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In [7], D.Kazhdan and G.Lusztig gave a conjecture on the multiplicity of
simple modules which appear in a Jordan-Holder series of the Verma modules.
This multiplicity is described in the terms of Coxeter groups and also by the
geometry of Schubert cells in the flag manifold (see [8]). The purpose of this
paper is to give the proof of their conjecture.

The method employed here is to associate holonomic systems of linear
differential equations with R.S. on the flag manifold with Verma modules and
to use the correspondance of holonomic systems and constructible sheaves.

Let G be a semi-simple Lie group defined over € and g its Lie algebra. We
take a pair (B, B~) of opposed Borel subgroups of G and let T=BnB~ be a
maximal torus and W the Weyl group. Let b, b~ and f the corresponding Lie
algebras and M the nilpotent radical of b. Let us denote by .# the category of
holonomic systems with R.S. on X =G/B whose characteristic varieties are
contained in the union of the conormal bundles of X, ,=BwB/B (weW). On
the other hand, let @ denote the category of finitely-generated U (g)-modules
which are N-finite. By 0,,,, we denote the category of the modules in @ with
the trivial central character.

We shall prove that .# and {,,,, are equivalent by the correspondances M
= I(X; M) and MDD ®y,M. Here 2 is the sheaf of differential operators
on X. Let us denote by M, the Verma module with highest weight —w(p)—p
and let M, be the dual Z-module of AU *(0,). Then, M, and M,
correspond by the above correspondence. For any Wie.#, we can calculate the
character of I'(X; M) by the formula

ch(M(X; M) = 3 (=18 XX (M)ch(M,,)
where e

X, ()= (— 1Y dime &xt} (0, M)

This formula can be proved by reduction to the case M=IN,. Let L, be
the simple module with highest weight —w(p)—p. By the formula above,
ch(L,) is calculated if we know R Homg,(¢,2®L,). We shall show this
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complex coincides with ng [—codim X, ], where ng is the complex intro-
duced by Deligne [2].

This paper is divided into three parts. In the first part we give a review of
holonomic systems with R.S. In the second part we establish the equivalence of
M and O,,. After these preparations, we shall give the proof of the conjecture
of Kazhdan-Lusztig in the third part.

It should be mentioned that the idea of ontroducing sheaves of modules
over & in an apparently unrelated problem on g-modules, was arrived at after
a careful study of Kempfs work [9], where he interprets the Bernstein-
Gelfand-Gelfand resolution of a finite dimensional g-module, as being dual to
the Cousin resolution for the associated invertible sheaf on X, with respect to
the stratification X = [[ X,,. It was already glaringly apparent there that the

weW
Verma module M, was “corresponding” to the Bruhat cell X or, put other-

wise, to the constructible sheaf €, on X which has fibre € over X, and 0
over X —X . But some time was needed to realize that holonomic Z-modules
could serve as a bridge between constructible sheaves and Verma modules.

We wish to thank Michel Demazure for conversations on the geometry of
X as related to Kempf's paper, Patrick Delorme for various interesting infor-
mation on the category ¢, and Jean-Louis Verdier for pointing out to the first
author the possibly use of a theorem of Macpherson giving a characterization
of the complex =y, for any singular variety Y.!

§ 1. Holonomic Systems With Regular Singularities

1.1. In this section, we shall summarize the results on holonomic system of
linear differential equations with R.S. (abbreviation of regular singularities).
For the details and proofs, we refer the reader to [6, 15-17].

1.2. Throughout this section, we shall denote by X a complex manifold, 0 =0,
the sheaf of holomorphic functions on X, Q=Q%™X the sheaf of holomorphic
dim X-forms and 2y (resp. 2%) the sheaf of differential operators of finite order
(resp. infinite order). In the sequel a 2,-module means a left & y-module if not
otherwise mentioned.

Let 9y(m) denote the sheaf of differential operators of degree at most m.
Then Specan (® Zy(m)/Dy(m—1)) coincides with the cotangent bundle T*X of

)

X. For a coherent & y-module M, an increasing sequence {IM;}, , of coherent
sub-0y-modules of M is called a good filtration if it satisfies

(1.2.1) Dm)M;cM,, ,,,
(1.2.2) ZmyM;=M, . for j>0 locally on X,
(1.2.3) M=UM,.

i After this article was written, we learnt that Beilinson and Bernstein also solved the Kazhdan-
Lusztig conjecture by using methods similar to ours
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The support of the coherent sheaf on T*X associated with @ (MR ) is

0
called the characteristic variety of IR, which will be denotedJBy Ch(IM); this
does not depend on the choice of a good filtration. The characteristic variety is
a closed homogeneous involutory subvariety of T*X. If the dimension of the
characteristic variety of 9 is as minimal as possible, i.e. dim X, then we call M
holonomic. We say that a holonomic Z,-module 9 has R.S. if M has a good
filtration {3} of M satisfying the condition:

(1.24) For any open set U and any differential operator Pe @ ,(m)(U), if its
principal symbol g, (P) vanishes on CA(I), then PM, I, _, for any j.

1.3. For a holonomic 2 ,-module we have:
(1.3.1) éxtl, M, 2,)=0 for j&n=dimX
and &xty, (M, D) is a coherent right P y-module. Hence

M* = Ext5,, (M, D) @ Q®-!
e Ox

has a structure of left &,-module. We call IM* the dual of IR,

Proposition 1.1. (1) * is an exact contravariant functor from the category of
holonomic 9 y-modules in itself.

(2) (W*)* =M for a holonomic D y-module M.

(3) Ch{IM*)y= Ch(IM) for a holonomic D y-module M.

(4) If M is a holonomic D y-module with R.S., then so is M* (4).

For two holonomic % y-modules M and M we have R Fom, (i, M)
=R S#Fom, (I*, M *).

1.4. For a closed analytic subset Y of X and an ¢y-module &, we shall denote

by Ity (#) the Oy-module l'i)n,}’fom@x(@x/j;", #) and by Iy y(F) the Oy-

module h_r)n]fom@x( v F) v:/nhere Fy={feOy; f1Y=0}. If Y is a locally

closed subs”ét of X such that ¥ and ¥ — Y are analytic, we set
Ii(F) =T Iix -y (F):

We denote by #},(#) its j-th derived functor. If & is a D-module, #}(F)
has a structure of 2 4-module.

Suppose that X and Y are algebraic. Let us denote by (X,,,0x, ) the
corresponding algebraic variety over € and let j be the morphism of ringed
spaces (X,04)— (X Ox,,)- Then, for any quasi-coherent Oy  -module # we
have

(1.4.1) R Iiy,(j* #)=j*R I}, (F)

alg?

1.5. For a closed submanifold Y of codimension I, we set

%nx = [lY]((Qx)
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We have:

Proposition 1.2. (1) %,y is a holonomic Zy-module with R.S,, and the charac-
teristic variety of %y, coincides with the conormal bundle Ty* X of Y.

(2) For a coherent Z,-module I such that Ch(M)<TFX, the sheaf
Homy (Byx,M) is a locally constant sheaf of finite rank on Y and we
have an isomorphism

Byix Cz) Homyg, (Byx, ) —— M.

(3) In particular, if Y is connected, then any coherent & y-sub-module of
Byx 1s either O or By, y.

1.6. We shall give the properties of holonomic Z-modules with R.S. In the

statements, M stands for 27 ® M. Note that ¥ is fairthfully flat over Zy.
Dx

Proposition 1.3. (1) For any holonomic 9P-module with R.S., its coherent sub-2-
modules, its coherent quotients are also with R.S.

(2) Any holonomic @-module with R.S. has globally a good filtration which
satisfies the condition (1.2.4).

3) If M >IM—-IM" is an exact sequence of coherent @-modules and if M’
and M are holonomic P-modules with R.S., then so is M.

(4) If WM and W' are holonomic D-modules with R.S. then
R Hom, (MM, M) =R Hom, (I, P ).

If X=UX, is a stratification of Whitney such that Ch(IR)u Ch(M)<U T X,
then &xti, (M, M) X . is a locally constant sheaf of finite rank.

(5) For any holonomic @-module I, there exists a unique sub-P-module M,
of M such that M —> M and that M ___ is a holonomic D-module with R.S.

reg reg

(6) For any holonomic @-module IR, we have
R #Hom(R #Homg,(M, ©), 0)=IM>

(7) For any difference Y of closed analytic subsets of X and any holonomic
D-module M with R.S., the [{,](im) are also holonomic @-modules with R.S., and
we have ) )

A (IR = A7 (IN).

(8) For a holonomic 2-module M, we have

R #om, (IR, Ox)=R #om,(Oy, W*)
=R #Homg(R #Hom,(M*, O), Cy)
=R Homg(R #Homg, (O, M), Cy).

(9) For two holonomic 9-modules M and M', we have

R s#om (M, M ©)= R #Homg(R #Homg,(0, M), R #om, (0, M)
=R #Homg(R #Hom, (M, O), R #Hom,(M, O)).
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(10) Let IR be a holonomic P-module with R.S., and Y and a difference of
closed analytic subsets. IfX=L[Xa is a Whitney stratification satisfying

(a) Ch()cUTFX and
(b) Y=U{X;X,=Y},
then we have
Ch(J{}{,](‘JJl))c U ¥ X.
XY

By (4) and (7) of the preceding proposition, we have:

Proposition 1.4. For two holonomic %-modules with R.S. IR and W', we have
R (R #omg (M, M))=R Hom g (M, RIy,(),

By (5) and (6) of Proposition 1.3, we have:

Proposition 1.5. Let MM and W be two holonomic Dy-modules with R.S. If
R A#omg, (M, 0)= R Hom, (W, ), then M=’

We shall give here one of the characterizations of R.S.

Proposition 1.6. Let M be a holonomic @ y-module. Then, MM has R.S. if and only
if
Exth, (M, 0,) — Exti,(M,0,)

is an isomorphism for any x€ X and any j. Here @, is the Krull completion of the
local ring O,.

Proposition 1.7. If Y is a submanifold of X and if M is a holonomic 9 y-module
with R.S., then

R #omg,, (M, By)x) =R Hom(R Hom, (D5, M)y, Cy) [-codim Y]
Proof. We have #yy =R I}y(0) [codim Y]. Therefore, Proposition 1.4 implies
R #om,, (M, By x)=RI[y, (R Hom,, (M,0O))[codim Y]

By Proposition 1.3 (8), we have

RT; (R #omg, (M, Ox)=R T R #omg(R #Homg, (O, M), Cy)
=R #Hom (R #Hom, (O, M), RIL(Cy)).

Proposition follows from R I{C,)=C,[—2codim Y]. Q.E.D.

§ 2. The Category @

2.1. Let g be a semi-simple Lie algebra defined over €, t a Cartan subalgebra
of g and let 4 be the corresponding root system. We fix an ordering of 4 and
let A* and A~ be the set of positive and negative roots, respectively.
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For aed, we take a non zero X, in g whose weight is a. We set
N=) CX,, N =) €, b=t@®N and b~ =t@N". Let W be the Weyl

aeAt aed”

group and w, the longest element of W. For a4, let s, be the corresponding
reflection.

Let U=U(g) be the enveloping algebra of g and 3 its center. We shall
denote by I the ideal of U generated by 30 U(g)g and by R the quotient ring
U/L

Set p=3 Y o and let M, be the Verma module with highest weight

aed*t

—w(p)—p; ie. M,=U/UR+ Y U(H+<{w(p)+p, H).

Het

Let L, be the simple U-module with highest weight —w(p)—p.

Let us denote by @ the category of finitely generated U-modules M such
that any ue M satisfies dimg U (b) u < oo,

The following lemma is immediate.

Lemma 2.1. (1) Any submodule and any quotient of a module in @ belong to @.

(2) If M>M—>M" is an exact sequence of U-modules and if M' and M"
belong to O, then so does M.

Remark that the property (2) does not hold for the category introduced by
Bernstein-Gelfand-Gelfand [1] where they assumed the action of t is semi-
simple. However, a module in ¢ is not necessarily semi-simple as a t-module.

22. For any Aef* and Med, we set M*={ueM; there exists r>0 such that
(H—<4,H)Y u=0 for any Hef}.
We say that 1 is a weight of M if M*40. It is easy to see

M=@®M"* and dim¢M*<o0.
We set
ch(M)=Y (dim M%) e*

and call this the character of M.

Let @,,, be the category of M e such that IM=0. It is known that M (w)
and L(w) belong to @, and that any highest weight of g-module in @, has
the form —w(p)—p for some we W, For any Me0,,, and we W, we shall
denote by [M; L{w)] the number of times of appearance of L(w) in a Jordan-
Héolder series of M. Then we have the trivial formula:

ch(M)=Y [M; L(w)] ch (L(w)).

2.3. There exists a unique automorphism t of g, which normalizes f, induces
—1 on f and sends X, to X_,. For any U(glmodule M, we provide
Homg(M, €) with a structure of g-module by the formula

(23.1) KZf,n)=~<{f,1(Z)n>
for fe Hom (M, C), ne M and Zeg.
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For any M in @ set
M#*={feHom¢(M,C);f(M*=0 except for finitely many i}
={feHom¢(M, C; dimc U(b)f < o0}

then it is easy to see

(232) 1f M belongs to @ (resp. @,,;,) then so does M*

(2.3.3) One has (M*)* =M, (M*)*=(M%** for M in @ and Aet*
(2.3.4) ch(M*)=ch(M,)

§ 3. Flag Manifold

3.1. Let G be a connected simply-connected Lie group whose Lie algebra is g,
and let B, B~,N, N~ and T be the subgroups of G with b,b~, |, N~ and f as
Lie algebras, respectively. We set X =G/B and we shall identify W as the
subset of X by wrs WB/B (we W). Define the Bruhat cell X, to be:

X,=Bw=NwcX.

Then X is a disjoint union of X ’s. The following lemma follows immediately
from the fact that the set of points of X, where X, does not satisfy the
Whitney condition is nowhere dense in X .

Lemma 3.1. {X } is a Whitney stratification of X
We set n=dimft=dimX =447,

Iw)=dim X =length of w=# (4" nw4")

Proposition 3.2. For any w,w' e W the following conditions are equivalent

(@ X,oX,,

(b) Hom,(M ..M )+0

(c) there exist an integer N=1, a;e 4 (j=2,...,N) and w;e W (j=1,...,N)
such that w,=w', w;=s-w;, | (j=2,...,N), wy=w and llw;_)<l(w) (
=2,...,N).

If they) are satisfied, one says that w' is smaller than w for the Bruhat order,
and one writes w £w.

The proof of (a) <> (¢} goes back to Chevalley (unpublished). One may refer
to [3], p. 75. The proof that (c) implies (b) is given in [13] where Verma also
conjectures the converse implication, which is proven in 1], §8.

In particular these conditions imply w'(p)=w(p). Here, A= u (4, uet*) sig-
nifies that A —u is a non-negative coefficient linear combination of e 4%,

For any we W, we shall denote by

(3.2.1) Y(w)=(J {X ;' (0) 2 w(p)}.

By the proposition above, Y(w) is a closed analytic subset of X containing X .
In general, they do not coincide.
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We say that a subset Z of X is admissible if Zn X =+ 0 implies Z > Y{(w). It
is equivalent to say that Z is a union of Y (w)s.

Lemma 3.2. If Z is admissible and if we W is such that w(p) is minimal in the set
{wlp); X,,<Z} (ie. Z2X ., w(p)Sw(p) implies w=w’) then X , is open in Z.

Proof. If not, Z—X,>X,. Hence there is w'=w such that Z>X,, and X,
> X . This implies that w'(p)<w(p) which is a contradiction.

§ 4. The Category .#

4.1. We view g as the Lie algebra of right invariant vector fields on X. Denote
p the projection p: G— G/B. For any éeg, there exists a unique vector field &
on G/B such that dp (§)=E& . for any xeG. There exists as Lie algebra
homomorphism:

p(x)

@:3— Dy such that @(&)=¢ for all £eg.

Actually, ¢ is easily seen to be independent of the choice of a base point on X
(i.e. of an identification of X with G|B.

One extends ¢ to a ring homomorphism ¢: U—92,. It is known that ¢(I)
=0, so one gets a factorization

U->R—92,

Hence, for any coherent 2,-module M, R operates on H/(X,IM).

4.2. We shall denote by .# the category of holonomic 2y-modules with R.S,,
whose characteristic varieties are contained in { ) T¥ X. Here T X denotes
the conormal bundle of X in X. weW

Theorem 4.1. (1) For any Me0,;,, 2@ M belongs to M.
R

trivs

(2) For any WMe M, ['(X ;M) belongs to 0.,

(3) For any M e0,,,, ForX (2, M)=0 for j+0

(4) For any Me 4, H/(X;M)=0 for j+£0

(5) For any Me0,,,,, M —I'(X; 2® M) is bijective.
U

triv?
(6) For any Me M, 2R T'(X;I)— M is an isomorphism
() For any Mek
ch(C(X; IM*)=ch(I (X ;M)
Before entering into the proof of this theorem, we shall give here a sketch

of the proof.
First we establish (1) by using the fact; if u satisfies

n é
j; ajxjgju=cu (a;>0, ceC)
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and u satisfies a holonomic system with R.S. outside the origin, then u satisfies
a system with R.S.. Next we consider the module M} =#57|*(0y). For this
module we have

@ H/(X;9%5)=0  for j+0 and HO(X;9i%)=M:}

Moreover this satisfies 2 @ I'(X ; ME)-» M*. At the next step, we shall prove
(3) for M=M,,, and establish the injectivity of M, —I'(X; 2 ®M,) By look-
ing at R #om,(Z®@M,,, 0), we also show that 2@ M, =M, . By using these,
theorem will be proved by induction on dim Supp M.

4.3. Proof of (1) of Theorem 1. First we shall show that Ch(@@M ) is contained
in UT* X. Since @@M is a quotient of a direct sum of copies of &/

9 - (p(‘ﬁ") its characterlstlc variety is contained in {pe T*X; g,(¢(Y)(p))=0 for
any Ye9t}. For a point ¢ in X,,, the vectors @(Y) (Y €N) generates T X . If
pe T} X satisfies 6,(¢(Y))(p)=0 for Yen, p is orthogonal to T, X, and hence p
belongs to T X. Thus we have proved the statement for Ch(2Q M). We

U
shall prove next that 2() M is with R.S. First remark the following lemma.
U

Lemma 4.2. Let ' — MM — I be an exact sequence of holonomic D-modules. If
MM and MM have R.S. then so does M.

By applying this lemma, one can easily reduce (1) to the case where M
=M, Then

9®M 9/2 DoY)+ Y D pH)+wlp)+p, HD).

Het

By using the induction procedure, it is enough to show the following state-
ment.

43.1. Let w,w" be elements of W. If 2 @M, has R.S. on U—X,, for an open
neighborhood U of X ., then 2 ® M, has R.S. on U.

Now, remark that ¢(Y) (Ye9) are tangent to X . and generate TX,..
Moreover, for Het, ¢(H) is tangent to X, vanishes at w’, and the eigenvalues
of the isotropy action of H in T, X/T, X, are —a(H) for A* n(w)~147.
Therefore (4.3.1) is a consequence of the following more general proposition.
The proof of this proposition will be given in the Appendix.

Proposition 4.3. Let X be a complex manifold, Y a connected submanifold of X, y
a point of Y and M a holonomic P y-module generated by a section u.

Assume that

(@) M has RS.on X -Y

(b) There exist vector fields V,,...,Vy such that ViueOyu and that {V;}
generates TY.

(c) There exists a vector field V,, such that VyueOyu,V, vanishes at y,V, is
tangent to Y and the eigenvalues of the isotropy action of V, on T X/T)Y are

strictly positive.
Then I has R.S. on X.
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§ 5. The Sheaf Wi*

5.1. The following proposition is proved in [10].
Proposition 5.1. (1) Hiy (X;04)=0 for j+n—I(w),

2) Jf[;'(W]((OX)zo for jE=n—I(w),
(3) On HI')(X; @,), T acts semi simply and we have

{Xw]

ch(Hix 1 (X; Ox) =ch(M,,).

The third properly implies that H;'/”(X;0,) belongs to @,

The proof of these properties is based on the fact that X, has an affine
neighborhood (wB~w~')w and the pair (WB-w~')w, X ) is isomorphic to
WN-w= L NawN-w H=(AdW)R-, RAAIW)N ") as the pair of spaces
on which T acts.

We define M, to be the dual of H#7; ™ (Oy).

Since X=UX,, is a Whitney stratification I, and M* belong to &
{Proposition 1.1 and Proposition 1.3(10)).

Moreover, we have

(5.L.1) SuppI, =SuppMW*=X,
(5.1.2) HI(X;PM*)=0 for j=*0,
(5.1.3) ch(I'(X; M) = ch(M,,),
(5.1.4) MLy _ox, = Bx x—ox..»
(5.1.5) Hx ,E)=0  for any j.

The last property implies that for any Me .#
(5.1.6) R I'(X; R A#om, (I, V) —>RI(X -0X,,; R Hom, (IN,IM*)

by Proposition 1.4.

This implies in particular any homomorphism from I into M* defined on
X —0X,, can be uniquely prolonged to a homomorphism defied on X.

Since R #om,, (M, DM})y_,x. is a complex of sheaves whose cohomology
sheaves are locally constant sheaves on X, and since X, is isomorphic to
C'™ we can conclude

RI(X —-0X,,; R#om, (W, ME)) —— RAom, (I, IN5),,.
Thus we obtain the following
Proposition 5.3. For any Me.#,
RTI(X; R #omgy (M, M) —— R Hom,, (M, INF),,.

The following proposition is also necessary to prove Theorem 4.1, in spite that
this 1s a very special case of that theorem.

Proposition 5.4. 2 I'(X ; P¥)— M* is surjective.
U
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The proposition is a corollary of the following lemma which can be easily
proved.

Lemma 5.5. Let S be a separated scheme, U an affine open subset of S and let j
be the inclusion US. Then, for any quasi-coherent O -module F, the homomor-
phism OsQ T (U; F)—j, F is surjective.

Z

In order to obtain Proposition 5.4, it is enough to apply this lemma for §
=X, U=(wB~w™"w and # =MM* and use Serre’s GAGA in order to show
(X ;M¥) equals its algebro-geometric counterpart. We remark also (1.4.1).

5.2, In order to calculate I'(X,M¥), we shall Remark (5.2.1)
C if w=w
Hom (MW,F(X;‘JJE:’;))={ . ,
. 0 if w(pzwip

which immediately follows from
ch(I (X ; ME)y=ch(M ).
Proposition 5.3 implies that one has a natural isomorphism for M e @,

(5.22) HomH(DRM, M*), —> Homg (M, ['(X, M%)
R

where one uses the R-morphism M —I'(X, 9®M) and the %-morphism 2
Q@ I'(X, M¥y— Mx.

Lemma 5.6. Supp(Z® M )< Y(w).

If the statement is false, there exist w'e W such that X . is open in Supp(Z
®M,), and disjoint from Y(w). By Proposition 1.2, one has Hom,(Z
®M,,M*) . +0 which implies w(p)Sw'(p) by (5.2.1) and (5.2.2). This is a
contradiction. Q.E.D.

Corollary 5.7. For any Me( .., we have

trivs

Supp(Z2 @ M) U {Y(w); w(p)—p is a weight of M}
=U{Y(w); —w(p)—p is a highest weight of M}.

Proof. We shall prove this by the induction of I(M). If —w(p)—p is a highest
weight of M, then there exists an exact sequence M, ,—~>M—>M —0 with
IM)Yy<I(M).

Then Corollary follows from the preceding lemma and

Supp (2 ® M)=Supp(Z @ M")USupp(Z ® M ).
Corollary 58. I'(X; M¥)=M*
Proof. Set M =I'(X;M}). Then we have
ch(M*y=Ch(M¥)=ch(M,).
Hence there exists a non zero homomorphism M, — M*. Taking the dual we

obtain i
0->N->M— M}
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Any highest weight of N has the form —w'(p)—p with w'(p)Z w(p). For such a
w', we have Y(w)n X, =0. Therefore, the preceding corollary implies Supp (2
®N)nX,=0. Hence N is contained in I,y (X;9M¥)=0, which implies the
injectivity of f. The comparison of the characters conclude the bijectivity of

S QE.D.
One may refer to [10] for a different proof of Corollary 5.8.

§6. The Sheaf 2@ M,

6.1. In this section we shall study the properties of 2@ M.

Proposition 6.1. (1) Jor{® (2, C)=0 for j+0.
(2) TorY™(R,C)=0 for j+0

Proof. It is known that € has a free resolution

0—CUR)—UMRIN—UTMRQ AN —... —UR)RA"R 0.
€ i

Hence in order to prove (1), we have to show the following sequence is exact;
(6.1.1) D DINR—DRXANN—... —DRA"N 0.

Let X,,.... X, be a basis of 3. Then the graduation of (6.1.1)

(6.1.2) gD g PDPRIN—... —grPZR@A"RN «0

is nothing but the Koszul complex of gr2 with respect to
(0 (@(X ), ...,a{p(X ). Since the common zero of ¢ (p(X,),...,0,(¢(X,) is
UT¢ X, this has codimension n. Therefore (¢,(¢(X,)),...,0,(@(X)) is a reg-
ular system, which implies the exactitude of (6.1.1). The property (2) is also
proved by the same argument. Q.E.D.

Note that for any H ef we have

L] H+<w(p)+p,HY)el+UNR
weW
Hence we obtain

(6.1.3) RR%=@ M,

weW
On the other hand, Proposition 6.1 implies
6.1.4) Jorf (2,R/IRM)=0  for j+0.
Thus we obtain
Proposition 6.2. Jor}(2,M,,)=0 for j+0.
6.2. Now, we shall calculate 2 ® M,,. We have already seen in Proposition 5.3

R Hom, (2/2N, M), =R I'(X; R Hom4(2/2N; M)
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We have

R I'(X; R #om, (2/2R, M) = R Hom g, (T, R T(X; %))
=R Homyg,(C, M%)

(the last equality using Corollary 5.8).
1t is known that

0 for j+0

J CME) =
6.2.1) Extyyg(T; M) {(E for j=0

Thus we obtain
0 for j+0

xti (@/gm,wx)f{ € for =0

Since D/ZNR=PHID M, we have

ExtL(2Q@M, M), =0 for j%O0,
and
@ &ty (2@M,, M), . ~C for any w’

On the other hand, we know already, by (5.2.2)
ExtY(Z2QM,, ME), =C.
Therefore we can conclude

i C if w=w and j=0
(6.2.2) 8xti, (@@Mw),mt::,)w:{ !

0 otherwise.

On the other hand, Proposition 1.7 implies

R Aom(2Q@M,, M} ),, = Hom (R Hom, (O, Z®M,),,., C) [ —codim X .].
This, together with (6.2.2) implies
C, j=codimX,, w=w

Exth (O M), =
X3 (O, 2OM,), {0 otherwise

Since  &xt},(0x,2®M,)|X, is constant sheaf, we finally calculate
R HAomg, (04, 2QM,).
Proposition 6.3. R #om,(Oy, 2Q@M,)=Cy [—codimX,].
Corollary 64. 2@ M, =M,,.
Proof. By the definition of IM*, we have
M =R Iy (Oy)[codim X ].
Hence by Proposition 1.4, we obtain

R #0m (0, M%) =R Ty_ (R H#om,, (0, 0y)) [codim X,,].
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Since R #omy (0, 0y)=C,. We obtain
R #om (I, Oy)=R Iy (C) [codim X ].
On the other hand, by Proposition 1.3 (8), we have

RA#om(Z2@M,,0,)=R #omg(R #om,, (Oy, Z@M ), Cy)
=R #om(Cy [ —codimX, ], Cy)
=RI; (Cy)[codimX,].
Therefore, R s#om, (M, 0y) is isomorphic to R #om,(Z ®M,, O). Proposi-
tion 1.5 implies that 9, is isomorphic to 2@ M,. Q.E.D.
6.3. We shall denote by & the sheaf of micro-differential operators (see [4]).
Proposition 6.5. M —T'(X;2®M,) is injective.
Proof. Set Q={qeT*X; o,(p(X _))*0 for any simple root a}. In order to

prove Proposition 6.5, it is sufficient to show the injectivity of

M, —-TI(Q;6KM,)
R

because this is a composition of M, > I'(X; 2®M,) and
I'X;20M,)—>T(Q;60®M,).

By Verma [13]. there exists an injective map f: M,— M,. Moreover, if we
denote by u(e) and u(w) the canonical generators of M; and M, respectively,
we have

Slule)=X"" .. XN u(w)

—an

where o; are simple roots and m; are positive integers. By using the fact that
(X _,) is invertible on , the same argument as Verma shows that

I®fFERQM,—-EXRM,
U U

is an isomorphism on Q.
The preceding corollary implies that

E@M(O)=Cr,x = 6 DBy x

Therefore £X) M, |Q is isomorphic to Cy xlo. For a non zero section v of
U

Cx,x and Ped, Pv=0 implies a(P)| Ty, =0, because otherwise P is invertible.
Any element M, can be written in a unique way as Pu(w) for Pe U("). If P
belongs to U, (N7)=(C+N")", then ¢, (¢(P))IT{ x is nothing but the modulo
class of P in U, (M~)/U,,_,(M")=8"(N"), which is regarded as a polynomial
on M)*=T¥y. Hence if 1@Pu(w)=¢(P)(1®@u(w))=0 on €, we have
O, (@(P)lp=0. This implies that PeU,_,(M~). By continuing this, we can
conclude that P=0.



Kazhdan-Lusztig Conjecture and Holonomic Systems 401

64. On X,, M} is isomorphic to %y x .x,. Hence M, and I are iso-
morphic on X . Let ¢, be a homomorphism from 9%, into ¥ defined on X
which extends this isomorphism on X, (which exists by (5.1.6)). We shall define
£, as the image of ¢,.

Proposition. L, satisfies the following properties
(1) Supp £,=X,,
(2) Supp (M%/2,)<0X,,.
(3) 5. (2,)=0,
(4) 8, =27,
(5) 2, is a simple object in M.

Proof. The properties (1), (2), (3) are obvious. The property (4) follows from the
fact that o =¢* We shall prove (5). Let # be a coherent sub-Z-module of
€. By Proposition 1.2, #=0or ¢, 0on X . If #=0o0n X, then F< #% _(L,)
=0.If =2, on X, then (2,/%)* < A% (2¥)=0. Therefore, # is 0 or £,,.

§ 7. Proof of Theorem 4.1

7.1. For a subset Z of X, we say that Z is admissible if Zn X, +0 implies
Z>Y(w). For an admissible Z, we denote by .#, the category of Me.# with
SuppM<Z. Let @, be the category of Me(,,, such that any highest weight of
M has the form —w(p)—p for some w with X <Z. This condition is equiva-
lent to say that, for any weight 1 of M, there exists w such that —w(p)—p=4
and X cZ.

For an admissible Z, we shall consider the following statements

(1), For any Me@,, 2 ® M belongs to .4,.

(2); For any Me. 4, I'(X ;M) belongs to (.

(3); For any Me@,, Jorf(2, M)=0 for j=+0.

(4), For any Me.#,, H(X;M)=0 for j+0.

(5); For any Mel,, M — I'(X; D& M) is an isomorphism.

U
(6), For any WMe #,, DR I(X; M) — M is an isomorphism.
(7); For any Me M,, we have ch(I'(X; M*))=ch(I'(X; M)).

The property (1), has already been proved (§4.3 and Corollary 5.7). We
shall prove the remaining statements by induction on #{w; X <Z}. If Z=90,
there is nothing to prove. Assuming Z =, we shall take a w such that X <= Z
and that w(p) is minimal (ie. X, =Z and w'(p)Sw(p) implies w=w"). Then X
is an open subset of Z. Set Z'=Z—X . Then Z’ is also admissible. By the
hypothesis of the induction we can assume that (2),.,...,(7), are true.

1.2. Proof of (2),, (4), and (6'),

(6);: For any Me #,, 2R I'(X; M)— M is surjective,

Let 9 be an object in .#,. Then, by Proposition 1.2 there exists an integer N
and an isomorphism f: M— M*Y on a neighborhood of X,. By the remark
after (5.1.6), f extends to a homomorphism defined on X. Thus we obtain an

exact sequence
0->F->MLM* >G50
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where & and ¥ belong to #,.. Let £ be the image of f. By (5.1.2) and (4),,,
we have H/(X; 4)=H(X; M*N)=0 for j+0.

Therefore, from the exact sequence 0— F—MiN— %0 we obtain
Hi(X; #)=0 for j+0, 1 and an exact sequence

(7.2.1) 0 I'(X; #)— ['(X; MM [(X; 9)— H (X; F)— 0.

Since I'(X;IM*)ed, and I'(X;%)el,., we have ['(X, #)e 0, and H (X ; #)el,..
Tensoring 2 to (7.2.1), we obtain the diagramm

DRI(X; MMt JRI(X; 9)— PQH (X; F)—— 0
) |
MmN g —_— 0

By (6), and Proposition 5.4, § is an isomorphism and « is surjective. Therefore
y is surjective which implies 2 ® H'(X; #)=0. Since H*(X; #)e{,, we can
apply (5), to show H'(X;.#)=0. Thus we obtain H/(X; .#)~0 for j+0. On the
other hand, from the exact sequence 0— % —» M — £ —0 and H/(X; F)=0
(j=0), we have

H(X; M=H/(X; #=0 for j*0

and an exact sequence
0-IrX;#F->rX;,M-rx,; H-0.

Thus we obtain (2), and (4),.
Now, we shall prove (6'),. By the diagramm

DIIX: $)—— GO (X; MN)— - 9QI(X; §)——— 0

| e

0 4 > MEN — g —0

|

0

we see that @ I'(X; #)— £ is surjective. Another diagramm

20 X; F)—— 2QI'X; M)—— 2QTI'(X; £F)—0

zJ |

00— F —_— bt ——— 52 — 0
0

implies the surjectivity of 2 @ I'(X; M) — M.
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7.3. Proof of (7),. For We.#, we shall consider a homomorphism
S M- MY which is an isomorphism on X,. Set M'=f1(LN). Then we
obtain exact sequences
0> F->M->L 490
0-M->P—-IM"—0

where %, 4, M” belong to .#,.. By (4),, we obtain exact sequences

0— I'(F)— ') I'(L)—>T(%)—0

0O—->TR)Y—>TM)— CEIR)—0

0« (F*) T (M*) T (LEY) - T'(%*) 0

0 —T(*) —T(M*) T OR"*) 0
Since ch(I{(F*)=ch(I'(F)), ch(I'(9))=ch(I(%*)), ch(T(M"))=ch(['(IM'*), and
2, =% we obtain ch(I'(X; M) =ch(I(X; I*)).
Corollary 7.1. M ,— I'(X; 2 ® M) is an isomorphism.
Proof. We have 2@ M, =M. Hence by (7), we obtain

ch(I'(X; 2@M ) =ch(l(X; IN}))
=ch(M,).

We know already the homorphism in question is injective. Therefore we obtain
its bijectivity.
1.4. Proof of (3), and (5),. This is analogous to the preceding proof of (2),,
(4), and (6'),. We shall prove them by the induction on the length I(M) of
Med@,. If M does not have a highest weight —w(p)—p, then M belongs to @,..

Hence (1),, (3), and (5), are true for such an M. Now, suppose that M has a
highest weight —w(p)—p. Then there exists an exact sequence

0->N->M,5HM->M -0

with [(M')<I(M) and Ne@,.
Hence (3), and (5), are true for N and M'. Let I be the image of f. By
Proposition (6.2) and (3),., we have

Jorf(2, M,)=Tor{(2,N)=0 for j=+O0.

Hence the exact sequence 0~ N— M, — I — 0 gives

(7.4.1) ﬁ’orf(@, nH=0
and
(7.4.2) 0— JorX(2,) > PQON—->DIRIM,—> 2R1—0

On the other hand, ﬂ'orf(@, M')=0 for j+0 by the hypothesis of induction.
Hence we obtain an exact sequence
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(7.4.3) 0-92RI-9IM—->2RQM —0
and
(7.4.4) For{(@,M)=JorX(2,1) for j=*0.

From (7.4.2), (74.3), (4),, (5),, Corollary 7.1 and the hypothesis of the in-
duction, we obtain a diagramm

0—I(X; 70r(2, D) > T(X;Z2QN)»T(X;2Q0M,)»T(X;2QM)-»T'(X;2QM')
2 2 2

0—-N M M M—-0

w

This shows that M — I'(X; 2 ® M) is bijective, and I'(X; Jor®(2, I))=0. Since
Jor}(2, I) belongs to .#,. by (7.4.2), (6),. implies ForX(2, I)=0. Together with
(7.4.1) and (7.4.4) this implies ﬂ’or}‘(@, M)=0 for j=0.

7.5. Proof of (6),. For Me.#,, set M=I'(X;M)el,. Let A be the kernel of

0> A > DPRM->IM—-0
Then we obtain

0->I(X; N)>T(X; 20M)—L—T(X;M)—0

-4 ~

Since « is bijective by (5),, 8 is also bijective. This implies I'(X; .#")=0. Hence
A" =0 by (6),. This completes the proof of Theorem 4.1.

7.6. We have already estimated the support of 2 ® M in Corollary 5.7. Howev-
er Theorem 4.1 allows us to show the following proposition.

Proposition 7.2. For Me(, ., we have

triv?

Supp(2®@M)=U{X; [M; L,]+0}.

Proof. Since 2 ® * is an exact functor on ¢,,;, we reduce the proposition to the
case when M =L,,. In this case, the proposition follows from the following

Proposition 7.3. 2Q L, =2, .

In fact £, is the image of the non trivial homomorphism IR — V¥ and L,
is the image of the non trivial homomorphism M ,— M*,
§ 8. Conjecture of Kazhdan-Lusztig

8.1. In order to state the conjecture of Kazhdan-Lusztig, we shall describe the
complex of sheaves n given by Deligne, Goresky and MacPherson [2]. Let Y
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be an analytic space of pure dimension n. Take a filtration

Y:}InD}; o "DYODY—I=0

-1

where Y, is a closed analytic subset, ¥,—Y,_, is non singular of pure dimension
i and Y,—7Y,_, satisfies the Whltney s condition along Y;-Y,,,. Set U=Y
—ynt and leyj Us=U; ., be the inclusion. Then =, is deﬁned by

Ty=T<, R, ... 7. oR; (Cy).

Here 7, is the truncation operator.
The complex n, is characterized by the following three properties:
(a) #(rny)=0 for i<0 and dim Supp (#'(ny))<n—i—1 for i>0.
(b) my is self-dual in the derived category of the category of sheaves on Y.
(¢) my/Y =@y, where Y, is the regular part of Y.

This is an unpubllshed result of Mac Pherson.

8.2. By using =y, the conjecture of Kazhdan-Lusztig can be stated as follows

(see [8]).
Theorem 8.1. ch(L,)=> (= 1)+ rk _(zy ), ch(M,,) where

Z =1y dim #(ny ),

=Z —lfdlmlH’ (X, 7).
j

The last equality follows from the following general fact.

Proposition 8.2. Let Y be a complex analytic variety, K' a complex of sheaves on
Y with bounded cohomology, the cohomology sheaves of which are constructible.
For any point y of Y, the two integers rk(K)=3 (—1Ydim #7(K;} and
Y (=1YdimH{ (Y,K’) are equal. /

J

Proof. One may obviously reduce oneself to the case Y is non singular and K’
is a single sheaf F. One has to show that, F being a constructible sheaf: y(U, F)
=x(RT,,(U; F)) for a sufficiently small ball U centered at y, or equivalently
x(RI'(U —{y}, F))=0. Furthermore, we may assume that there exists a locally
closed subset Z such that F|z is locally constant, Fy _,=0 and both Zand Z
~Z are analytic Then Y(RIU—{y}); F)=¢x(RT'(UNZ; F))=(rank F)
xUnZ). But y(U~Z)=0 by a theorem of Sullivan [14]. Q.E.D.

Proposition 8.3. For any e .#, we have
ch(M(X; M) =Y (— 1)y (M)ch(M,)

where x,, (M) =Y (— 1) dim &x(0y, M),
Proposition 8.4. R #'om,, (O, 2,)=ng [—codim X ,].
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Leaving the proof of Proposition 8.3 in the later sections, we shall prove
Proposition 8.2. Since both sides of Proposition 8.2 are additive in MM we can
reduce this to the case when M=M =P @M. In this case, the assertion
follows from Proposition 6.3.

8.3. In fact, Proposition 8.3 can be generalized to an arbitrary complex mani-
fold X. In order to see this let us recall the properties of £,. As already
seen, £ enjoys the following

(8.3.1) Hx (L)=H5 (85)=0,
(8.3.2) Lolx, = Bx Jx _ox..-

Proposition 8.5. Let X be a complex manifold, Y a closed analytic subset of pure
codimension I, and Z a nowhere dense closed analytic subset of Y containing the
singular locus of Y. Then there exists a unique holonomic 9 y-module with R.S.
which satisfies

(8.3.3) Ly =By _zlx 2
(8.3.4) HUR)= A (2%)=0.

For such an , we have Q= Q*.

Proof. We shall prove first the existence of €. Set ‘JR=J?}’L 2)(Ox). Then M is a
holonomic 2 ,-module with R.S. which satisfies s (%) =0. Moreover, we have

EIR'X—Zg'%Y—Zb(’—Z‘

Set @=9*/3(IM). Then 2 is a holonomic Py-module with R.S. On X —-Z,
we have @M =B, v ,*=By ,x ;. It is evident that #,(2)=0. Since
£* is a sub-module of (M*)* =M, #,”(L*) also vanishes. Now, let us prove the
uniqueness. Let £ and £ be two holonomic Zy-modules with R.S. satisfying
(8.3.3) and (8.3.4). Set /V=3ﬁ?_z](ﬂ). Then the isomorphism

Llx_z= Lx_ =Ny 2

extends to a homomorphism £ — .4 defined on X (Proposition 1.4). Since
HL(8)=#)(2)=0 we can regard € and € as sub-Modules of .4 which
coincide on X —Z. The vanishing of #,’(£*) implies that any quotient of £
supported in Z must be 0. By applying this to /2~ &, we obtain L&'
Similarly we obtain £ <@ The property £=2¢* follows from the
uniqueness. Q.E.D.

Definition 8.6. We shall denote £ in Proposition 8.4 by £(Y, X).

8.4. By the property (8.3.1) and (8.3.2), we can conclude £, = 2(X,, X). There-
fore Proposition 8.3 is a corollary of the following theorem.

Theorem 8.6. Let Y be a closed analytic subset of pure codimension | of a
complex manifold X. Then, we have

R #om,, (Ox, (Y, X))=ny[—I].
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Proof. We shall denote £ for (Y, X). Let Y=]] X, be a Whitney stratification
of Y such that Ch(B)= UT¢ X. Set d,=codimy X,, Set Y;=U{Y,:d, <j} and let
Ji: X: X =YX Y, , be the inclusion. Then we have by the construction of z,,

”Y["IJZTG.]R,‘;---T<1+1]R)'M'(CY-Y,+1[—I])'
Hence we have
nY[—l]IX—Yl+1:T<i]Rji*(nY[_l]lX— Y) i=l+1,..,n

and my[~1]ly_y,, =Cy_ v L=

Set F'=R #om, (0 _,B). We have Fly_y =C,_y, [-I] because
Bl v,,, =By_y,, Ix_y,,, Hence, in order to show n,[ —I]=F", it is enough
to show

Fily_y,, =2t RjuFly_y) for i=l+1,..,n
This isomorphism follows from the following

B4l T (Fly_y., )= Fly_y for i=I+1,...,n,

1+l

(84.2) 17<.‘(F.|x—y,+1)_~’ T<i(]Rji*(F.!X~Y,)) for i=I+1,...,n

By using induction on i, we may assume that (8.4.1) is true on X —¥,. Hence
(8.4.1) follows from

(8.4.3) HYF')ly _y,,, =0 for kxizl+1.
The property (8.4.2) follows from
(8.4.4) Hy _y. (Flx_y,,, =0 for kSi>I+1.

Since Y,— 7Y, , is the disjoint union of X s with d,=i, (8.4.3) and (8.4.4) are

equivalent to the following conditions (8.4.5) and (8.4.6), respectively

(8.4.5) HMF)y, =0 for k2d,=codim X,>1,
(8.4.6) HE(Fx.=0 for k<d,=codim X,>I.

Now we shall prove first (8.4.5).
By Proposition 1.6, we have

Exty, (L, By x)lx, = Home(Ex15 K (Ox. Yy, ; Ty,).
Hence in order to show (5) it is sufficient to show
Extly (L, By x)lx, =0 for k<0.
This is evident for k <0, and this is also true for k=0 because
Hom(L, By x)ly, = Hom(By x, L¥)< Hom(B% x, Hx(2¥)lx,=0.

Finalty we shall prove (8.4.6). We have by Proposition 1.4 and Proposition 1.1.
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RIy (F)lx,=RIy R #om(L* Oyly,
=R Aom(L*; R Iy (Ox))x,
=R AFom(L*, gxa;x)'xm [—codim X, ]
= IR,}’fom(,%xa;x, 2)‘)@,[ —da]'

Thus we obtain
Hy (Flly, = &xt "% (By 1y, Oy,

Since#g (£)=0, the same argument as above shows &xt*~ (%, ., 2y =0
for k—d,<0. Thus we obtain (8.4.6). Q.E.D.

Appendix

In this appendix, we shall give the proof of Proposition 4.3.

Proposition 4.3. Let Y be a connected submanifold of a complex manifold X and
y a point of Y. Let M be a holonomic 9D y-module generated by a section u.
Assume the following conditions

(a) M has R.S. outside Y.

(b) There exist vector fields V,,...,Vy such that ViueUyu and Vi, ..., Vy
generate TY.

(c) There exists a vector field V, satisfying

(cy) VouelOyu,

(c,) Vo vanishes at y,

(c3) V, is tangent to Y,

(cy) The isotropy action of V, on T.X/T,Y has strictly positive eigenvalues.

Then M has R.S.
Proof. By (a), n='(Y)n Ch(MM)=Ty* X, where n is the projection from T*X
onto X. Hence it is enough to show that ¥ has R.S. on 7y X. Since the set of
points in T* X where I has R.S. is open and closed, it is enough to show the
regularity of M on a neighborhood of y. By replacing u with f(x)u (f(x)e0%)
if necessary, we may assume that

X<, y=0, VY={xeX;x;=..=x=0}

and ou/dx;=0 for j=Il+1,...,n
Now ¥, has the form

Vo= Z f(x) + Z f(x) and Vyu=h(x)u for heC.
i A ;
By the condition on V;, we have f|, =0 (1<j<!) and
(1) the eigenvalues of (8f;(0)/0x,) 1£j, k<1 are strictly positive.

Since du/dx;=0 for j=I+1,...,n we may assume f,,,=...=f,=0and f,....f
do not depend on x,, 4, ..., X

ne
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By Proposition 1.6, in order to prove Proposition 4.3, it is sufficient to
show ' ~
ExtL, (M, 0,/0,)=0 for any j and any zeY.

Thus Proposition 2.4 is a corollary of the following proposition.

Proposition A.1. Let P be a vector field on €" defined on a neighborhood of 0
such that

0
@ P=Y [0z S0=0
and the eigenvalues of (0f;(0)/0x,) 1 <j, k <n are strictly positive.
Let N be a coherent P -module defined on a neighborhood of 0 generated
N

by sections u, ..., uy. If Pujckz1 @u, for any j, then we have

Exth(M, 0,/0,)=0  for any j.

Proof. Write Pu;=} fyu, with f, €€ and let F denote the matrix (f},) and let
k

u denote the column vector with u,, ..., u, as components.
By [11], Proposition A.1 is true for

M =Y/9¥(P —F).

Now, we shall prove Proposition (A.1) by descending induction on j. If j>n
this is true because the projective dimension of 9 is at most n. We shall prove

Ext, (M, 0,/0,)=0

by assuming &xt;H' (M, 0,/0,)=0 for any M satisfying the condition described
above. We have an exact sequence

0Pt M «— A 0.

If # denote the @-module {Qe2";Qu=0}, then A =4/2%(P~F). Let us
take m such that #=2(FNn2(m)") and let R,...,R; be a system of gen-
erators of & NP (m)" as an ¢-module. Then we have

0=PRu=[P,RJu+R;Fu.

Hence [P, R;]+R;F belongs to £ NP (m)".
Therefore there are g (1=J, k<a) such that

[P.RJ+R,F=Y gRy.

This shows that
PR, Eg g R, mod 2" (P —F).



410 J.L. Brylinski and M. Kashiwara

Hence A4 satisfies the same condition as M, which implies &xt (A, 0,/C,)
=0 by the hypothesis of induction. The exact sequence

EXUF YN, 0,)0 ) — Exty(M, Oy)0 ) — Exty(W, 0,/0,)

implies &xt5, (M, 0,/0,)=0. Q.E.D.
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