the property (2) does not hold for the category introduced by 
Bernstein-Gelfand-Gelfand Eli where they assumed the action of t is semi- 
simple. However, a module in (9 is not necessarily semi-simple as a t-module. 

2.2. For  any 2et!* and M~(~, we set M~'={u~M; there exists r > 0  such that 
(H - (2, H))  ~ u = 0 for any H ~ f}. 

We say that 2 is a weight of M if M~+0. It is easy to see 

M = @ M  a and dinacM~<oo. 
We set 

ch (M) = ~ (dim M ~) e x 

and call this the character of M. 
Let (~t~i~ be the category of M e g  such that IM=O. It is known that M(w) 

and L(w) belong to (~tr~, and that any highest weight of g-module in gmv has 
the form - w ( p ) - p  for some w~W. For any MeC,rlv and wEW, we shall 
denote by [M; L(w)] the number of times of appearance of L(w) in a Jordan- 
H61der series of M. Then we have the trivial formula: 

ch (M)= ~ [M ; L(w)] ch (L(w)). 

2.3. There exists a unique automorphism v of g, which normalizes 1~, induces 
- 1  on f and sends X,  to X_~. For any U(g)-module M, we provide 

Home(M, II~) with a structure of g-module by the formula 

(2.3.1) (Zf,  n) = - (f ,  z(Z) n) 

for f e  Home(M, I~), n e M and Z ~ g. 
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For any M in (~ set 

M*--- { f e  Home(M, C) ; f (M ~) =0  except for finitely many 2} 

-- {f~ H ome(M, 112; dim e U (b)f < ~ } 

then it is easy to see 

(2.3.2) If M belongs to g (resp. (~t,.iv) then so does M* 

(2.3.3) One has ( M * ) * ~ M ,  (M*)~=(M;') * for M in @ and 2 e t*  

(2.3.4) ch (M*,) = ch(Mw) 

393 

w 3. Flag Manifold 

3.1. Let G be a connected simply-connected Lie group whose Lie algebra is g, 
and let B, B- ,  N, N - and T be the subgroups of G with b ,b- ,  9l, 9 l -  and f as 
Lie algebras, respectively. We set X = G / B  and we shall identify W as the 
subset of X by w~--~WB/B (we  W). Define the Bruhat cell X w to be: 

X w = B W = N w c X .  

Then X is a disjoint union of Xw'S. The following lemma follows immediately 
from the fact that the set of points of X w where X w, does not satisfy the 
Whitney condition is nowhere dense in X w. 

Lemma 3.1. {Xw} is a Whitney stratification of  X 

We set n = d i m 9 1 = d i m X =  #A +, 

l(w) = dim X w = length of w = # (A + c~ w A -) 

Proposition 3.2. For any w, w' e W the following conditions are equivalent 

(a) 2~2~, 
(b) H o m u ( M w . , M w ) ~ O  

(c) there exist an integer N > 1, ctj e A (j = 2 .. . .  , N)  and wj e W (j = 1 . . . . .  N) 
such that w l = w '  , wi=-s~/wj_  I ( j=2  . . . . .  N), WN=W and l (w~_ j<l (w i )  (j 
=-2 . . . .  ,N). 

I f  they are satisfied, one says that w' is smaller than w for  the Bruhat order, 
and one writes w'<= w. 

The proof of (a) <~- (c) goes back to Chevalley (unpublished). One may refer 
to [3], p. 75. The proof that (c) implies (b) is given in [13] where Verma also 
conjectures the converse implication, which is proven in [I],  w 

In particular these conditions imply w'(p)>w(p) .  Here, 2 > #  (2, /l ~ t*) sig- 
nifies that ,~-/~ is a non-negative coefficient linear combination of e ~ A +. 

For any w e W,, we shall denote by 

(3.2.1) r (w)= ~ {Xw,; w'(p)>w(p)} .  

By the proposition above, Y(w) is a closed analytic subset of X containing Xw. 
In general, they do not  coincide. 
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We say that a subset Z of X is admissible if Z m X w 4= O implies Z ~ Y(w). It 
is equivalent to say that Z is a union of Y(w)'s. 

Lemma 3.2, I f  Z is admissible and if w~  W is such that w(p) is minimal in the set 
{w(p); X ~ c Z }  (i.e. Z ~ X w , ,  w ' (p )<w(p)  implies w = w ' )  then X ~  is open in Z. 

Proof. If not, Z - X ~  ~ X w. Hence there is w'4: w such that Z ~ X w, and X~, 
~X~.  This implies that w'(p)< w(p) which is a contradiction. 

w 4. The Category ~ /  

4.1. We view g as the Lie algebra of right invariant vector fields on X. Denote 
p the projection p: G ~  G/B. For any ~ E 9, there exists a unique vector field 
on G/B such that dpx(~)=(p(x) for any x ~ G .  There exists as Lie algebra 
homomorphism: 

cp: g - ~ x  such that qg(~)=~ for all ~ 9 -  

Actually, ~p is easily seen to be independent of the choice of a base point on X 
(i.e. of an identification of X with GIB. 

One extends ~p to a ring homomorphism rp: U - - ~  x. It is known that ~p(1) 
=0,  so one gets a factorization 

U ---> R -~, ,~ x 

Hence, for any coherent ~x-module ~ ,  R operates on HJ(X,~) .  

4.2. We shall denote by ~ the category of holonomic ~x-modules with R.S., 
whose characteristic varieties are contained in [~ Tx*wX. Here T*wX denotes 
the conormal bundle of X w in X. w~w 

Theorem 4.1. (1) For any M~(~trlv , ..@@M belongs to Jg. 
R 

(2) For any ffJl ~ Jg, F ( X  ; 9Jl) belongs t o  (-~triv" 

(3) For any M ~ t r l v  , 9 - o r f ( ~ , M ) = O  for  j4=O 

(4) For any 92il~Jr HJ(X;gJl)=O for  j4=O 

(5) For any Ms(Ot~i~, M ~ F(X;  ~ @ M )  is bijective. 
U 

(6) For any 99l ~ ~ ,  ~ @ F ( X  ; 9Jl) ~ 9Jl is an isomorphism 
U 

(7) For any ~JJl E 

ch ( r ( x ;  ~*))  = ch(V(X;~)) 

Before entering into the proof of this theorem, we shall give here a sketch 
of the proof. 

First we establish (1) by using the fact; if u satisfies 

a x j=- - -u=cu  (aj > 0, cell;) 
j= 1 J i3xj 
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and u satisfies a holonomic system with R.S. outside the origin, then u satisfies 
a system with R.S.. Next we consider the module q ~ * - ~ " - ~ ) ~  ~ For this ~ w  - -  ~ [Xw] ~ X/" 
module we have 

(4) j . . 0 ' * - M *  H (X,  9Jlw) = 0 for j 4= 0 and H (X, ~ w ) -  w. 

Moreover this satisfies 9| At the next step, we shall prove 
(3) for M = M w ,  and establish the injectivity of M w - * F ( X ;  9 |  By look- 
ing at IR ~ ( o m ~ ( 9 |  (9), we also show that 9 |  w. By using these, 
theorem will be proved by induction on dim Suppg)l. 

4.3. Proof of (1) of Theorem 1. First we shall show that C h ( 9 @ M )  is contained 
U 

in U T~wX" Since 9 @ M  is a quotient of a direct sum of copies of 9 /  
w U 

9 .  q~(9~k), its characteristic variety is contained in {p e T* X; ~rl(q0(Y)(p)) = 0 for 
any Y~91}. For  a point q in Xw, the vectors q~(Y) (Ye9l)  generates TqX w. If 
p e  Tq*X satisfies Crl(~O(Y))(p)=0 for Y e n ,  p is orthogonal to TqX w and hence p 
belongs to T*wX. Thus we have proved the statement for C h ( 9 @ M ) .  We 

v 
shall prove next that 9 @ M  is with R.S. First remark the following lemma. 

v 

Lemma 4.2. Let 93l'-* 9Jl -* 9Jl" be an exact sequence of  holonomic 9-modules. I f  
9~' and 9Jl" have R.S. then so does 99l. 

By applying this lemma, one can easily reduce (1) to the case where M 
= M w. Then 

~ @ M = 9 /  ~ 9q~(Y)+ ~ ~ (qg(H)+(w(p)+p ,H) ) .  
U Y E ~  H ~ I  

By using the induction procedure, it is enough to show the following state- 
ment. 

4.3.1. Let w,w' be elements of W. If 9 |  w has R.S. on U - X  w, for an open 
neighborhood U of Xw,, then 9 |  w has R.S. on U. 

Now, remark that ~0(Y) (Yegl) are tangent to X w, and generate TXw,. 
Moreover, for He t ,  ~o(H) is tangent to Xw,, vanishes at w', and the eigenvalues 
of the isotropy action of H in Tw,X/Tw, X w, are -c~(H) for A+c~(w')- lA +. 
Therefore (4.3.1) is a consequence of the following more general proposition. 
The proof of this proposition will be given in the Appendix. 

Proposition 4.3. Let X be a complex manifold, Y a connected submanifold of  X,  y 
a point of Y and ~Jl a holonomic ~x-module generated by a section u. 

Assume that 

(a) 9J/has R.S. on X -  Y 

(b) There exist vector fields V 1 . . . .  , V  N such that Vjue(gxU and that {Vj} 
generates TY.. 

(c) There exists a vector field V o such that VouE(gxu, V o vanishes at y, V o is 
tangent to Y and the eigenvalues of the isotropy action of  V o on TyX/Ty Y are 
strictly positive. 

Then ~ has R.S. on X.  
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w 5. The Sheaf ~Y/* 

5.1. The following proposition is proved in [10]. 

Proposition 5.1. (l) H[x~l (X; (9x) = 0 for j 4 = n - l(w), 

(2) ~t{,d((.0x)=0 for j4=n-l(w) ,  
(3) On HgZ~w)(X; Cx), f acts semi simply and we have 

ch t rt,, -'(wl ( X ; (fix)) = ch ( M w). t** [XM 

The third properly implies that H~x-~I~)(X; (fix) belongs to (~m~. 
The proof of these properties is based on the fact that X~ has an affine 

neighborhood ( w B - w - ~ ) w  and the pair ( (wB-w-~)W,  Xw) is isomorphic to 
( w N - w - l ,  N n w N  w l )~ (Ad(w)g l - ,9 l~Ad(w)g t - )  as the pair of spaces 
on which T acts. 

We define 9J/.~ to be the dual of ~.~.-,~t/~ ~[X~] t ' J  X l "  

Since X = U X ~  is a Whitney stratification 93~ and .r belong to ~ '  
(Proposition 1.1 and Proposition 1.3(10)). 

Moreover, we have 

(5.1.1) 
(5.1.2) 
(5.1.3) 
(5.1.4) 
(5.1.5) 

Supp 9J1 = Supp 9Jl* = Xw, 

HJ(X ; 9J~*) = 0 for j 4= 0, 

ch (F(X; 9LR*)) = ch(Mw), 

9J~*  ~Jx-ox~ ='~XwlX-OX~, 
J * __ ~@x~j(gJ/~)- 0 for any j. 

The last property implies that for any ~l ~ ~ '  

(5.1.6) IR V(X; lR,.gdom~,, (93/, TJi*~)) ~ ,  IR F(X  - c3 X w; IR ~Om~x (9~R, 932"w) ) 

by Proposition 1.4. 
This implies in particular any homomorphism from ~ into 9J/w* defined on 

X-c3X w can be uniquely prolonged to a homomorphism defied on X. 
Since lRJ/gom~x(gY(gYl*,)lx_ox W is a complex of sheaves whose cohomology 

sheaves are locally constant sheaves on X w and since X~ is isomorphic to 
~t~). we can conclude 

IRF(X-OX~,;  ~..d*%m~x(9~,gx*)) ~ , ~,.O~om~xOJl, gR*)w. 

Thus we obtain the following 

Proposition 5.3. For any 9X e / r  

~,V(X;  ~, ~om~x(gX , 93/*)) ~ ,  R afom~x (991, 9Yl*)w. 

The following proposition is also necessary to prove Theorem 4.l, in spite that 
this is a very special case of that theorem. 

Proposition 5.4. ~(~) F(X  ; iIR*)-+ 9)1" is surjective. 
u 
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The proposition is a corollary of the following lemma which can be easily 
proved. 

Lemma 5.5. Let S be a separated scheme, U an affine open subset of S and let j 
be the inclusion U~--~S. Then, for any quasi-coherent Or-module ~, the homomor- 
phism Cs@ F(U ; ~)---~j, ~ is surjective. 

Z 

In order to obtain Proposition 5.4, it is enough to apply this lemma for S 
=X,  U = ( w B - w - l ) w  and ~ - g J / w  and use Serre's GAGA in order to show 
F(X;~IJ/*) equals its algebro-geometric counterpart. We remark also (1.4.1). 

5.2. In order to calculate F(X,~I*), we shall Remark (5.2.1) 

, {0 C if w=w'  
I-t~ if w(p)~gw'(p) 

which immediately follows from 

ch (F (X ; ~lJl*)) = ch (Mw). 

Proposition 5.3 implies that one has a natural isomorphism for M e Ctriv 

( 5 . 2 . 2 )  ,:~om~(9@M, 9Jl*) w ~ Horn R (M, F(X, 9X*)) 
R 

where one uses the R-morphism M - - ~ F ( X , 9 @ M )  and the 9-morphism 9 
| r ( x ,  ~w)  ~ ~w.  R 

Lemma 5.6. Supp (9  | Mw) ~ Y(w). 

If the statement is false, there exist w' e W such that X w, is open in Supp (9 
| and disjoint from Y(w). By Proposition 1.2, one has Hom~(9  
| 4:0 which implies w(p)<w'(p) by (5.2.1) and (5.2.2). This is a 
contradiction. Q.E.D. 

Corollary 5.7. For any M e (~triv, we have 

Supp (9  | M) c U { Y(w); w(p) - p is a weight of M} 

= U{Y(w); - w ( p ) - p  is a highest weight of M}. 

Proof. We shall prove this by the induction of l(M). If - w ( p ) - p  is a highest 
weight of M, then there exists an exact sequence Mw-~M--~M'-~O with 
l(M')<l(M). 

Then Corollary follows from the preceding lemma and 

Supp (9  | M) c Supp (9  | M') u Supp (9  | Mw). 

Corollary 5.8. F(X; 9]l*)-M * 

Proof. Set M = F ( X ;  9X*). Then we have 

ch(M*) = Ch(M*) = ch (Mw). 

Hence there exists a non zero homomorphism Mw--,M*. Taking the dual we 

obtain O--~ N-~ M S , M* 
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Any highest weight of N has the form -w'(p)-p with w'(p)~w(p). For such a 
w', we have Y(w')c~X w=O. Therefore, the preceding corollary implies Supp (~  
| Hence N is contained in Fox~(X;gJl*)=O, which implies the 
injectivity of f The comparison of the characters conclude the bijectivity of 
f Q.E.D. 

One may refer to [10] for a different proof of Corollary 5.8. 

w 6. The Sheaf ~ | M w 

6.1. In this section we shall study the properties of ~ |  

Proposition 6.1. (1) ~'-or~;~)(~, C) = 0 for j 4: O. 
(2) To r~ ) (R ,  •) = 0 for j 4:0 

Proof It is known that tE has a free resolution 

0 ~-- r ~-- U(91) ,-- U(91) ~)  n ~-- U (91) ~)  A 2 9l ~- . . .  ~-- U (91) | An 9l ~_ 0. 
C 

Hence in order to prove (1), we have to show the following sequence is exact; 

(6.1.1) ~ + - ~  Q 91 ~---~ ~) A291 ~--... ~-- ~ | A"91 *--0. 

Let X t . . . . .  X,  be a basis of 91. Then the graduation of (6.1.1) 

(6.1.2) g r ~  *--gr ~ | 91 ~--... § ~ | An91 *--0 

is nothing but the Koszul complex of g r ~  with respect to 
(at (q~(X1)) . . . .  , a t (tp(X.))). Since the common zero of a l(q~(Xt),..., a I (~p(X,)) is 
UT*wX, this has codimension n. Therefore (al(q~(XO) ..... al(q~(X,))) is a reg- 
ular system, which implies the exactitude of (6.1.1). The property (2) is also 
proved by the same argument. Q.E.D. 

Note that for any H~t we have 

H (n+(w(p)+p,H))~I+ U91 
",v ~ W 

Hence we obtain 

(6.1.3) R/R91= | Mw 
w E W  

On the other hand, Proposition 6.1 implies 

(6.1.4) Jo r~  (~,  R/R91) = 0 for j4:0. 

Thus we obtain 

Proposition 6.2. Y-or~(~, Mw) = 0 for j 4: 0. 

6.2. Now, we shall calculate ~ | M w. We have already seen in Proposition 5.3 

IR Of'om ~ (~/~91,  9Y/*)w ~ ~ F(X; ~ ~om~(~/@91;  93/*)) 
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We have 

]R F (X; IR .~om~ (9/.@~, 9Jl*)) = ]R .~'r v( m (112, ]R F (X; ej~.)) 
= P-, A~'om vr (IE, M*) 

(the last equality using Corollary 5.8). 
It is known that 

d, xtJv(~,(C; M.)  = JO for j . 0  (6.2.1) 
for j = 0  

Thus we obtain 

gxtJ(~/991,gj/.w)w={O for j 4 : 0 f o r  j = 0  

Since 9 / 9 9 l = @ ~ |  we have 
w 

gxt~(9  | Mw,gJlw,)w,-0 for j # 0 ,  
and 

~g @ Sxt ~ (9  | Mw, ~w,)w, - IE for any w' 
w 

On the other hand, we know already, by (5.2.2) 

: g  _ _  r176 | Mw, 9Jlw) w - I12. 

Therefore we can conclude 

{CO i fw=w'  andj=O 
(6.2.2) gxt~ (9  | Mw), 9J/*,)w, = otherwise. 

On the other hand, Proposition 1.7 implies 

R ff:om (9  | Mw, 9Jlw,)w, - Hom e (IR o~om~ ((fix, 9 | Mw)w,, IE) [ - codim Xw. ]. 

This, together with (6.2.2) implies 

~xt~((fix'9| J=e~ 

Since 8xt~ ((fix, ~ @ Mw)lXw, is constant sheaf, we finally calculate 
1R ~r ~ ((fix, ~ @ Mw). 

Proposition 6.3. IR ~ o m ~  ((fix, ~ | Mw) = ~x~ [ - codim Xw]. 

Corollary 6.4. 9 | M w ~- ~gl w. 

Proof. By the definition of ~ * ,  we have 

9Jl*~ = ~,.Ftx~( (fix) [codim X~]. 

Hence by Proposition 1.4, we obtain 

IR ~fom~ ((fix, 93l*) = IR Fx~ (IR ~om~((fix, (fix)) [codim Xw]. 
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Since F, ~ o m ~  (6~x, (gx) = I~ x. We obtain 

IR ~fom (~lw, g0x)=IR Fxw(ll? ) [codim Xw]. 

On the other hand, by Proposition 1.3 (8), we have 

IR o~om (~  | Mw, ~0x) = IR oVfo m r (IR ~Om~x ((~x, ~ | Mw), If;x) 

= N ~ o m r  (ll2xw [ - codim Xw], (l~x) 

= IR Fx=(~x) [codim Xw]. 

Therefore, N ~om~(~lw, (9 x) is isomorphic to 1R ~fom~ (~  | M w, (gx). Proposi- 
tion 1.5 implies that ~3l w is isomorphic to ~ | M w. Q.E.D. 

6.3. We shall denote by N the sheaf of micro-differential operators (see [4]). 

Proposition 6.5. M w ~  F(X ; ~ | M~) is injective. 

Proof Set Q = { q e T * X ;  gl(q)(X ~))+0 for any simple root c~}. In order to 
prove Proposition 6.5, it is sufficient to show the injectivity of 

R 

because this is a composition of Mw---, F ( X ; ~  | Mw) and 

F(X ; ~ | M,~)---~ F(E2; N | M~,). 

By Verma [13]. there exists an injective map f :  Me--, M~. Moreover, if we 
denote by u(e) and u(w) the canonical generators of M 1 and M~, respectively, 
we have 

f(u(e)) = X~_�89 ... X~_~ u (w) 

where ~i are simple roots and mj are positive integers. By using the fact that 
~ ( X ~ )  is invertible on ~2, the same argument as Verma shows that 

1 |  g @ M r  w 
U U 

is an isomorphism on f2. 
The preceding corollary implies that 

Therefore N@Mw[f2 is isomorphic to Cxolx[e. For a non zero section v of 
v 

Cx,lx and P e g ,  P v = 0  implies a(P)[ Tx.x=O, because otherwise P is invertible. 
Any element M w can be written in a unique way as Pu(w) for P e  U(~-) .  If P 
belongs to U~(91-)=((E+gl- )  ~, then a,,(~o(P))[T]~ x is nothing but the modulo 
class of P in U~(9I-)/U,~_I(?il-)=SmOI-), which is regarded as a polynomial 
on ( f i t )  =T;~ x. Hence if l |174 on f2, we have 
am(cp(P))[e=0. This implies that P~Um_, (g l -  ). By continuing this, we can 
conclude that P = 0. 
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6.4. On Xw, 9)l* is isomorphic to ~xdx-eXw. Hence 9J~ w and ~Jl* are iso- 
morphic on X w. Let qo~ be a homomorphism from ~JJ/~ into 9)l* defined on X 
which extends this isomorphism on X w (which exists by (5.1.6)). We shall define 
J2~ as the image of (%. 

Proposition. ~w satisfies the following properties 
(1) Supp 52~=Xw, 
(2) Supp (gJ~w/Sgw)C~Xw, 
(3) ~ o j e j  =0, 
(4) .e,, ~ J2*, 
(5) ~ is a simple object in Jig. 

Proof. The properties (1), (2), (3) are obvious. The property (4) follows from the 
fact that rp=~o*. We shall prove (5). Let J~ be a coherent sub-~x-module of 
~2~. By Proposition 1.2, ~ = 0  or :e w on X~. If g = 0  on X~, then ~ c - ~ 0 ~ ( ~ w )  
=0. I f . N =  52~ on X~, then ( ~ w / ~ ) * c  0 * - 0  ~ x ~ ( . e ~ ) -  . Therefore, @ is (5~ or ~ .  

w 7. Proof of Theorem 4.1 

7.1. For  a subset Z of X, we say that Z is admissible if Zc~Xw+-O implies 
Z =  Y(w). For an admissible Z, we denote by J / z  the category of 9Jl~Jr with 
Supp g.RcZ. Let (}z be the category of M~(~triv such that any highest weight of 
M has the form - w ( p ) - p  for some w with X w c Z .  This condition is equiva- 
lent to say that, for any weight 2 of M, there exists w such that - w ( p ) - p  >= 2 
and XwCZ.  

For an admissible Z, we shall consider the following statements 

(1) z For any MeOz,  ~ |  M belongs to ~ z .  
(2) z For any ~lJ~cM[, F(X; ?Ol) belongs to (_9 z. 
(3)z For any M E ' z ,  J o r ~ ( ~ ,  M ) = 0  for j=t=O. 
(4)z For any 9Jl~JCdz, Hi(X; 9)l)=0 for j4=O. 
(5)z For any M c ~ z ,  M-+ F(X; ~ @ M )  is an isomorphism. 

u 

(6)z For any 92R e Jttz, ~ | F ( X ; ?Ol ) ~ gJi is an isomorphism. 
(7) z For any 9J~6~12, we have ch(F(X; 9Jl*))=ch(F(X; ~IJR)). 

The property (1)z has already been proved (w and Corollary 5.7). We 
shall prove the remaining statements by induction on ~{w; X w ~ Z  }. If Z = ~ ,  
there is nothing to prove. Assuming Z 4=1~, we shall take a w such that X w c Z 
and that w(p) is minimal (i.e. Xw, c Z and w'(p)< w(p) implies w=w'). Then X~ 
is an open subset of Z. Set Z ' = Z - X ~ .  Then Z' is also admissible. By the 
hypothesis of the induction we can assume that (2)z,, .... (7)z, are true. 

7.2. Proof of (2)z, (4)z and (6') z 
(6')z: For any 9 J l ~ ' z ,  ~ |  9J~)-=, 9)1 is surjective. 

Let 9Jl be an object in ~'z.  Then, by Proposition 1.2 there exists an integer N 
and an isomorphism f: 73l-* 9J~ *N on a neighborhood of X w. By the remark 
after (5.1.6), f extends to a homomorphism defined on X. Thus we obtain an 
exact sequence 
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where o~ and f~ belong to ~'z,. Let ~r be the image of f. By (5.1.2) and (4)z, , 
we have Hi(X; f~) = HJ(X; 9Jl *N a w ) = v  for j + 0 .  

Therefore, from the exact sequence 0-~J--~9)l*Nw --~ f~-~0 we obtain 
HJ(x; J )  = 0 for j 4: 0, 1 and an exact sequence 

(7.2.1) 0 ~ F(X; J)--~ r ( x ;  9)l *N) -+ F(X; f#)-, HI(X; J)--~ O. 

Since F(X; * " 9Jlw)~(9 z and F(X;fg)~Cz,, we have F(X,Y)~ ~z and H~(X; J ) ~ z , .  
Tensoring ~ to (7.2.1), we obtain the diagramm 

~ |  ~*N) y , ~ |  (5) "w , ' - -  

~ . N  , 

, ~ @ H x ( X ;  J)  ,0  

, 0 

By (6)z, and Proposition 5.4, fl is an isomorphism and e is surjective. Therefore 
y is surjective which implies ~ @ H t ( X ; J ) = 0 .  Since H l ( X ; J ) e ( ~ z  ,, we can 
apply (5)z, to show HI(X; J ) = 0 .  Thus we obtain Hi(X; J )~ -0  for j=#0. On the 
other hand, from the exact sequence 0 - .o~- .gJ l - - - , J - - - , 0  and Hi(X; ~- )=0  
(j 4 = 0), we have 

HJ(X; 9J/)=HJ(X; J ) = 0  for j4=0 

and an exact sequence 

o-, r (x;  ~)--, r(x;  ~ ) ~  v(x; y)-~ o. 

Thus we obtain (2)z and (4)z. 
Now, we shall prove (6')z. By the diagramm 

~ |  J) 

0 , J  

~ |  ,N , ~ ) , ~ |  ~ )  , o 

, ~ . N  , ~ , 0  

[ 
0 

we see that ~ | F(X; J)--+ J is surjective. Another diagramm 

0 

~ |  ~ )  , ~ |  ~ )  

implies the surjectivity of ~ |  9)l)--+ ~IJ~. 

, ~ |  y )  

t 
J 

1 
0 

, 0  

,0  
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7.3. Proof of (7)z. For 9J/eJg z we shall consider a homomorphism 
f:gJ/--*gJ/*N which is an isomorphism on X~. Set 9J / '= f  -1 N ( ~ ) .  Then we 
obtain exact sequences 

0-~ Y-~  gJl'-~ ~ - , ~ 0  

0 ~  ~ '  ~ ~1l~ ~"---,  0 

where o~, ~, ~ "  belong to Jgz'. By (4)z, we obtain exact sequences 

0 ~ r (o~)-,  r ( ~ ' ) - - ,  r ( ~ ) - ,  r(~r 0 

0 - ,  r ( ~ ' ) - - ,  r ( ~ ) - ,  r ( ~ " ) - - ,  0 

0 , - r ( g * ) ~  r ( ~ ' * )  ~ - r ( ~  *N) ~- r(~r , - 0  

0 , -  r (~ '*)  , -  r (~*)  , -  r 0Jr'*) +-- 0 

Since ch(r(~*)) = ch(r(~)), ch(r(~r = ch(r((r c h ( r ( ~ " ) ) =  ch(r(~"*), and 
~ w -  ~w we obtain ch(F(X; ~Jl))=ch(F(X; gJl*)). 

Corollary 7.1. Mw-* F(X; ~ | is an isomorphism. 

Proof We have ~ | Mw = 9Jl~. Hence by (7) z we obtain 

c h ( r  (X; ~ | M w)) = c h ( r  (x ;  ~Jl*)) 

= ch (Mw). 

We know already the homorphism in question is injective. Therefore we obtain 
its bijectivity. 

7.4. Proof of (3)z and (5)z. This is analogous to the preceding proof of (2)z, 
(4)z and (6')z. We shall prove them by the induction on the length l(M) of 
M6(} z. If M does not have a highest weight - w ( p ) - p ,  then M belongs to (gz,. 
Hence (1)z , (3)z and (5)z are true for such an M. Now, suppose that M has a 
highest weight - w ( p ) - p .  Then there exists an exact sequence 

~ 0--. N-~  M w ~  M--~ M'--* 0 

with l(M')<l(M) and Ne(9 z. 
Hence (3)z and (5)z are true for N and M'. Let I be the image of f.  By 

Proposition (6.2) and (3)z,, we have 

3-orf(~, Mw)=~--orf(N, N ) = 0  for j#:0. 

Hence the exact sequence 0--* N--* Mw--, I--, 0 gives 

(7.4.1) 3 o r f  (9,  I) = 0 

and 

(7.4.2) 0--, Yor~(~, 1)--~ ~ | N---, @ | Mw--* @ |  0 

On the other hand, J -o r f (N ,M' )=0  for j + 0  by the hypothesis of induction. 
Hence we obtain an exact sequence 
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(7.4.3) 0---~ N | I---~ 9 | M--* ~ | M'--~ 0 

and 

(7.4.4) ~-or R (9, M) = J o t  R (~, I) for j 4= 0. 

F rom (7.4.2), (7.4.3), (4)z , (5)z, , Corollary 7.1 and the hypothesis of the in- 
duction, we obtain a diagramm 

0 - ,  r ( x  ; Y-orf(~, I ) )~  F ( X  ; 9 | N ) ~  F ( X  ; ~ | m w ) ~  F ( X  ; ~ | M)--, F ( X  ; ~ | m ' )  

l l l 
O--~ N - -  ' M w - -  ' M ~ M ' ~  O 

This shows that M - ~  F ( X ; 9 |  is bijective, and F ( X ;  J ' o r f ( ~ , l ) ) = 0 .  Since 
3Z-or~(9, 1) belongs to ~'z,  by (7.4.2), (6)z, implies Yor f (9 ,  I )=  0. Together with 
(7.4.1) and (7.4.4) this implies J-or f (9, M) = 0 for j 4= 0. 

7.5. Proof o f  (6)z. For 9JlcJ//z, set M = F ( X ;  9?il)~C z. Let Jg  be the kernel of 

Then  we obtain 

0 - * F ( X ;  J V ) ~ F ( X ; ~ |  P ,Y(X;gJ I ) -~0  

M 

Since ~ is bijective by (5)z,/3 is also bijective. This implies F ( X ;  , ,f ')=0. Hence 
JV" = 0  by (6') z. This completes the proof of Theorem 4.1. 

7.6. We have already estimated the support of ~ |  in Corollary 5.7. Howev- 
er Theorem 4.1 allows us to show the following proposition. 

Proposition 7.2. For M ~ (~triv, we have 

S u p p ( ~ |  [M; Lw]4:0 }. 

P r o o f  Since ~ |  is an exact functor on C~riv we reduce the proposition to the 
case when M = L w. In this case, the proposition follows from the following 

Proposition 7.3. ~ | L w = ~w. 

In fact t2 w is the image of the non trivial homomorphism 931w~ 93l* and Lw 
is the image of the non trivial homomorphism Mw-=, M*. 

w 8. Conjecture of Kazhdan-Lusztig 

8.1. In order to state the conjecture of Kazhdan-Lusztig, we shall describe the 
complex of sheaves 7~ given by Deligne, Goresky and MacPherson [2]. Let Y 
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be an analytic space of pure dimension n. Take a filtration 

Y= Y,~ Y,_~=. . .~  Yo~ Y_,=O 

where Yi is a closed analytic subset, Y/- Y~-I is non singular of pure dimension 
i and Yi-Yi_l satisfies the Whitney's condition along Yj-Yj+I. Set Ui=Y 
-Y"-~ and ley Ji' U/c--~U~+ 1 be the inclusion. Then ny is defined by 

~=~<=,_~IRSn, ... r ~ olRs~,(~v,). 

Here z__<~ is the truncation operator. 
The complex n r is characterized by the following three properties: 

(a) :~i(nr)=O for i < 0  and dimSupp(~i(nr))<=n-i - 1 for i>0.  
(b) n r is self-dual in the derived category of the category of sheaves on Y. 
(C) /ry/Yreg~l~y~eg, where Yreg is the regular part of Y. 
This is an unpublished result of Mac Pherson. 

8.2. By using rcr, the conjecture of Kazhdan-Lusztig can be stated as follows 
(see [8]). 

Theorem 8.1. ch(Lw)=~, (-1)l~w)+l~W')rk,(nxw), ch(M~,) where 
w" 

rkw,(nXw ) = ~ ( -- 1) j dim J%'~s(nXw)W, 
J 

= ~  ( -  1)2 dim IH~w,t(Xw, nxw ). 
J 

The last equality follows from the following general fact. 

Proposition 8.2. Let Y be a complex analytic variety, K" a complex of sheaves on 
Y with bounded cohomology, the cohomology sheaves of which are constructible. 
For any point y of Y,, the two integers rky(K')--~(-1)2dim~J(K'~) and 
~, ( - I) 2 dim IH~y)(E K') are equal. J 
J 

Proof. One may obviously reduce oneself to the case Y is non singular and K" 
is a single sheaf F. One has to show that, F being a constructible sheaf: z(U, F) 
---Z(IRF~v~(U;F)) for a sufficiently small ball U centered at y, or equivalently 
x (~F(U-{ y} ,  F))=0. Furthermore, we may assume that there exists a locally 
closed subset Z such that Fiz is locally constant, F ix_z=0 and both Z and Z 
- Z  are analytic. Then x(IRF(U-{y}),  F)=)~(IRF(Uc~Z; F))=(rank F) 
z(Uc~Z). But z ( U m Z ) = 0  by a theorem of Sullivan [14]. Q.E.D. 

Proposition 8.3. For any 9Jl~J,[, we have 

eh(F(X ; ~IJ~))--- ~, ( -  1)"-ttW)Zw(gJl)ch(Mw) ) 
w 

where Xw(g)l)=~ ( - 1)2 dim d~ 9J0w. 

Proposition 8.4. IR , ~ o m ~  ((9 x, !~)  = nx~ [ - codim Xw]. 
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Leaving the proof of Proposition 8.3 in the later sections, we shall prove 
Proposition 8.2. Since both sides of Proposition 8.2 are additive in 932 we can 
reduce this to the case when gJ l=gJ lw=~|  w. In this case, the assertion 
follows from Proposition 6.3. 

8.3. In fact, Proposition 8.3 can be generalized to an arbitrary complex mani- 
fold X. In order to see this let us recall the properties of 9 w. As already 
seen, t~w enjoys the following 

(8.3.1) o o , ~xw(gw) = W0xd 9.,)=0, 

(8,3.2) 9wlx~ ~- ~xwlx- oxw" 

Proposition 8.5. Let X be a complex manifold, Y a closed analytic subset of pure 
codimension 1, and Z a nowhere dense closed analytic subset of  Y containing the 
singular locus of Y. Then there exists a unique holonomic ~x-module with R.S. 
which satisfies 

(8.3.3) 9Ix z~-~r_z lx_z ,  

(8.3.4) Jfz~ = ~z~ = 0. 

For such an 9, we have 9 ~ 9*. 

Proof We shall prove first the existence of E. Set gJ~ =~f[~r_z]((gx). Then 93l is a 
holonomic ~x-module with R.S. which satisfies ogg~ Moreover, we have 

~ l x _ z ~ - ~ r _ z l x _ z  �9 

Set 9=991*/Jgz~ Then 9 is a holonomic ~x-module with R.S. On X - Z ,  
we have 9 , ~ * ~ - ~ v _ z l x _ z * ~ r _ z l x _  z. It is evident that ~z~ Since 
9* is a sub-module of 0J~*)* =~Jt, ,~z~ *) also vanishes. Now, let us prove the 
uniqueness, Let 9 and 9' be two holonomic @x-modules with R.S. satisfying 
(8.3.3) and (8.3.4). Set JV=Ht~ Then the isomorphism 

9 ' l x _ z  - ~ 9 1 x _ z ~ W I x _ z  

extends to a homomorphism 9 ' - ~  defined on X (Proposition 1.4). Since 
Ygz~176 we can regard 9 and 9' as sub-Modules of Y which 
coincide on X - Z .  The vanishing of Jgz~ *) implies that any quotient of 
supported in Z must be 0. By applying this to 9/9c~9' ,  we obtain 9m9 ' .  
Similarly we obtain 9 ' ~ 9 .  The property 9 ~ 9 "  follows from the 
uniqueness. Q.E.D. 

Definition 8.6. We shall denote 9 in Proposition 8.4 by 9(Y, X). 

8.4. By the property (8.3.1) and (8.3.2), we can conclude 9w= 9(X~, X). There- 
fore Proposition 8.3 is a corollary of the following theorem. 

Theorem 8.6. Let Y be a closed analytic subset of  pure codimension l of a 
complex manifold X. Then, we have 

lR ~,~om~,, ((9x, 9(Y, X))=lrv[ - l]. 
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Proof. We shall denote s for s X). Let Y = L I x ,  be a Whitney stratification 
of Y such that Ch(~)c  U T * X .  Set d~=codimxX ~, Set Yj= U{Y~; de<j} and let 
Ji: X: X -  Y~c-~X- Y~+I be the inclusion. Then we have by the construction ofnr ,  

~ [ - l ]  = ~ <,IRj,... ~<l+ 1F, j ,+ , , (~_ ~,+ 1 [ -  l]). 

Hence we have 

7ry[-l][x_r,+l=z <i]Rji,(~r[-l][X - Vii ) i = l +  l, . . . ,n 

and nr[  - l ] [ x - r , + , -  Or-r,+, [ - l ] .  
Set F '= lRJgom~x(Ox,~  ). We have F'lx_r~+ ~-~r_r ,+,[ - l ]  because 

~31x_r,+,~3r_r,+,lx_r,+c Hence, in order to show n r [ - l ] ~ F ' ,  it is enough 
to show 

F'lx_Y,+l_~Z <iN.ji,(F'lx_r,) for i= l+ l , . . . ,n .  

This isomorphism follows from the following 

(8.4.1) ~ <i(F'lx_r,+,)~, F'lx_r,+, for i= l+ l , . . . ,n ,  

(8.4.2) ~ <i(F'lx_r,+,)~ z <i(1Rji,(F'lx_r) ) for i=l  + 1, ..., n. 

By using induction on i, we may assume that (8.4.1) is true on X-Y~. Hence 
(8.4.1) follows from 

(8.4.3) Hk(F')[r,_r,+ =O for k > i > l +  l. 

The property (8.4.2) follows from 

( 8 . 4 . 4 )  ~_v,+~(F')lx_r,+ =O for k < i > l + l .  

Since Y~-Y~+I is the disjoint union of X~'s with d,=i, (8.4.3) and (8.4.4) are 
equivalent to the following conditions (8.4.5) and (8.4.6), respectively 

(8.4.5) Yfk(F')lx =O for k > d,=codim X , >  l, 

(8.4.6) Jfxk (F')lx =0  for k<d~=codimX~>l .  

Now we shall prove first (8.4.5). 
By Proposition 1.6, we have 

gXtkx( s ~3X.tX)lX~ = ~'V'om,:(gxt~- k ((gx, s tlYx~). 

Hence in order to show (5) it is sufficient to show 

gxtkx(s ~X.lX)]x=O for k<O. 

This is evident for k < 0, and this is also true for k = 0 because 

oVfom(s Mx~,lx)[x, ~- ~Vfom(~x,lx, s c ~om(~ '*  ix, ~r176 (s ~ = 0. 

Finally we shall prove (8.4.6). We have by Proposition 1.4 and Proposition 1.1. 
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Thus we obtain  

IRFx,(F')Ix, = 1RFx lR ,ff~om(~*, (gx)lx ~ 

= IR ~om(~2*  ; IR qx,l((gx))lx~ 

= IR M o m ( ~ * ,  ~x ,  lx)lx, [ - codim X~] 

= 1R ~ 0 m ( ~ x , l x ,  ~2)]x, [ - d~ ] .  

jfxk: (F')[x: = gxtk -a:(~X:lX, ~)]x:, 

S i n c e r e : ( 2 ) = 0 ,  the same a rgument  as above  shows @x?-a:(~x:lx,9~lx=O 
for k - d : < 0 .  Thus  we obta in  (8.4.6). Q.E.D. 

Appendix 

In this appendix,  we shall give the p roof  of Proposi t ion  4.3. 

Proposit ion 4.3. Let Y be a connected submanifold of a complex manifold X and 
y a point of Y. Let ?Ol be a holonomic ~x-module generated by a section u. 
Assume the following conditions 

(a) 9J~ has R.S. outside Y. 
(b) There exist vector fields V1,..., V N such that V~u~glx u and V1,..., V N 

generate TY.  
(c) There exists a vector field V o satisfying 

(c0 Vou~VxU, 
(c2) V o vanishes at y, 
(%) V o is tangent to Y, 
(c 4) The isotropy action of V o on T~.X/T~. Y has strictly positive eigenvalues. 

Then  9X has R.S. 

Proof. By (a), n- l (Y )c~ChOJ~)cT*X ,  where n is the project ion from T * X  
onto X. Hence  it is enough to show that  9)1 has R.S. on T * X .  Since the set of  
points in T * X  where 9X has R.S. is open and closed, it is enough to show the 
regulari ty of  93l on a ne ighborhood  of y. By replacing u with f ( x ) u  (f(x)s(gXx) 
if necessary, we may  assume that  

X c II~", y = 0 ,  Y = { x ~ X ; x  1 . . . .  = x t = 0  } 

and 8u/Ox~ = 0 for j = l + 1 . . . .  , n. 
N o w  V o has the form 

Vo= ~ f~(x)?j~-+ ~ f j ( x ) ~ -  and Vou=h(x)u for 
j<=t ~ j j > t  ~'j 

By the condit ion on V o we have f j l r  = 0  (1 <j<l )  and 

(1) the eigenvalues of (OJ)(O)/~?Xk) 1 <j, k <l are strictly positive. 

Since Ou/Oxj=O for j = l +  1 . . . .  ,n  we may  assume f i + l -  ... = f , = 0  and f l , - - - , f i  
do not depend on xt+ 1 . . . .  , x,,  
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By Proposition 1.6, in order to prove Proposition 4.3, it is sufficient to 
show 

o~xt~(gJL (~z/~) = 0  for any j and any ze Y. 

Thus Proposition 2.4 is a corollary of the following proposition. 

Proposition A.1. Let P be a vector field on (U" defined on a neighborhood of 0 
such that 

(2) P =  ~. f~(x) , f~(O)=O 
j = t  

and the eigenvalues of (SL'(O)/~Xk) 1 <j, k < n are strictly positive. 
Let 9Jl be a coherent ~ c - m o d u l e  defined on a neighborhood of 0 generated 

N 
by sections u 1 . . . .  , u N. If P u j c  ~ (gu k for any j, then we have 

k=l  

gxt~(gJl, Co/(9o)=0 for any j. 

Proof Write Pui=~f~ku k with fike(P and let F denote the matrix (fj~) and let 
k 

u denote the column vector with Ul, ..., u N as components. 
By [11], Proposition A.1 is true for 

?i~' = ~N/~N (p _ F). 

Now, we shall prove Proposition (A.1) by descending induction on j. I f j > n  
this is true because the projective dimension of 9J/is at most n. We shall prove 

#xt~ (gJl, C~o/(~o) = 0 

by assuming gxt~+l(gJl, ~7)o/6)o)=0 for any 9)l satisfying the condition described 
above. We have an exact sequence 

0 ~ J l  + - ~ '  ~ , A /  ~ 0 .  

If J denote the Y-module { Q e ~ N ; Q u = 0 } ,  then JV=~C/~N(P--F). Let us 
take m such that J = ~ ( J c ~ ( m )  N) and let R 1 . . . . .  R s be a system of gen- 
erators of J c ~ ( m )  N as an (9-moduIe. Then we have 

O= PRju=[P,  Rj] u + RjFu. 

Hence [P, Rj] +RjF belongs to J c ~ ( r n )  N. 
Therefore there are gjk(1 <j, k<=a) such that 

This shows that 

[P, Rj] + RjF = }~ gjkRk . 
k 

PRj =-- y" gjkRk rood ~N(p --F). 
k 
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H e n c e  X satisfies the  s a m e  c o n d i t i o n  as 9J/, wh ich  impl ies  g x t ~  +1 (,A/', ~o/0o) 
= 0 by the  hypo thes i s  o f  induc t ion .  T h e  exac t  s equence  

g x t ~  + ' ( J r ,  ~ o / C o ) ~  r  C o / C o ) ~  gxt~(gJ/ ' ,  (~o/(9o) 

impl ies  gxt~(gYt, (~o/(Po)=0. Q,E .D.  
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