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Abstract - This Memoire is a translation of M. Kashiwara's thesis. In this pio-
neering work, the author initiates the study of systems of linear partial differen-
tial equations with analytic coefficients from the point of view of modules over the
ring V of differential operators. Following some preliminaries on good filtrations
and non-commutative localization, the author introduces the notion of character-
istic variety and of multiplicity of a P-module. Then he shows that the classical
Cauchy-Kovalevskaya theorem may be generalized as a formula for the solutions of
non-characteristic inverse images of D-modules. Among the applications of this re-
sult, we find a solvability criterion in the complex domain and a study of the Cauchy
problem for hyperfunctions. The author also investigates the homological properties
of P-modules linking, in particular, their homological dimension to the codimen-
sion of their characteristic variety. The thesis concludes with an index formula for
holonomic systems on smooth complex curves.

Resume - Ce memoire est une traduction de la these de M. Kashiwara. Dans
ce travail de pionnier, Pauteur entreprend P etude des systemes d'equations aux
derivees partielles lineaires a coefficients analytiques du point de vue des modules
sur Panneau D des operateurs differentiels. Apres quelques preliminaires sur les
bonnes filtrations et la localisation non-commutative, Pauteur introduit la notion
de variete caracteristique et de multiplicite d'un D-module. Ensuite, il montre que
Ie theoreme classique de Cauchy-Kovalevskaya peut etre generalise en une formule
pour les solutions des images inverses non-caracteristiques des P-modules. Parmi les
applications de ce resultat, nous trouvons un critere de resolubilite dans Ie domaine
complexe et une etude du probleme de Cauchy pour les hyperfonctions. L'auteur
examine egalement les proprietes homologiques des P-modules, reliant en particu-
lier leur dimension homologique a la codimension de leur variete caracteristique.
La these se conclut avec une formule d'indice pour les systemes holonomes sur les
courbes complexes lisses.
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Translators? Foreword

The study of analytic linear partial differential equations using the powerful tools
of homological algebra and sheaf theory began in the seventies. It has proved to be
a very successful approach for a broad range of mathematical questions (microlocal
analysis, index formulas, representation theory, etc.). The set of results obtained
using these methods forms what is often called "Algebraic Analysis".

One of the important components of algebraic analysis is the study of analytic
P-modules (i.e., modules over the ring of linear partial differential operators with
analytic coefficients). In his master's thesis (Tokyo University, December 1970),
M. Kashiwara did a very important pioneering work on this subject. Until now, this
text has been unavailable to a large public (it only appeared in a local handwritten
publication in Japanese).

Although various expository texts on this subject are now available, we feel that
Kashiwara's thesis is still interesting in its own right; not only as an important land-
mark in the historical development of algebraic analysis, but also as an illuminating
introduction to analytic P-modules.

In this volume, we present an almost faithful translation of this work. The only
differences with the original consist in a few minor corrections and the use of up-to-
date notations. We felt it unnecessary to mention these small changes explicitly.

We hope that in reading Kashiwara's thesis the reader's interest in our field of
research will be stimulated. Of course, since 1970, the field has evolved much. To get
a better perspective, one may refer to the list of suggested further readings which
can be found hereafter. Although far from exhaustive, this list may nevertheless
serve as a source of pointers to the extensive research literature.

We wish to thank Tae Morikawa for her help in preparing a typewritten Japanese
version of Kashiwara's handwritten notes, and Kimberly De Haan for her attempts
to clean up our franco-Italian English.

Paris, February 1995

Andrea D'Agnolo — Jean-Pierre Schneiders
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Foreword

The idea of regarding a system of linear equations as a module over a ring is basic
to algebraic geometry. However, it only appeared in the '70s for systems of partial
differential equations with analytic coefficients, after pioneering talks by Sato in the
'60s and Quillen thesis in '64. The two seminal papers on this subject are certainly
Kashiwara's thesis (December '70) and Bernstein's papers of '71 and '72 published
in "Functional Analysis" [3, 4]. Unfortunately, Kashiwara's thesis has never been
translated nor published, and only exists in the form of handwritten mimeographed
notes. Nevertheless, it has been distributed, inside and outside Japan, and some
people have found the material to their inspiration at its reading.

However, the aim of this publication is by no means historical. As it will become
evident to the reader, this thesis could have been written last week (modulo minor
modifications): it contains a great deal of little known or even unknown results and
could be used almost without any changes as a textbook for post-graduate courses.

Twenty-five years have passed since this thesis was written, and P-module theory
is now a basic tool in many branches of Mathematics: linear partial differential equa-
tions, harmonic analysis and representation theory, algebraic geometry, etc. Without
being exhaustive, let us describe a few directions in which P-modules techniques and
Kashiwara's contribution have been decisive.

Before P-modules were studied for themselves, mathematicians were interested
in their solutions (distributions, hyperfunctions, etc.). In this perspective, the theory
takes its full strength with the microlocal point of view, introduced by M. Sato in
'69 and developed with Kawai and Kashiwara in [26]. This paper is at the origin of
what is now called "microlocal analysis", and gave rise to enormous literature in the
'80s.

Among ^-modules, there is a class of particular importance — holonomic V-
modules — which generalizes the notion of ordinary differential equations. In his
1975 paper [9], Kashiwara proved that if M. is holonomic, and if one calls Sol the
functor which to a P-module associates the complex of its holomorphic solutions,
then Sol(M) is constructible, and is even perverse (although the theory of perverse
sheaves didn't exist at the time). That same year (see [23], p. 287), he gave a pre-
cise statement for the Riemann-Hilbert correspondence. Then with Oshima [18] and
Kawai [16], he developed the theory of regular holonomic P-modules (a generaliza-
tion in higher dimension of the Picard-Fuchs theory) and in 1980 he gave a proof
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x FOREWORD

of the Riemann-Hilbert correspondence by constructing an inverse to the functor
Sol, the functor of temperate cohomology [12, 14]. As is well known, holonomic
P-modules together with the work of Goresky-MacPherson [6] have been a main
theme to the theory of perverse sheaves. This last theory, introduced by Gabber-
Beilinson-Bernstein-Deligne [2], plays an important role in algebraic geometry via
Hodge theory, which in turn, enlarges P-module theory with the introduction by
Saito [24, 25] of the category of Hodge modules.

The complex of holomorphic solutions of a holonomic P-module is constructible.
It is then natural to try to calculate its local Euler-Poincare index in terms of
the characteristic cycle of the P-module. It is remarkable that the answer already
appeared in '73 [8]. The proof (which can be found in detail in [13]) introduces
important topological constructions discovered independently by other people (in
particular MacPherson [21]), such as Lagrangian cycles and Euler obstruction. This
local index formula was generalized later by Kashiwara to a local Lefschetz for-
mula [15] which has important applications to group representation.

Many properties of holonomic P-modules are closely related to the so-called
6-function or Bernstein-Sato polynomial, itself related to deep topological notions
(see [22]). In 1978, Kashiwara proved the rationality of the zeroes of the &-func-
tions [11]. For that purpose he first obtained a theorem of Grauert type on direct
images of D-modules which is important in its own right.

Notice that the link between P-modules and sheaves is not confined to holonomic
P-module and constructible sheaves. In 1982, Kashiwara and the author introduced
the notion of the "micro-support" of a sheaf on a real manifold, a notion which
appears as very similar to that of the characteristic variety of a P-module in the
complex case (both will be shown to be involutive). This is the starting point for a
microlocal theory of sheaves, partly inspired by P-module theory (see [19]).

Other fundamental fields of application of P-modules are harmonic analysis, Lie
groups and representation theory. In '78, Kashiwara et al. [17] solved the Helgason
conjecture and in the '90s, in a series of papers, he reinterpreted the Harish-Chandra
theory in terms of P-modules (see in particular [7] and [20]). But the most spectac-
ular application of P-modules to representation theory may be Beilinson-Bernstein's
theorem [1] on the equivalence of (twisted) P-modules on flag manifolds and mod-
ules over enveloping algebras and their proof of the Kazhdan-Lusztig conjecture,
simultaneously obtained by Brylinski-Kashiwara [5].

Thanks to these successes, P-modules have obtained an importance comparable
to that of distributions in real analysis or coherent analytic sheaves (0-modules) in
complex geometry.

To paraphrase Grothendieck (in "Recoltes et Semailles"): a new philosophy of
coefficients was born.

Paris, January 1996

Pierre Schapira
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Notations

X : complex manifold

T*X : cotangent vector bundle of X

P*X : cotangent projective bundle of X (given by P*X c± (T*X \ X)/CX)

Ox '' sheaf of holomorphic functions on X

Vx '- sheaf of rings of linear partial differential operators with holomorphic function
coefficients on X

^x,k '- subsheaf of Vx of operators of degree less than k

"Dx,k : == ̂ x^/^x^-i

^x: =^k7Dx,k

Ox : sheaf of holomorphic tangent vector fields on X

QQx '' symmetric algebra of Ox (note that QOx ^ ̂ x)

M : real analytic manifold

AM : sheaf of real analytic functions on M

BM : sheaf of hyperfunctions on M

YZ '' local cohomology with support in Z
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Chapter 0

Introduction

Elie Cartan performed the first systematic study of systems of partial differential
equations. Here, we will approach the study of systems of partial differential equa-
tions from a different angle. Namely, we will consider systems of partial differential
operators as modules over the sheaf of rings T>. In this new direction, there have
been some successes for constant coefficient partial differential operators, while many
problems in the variable coefficient case have not been solved.

Let us start with a simple example. Let:

E7=ip^ = ̂  Î =i Qx^ = o,
(i=l,...,7VQ (A=l,...^)

be two systems. We will say that:

M=VN|/DNtP and ^f=T>R/VR/Q

are of the same type, if there is a transformation interchanging the solutions of these
systems of differential operators. Namely, what is essential is the P-module .M, and
not its presentation ^ . PijUj = 0.

Let:
e^T

be a system of partial differential operators from the vector bundle 8 to J-', and set
^v = Horn ̂ (8, 0). Since P(g) £^ is identified to:

'Homdiff(£^ 0) = {differential operators from £ to 0},

we get the P-homomorphism:

p^v^p^v^

D

Let M. be its cokernel. Then, M is the P-module which represents E—> T. Since
we have:

Hom^(p^E^,0) =Hom^,0) =8,

SOCIETE MATHEMATIQUE DE FRANCE



2 MASAKI KASHIWARA

we get the exact sequence:

o-^nom^M.o^-^s-^y,
and 'Kom^.M, 0) appears as the sheaf of solutions of P : £ —> F. In the same way,
given:

C^F^Q, (QP=O),
such that:

O^-M^-V^S^ £-V0^ ^V^G^ (O.O.I)

is exact, the cohomology of:
£-^T-^Q

is isomorphic to Sxt^^M^O). Therefore, £xt1^ (./M, 0) represents the obstruction
for an / € F satisfying the compatibility condition Qf = 0 to be written as / == Pg^
g e £. Since (O.O.I) is exact, Qf == 0 is the best possible compatibility condition
(among those expressed by a system of partial differential operators). Thus, the
computation of £xt^{M^ 0) becomes an essential problem.

In order to obtain further results through this neat approach, we need to perform
a detailed investigation of the nature of P. In these short notes, we will lay the
foundations for such a study.

We wish to thank Prof. Mikio Sato for his constant help during the preparation
of this work. The root ideas of these notes are his. The Sato-Komatsu semester in
algebraic analysis gave rise to much emulation among the participants. In particular,
the frequent discussions we had with Prof. Aomoto were very helpful. We wish to
thank him here.
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Chapter 1

Algebraic preliminaries

1.1 Coherence
In this section, we will present several facts on finite type P-modules needed for
the further development of the theory. In Chapter 0, we saw the correspondence
between a left 'P-module .M and a system of partial differential equations. The fact
that M is of finite type, that is, locally admits a resolution:

O^.M^%,

means that it corresponds to a system of equations with a finite number of unknown
functions. We say that M is of finite presentation, if it admits a resolution:

Q^-M^V^^V^

corresponding to a system with a finite number of equations, in a finite number of
unknown functions. Hence, the meaning of a left P-module of finite presentation is
clear.

Definition I.I.I. A left P-module of finite presentation is simply called a system.

If we want to develop the theory further, we need to study the finiteness proper-
ties of P. In this chapter, we will consider results which depend only on the filtered
structure of T>.

Below, S will be a sheaf of (not necessarily commutative) algebras on X endowed
with a filtration S = U^=o ̂ k satisfying the following conditions:

(1) So 3 1 (the unit), and So is an Ox-algebra,

(2) SkSi = Sw for k, I > 0,

(3) every Sk is a (left and right) coherent Ojc-module, and Sk C 5/c+i;

(4) given Sk 3 u, Si 9 v, [u, v] = uv — vu € Sk+i-i'

SOCIETE MATHEMATIQUE DE FRANCE



4 MASAKI KASHIWARA

Assuming the above axioms, and setting:

Sk = gr^; S = Sk/Sk-i,

we see that
00

S=gTS=Q)Sk
k=0

is a commutative Ox-algebra, and that S is generated by So and <Si. For instance,
Vx satisfies the axioms for <5, the corresponding S being QOx'

Definition 1.1.2. Let K be a compact subset of X. If, for every coherent (OX\K)-
module F

H^(K^)=0 f o r z > 0 ,

we say that K is Stem. If, moreover, T(K\ Ox) is a Noetherian ring, we say that K
is Noetherian.

In Harvey [7], it is shown that, in a Stein manifold X, a compact subset K
is Stein if and only if it is an intersection of Stein open subsets of X. Frish [5]
shows that, if K can be defined near its boundary by finitely many inequalities
involving real analytic functions, then K is Noetherian. This result is also discussed
in Hironaka [8]. Therefore, X has sufficiently many Noetherian compact subsets.

Proposition 1.1.3. If K is a Noetherian compact subset of X, then r(K,S) is
both left and right Noetherian.

Proof. Let us only show that r(K;S) is left Noetherian. We have

r(x;5)=|jr(K;^).

Moreover,
r(JC;<Sfc)/r(x;^-i) = r(x;^/^-i) = r(x;^).

Hence, r(Jf;<So) and F(X;5i) generate T(K',~S). Therefore, T(K;S) is finitely gen-
erated over r(K-,Ox), and is a Noetherian ring. Now, let I C r(K',S) be a left
ideal. Set

Zfc==r(^;^)nz, ik=ik/^k-icr(K^Sk)^ i=Q)ikcr{K;s).
k

Since T is of finite type, there is TV, such that Z is generated by IQ (B • • • © Z^v. Now,
it is sufficient to prove that Z is generated by TN . For k > N

N

ikC^r(K'^k-i)ii
z=0
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ALGEBRAIC STUDY OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 5

therefore,

N

ik c ik-i^^r(K^Sk-z)ii
i=0

C Ik-l+WS)lN

Consequently, by induction on A-, we get

ikcr{K^)iN.
So,

I=T(K^S)IN.

D

In the following, by module (resp. ideal) we mean left module (resp. left ideal).

Proposition 1.1.4. Let I be a sub S-module of S1. If, for any k, I D <Sj[ is a
coherent Ox-module, then 1 is an S-module of finite type.

Proof. Let x C X, and let K be a Noetherian compact neighborhood of x. Set
i = r(^;z), s = r(x;<?), Sk = r(^;^), ij, = i n s [ = r(^;zn<s0. Since
I C S^, and 5' is a Noetherian ring, I is a finite type 5-module. Therefore, there is
a fco such that I is generated by Iko. Hence, the exact sequence

S^h^I^O.

On the other hand, since every Z/e = Z D 5^ is a coherent Ojc-module, the map

Ox^h-^lk

is surjective on K. Therefore, the map

S0lk,^I

is also surjective. Hence, T is of finite type. D

Proposition 1.1.5. S is coherent.

Proof. We must show that if 0 —> M. —> S1 —> S is an exact sequence, then M. is of
finite type. By the preceding proposition, it is sufficient to prove that M.k = M. r\S1^
is a coherent Ojc-module. For any A;, there is kf such that f(S[) C <?/.;/. For such a
^

Q^Mk-^S[^Sk'
is an exact sequence of Ox-modules. Therefore, M.k is a coherent C^c-module. D

Therefore, the category of coherent 5-modules is an abelian category associated to
S. Hereafter, we will investigate coherent ^-modules.
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6 MASAKI KASHIWARA

1.2 Good filtrations
In the proofs of § 1.1, the properties of the non-commutative ring S were deduced
from those of the commutative ring <?. This was made possible by the use of filtra-
tions.

Definition 1.2.1. Let M. be an 5-module. A filtration of M. is an increasing se-
quence {Mk}ke^ °f ^b Ox-modules Mk of M., such that

(o) SiMk C Mk-\-i

A filtered S-module is an 5-module endowed with a filtration. Let M. be a filtered
<?-module. For any integer I , we denote by M(l) the S- module M. endowed with
the filtration

M(l)k=Mw.
A homomorphism of filtered S-modules is an 5-linear homomorphism / : M.—^J\T
such that f(M-k) C Afk- A homomorphism of filtered <?-modules / : M. —rJ\T is strict
(resp. essentially strict) if f(M-k) = A4 H f(M) for any k (resp. any sufficiently
large k). We call a filtered <?-module of the type C = @ - ^ S ( l j ) a quasi-free
filtered S-module. Let M be a filtered 5-module. Then, grM. = Q^Mk/M-k-i)
has a structure of S = gr (S-module. Since S is a sheaf of commutative rings,
we can use the classical results of commutative algebra and algebraic geometry.
To any homomorphism of filtered <S-modules M. —r Af, we associate the <S-linear
homomorphism

gr.M —>'gr.A/'.

We will skip the proof of the next statement, since it is obvious.

Lemma 1.2.2. Let C —> M -^Af be a sequence of filtered S-modules such that g o
f = 0. Iff and g are strict, and if L—> M,—^M is exact, then so is

gr C -^ gr M -^ grJV. (1-2.1)

Conversely, if (1.2.1) is exact, and M. = \J^ Mk, -M-k = 0 for k <€: 0, then f and g
are strict, and C —> M. —>• M is exact.

Definition 1.2.3. A filtration of an 5-module M. is good if conditions (i)-(iii) below
hold:

(i) A^fe is a coherent Ox-module,

(ii) M=\Jk M^ -Mk = 0 for k < 0,

(iii) grA4 is a coherent iS-module.

The next statement is clear.
Translators' note: In this section, most of the results are to be understood to hold semi-locallly

(i.e. in a neighborhood of a Noetherian compact subset of X).
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ALGEBRAIC STUDY OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 7

Lemma 1.2.4. Let M be an S-module endowed with a good filtration. Then,
there is a surjective strict homomorphism £—>M, where C is a quasi-free filtered
S-module.

Proposition 1.2.5. Let M be an S-module endowed with a good filtration {Mk}-
Then, M. is a coherent S-module, and

(iv) S^Mk = Mk^i for k > 0.

Proof. Since gr.M is an <?-module of finite type, it follows that grM is generated
by (Bk^<k<ko ̂ k M. Then, clearly, for k ^ ko

Mk = Sk-koMko + Mk-l-

Therefore,

Mk+l = Sk+l-koMko +Mk

= S-tSk-koMko + Mk

= S^Sk-koMko + Mk-l) + Mk

= S^Mk+Mk
= SzMk.

Hence, we get (iv). Furthermore, this shows that M is of finite type. Let

C^M-^0

be a strict homomorphism, where C is a quasi-free filtered <S-module. Let J\f be the
kernel of /, and let A4 = AT H Ck be the induced filtration. Hence,

0-^Afk^Ck^Mk^O

being an exact sequence, A4 is a coherent 0^-module. Therefore, according to
Proposition 1.1.4, jV is a coherent <S-module. It follows that M. is also coherent. D

Proposition 1.2.6. Let M be a coherent S-module. A filtration {Mk} is good if
(i), (ii), and (iv) hold.

Proof. Clearly grM is of finite type. It is possible to choose a quasi-free filtered
5-module £, and a surjective strict homomorphism

jC^M-^0.

Let J\f be its kernel. Set A4 = A/" H Ck' Since

0 -^ grM'-^ gr C —^ gr.M -^ 0

is exact, it is sufficient to prove that grM is of finite type. However, since the Ox-
modules gr^ ^C, gr^ M are clearly coherent, gr^jV is also a coherent (9^-module.
Because of Proposition 1.1.4, grAT is a coherent ^-module. D
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A reason to introduce the notion of good filtration is the fact that the following
proposition holds.

Proposition 1.2.7. Let

O^M^M-^M^-^O

be an exact sequence of coherent filtered. S-modules with strict homomorphisms.
Then, the filtration of M. is good if and only if the nitrations of M! and J^A1' are
also good.

Proof. (1). Assume that M' and M." are good filtered modules. Since

O^Mk-^Mk-^M^O

is exact, M.k is a coherent Ojc-module. Furthermore, since

O-^grM'->gTM-^gTM11->0

is exact, grA^ is a coherent <?-module. Since M!^ = M^ = 0 for k <^ 1, M.k == 0 fo1'
k <C 0. Moreover, it is clear that M. = |j^ Mk'

(2). Conversely, assume that M is a good filtered module. Choose h such that

S^^M-^M'^Q

is exact. Then, h~~l{A/ik} ^l ̂ m is a coherent C^c-module. Moreover, h^S^) H Mk
is also coherent, and gives an increasing sequence in I . Thanks to the Noetherian
property, this sequence is stationary. Hence, h^S^^AAk is also coherent. Therefore,
A4'k is also coherent. Since {.M^} satisfies (iv), it gives a good filtration. Since

O-^gr.M'-^gr.M-^grA^-^O

is exact, {Ai'k} satisfies (iii), and is also a good filtration. D

Corollary 1.2.8. Locally, any coherent S-module admits good filtrations.
Proposition 1.2.9. Let M. = [Jk^-k be a coherent S-module endowed with a
good filtration. Let At C M. be a sub S-module, such that A4 = At D M.k is a
coherent Ox-module. Then, AT is a coherent S-module.

Proof. Let C = ©^i<5(^) —^M. —^0 be a strict surjective homomorphism. Set
J\f' = /^(A/'). Clearly, A/^ = A/7 H Ck is a coherent C^-module. Moreover, thanks
to Proposition 1.1.4, A/'' is a coherent <S-module. Since AT is the image of A/7 —^ M.^
it is a coherent 5-module. D

Corollary 1.2.10. Let M. be a coherent S-module, and let {M.\} be a directed
family of coherent sub Ox-modules of M., such that M. = [J\M.\. If At is a sub
S-module ofM. such that At D M.\ is a coherent Ox-module, then At is a coherent
S-module. Moreover, if At' is a quotient S-module of A4, and the image Af^ of A4\
in At' is a coherent Ox-module, then Af' is a coherent S-module.
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ALGEBRAIC STUDY OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 9

Proof. Let M. == Ufc -^fc be a g00^ filtration of M.. For any A^^, there exists A such
that M'k C M\. Since MnM\ is a coherent Ojc-module, ./VnA^ is also coherent.
Therefore, At is a coherent <?- module. As for A/"', if we call At the kernel of M —^A/7,
then A/'H .MA is coherent. Since At is a coherent <?-module, A/7 is also coherent. D

Proposition 1.2.11. Let C—^ Ad—^ Af be an exact sequence of coherent S-modules
endowed with good filtrations, and assume the morphisms are filtered. If

gTkC-^gTkAd-^gTk^

is exact for sufficiently large fc, then

Ck^Aik-^^k

is also exact for sufficiently large k.

Proof. Let Hk be the cohomology of Ck-^Mk -^A/fc. Uk is a coherent Ox-module.
Since the columns in

0 0 0
i i i

Ck-i ————>Mk-i ———>Mk-i
[ [ I

Ck ——————Mk ——————Afk
[ [ I

gFfc C ——————> gTk M ——————^ ̂ k^

[ I I

0 0 0

are exact,
"Hk-l —^'Hk—^Gk

is exact, where Gk denotes the cohomology of

gTkC-^gTk^-^^k-^'

Therefore, for sufficiently large fc, Hk-i—^'Hk is surjective. Hence, due to the
Noetherian property, Hk-i-^'Hk is an isomorphism for k ^> 0. It follows that
for k > 0,

Hk = lim7^ = (cohomology of C -^ M -^Af) = 0.
v

D

Let us explain E. Cartan's "prolongation" idea in our framework. Let M. be a
system, and let

O^M^-V^^-V^

SOCIETE MATHEMATIQUE DE FRANCE
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be one of its presentations. Note that, in general, this presentation is not strict.
Then, the idea of "prolongation" is to use the fact that we can replace the preceding
sequence by a strict one

O^.M^-P^^-2^.

1.3 Characteristic variety
Recently, in the framework of the theory of hyperfunctions, both the sheaf of Sato's
microfunctions CM a^d the sheaf of pseudo-differential operators were constructed
on the cotangent sphere bundle S*M of a real analytic manifold M. In this section,
we will mimic this construction for the case of Pjc- The cotangent projective bundle
P*X on X will replace S*M. Similarly, the role of the sheaf of Sato's hyperfunctions
BM will be played by Vx ? ^d that of CM by T>\.

In fact, Dx should be called the sheaf of algebraic pseudo-differential operators.
Holomorphic pseudo-differential operators were introduced in Kashiwara-Kawai [10]
under the name of pseudo-differential operators of finite type1.

Intuitively, the characteristic variety of a system M. will be a generalization of
the zero-set of the principal symbol of a differential operator. The multiplicities will
give other important invariants.

Let S be an Oj^-algebra satisfying conditions (1), (2), (3), (4) of § 1.1. Then,
since S is an Ojc-algebra of finite presentation, it is possible to construct Proj(<?).
Let us set X* = Proj(<S). For a graded 5-module Q^ we can construct the Ox*-
module Q. Let TT : X* —> X be the canonical projection.

Theorem 1.3.1. Let M be a coherent S-module. Then, supp(gr.M) does not
depend on the chosen good nitration.

Proof. Let {A^/c}, {A^^;} be two good nitrations. Let grA^, giM.' be the associ-
ated graded modules. Since supp(gr.M) is invariant by a shift of the degree of the
filtration, we may assume that M.k 3 M.'^ (for k ^> 0). Moreover, there is N such
that Mk+N :) -^-k (for k ^> 0). Let us proceed by induction on N. If N = 1,
M.k ~^ A4^ D M-k-i ~^ -^-k-r ^e ̂ et tne exact sequences

0 -^ Mk/Mk-i -^ Mk/Mk-i -^ Mk/Mk ̂  0,

0 ̂  Mk-i/M^, -^ Mk/M^ -^ WMk-1 -^ 0.
Set

F == Q(AW.O. ^ = (DWA^-i).
k k

From the two exact sequences:

O-^C-^grM-^^-^O,
0 ̂  ̂ (-l)-. gr'.M-^/:-^ 0,

1 Translators' note: See also [L. Boutet de Monvel, P. Kree, Pseudo-differential operators and
Gevrey classes, Ann. Inst. Fourier (Grenoble) 17 (1967), 295-323].
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ALGEBRAIC STUDY OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 11

we see that .F, C are coherent <S-modules. Moreover, the sequences:

O^C-^grM^:F^O,

0^ (8) Ox^-l^gr7^-^
Ox-

are exact. Therefore,

supp(gr M) = supp(£) U supp(^)
= suppQC) U supp(.F 0 Ox*(-l))

Ox*

= SL^gr'.^).

Assume now that N > 1. Set M^ = .M/c-i + A^. M^ is a good filtration of M (it
satisfies (i), (ii), (iv) of § 1.2). Since

Mk^M^Mk-i,

M'^M^M'k-N^
the induction hypothesis shows that

supp(grA^) = supp(gr//A/() = supp(gr'A^),

where we denote by gr" M the graded module associated to M^. D

Definition 1.3.2. Let M. be a coherent «S-module. Then, for a good filtration of

•̂  ^
supp(gr.M) C X*

is the characteristic variety^ of M. We denote it by char(.M).
Lemma 1.3.3. Let

O-^^-^A^-^^'-^O
be an exact sequence of coherent S-modules. Then,

char(A^) = char(.M') U char^")-

Proof. Let us choose a good filtration on .M, and endow .M', M" with the induced
good nitrations, so that

0 -> grM' -^ grM -> grM" -^ 0

is exact. Then, 0 -> gr M' -^ gr M —^ gr A^" ̂  0 is also exact, and

cha^AI) = supp(gr.M)

= supp(gr A1') U supp(gr M")
= char^QUchar^7').

D
2 Translators' note: In today's literature, the characteristic variety of a T^-module is usually

denned in the cotangent bundle instead of the projective cotangent bundle.
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12 MASAKI KASHIWARA

Proposition 1.3.4. Let s be a section ofSmi and denote by ~s the associated section

of Sm' Assume that s is Ox*-regular on U C X* (i.e., Ox*\u ^Ox*('m)\u is
injective). Then, if we set M = S / S s , U D char(A^) = {^* € U : s(x) = 0}.
Furthermore, if we endow M. with the good filtration M.k = Sk/{Sk H Ss), we get

grM\u=(Ox^/sOx^-m))\u.

Proof. It is sufficient to prove that

grA^ ^———— gr5 ̂ —I—— gr5(-m)
4 ^i

Ox- Ox-(-m)

is exact at x* € £A For k ^> 0, if

^ G <SA; and t e <5fc-i -h Ss,

we must show that there is a € S(, with a(a;*) 7^ 0 (a € <?^ is the image of a € <?^),
such that

at e Sk-^-i-i + <Sfe+^-m5.

There is /3 C «?/c+^ such that t - f3s e Sk-i, for some ^ > 0. We will show by
decreasing induction on ^, that there are ay 6 <?^, 7z/ C (S/c+^-yn-^ (z^ > 0), such
that a^t - 7^5 G «SA;+A;^-I? c^(a'*) 7^ 0. This is clear for v > £. For v < i, there
exists o^+i, 7^+1 such that

a^+it — 7^+i5 € (S/c+fc^+i-i-

Therefore, T^+i^ = 0 in iS^+fc^+i+^+i, and since s is Ox*-regular, there is 6 € <Sn
such that 6{x*) ̂  0, ^7^+1 == 0. If we set ay = (^a^+i, 7^ = ^7i/+i, ky = ky^ + n,
then 7^ C <?fe+^-m+^ and

OLyt-^yS C Sk+k^-l'

Finally, we get ao € Sko, 7o € ^fc+fco-m such that

<^o^ - 7o«5 e 5/,+fco-i, ^o(^*) 7^ 0-

D

1.4 Sheaf of pseudo-differential operators
We have defined the characteristic variety of an 5-module, but this definition using
good nitrations is not direct. Hence, we define a sheaf of rings S on X*, such that
the support of S^^-i^^^M. is the characteristic variety of Ad. In the case of
S = Vx^ we recover the sheaf of pseudo-differential operators. Before we can give
the definition, we need a few lemmas.
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Lemma 1.4.1. Let x* G X*, x = 7r(.r*) € X, t be a section of Sm, and t the
associated section of Sm- Assume that t(x*) ^ 0. Then, for any section u G Sx,
there exists v 6 Sx, and s 6 <S^^ such that conditions (a), (b) below hold:

(a) vt = su,

(b) if we denote by s the image ofs in 5^, then s(x^) ̂  0.

Proof. Set
M = S/St, At = {Su -+- St)/St C M.

If we endow M. with the good filtration M.k= Sjc/(Sk H St), then, since

0^-gTM^-S/St

is an exact sequence,

char(.M) == supp(gr.M) C snpp(S/St)

and chai^A^) ^ re*. Hence char(A/') ^ x * . Endow jV with the good filtration

M'k=(SkU+St)/St.

Denote by u the section of gio^f associated to u. Since supp(gr./V) ^ rr*, there is
~s ^ S(, x such that:

f 5 u = 0 in gr^ A/",
t 5(^)^0.

If 5 € <S^ a; is a representative of s, then

s'u € Si-\u -{-St.

Furthermore, there are 5' € <%-i, f € <? such that

(s — s')u = vt.

Note that s — s ' ^ Sg and that its image in <S^ is s. Since s(a;*) 7^ 0, the proof is
complete. D

Lemma 1.4.2. Let x* C X*, x = 7r(a;*) G X. Assume n G Sx, t € <Syn,o; and ̂  = 0.
Denote by t the section of Sm associated with t, and assume that t(x*) 7^ 0. Then,
there is s e S^^ such that s(x*) ^- 0 and su = 0.

Proof. Set
Z = Ann(t) = {v e S : vt = 0} C S.

Let us first show that char(Z) ^ a;*. Let us endow Z with the good filtration
Ik = Sk H T. Since It = 0,

(grZ)t=0,
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and suppgrZ ̂  x * . So, char(Z) ^ .r*.
Since Su C Z,

char(<$u) ^ x * .

Set .M = <?n and endow it with the filtration M.^ = SkU. Let u 6 grg A^( be the
element associated to u € «MO- Since

supp(gr.M) ^a;*,

there is s € <5^ a; such that

{ sn = 0 in gr^.M,
^*) ^ 0.

Hence,
su (E <?^_in.

So, 5'u = s'u with 5' G «S^-i, and (^ — 5')^ = 0. Since the section of Sf, associated to
s — 57 € S(, is 5, and s(rc*) 7^ 0, the proof is complete. D

The two preceding lemmas and the following general considerations will allow us to
define the sheaf S on X*.

Definition 1.4.3. Let A be a (not necessarily commutative) ring with a unit ele-
ment. Let S be a subset of A satisfying conditions (i)-(iv) below.

(i) S 3 1

(ii) S 3 s, t => S 3 st

(iii) S 3 5, A 3 a implies that there are b € A and t 6 5 such that ta^bs.

(iv) a € A, 5 € 5, as = 0, implies that there is t € S such that to = 0.

Then, for any left A-module M, we may define the quotient by 5, S~1M. We obtain
S~1M as the quotient of the set of pairs (5, x) € S x M, by the equivalence relation
defined by

(5i,a;i) ~ (52^2)

^=> 3^, ^2 € 6' such that ^5i = .ŝ  and s^a-i = s^x^.

The element of S~1M associated to (5, a*) is denoted by s"1^. Clearly, S~^M has a
canonical A-module structure. Moreover, fi^A has a canonical ring structure. For
this structure, the map y?: A—> S~1A is a ring homomorphism, and the elements of
^>{S) are invertible in fi^A. We have

^M^^A^M,
A

and S~1A is a, flat right A-module. If, furthermore, S satisfies

(iii)' S 3 5, A 3 a implies that there is & e A, ^ € 6' such that at = sb,
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(iv)5 a C A, s e 5, 50 = 0 implies that there are t G S such that at = 0,

then5'- lA=A5- l.
Let (A;\, S^A be an inductive system, and assume that S\ C A\ satisfies (i), (ii),

(hi) and (iv). Then, if we set

A = h m A A , 6'=hm6'A,

we get hmS^AA = S^A.
Now, let A be a sheaf of rings over a topological space X. Assume that V C A,

and that the stalk Vx C Ax satisfies (i), (ii), (iii) and (iv). Then, it is possible to
construct a sheaf of rings

V^A,

such that
(V-IA), = V^Ax.

For any A- module ./M, we may also construct

V~1M=V~1A(S)M.
A

Let us go back to the preceding situation. Let us define the subsheaf V of the
sheaf of rings 7^~1S on X*, by

V = {s (E TT-^ : s ̂  0}.

Thanks to Lemmas 1.4.1, 1.4.2, for any a;*, Vx* C Sx^ satisfy (i), (ii), (iii) and (iv).
We set<S=V~17^~ l<S. <S is a sheaf of rings on X*. For every 5-module .M, we set

.M^V-1^-1.^^ 0 TT-^.
TT-^

Proposition 1.4.4. Let M be a coherent S-module. Then,

supp(.M) = char(.M).

Proof. Assume x* ^ supp(AI). Let us write M as Y^j^Suj. Since Mx* =
V^}M.x = O? there are sj € Vc* such that SjUj = 0. Therefore, we get the epi-
morphism 0 ^— M. ^— (Q S / S s j . Hence, char(A/() C \J.choLr(S/Ssj). Moreover, fol-
lowing Proposition 1.3.4, char(<S/<?Sy) ^ a;*, so re* ^ char(A/(). Conversely, assume
x* ^ char(A/(). We have the epimorphism

O^-M^-Q)SUJ,

and the inclusions
char(.M) C (Jchar(«S^-) C char(.M).

3
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Since supp^) = (J^ supp(<S^-), we may assume

M=Su.

Endow M. with the good filtration

Mk == SkU.

We know that char(A^) = supp(gr.M) ^ a;*, and if u € grg .M denotes the image of
u € MQ, there is s G <S^ such that

( su=0 in gr^A^f,
1 ^*) 7^ 0.

Therefore, if s € <?fe is a representative of s, we have

SU € <Sfc-l'U.

Hence, s-u =_s'u with 5' € <?fc-i, and s - s ' C V^ is such that (s - s^u = 0.
Therefore, M^ = V^A^ = 0. So, x* ^ supp.M. D

Definition 1.4.5. Let X be an analytic space, F be a coherent Ox-module, S =
supp(^), A an irreducible subset of X, and assume S C A. Take any a: G A, set
V = Spec(0x,a;)5 and denote by ^ the point of Y corresponding to A. Let F^ be
the coherent Oy -module corresponding to Fy,. Then, lengthy AFx}^ < oo does not
depend on x. We call this number the multiplicity of T along A.
Multiplicity is additive. Namely, let

^-.F' -^F-^F" ->^

be an exact sequence, such that supp^ C A. Then, the multiplicity of F along A is
the sum of the corresponding multiplicities of F ' and F " .
Theorem 1.4.6. Let M. be a coherent T>x -module, and A be an irreducible analytic
subset ofX*, such that A D char(A^). Then, the multiplicity along A ofgrM does
not depend on the good nitration M = |ĵ  Mk of M.

Proof. Taking advantage of the additivity of the multiplicity, we may work as in
Theorem 1.3.1. Therefore, we will omit the details. D

Definition 1.4.7. Let M be a coherent P^-module, let A be an irreducible analytic
subset of X*, such that A D char(A^). Then, we define the multiplicity of M along
A as the multiplicity of gi M. along A.

Proposition 1.4.8. The multiplicity ofcoherent Vx-modules is additive. Namely,
let A be an irreducible analytic subset ofX*, and assume that

Q^M'-^M-^M'^Q

is an exact sequence of coherent Vx -modules such that char(.M) C A. Then, the
multiplicity ofM along A is the sum of the ones ofM' and M".
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Proof. Let M. = Ufe-^fc ^e a g°°d filtration of .M, and endow M^ M" with the
induced good nitrations. Then, the sequence

0--> gr.M'--> gr.M-^ gr.M" ̂  0

is exact, and the multiplicity of gr.M along A is the sum of the ones of gr.M' and
grA^7. - D

1.5 Torsion modules
In this section, we set S = V = Vx, hence X* = P*X.

Lemma 1.5.1. Let x € X. The set S = {P € T>x •• P + 0} satires conditions
(i)-(iv), (in)' and (iv)' of Definition 1.4.3.

Proof, (i), (ii), (iv) and (iv)' are clear. Let us deal with (iii) and (iii)'. It is sufficient
to prove (iii). Let P € 5, Q € Vx' We may assume that Q, P € F(X; P). Set

I={ReV:RQe VP}.

1 is a coherent ideal of T>. Let Py^ denote the principal symbol of P. For any rr'
such that Pm^x'.rf) ^ 0, Lemma 1.4.1 shows that T^ ^ 0. Hence, Zc 7^ 0. In fact,
if Tx = 0, there is a neighborhood of x for the points x ' of which ZE/ =0 , and we
obtain a contradiction. D

Therefore, it is possible to define

P^S-1?^^-1.

So, it is clearly possible to construct a sheaf of rings on X with T^ (which is non-
commutative) as stalks.

Definition 1.5.2. Let M. be a system (see Definition I.I.I). The torsion part of
M. is {u € M. : Pu = 0 for some P -^ 0 in V}. When M. coincides with its torsion
part, we call it a torsion module. When the torsion part of M is 0, we say that M
is a torsion-free module.

Since the torsion part of M. is the kernel of

M—>T)^M,
T>

M is torsion-free when M C T> (8)p M., and M. is a torsion module when P Cg)-p M. =
0.

Proposition 1.5.3. Let A4 be a system. Then, the following conditions are equiv-
alent.
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(a) M. is a torsion-free module,

(b) locally, there is an injection 0-^M-^V^ ofM into a free module,

(c) M -^ Hom^(Hom^(M, P), V) is injective.

Proof, (b) ̂  (c). Let 0 -^ M -. C = ̂ . The result follows clearly from the diagram

0
i

•̂  ————> Uom^Uom^M, P), P)
i i
C——^——^omp(7<omp(/:,P),P)

(c) =^ (b). Let us choose a free P-module £, and an epimorphism

0^-^omp(M,P)^-/;.

We get the exact sequences

Q-^'Hom^(nom^M,V),V)-^Hom^V)
0 -^ A^( -^ Hom^Hom^M, P), P).

1 ^ ) 1 ' - ^ ) ' ' i^//("p\^, ̂ ^,
,^),^).

Hence, we get
0-^Al^Wom^(/:,P).

(b) =^ (a). A submodule of a torsion-free module is also torsion-free.

(a) =^ (b). Let M be a torsion-free module. Fix x e X, and consider P^ (g)p^ A^.
This is a vector space over P^. Therefore, we get

P^P^P; -^p;^^^
T>^ T^

and
^0776 ^ ^^ w J^x, ̂ x ^ ̂ ; = 1-LOm^ {JV[^^) 0Uom ̂  (V^ ^ M^ ̂  0 ̂ ) = T^om^ (M^, P^) 0 P^.

'̂ a; ux ^x x T>x

It follows that

^x ^ M^ ̂  V^
^

comes from a map
M^Vi.

This map is clearly injective. m

The next proposition comes almost directly from the definition.
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Proposition 1.5.4. Let M. be a system. For M. to be a torsion module, it is
necessary and sufficient that char(.M) ̂  P*X.

Proposition 1.5.5. Let M. be a system. Then, its torsion part M' is also coherent,
and M!1 = M.J M' is torsion-free.

Proof. Fix x € X. Then, it is possible to find an exact sequence

0-^M'^A^-^,

where M/ is a torsion module. Hence, in a neighborhood U of rr, there is a coherent
torsion module M' such that

Q-^M'^M^V^.

Moreover, M' is the torsion part ofA^t, since M" = M./M' C P^ is torsion-free. D

1.6 First Spencer sequence
Let M be a P-module endowed with a filtration M = IJfc-^fc- Let us define the
'D-homomorphism

6 : V^^Q^Mk-i -^V^/^^Q^Mko o o o

by

<^(P0(^i A • • • A fp)^u}
P

== ^(-l)'"1?^ (g)(t/i A • • • A vi A • • • Vp) (g) uY~1]<~-L) i

i=l

-^(-l)'"1?^! A • • • A Vi A • • • f\Vp}^ViU
i=l

+ ^ {-lY^P^([^i^j} Ai/i A • • • /\Vi A • • • A^- A • • • Az/p)(g)n.
Ki<j<p

It is simple to check that this is a well posed definition for 6. We call

O^M^-V^Mk^-V^Q^Mk-i^-'-V^/^Q^Mk-n^-Q (1.6.1)
0 0 0 0 0

the first Spencer sequence of degree k of M. Note that V<S>o-Mk —^M is defined
by P 0 u ^—> Pu.

The following theorem may be found in Quillen [14] and Malgrange [II], but we
will give a detailed proof below.
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Theorem 1.6.1. Let M. be a system. Assume M is endowed with a good filtration
M. = Ufc^A;- Locally, the first Spencer sequence of degree k associated to this
filtration becomes exact for k sufficiently large.

Proof. Step one. Let M = P, and let V = \J^T>k be the canonical filtration.
Then, the first Spencer sequence of degree k is exact for k >_ 0. The proof will use
an induction on k. For k = 0, the result is clear. Assume k > 0. Consider the
commutative diagram:

0 0 0 0
I I I I

o^—v^—p0Pfe-i^-p0e(g)pfe-2^—•••v^^e^Vk-n-i^—o
| 0 0 0 0 0

\ I I I
o^—D^—v^Dk^—v^e^Vk- i^— • • • v^^Q^Vk-n^—oI o o o o o1 l_ _ l _ I _

0^——D^Vk^—^D^Q^Vk- i^— • • • TX^/^e^Vk-n^——0
0 0 0 0 0

I I I
0 0 0

Note that

_ p

^(P(g)(^i A • • • /\Vp)^)u) = ̂ (-l)'P(g)(^i A • • • A vi A • • • A^)(g)^n.
1=1

Since the first row is exact, it is sufficient to show that the last row is exact. Since
^^o(') is an exact functor, it is sufficient to show that the sequence

0^-Pfc^-9(g)Pfc-l^-•••An©(?-n<-0
0 0

is exact for k > 0. This is the Koszul complex, and its exactness is well known (see
e.g. EGA IV [4]).

Step two. The general case. Let us denote the z-th homology of

O^M^V^Mk^-V^Q^Mk-i^'-V^/^Q^Mk-n^-Oo o o o o

by H^(M). (M is in degree -1, and V^oMk is in degree 0). We have to show
that

H^{M)=0

for k > 0. Since VMk = M for k > 0,

Hk^M)=0.
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Following Lemma 1.2.4, there is an exact sequence of filtered P-modules with strict
homomorphisms

0^-M^C^-Af^-O,

where C is quasi-free. Therefore (thanks to step one),

H^C)=0 (A;>0).

Since 0 <— M.k<— ^k '—-N'k<— 0 is exact,

H^C)^H^M)^H^M)-.'"

is an exact sequence. Now, let us show that

H^(M)=0 (A;»0)

by induction on i. In fact, since

^(£)=0, ^_i(AO=0 (/c»0),

we get H^(M) =0. D

Let us consider a special case of the first Spencer sequence. If M. == 0, we get a
resolution of 0:

O^O^P^P^G^P^A^^—^A71®^0 0 0

where the map
S'.V^/^Q-^V^^Qo o

is given by

^(P(g)(^i A " • f\Vp})
P

= ^(-l)1-1?^ (g)(z/i A • • • A v, A • • • A i^p)
i=l

+ ^ (-1)^'P0([^,^] A^i A - - - A ^ A • • • A ^ - A - . - A z / p ) .
l<i<j<p

If M. is the right P-module ^n, we get a resolution:

O^P^^^P-^Q^P.-.^^-^P^^^P^^^O,
0 0 0 0

where c? is given by

f d(l)=^=idx^9^^
\ d{uj A (/?) = duj A (/? + (-1)^ A ̂ , cc; € ^p, (̂  € ^q (S)o P.
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Moreover, since

and

P^Z)(g)e^-•••P(g)Ane
o o

V-^^^V'-'-^^^V
0 0

are interchanged by the functor 7<omp(-,P), we get

^n for % = n,
^^^^^ 0 forz^n,£xti^0^)=^

^(^^^f0 forz-^r>v / [ 0 for i -^ n.
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Chapter 2

On the Cauchy-Kovalevskaya
theorem

2.1 Another formulation of the Cauchy-Kovalevs-
kaya theorem

Before giving a new formulation of the Cauchy-Kovalevskaya theorem for systems,
let us make some preliminary remarks.

Let X be an analytic space, Y one of its analytic subspaces, and I the coherent
Ox-ideal defining Y. For any Ox -module T', let us set

jf^(jr) = ̂ ext^Ox/i^^).
v

There is a canonical homomorphism:

H^)-.H^).

Now, let X and Y be complex manifolds, and let / : Y —^ X be a holomorphic map.
Assume X is n-dimensional. Let Oy^x be the sheaf of holomorphic functions on
Y x X , which are n-form in the X variables.

Let us set1
P/=Py^=%(0^).

DY -> x 1s ^ne sheaf of differential operators (of finite order) from Y to X over /.
Locally, let y be a point of V, and x a point of X, and let {xi} be a local coordinate
system of X. Then, a section P of T>Y->X may be written as

P(y,9^)^ ^ a,(y)^,
|cf|<m

1 Translators' note: Here, Y is viewed as a subspace of Y x X through the graph embedding.
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where 9^ = 9^ - • • 9^. Let us define the action

Py-.xx/-10x^0y

as follows: for any

P = Y^a^y)9^ G Py-^x, ^) € Ox,
a

we define P^? e Oy by the formula

(^)(^)=E^^)[^^)L=/(.)-
In this way, we can consider a section of Vy-^x as an operator from Ox to Oy.
The next statements are clear.

Proposition 2.1.1.
VY-^X^OY 0 .T^x.

f^Ox

Proposition 2.1.2. VY^X is both a left T>y -module and a right f^Vx-module.

Furthermore, let g : Z —> Y be any holomorphic map. Then, there is a canonical
bilinear homomorphism

VZ-.Y xg'^Y-.x-^^z-.x-

We will always consider Py ̂  x as endowed with its T>x and Vy module struc-
tures. For any Px-module M, we define the Py-module f*M by the formula

/*A^=Py_x ^ f~lM=OY (S) f-^M.
f-^x f-^Ox

Then,

rox = oy,
/*PX = Py^x.

Let u i , . . . ,un be a system of generators of the system M over X, i.e., M =
Sj=i ̂ x^j. Assume M. has a resolution

O^-M^V^x^^x-

Then,

E^--0' (2tLl)
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When Uj satisfies (2.1.1), /*(^j) and f^(8^Uj) should also satisfy relations over Y.
/*.M is determined by these generators and relations. For example, let Y = X x Z,
and let / : Y —>• X be the projection. Then,

r(9^)=9^r(u,).
Furthermore, since f*{uj) should be fiber-wise constant, we should get

9^f*(uj) = 0 (where {zy} is a local coordinate system of Z).

In fact, we get
r-M = i4/(iw,) + ̂ -p^u-

v

In the case Y C X , Y = [x == ( x ' , x " ) E X : x1 = 0}, we have

r(Q^u)=a^r(u).
Moreover, f*(9^,Ui) = 9^,Ui\Y and we have relations deduced from (2.1.1). In
writing them down, we obtain /*.M. For example, in the case M = Vx itself, we
do not have any real relations, and so .M corresponds to any function u. Therefore,
9^u are arbitrary. Then, we get f^M = ©^ ^y<9^.

Now, let M. and Af be two systems over X. Let us consider the canonical sheaf
homomorphism

v : f-^om^M^^-^nom^rM^rAT).

It corresponds to taking the initial value of the solution of a partial differential
equation. Whether this v is an isomorphism, is a generalization of the Cauchy
problem. In this chapter, we will give sufficient conditions to solve this Cauchy
problem.

2.2 Cauchy problem - The smooth case
Let / : Y—^X be a smooth holomorphic map. For any Pjc-module M, f*M
corresponds to the system on Y obtained by merging the equations of M. with the
equations of the fiber-wise de Rham system. The next theorem should intuitively
be clear.

Theorem 2.2.1. If f :Y —^ X is smooth, for any coherent Vx -modules M. and ./V,

v : f-^Rnom^M^^Rnom^rM^r^)

is an isomorphism. Moreover, for any k,

f-^xt^ (M,AT) - £xt^ (rM, /*AO

is also an isomorphism.
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Proof. M. i—)- f*M. is an exact functor. Notice that it transforms coherent Vx-
modules into coherent T>y -modules. Since A4 has a free resolution, we may assume
M. = T>x' Moreover, it is sufficient to prove that:

r 7tom^(py^/*.AO ̂  /-w,
\ £xt^(VY^x^m=0 (A:>0) . ^-u

It follows from the next lemma that for A/" = Pjc, we have

Hom^(VY^x.VY-.x) ̂  r^x,
ext^(VY-.x^Y^x)-0 (k>0).

Then, we will work by induction on the length of the free resolution of U. Hence,
we have an exact sequence

0<-A/'^£<-A/''^0,

and we may assume that (2.2.1) holds for C smdAf'. Since £xt\^(pY-.x, .T.A/7) = 0,
we have the commutative diagram

O^^om^(Py^xjW) -^Hom^VY^x.rC) -^^om^(Z>y^xJW) -^0
4 4 r

o ——. /-w —————. f^c —————> r1^ ——. o.
It follows that

Hom^(VY^x^m ^- /-W,
and

^^(Py_x,/W) — Sxt^^Y^xJ^) =0 (k> 0).

D

Lemma 2.2.2. Let f :Y —^ X be a smooth map. Then,

f^nom^Vy-.x^Y^x) ̂ - .T1^
£xt^(VY^x^Y^x) ̂ 0 (k > 0).

Proof. Take a local coordinate system (rc i , . . . ,Xn) on X, and a coordinate system
(a;i , . . . , Xn, y i , . . . , 2/m) on V, such that

/(.TI,.. . , 0^,2/1,...,^) = (.ri,...,^).

Then,
Py_x= Py/(Py^ + • • • + Py9^).

We may consider the free resolution of VY-.X'-

0<-Py^x^^y^^^pp'^...2^^-Py^-0.

MEMOIRE 63



ALGEBRAIC STUDY OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 27

For a section
^=^^a(^2/)<9;? GPy^x,

we get
9y^=Y,9y,(P^x,y)9^.

a.

It is then sufficient to compute the cohomology of the following complex:

O-^VY^X^^^X'-'-^^-.X^^Y-.X^^ (2.2.2)

Using the structure formula

Py_x=00y^,
a

we may transform component by component (2.2.2) into the de Rham complex:

o^OYO^oyQ^-'^oya^OYO^o. (2.2.3)
The cohomology of (2.2.3) is f~^0x9^ in degree zero, and 0 in other degrees.
Therefore,

Hom^Vy-.x^Y-.x) =Q)rlOx 9^ = f-^x.
a

8xt^{VY^x^Y^x) =0 (A; > 0).

D

2.3 Cauchy problem - The embedding case
Let X be a complex manifold, and Y one of its submanifolds. Let T*X be the
cotangent vector bundle of X, and P*X = (T*X \ X)/CX the cotangent projective
bundle of X. Let T^X be the kernel of the canonical projection

r*xxxy^r*y.
Set

P^X = (T^X \ Y)/CX C P*X.

Let P = Vx be the sheaf of differential operators on X. In the first chapter, we
associated to any P-module M its characteristic variety

char(M) C P*X.

If
char(A^) H P^X = 0,

we will say that Y is non-characteristic for M.. The purpose of this section is to
prove the following theorem.
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Theorem 2.3.1. Let M be a coherent Vx -module. Let Y be a submanifold which
is non-characteristic for M. Then, MY = Oy^Ox^- = ^v -^ x ^x>x ̂  ls a

coherent Vy-module, and

Uom^M,Ox}\y^Uom^{MyW

is an isomorphism.

Before proving this theorem, let us first note a few general facts. Let M. =
^ x / ^ x P , with P e Vx' As we proved in Chapter 1,

char(A^) == {^* € P*X : Pm(x^ == 0},

where Pm is the principal part of P. If Y is a hypersurface of codimension 1 of X,
for Y to be non-characteristic for M it is necessary and sufficient that Y be non-
characteristic for P. Moreover, if P is an operator of degree m, in a local system of
coordinates (a;i , . . . , Xn) of X where Y = {x : x\ = 0}, we may assume that

P = % + Pi(^, 9^)9^-1 +.. • + P ,̂ c^),
where x ' = (x^ , . . . , a^n), Qx' = (9^,..., 9^), and P^(a;, Qx') is an operator of degree
i which does not depend on Q^. We have

^ = ̂ +z + P^o^o^1-1 + .. • + P^,c^)%,.

Therefore, as an 0^-module, M is generated by 9^ = 9^ ' " 9 ^ (ai < m). More
precisely,

M^ (]) 0 .̂
Qi<m

In fact, if
^ /,(^)^=0 inA^,

Q:i<m

then
^ /,(,r) ̂  = Q(x, 9^P(x, Q^) in Vx.

o;i<7n

Comparing the terms of the same degree in 9^, we get Q = 0. Therefore, fa = 0.
So,

My=Oy^M= (]) Oy^= Q) Py^\
x ai<7n Q!i<?n

and we obtain the map:

nom^{M,Ox)\Y-^Hom^(MY.OY)=Oy

by
U ̂  (U\y, O^U\Y, .... 9r^~lU\Y),
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where u G OX\Y is such that Pu = 0. Following the classical Cauchy-Kovalevskaya•p
theorem, this is clearly an isomorphism. Since Ox —^ Ox is surjective,

Sxt^(M^Ox)=0.

If we sum up the preceding discussion, we get the following lemma.

Lemma 2.3.2. Let Y be a 1-codimensional submanifold ofX, let P be an operator
of degree m, and assume that Y is non-characteristic for P. Set M. = V/VP. Then,
Theorem 2.3.1 holds for M.. Moreover, as an Ox-module, M. is locally free, and
locally,

My^^y.

Furthermore, Exf^ (M, Ox) == 0 for i > 0.

Now that we have translated the classical version of the Cauchy-Kovalevskaya
theorem (Lemma 2.3.2), let us return to the proof of Theorem 2.3.1. Let us begin
by proving the following proposition.

Proposition 2.3.3. Let Y be a submanifold of X, M a coherent Vx -module, p :
P*X xx Y \ PyX —> P*y the canonical projection. Assume Y is non-characteristic
forM. Then2,

(i) Tor^^OY.M) = ror'DX(py^x,M) is a coherent Vy-module,

(ii) char(Torfx(Oy,.M)) C p(char(.M) Xx Y).

Remark 1. It is clear that Tor]>x (Vy^x, ̂ i) is a Py-module. Recalling that Vx
is Ox-Sat, and considering a free resolution 0 ^— M. ^— V^ ^ — • " of A^, we get

Torf^Oy,^) = Hi(OY(S)V^)
Ox

= Hi(T>Y^x ^ ̂ )
^x

= Tor^(VY^x.M).

Proof. (A) The case where Y has codimenswn 1.
Let us assume that M. is a coherent P^-module, and char(A^) H PyX = 0. Let

•̂  = S^=i ̂ xUj for a system of generators Uj e M. Since cha^(A/() H PyX = 0,
locally there are operators Pj C Vx such that PjUj == 0, Y being non-characteristic
for Pj. Set C = ®^i Vx/VxPj' We get the exact sequence

0^-M^C^-Af^O. (2.3.1)

2 Translators' note: In fact, it was later proved by Kashiwara that Torox (Oy.M) = 0 for
i > 0 (see e.g. [P. Schapira, Microdifferential Systems in the Complex Domain, Grundlehren der
mathematischen Wissenschaften 269, Springer, 1985]).

SOCIETE MATHEMATIQUE DE FRANCE



30 MASAKI KASHIWARA

We have char(£) D P^X = char(A/') H P^rX = 0. Moreover, it follows from the
preceding discussion that Cy is a coherent Py-module, and Torf^Oy,^) = 0
(% -^ 0). Because of (2.3.1), the sequence

O^A^y^£y^A/y^rorfx(Oy,.M)^0

is exact. Therefore, MY is a Py-module of finite type. Since J\f satisfies the
same conditions as .A/f, A/y is a Vy -module of finite type. Since Cy is a coherent
Py-module, we see that My is also coherent. Therefore, My is also a coherent
Py-module. Then, 7orf)x(Oy,.A/() is also a coherent Py-module. Using the iso-
morphism

Tor^^Oy^M) ̂  Tor^Oy^)

for i > 1, we see by induction on i that Tor^ (Oy,M) is coherent. This proves (i).
Let us now prove (ii). Let M = \J^ Mk be a good filtration on M. Denote by ̂
the cokernel of

Tor^^Oy^Mk-^^Tor^^Oy^Mk).

Setting F ' 1 = (B^z-^Z' ^ becomes a graded grPy-module. We have an injective
homomorphism

O^^Torf^Oy.gr^),

so F1 is a submodule of Tor^ {Oy.gT M). Following Grothendieck's results (EGA
—~— Ox

III [4]), if Tor^ (Oy,gTM) denotes the corresponding Op^y-module, then

Tbrf^Oy.gr.M) = Rp^Tor^ (Oy^gvM)).

We have
supp(Torfx(Oy,grA^)) C char(A^).

Since char(A^)n(P*X XxY) -^ P*y is finite, Tor^ (Oy.gr M) is a coherent gr Py-
module. Furthermore, F1 is also a coherent grPy-module (see Proposition 1.2.9).
Hence,

supp(^) C p(supp(rorfx(0y,gr^1())) C p(char(A^) Xx Y).

Let us set At = Tor^ (Oy,M), and denote by A4 the image of

Tor^ (Oy^Mk) -^ Tor^ (Oy,M).

-^' = Ufc-^ is a filtration on the coherent Py-module At. Let us show that {A4} is
a good filtration on Af. Let us denote by Zi (I > k) the kernel of

Tor^^y^M^^Tor^^Oy^Mi).
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Since Z{ is an increasing sequence of coherent sub Oy -modules of Tor^ (Oy.MkY
it is stationary. Hence,

A/fc = rorf^Oy,./^)/^ (I > 0)

is a coherent (9y-module. The commutative diagram

Torfx(Oy,.Mfe-l) —>ATk-i —>0
I I

Tor^^Y^Mk) ———>^k ——>0
I [

Tk-—————>^k^—^
I [
0 0

gives a surjective grPy-linear homomorphism

^-.grA^O.

Following Proposition 1.2.9, grAt is a coherent grPy-module. So, Af = |j^ A/A; is a
good filtration. Hence,

char(A/') = supp(grAr) C supp^) c p(cha^(A/() x^ Y).

(B) The general case.
Let us work by induction on codimV. If Y is non-characteristic for M., then,

locally, there is a hypersurface Y ' D Y which is non-characteristic for M.. Set

p ' • . P " X x x Y ' \ P ^ , X -^ P*y
p " : P^Y' xy/ Y \ P^Y' -> P*y.

•' :P*X XxY'\P^,X -. P*^,
.// . T)^\7'l ^ , \r \ 7~)* '\^1 . T-l^l/-

By the induction hypothesis, 7brox((!)y/,.M) is a coherent Py/-module, and

char(rorfx(Oy/,.M)) C p'(char(^() Xx Y ' ) .

Moreover, Y C Y ' is non-characteristic for every Tor^ (Oy/, A^). By the induction
hypothesis, since codim(y,y') = codim(Y,X) - 1, Toroy/(Oy,Torfx(Oy/,.M)) is
a coherent Py/-module, and

char(roroy/(0y,rorfx(0y/,^())) C p^ch^Tor^ (OY^M) Xy/ Y))
C p(char(A^() Xx Y).

Hence, we have the regular spectral sequence

^ = ror^^y.Torf-^y/,^)) ^ ^+, = Tor^Oy^M)^

SOCIETE MATHEMATIQUE DE FRANCE



32 MASAKI KASHIWARA

where
char(^) c p(char(.M) Xx V).

Since £^1 is the cohomology of the complex f^,

char(^) c p(char(.M) Xx Y).

Since
%=^ (^O),

char(^) c p(char(A^) Xjc Y). There is a filtration on £k such that

gr^)=%_p-
Therefore,

char(ffc) C p(char(.M) Xx Y),

and £k is coherent Py-module. D

After this preparation, we can begin proving Theorem 2.3.1. We will work in
two steps.

(A) The case where Y is a l-codimensional hypersurface of X.
As in the proof of Proposition 2.3.3, we have the exact sequence

O^A^^-£4-A/'<-0,

where

£= (DP/DP,,
j=i

and char(/:) D P^rX = 0.
By Lemma 2.3.2, the theorem is clear for C. Moreover, we have the commutative

diagram

0—Hom^(M,Ox)\y—Hom^(^Ox)\Y—Hom^^\0x)\y

0——Hom^MY^Oy)——Hom^CY^Oy)——^om^(A/y,Oy).

Hence r is injective. Since M. was general, r ' is also injective. Hence, r is an
isomorphism.

(B) The general case.
Let us proceed by induction on the codimension of V. Locally, we may find a

hypersurface Y ' D Y which is non-characteristic for M. Then, we get the isomor-
phism

Hom^{M,Ox)\y -^ Uom^(My^Oy^.
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Since codiir^y,!^) = codim(V,X) — 1, Proposition 2.3.3 shows that Y is non-char-
acteristic for .My/, and

^Om^(A^y/,Oy/)|y^^Om^((A^y/)y,Oy).

Since (.My/)y = .My, we get

Hom^{M,Ox)\Y ^Wom^(.My,Oy).

This concludes the proof of Theorem 2.3.1 which we will now generalize somewhat.
Theorem 2.3.4. Let Y be a submanifold of X, M* be a complex ofVx-modules,
assume that H^(M9) is 0 except for finitely many i's. Assume that H^(M*) is
a coherent Vx-module, for which Y is non-characteristic. Then, Oy (g)^ M* =
T>Y —>x ®ID -M* (where (^L is the left derived functor of<S>) has coherent cohomol-
ogy, and

RHom^(M\Ox)\Y^RHom^(OY 0 M^Oy)L'x UY Ox

is an isomorphism (in the derived category). (We refer to Hartshorne [6] for the
concept of derived categories).

Proof. (A) Assume Y has codimension 1. Using the techniques of Hartshorne [6],
and Theorem 2.3.1, we may assume from the beginning that M. = V/VP. Then,
since M. is a flat 0^-module, Oy ^o^ M, = MY' We already know that

Hom^{M,Ox)\Y ^Uom^My.OY).

Thanks to the Cauchy-Kovalevskaya theorem, £xt1^ {M^ Ox) = 0 (i.e., M. is solv-
able). The fact that £xt^ (.M,(3x) = 0 (z > 2) follows directly from the exact
sequence

O^-M^-VX^-^X^Q-
Since MY is a locally free Py-module, £xt^ (.My, Oy) = 0 for i •=/=- 0. Hence,

RHom^{M,Ox)\Y -^ RUom^MyW.

(B) Assume Y has codimension > 1. Let Y ' D Y be a non-characteristic hyper-
surface. Using the spectral sequence

Tor^^OY^H^M)) => H^^Oy' t) A^C),
Ox

we see that Y is non-characteristic for HP(pYI ^^ M9). By induction on the
codimension of V, we get

RUom^ \0y' t) M^OY')\Y -^ RHom^{OY ^ (Oy/ t) ^•),0y)
Y Ox OY' Ox

^ RHom^ (OY 1> M',0v).
Ox
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Hence,

RHom^{M,Ox)\Y -^ RUom^ \0y I) M^OY^\Y
Y Ox

-^ RUom^(py |) M^Oy).
Ox

D

2.4 Application I - Solvability in the complex do-
main

Let M be a system. We call a system solvable if it satisfies the compatibility
conditions

£x^(M,Ox)=0 f o r z>0 .

Quillen [14] and Palamodov [12] gave sufficient conditions for solvability. Using the
results of § 2.3 we get an analogous result.

Definition 2.4.1. Let M be a system, and M == \J^ Mk a good filtration. Ifgr^ M
is a locally free Ox-module we will say that the filtration is regular.

Remark 2. If (gr^ M)x is a free (9jc,.r-module for every x in U, then the filtration
is regular on U. (EGA IV [4], Frish [5])

Remark 3. The points of X where M = \J^ Mk is not a regular filtration form an
analytic subset of X (^ X).

The purpose of this section is to prove the following theorem.

Theorem 2.4.2. Let M be a system endowed with a good regular filtration. Then,

£xt^(M^Ox)=0 for i ̂  0.

In preparation, we will first prove the following lemma.

Lemma 2.4.3. Let M = \Jj,Mk be a regular filtration of M. Then, locally, it is
possible to find an exact sequence

O^V^-^M^M'-^O

such that conditions (a) and (b) hold.

(a) char(^V) ^ P^X,

(b) The filtration M = \J^ Mk induces on At a regular filtration.
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Proof. Let x be any point of X. Let us construct an exact sequence of the requested
kind in a neighborhood of x. For any Ojc-module J-', let us set ^{x) = F^ ^Ox x ^'
Then, M = gr(M(x)) = (grM)(x) is a graded OQ^-^dule of finite type. IfP^X
is the fiber of P*X —^X over a;, then P^X is isomorphic to Pn-i as an algebraic
variety. If we take a sufficiently large UQ, there exists a sheaf homomorphism

f-.O^^M^)

which is an isomorphism at generic points. Let F be its kernel. Then3, since
Ass(JF) c Ass(0p^x) = {generic point ofP^*X}, Ass(.F) = 0. Therefore, T = 0.
That is, / : 0^^ —>M(;/o) is injective. For suitable VQ and /, we may assume that
/ is induced by

J:OW^M(^).

Therefore, / is also injective. Let

/:PX-^M^)

be a homomorphism inducing / at the level of graded objects. Since

(gT^)(x)-^gr^M(x)

is injective,
^k ̂ x -^ g^+^o M

is also injective. Therefore, V1^ —^ M. is injective. Let At denote its cokernel. Then,

O-.gr^^P^-^gr^^^gr^^O

is exact. Since gv^_^V^(x)—^gT^M{x) is injective, grj\f is a flat Ox-module.
(EGA IV [4]) D

Proof of Theorem 2.4.2. We will prove it by induction on the dimension of X.
(A) The case char(.M) 7^ P*X. Since char(.M) —> X is an open mapping (EGA

IV [4]), we have 7^-l(a;) ^lchar(A/() 7^ Tr"1^) for x G X. Thus there is a submanifold
V with X ^ V, and P *y X U char(A^) = 0. Since A^ is a free Ox-module,

OY ^ M = My.
Ox

Therefore, because of Theorem 2.3.4, £x^^{M,Ox)\Y -^ <?^p (A^y,0y). Let
A^ = IJ/c -^-k be a regular filtration of M. As in the proof of Proposition 2.3.3, we
see that the filtration M.Y,k = OY <^>0x -^-k-, is a good filtration on .My. Since

gr^(A^y)=Oy ^ gTkM,
Ox

3 Translators' note: See [EGA IV, Definition 3.I.I], for the precise meaning of Ass(JF).
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My has a regular filtration. By the induction hypothesis,

Ext^ {My, Oy) = 0 for i > 0.

Hence,
£x^ {M, Ox) =0 for i > 0.

(B) The general case. Locally, we have the exact sequence

0-^Px^A^A/'-^0,

where At has a regular filtration, and char(A/') -^ P*X. Case (A) shows that

£x^ {At, Ox) = 0 for i > 0.

Because of the exact sequence

^^ (̂  Ox) ̂ - Sx^ {M, Ox) ̂  £xt^ (̂ , Ox)

we get
Sx^ (M, Ox) =0 for i > 0.

D

Working as in the proof of the preceding theorem, we get the following theorem.

Theorem 2.4.4. Let M be a system endowed with a regular filtration, and x e X.
Then, it is possible to find a sequence of submani folds ofX

x e Yi^ y^_i ^ ... ^ Yo = x
and a filtration

F° = Hom^ (M, Ox). D F1 D • • . D F1 D F^1 = 0

ofHom^(M,Ox)x, such that

g^(Hom^(M,Ox).) = 0^.

This was E. Cartan's method of solving partial differential equations. (E. Car-
tan [2])

Proof. As pointed out in the proof of Theorem 2.4.3, there is a sequence of subman-
ifolds

x e Yi^ y,_i ^ . • . ^ Vo = x
and exact sequences

O-^p^^.M^A/L-^O,
such that

A^+i=(A/L)y^, M)=.M.
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We may assume that My and My are coherent Py^-modules endowed with regular
nitrations, and that char(A^) H P^ Yy = 0. Since frrt^ (A/^Oyjo; = 0, the
sequence

0 -^ Hom^ (A/L, Oyj^ -^ ̂ om^ (A^, Oy^x -^ Uom^ (V^ , Oy^x -^0

is exact. Moreover, ^omp^(P^,Oyjo; ^ C^, and Uom^(Ny,OY^x ^
Uom^ (M^i,OY^)x- Therefore,

F^Hom^M^OY^x

defines a filtration of 1-iom^{M,Ox)x such that gT^Hom^^M,Ox)x = O^x'
"D

2.5 Application II — Characteristic variety
If M. is a system, then char(.M) is not an arbitrary analytic subset of P*X, but its
properties are not easily clarified. However, for example, we know that the dimension
of char(.M) is not in the interval 0 , . . . , n — 2.

Theorem 2.5.1. Let M. be a system. Assume char(A^) = 0. Then, as a T>x-
module, M is locally isomorphic to Ox-

Proof. Let M. = Ufc -^k be a good filtration of M.. Since cha^A^) = supp(gr.M) =
0, we get grM = 0. Hence, gr^ .M = 0 for k ^> 0 (see EGA III [4]). Therefore, since
M. = M.k to1' k ^> 0, A^ is a coherent C^-module. For ^ € X, using an induction
on ( = dime .M(.r) (where M(x) = C ̂ Ox x -^-x)^ we will show that M. ̂  O1^ in a
neighborhood of a*. If I = 0, this follows clearly from Nakayama's lemma. Let / > 0.
The set Y = {x} is non-characteristic for .M. Therefore, since the right side in

Hom^(M^Ox)x ^Uom^MyW ^Hom^M^C)

is not 0, there is / -^ 0 in 7<omp^(.M, Ox)x- Before concluding the proof, we need
the following lemma.

Lemma 2.5.2. Ox,x is a simple Vx,x-module. (That is, 0 is its only submodule.)

Proof. Let N C Ox,x be a non zero sub Pjc^-module. Let us choose N 3 (p -^ 0.
Let us consider the Taylor expansion of ^p at x. Since there is at least one non 0
coefficient, taking a system of coordinates (a ; i , . . . , Xn) it is possible to find a i , . . . , On
such that

^•••^M^O.

Set
^^•••^eTv.

Therefore, N D Ox,x^ = Ox^x- D

SOCIETE MATHEMATIQUE DE FRANCE



38 MASAKI KASHIWARA

Since the image of / : Mx -^ Ox,x is not 0, the preceding lemma shows that its
image is Ox,x- Therefore, we may extend /, in a neighborhood of x, to a surjective
homomorphism

M^Ox->Q.
Let J\f be its kernel. Since the sequence

O-^AT^M-^OX-^O

is split as a sequence of Ox -modules,

dimj\f(x) = dimM(x) -1=1-1.

Following the induction hypothesis, J\f c± O1^1. On the other hand, since

£xt^(0x^) = £xt^{0x^0x)1-1 = 0,

the sequence
0-^Af^M-^Ox-^O

in a neighborhood of x, is a split exact sequence of P^-modules. Therefore, M ̂
M^Ox^O1^. Q

Remark 4. There is a one-to-one correspondence between systems M. with empty
characteristic variety, and locally constant sheaves £ (i.e., locally free Cx-module of
finite rank), given by

£=Hom^(M^Ox)
M = Uom^ (<?, Ox) = <?* ^cx Ox.

Proof. Since
^om^(Ox^Ox)=Cx^

the result is clear. Q

Theorem 2.5.3. 4 Let M be a coherent Vx -module. Jfdimchar(A^) < dimX-2,
then char(A^) = 0.

Proof. Denote by TV : P^X^X the projection, and set Z = 7r(char(.M)). Then,
codim Z ^ 2. Since we work locally, we may assume that X is simply connected.
Hence, X \ Z is also simply connected. Since over X \ Z, cha^A^) = 0, there is a
locally constant sheaf £ on X \ Z such that

M\x\z=£^0x\x\z-c
4 Translators' note: This result can now be considered as a consequence of the involutivity of

the characteristic variety, which was first proved in [M. Sato, T. Kawai, and M. Kashiwara, Hyper-
functions and pseudo-differential equations, In H. Komatsu, editor, Hyperfunctions and Pseudo-
Differential Equations, Lecture Notes in Mathematics 287, pages 265-529, Springer, 1973]. A
purely algebraic proof appears in [0. Gabber, The integrability of the characteristic variety Amer
J. Math. 103 (1981), 445-468].
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Since X \ Z is simply connected,

F ̂  (T771

^ — ^X\Z-

Therefore, we have the isomorphism

F'.M\x\z^O^\x\z-

Consider a resolution 0 ̂ - M ̂ - P^° ̂  V^. Then, F defines / e F(X \ Z'.O^)
such that P/ = 0. Since codimZ > 2, / is extendable to / ^ F^O^). Then,
because of the analytic continuation property, we have also Pf = 0. Therefore,

F^M\x\z^0^x\z

may be extended to
F:M-^0^.

For the kernel AT of F, we have suppA/" C Z. If Y = suppA/" == 0, then Z = 0,
so we may assume V 7^ 0. Since we work locally, we may assume Y is smooth. If
char(^V) D P^X, then, since char(A^) D char(./V), and dimP^X = n-1, the proof of
the theorem is complete. Therefore, we are reduced to the following Proposition. D

Proposition 2.5.4. Let M be a system, and Y a smooth subvariety of X. Assume
Y ' = suppM C V. Then, char(A^) D P^X Xx Y ' .

Proof. It is sufficient to prove the theorem for Y of codimension 1. (As a matter of
fact, in the general case P^rX Xx Y ' = |jy,, P^nX Xx Y1\ where Y" D Y is any
hypersurface). In a suitable system of coordinates (a; i , . . . , Xn)^ we have Y = {x\ =
0}, Y ' 3 0. Then, we have to show that char(.M) 3 (O.cbi). Since supp(.A/() 3 0,
there is a section u C M.Q such that supp(n) 3 0. We may assume from the start
that M. = Vxu. Since s\ipp0xu C {x\ = 0}, there is a A; such that x\u = 0. For
the minimum such k, we have {x^u}^ ^=- 0. If we exchange M and Vx^^u from
the beginning, we may assume x\u = 0. If we set ker(-n) = Z, then

M ̂  PjcA.

Since x^u = 0, Z 3 x\. Let us proceed by reductio ad absurdum, and assume
char(.M) ^ (Q,dx^). Following the definition, there is a P C PX,O such that

f Pu=0 (i.e.,Z3P),
\ the principal symbol of P is not 0 at (0, dx\).

Thus,
P(^, D) = ̂  + Pm-i{x^ a,/)a^-1 +... + po(^, ̂ ).

SOCIETE MATHEMATIQUE DE FRANCE



40 MASAKI KASHIWARA

However, note that Pj{x^9x') does not depend on ft^. Since

I 3 rri,P,
T 3 [P, x\} = mc^~1 + (terms of order less than m — 2 in <9a;J,
Z 3 [[P, .ri], .z-i] = m(m — l)c^~2 + (terms of order less than m — 3 in 9a;J,

Z 3 [[P,:z:i],;ri]--'^i] =m!,
m times

we get I = Px, and M = 0. D

2.6 Cauchy problem for hyperfunctions
Let M be a real analytic manifold of dimension n, X a complexification, N a sub-
manifold of M of codimension d, and Y C X a complexification of A^:

M71 ^———— N^

'vn_______ 'yn—d

Let M. be a system. The purpose of this section is to prove that, under suitable
conditions, there is an isomorphism

^t^^(M^BM) — SX^^MY.BN).

To this end, we need to develop a suitable formalism.
Let (X^Ox) be a ringed space, let Z C X be a closed set, and let .M, jV be

(9jc-modules. Set

Sxt^^M^) = H^RTzRHom^^M)).

Then, we have the spectral sequences

£xt^^M,HW) ^ ^^(M,^),

H^£xt^,(M,^) ^ ^^,(M,^).

Let M be a real manifold of dimension n, N a submanifold of dimension n — d.
Then,

OTN\M = H^M)

is locally of isomorphic to Z^v. Then, for any complex of sheaves T9 on M, we get
the morphism

T9 N^or^M-^^N^M.
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In fact, since Rr^-(ZM) = W7V|M[—^L this is given by the natural morphism

^\N 0RF7v(ZM) -^Rr^^).
Consider the diagram

x^———y

A^———— TV.

Assume M* is a complex of T>x -modules, and ^(.M*) is a system, with ^(A^*) =
0 except for a finite number of%. It follows from the preceding general considerations
that we have a map

RHom^{M\Ox)\Y-^WyRnom^(M^OxW

Applying the functor F^y, we get

RTN{RUom^{M\Ox)\Y)^^NRHom^{M^Ox)[U}.

Therefore, if every ^(Al*) is non-characteristic for V, because of

RHom^(M^Ox)\Y ^ RHom^iOy |) AT.Oy),
x Y Ox

we get

RYNRHom^(Oy I) M\OY)-^WNR/Hom^(M9,Ox)[2d}.

Theorem 2.6.1. Assume ̂ (.M*) is non-characteristic for V. Then,

WNRHom^OY I) M9,OY)-^RTNRHom^^(M9,Ox)[2d} (2.6.1)

is an isomorphism.

We will make use of the following proposition.

Proposition 2.6.2. (Kawai-Komatsu [17]5) Let P be an operator of degree m, N a
submanifold ofM of codimension 1 for which P is non-characteristic. Then, locally,

Sxt1 (V/VP B^ - J ̂  0 ̂ ^ for ' = 15
^t^^/^^M) - ^ o fori^l.

5 Translators' note: This result already appeared in [P. Schapira, Hyper-fonctions et valeurs au
bord des solutions des equations elliptiques, Sem. sur Ie equations aux derivees partielles, College
de France (1969/1970); and Hyperfonctions et problemes aux limites elliptiques, Bull. Soc. Math.
France 99 (1971), 113-141].
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Proof of Theorem 2.6.1. Step one. Assume d = 1, M = V/VP for an operator P
of degree m. Then, locally, Oy 0^ M ̂  Vy. Therefore,

RYNRHom^(Oy 0 M,Oy)^R^N(Oy)m^B^[l-n]^orN^
<^x

where or^y is the orientation sheaf over TV. On the other hand,

RTNRHom^^ (M, Ox) ^ RTNRHom^^ (M, RI^^x))
c± RTNRHom^^ {M, BM[-n] (g) OTM).

Therefore, we have

H^RMHom^ (Oy^M^ Oy)) c. [ ̂  ̂  orN for i - n - 1 -Y Ox / / [ 0 for z ̂  n-1,

H\RTNRHom^{M^OxW) ^ Sxt^^M^M) ̂ OTM

^ f B^^OTM f o r z = n - l ,
- \ 0 for z ^ n - 1.

So, (2.6.1) becomes an isomorphism at the level ofcohomology (we omit the detailed
proof).

Step two. In the case d = 1 and H\M9) is non-characteristic for V, using
techniques of Hartshorne [6], it is possible to reduce to case (A).

Step three. Let d > 1. Let us choose a codimension 1 submanifold 7V7 D N. Let
Y ' be a complexification of N ' . Shrinking X if necessary, we may assume that Y ' is
non-characteristic for H^M9). Therefore, because of the induction hypothesis, we
get

RTNRHom^{Oy (g) M^Oy) -^ RTNRHom^ {Oy, |) AT,Oy/)[2]
ox Yl Ox

^ RTNRTN'RHom^ \0y, ^ M\0y.)[2}
Y Ox

-^ RrNRnom^(M\Ox)[2d].

D

In the same way, we get the following remark.

Remark 5. Assume Y is non-characteristic for H^M9). Then,

RTNRHom^M^BM) ̂ - RHom^(Oy ^ M^B^-d] ̂ or^M.
Ox

where OTN\M = or^ 0 or-M. Here, or^, OVM are respectively the orientation sheaves
of N and M.
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RTNR^om^ (AT, BM)[-n] 0 OTM

^ RTNRHom^{M\RYMOx)
^ RTNRHom^M^Ox)4*

l

L
^ RTNRHom^{OY 0 Ar,0y)[-2d]

Ox
L ..^ RUom^(py (g) Ar,Rr^Oy)[-2d]

Ox

^ RHom^{OY I) M^BN^orN[d-n\)[-2d}
Ox
L

^ RHom^ (OY ^ M9, BN)[-d - n] 0 or^v
Ox

D
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Chapter 3

Algebraic aspects of
V^ homology

One of the aims of this chapter is to prove that the global dimension of T>x,x is
equal to dimX. This result is related to the fact that the codimension of the
characteristic variety of A4 can only take the values 0,1, . . . , n, oo. Here and below,
we set n = dimX.

3.1 Global dimension of Dx

Using the first Spencer sequence, the following lemma is clear.

Lemma 3.1.1. Locally, any system M. has a free resolution

0^^^p^^_...,_p^n^o

of length 2n.

Proof. Let M == |j^ M.k be a good filtration. Then, the first Spencer sequence

O^M^Tf^Mk^^D^Q^Mk-i^-'^^/^Q^Mk-n^Q
0 0 0 0 0

is exact for k ^> 0 (see § 1.6). Moreover, let

O^/^Q^Mk-i^^o^-Ci^^-'-'C^n^-Oo
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be a free resolution of the coherent (9jc-module /Y©0o M.k-i' Then, we get the
following commutative diagram with exact columns

0 0 0r r r
V^Mk^—V^O^Mk-i^—-'V^f^Q^Mk-n^—0

0 0 0 0 0

\ \ \
^ (g) CQ o <———— V^CIQ ^———— ' " P 0 Cn 0 ^—————— 0

0 ' 0 ' 0

T t t
V (g) CQ i ^————— V (g) £1 i ^————— • • • P (g) £n 1 ^—————— 0

0 ' 0 ' 0 '

\ T T

V^Co^n^————^(g)£i,n^—————••• V^'Cn^^——————0
0 0 0\ r r
0 0 0

Therefore,

O^M^-V^Coo^-(V^Ci^)e(V(S)Co^)^-'V0Cn,n^O
0 0 0 0

is an exact sequence. D

It follows from the preceding lemma that for x € X, global dimVx,x < 2n.

Theorem 3.1.2. For any system M,

£xt^ (A^.'Djc) = 0 fo1'% < min(7^,codimchar(A/()).

Proof. Let A^ = (JA; A^A; be a good filtration. Let

O^A^A)^/:!^—

be a resolution of M. by quasi-free filtered P-modules Ci and strict homomorphisms
(obtained as in Lemma 1.2.4). Hence, we have

Ti

^=(E)^(^).
k=l

Then, Ext^^M.^) is the z-th cohomology of

r^/:*1-^—/:^-.— (3.1.1)
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where C^ = Hom^{d,V), endowed with the filtration

£r = [s C Hom^C^V) : s(C^) C Vi+k tor VQ.

Hence,

^=Q^(-^).
k=l

We have a canonical isomorphism

gr/^^om^gr /;„?),

and

gr/;*°^gr£*1-^... (3.1.2)

is obtained by applying 7^omp(-,P) to

gr^o^-grA^--- ' •

Since
0 ^— gr .M <- gr Co ^— gr £ i <- • • •

is a free resolution of grA^, the z-th cohomology group of (3.1.2) is equal to

Ext^(gTM,V).

Let us set Y = Specan('D) = T*X, and consider the faithful exact functor

{coherent P-module} —^{coherent Oy Module}

defined in Houzel [9]. We will denote it by ^~. Then,

(f^(grA^,P))- = f^((gr^()-,(9y).

Following the theory of regular local rings (EGA IV [4]),

Sxt^^gvM^.Oy) =0 for i < codimsupp((gr.M)^).

Clearly,

codim supp((gr M)^) > min(n, codim supp gr M)
> min(n, codim char(.M))

and
Ext^ {(grM)^, OY) =0 for i < min(n, codim char (.M)).

Therefore, when z < n and i < codim char (.M), it follows from the fact that
£xt^(grA4^'D) = 0, that the z-th cohomology of (3.1.2) vanishes. So, because of
Lemma 1.2.2, the z-th cohomology of (3.1.1) also vanishes, and £xt^(M, T>) = 0. D
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Theorem 3.1.3. For any system M, and for any integer i,

codimchar(f^(.M,P)) > z.

Proof. For a suitable good filtration of M.^ we get a resolution

0^-M^-Co^C^'-

of M by quasi-free filtered P-modules Ci and strict homomorphisms. As in the
proof of Theorem 3.1.2, we endow

C^^Hom^C^V)

with its natural filtration. Then, we get from the exact sequence

/:*°^r*1^..., (3.1.3)
the exact sequence of P-modules

gr/:o<-gr/:i^-... (3.1.4)

by applying the functor Hom^(',T>) to

gr£*°^gr/:*1......

Classical results in commutative algebra show that

codimsupp(<?;r^p(gr.M,P)) > %.

Therefore, setting
Z = supp^^grA^P)),

we see that the z-th cohomology of

gr£*° -^ • • • ̂ grC^ -^ .. • (3.1.5)

vanishes outside of Z. Therefore, Theorem 3.1.3 follows from the lemma below. D

Lemma 3.1.4. Let S be a sheaf of rings satisfying the conditions of §LL Set
X*=Proj(gr5). Let

M'^M^M"
be a sequence of filtered S-modules endowed with a good filtration such that f of =
0. Let H be its cohomology group, and let H' be the cohomology group of

Then,

grM'-^gTM-^grM".

char (7^) C supp(W).
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Proof. Set Z = ker(M -^M"), and consider the nitration induced by that of M.
Set Z = supp(W). Let us show that, outside of Z, the morphism

gvM' —^grZ

is surjective. Outside of Z, the sequence

gr M.' —^gr.M—^gr M."

is exact. Clearly,
grZcgr.M,

and the morphism grZ-^grM^ is the zero homomorphism. So,

gr^M'-^grZ

is surjective outside of Z. Since
Z->U

is surjective, we may consider the filtration on H induced by that of 2. Note that
the^comgosition of gr M' -^Jg^Z with gr Z —^ gr U is the zero homomorphism _Since
grZ—^gTH is surjective, grH is 0 outside of Z. Hence, char(^) = suppgr?^ C
Z. D

We can now prove the following theorem.

Theorem 3.1.5. For any system M,

£xt^^ {M, Vx) = 0 for i > dim X.

Proof. It follows from Theorem 3.1.3 that

codimchar(<?^(A^,P)) > z.

Therefore, for i > dimX, Theorem 2.5.3 shows that

char(^f^(A^,P)) =0.

Following Theorem 2.5.1, locally

Sxt^M^^O^.

Let M = [Jk-^k be a good filtration on M. Working as in Palamodov [12], this
filtration is regular except on a nowhere dense subset. Therefore, the first Spencer
sequence of M.

O^M^V^Mk^-'-V^/^Q^Mk-n^O
0 0 0
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gives a free resolution of length n of M at the points x where M == |ĵ  A^fc is regular.
Therefore,

£.r^(A<Px).=0,
so r = 0, and

£x^(M^x)=0
on the whole of X. Q

Remark 6. For any x C X, global dimT^ = dimX.

It is convenient to set the following definition.

Definition 3.1.6. For any system M.^

{ codim char(.M) if n > codim char(A^),
cd(M) = n if M + 0, char(A^) == 0,

oo if M = 0.

For any section s of M, we set cd(5) = cd(Pjcs).

Then, Theorems 3.1.2, 3.1.3, 3.1.5 show that

£xi1^ (M, Vx) =0 for i < cd(.M),
cd(£x^(M^Vx))>^

Proposition 3.1.7. For any system M,

char(M) D char(f^(A^,P)).

Proof. Since V is flat over Z>,

fStp (A-(, P) = £xt\ {M, P).
T>

D

3.2 Associated cohomology
(In this section, we follow an idea of Sato [15].) Instead of using spectral sequences,
Sato devised in [15, p. 406] a method using associated cohomology. Already at the
time when Sato was at Komaba, the following conjecture was made1.

Conjecture . Let A be an n-dimensional regular ring, and M an A-module of finite
type. Then, T^{M) = {x e M : codim supprr > p} (as for T^, see the explanation
below).

1 Translators' note: For related developments see [M. Kashiwara, B-functions and holonomic
systems, Invent. Math. 38 (1976), 33-53].
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It is possible to give a simple explanation to this conjecture, but we will not give
it here. Using this method, it is possible to build a filtration:

0 C Mn C Mn-i C • • • C Mo == M

of a coherent T>x -module M.. Here,

Mk = {s € M : cd(s) ^ k}.

So, every A4k becomes a coherent P^-module. Hence, it is possible to analyze the
characteristic variety of M..

Given a complex X9 ={-'^Xnd^ X^ -^ • • • }, let us define

^(X*), ^(X*), ^(X*), a<n(X9)

in the following way (Hartshorne [6]):

a>n{X9) = (...^o^im^-.X7^1-^^2...)
a<n{X9) = (•••-.Xn-2-^Xn- l-^imd^- l-^0^•••)
a>n(X9) = (.. • -^O^cokerd^-1 -. X^ -^ X^2. • . )
a<n(X9) = (...-^Xn-2^Xn- l-^kerd^-.0^.••)

Then, we have

H^rr (X^} \ Hw for^n 'H (<r^(X )) = ^ o for z g n,

H\a> (X-)) = { Hi^ iwi^
' ?"' " | 0 foii^ri,

and

(T>n_i(X*) —> <T^^(X*),

^»(X-) -. (7<«+l(X*)

become quasi-isomorphisms. Furthermore, if we consider

X9 ^ ^(X*), (7<,(X*), a>n(X9)^ a^(X9^

as functors of the derived category, then we get

(7>n = ̂ '>n+l5 ^<n = ̂ '<n-l-

For any p <, g, let us set

p<°'<q = ^>p ° <7<g = ^'<g ° <7>p-
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Let X be a topological space, endowed with a sheaf of rings S. For any left (resp.
right) 5-module M, let us set

T?^) = <?^(p<a<^^om5(M,5),<S).

Since, for p <, q < r, we have the distinguished triangle:

p<(7<qRHoms(M,S)^p^(T<rR^oms{M,S)-^q<(T<rR/Homg{M,S)±^,

we get the long exact sequence:

• . • - T^(M) -. T^{M) -. T^(M) -^ T^\M) ̂  • • • .

Also, we have
p-i^pRHom^M.S) = Sxt^M^^-p}.

Hence,

Tp-^p{M) = Sxt^Sxt^M^S^-p]^)

= Ext^^Sxt^M^)^).

Since p^a^qRHom^M.S) = 0, for q < 0, we get Tp^(M) = 0 for q < 0. Further-
more, for i + q < 0, we have Tp^(M) = 0. In fact, this is proved by induction on
q — p. If p == q, or p = q — 1, this is obvious. Let us assume p < q — 1. Then, we get
the exact sequence

rni __ mi _ mi
-'-q—l^q p,q --p,q—l'>

and, by our induction hypothesis, both ends are 0. Therefore, we have T1 = 0.
To summarize:

Proposition 3.2.1. Let X be a topological space, S a sheaf of rings on X, and M
an S-module. Set

^gC^O = Sxt^^a^RHom^M.S)^)

for p < q. Then,

(i) for p < q <r, we get the long exact sequence:

__> mi _ m i _ mi _ mi-}-!
9^ P , r P , q q , r ' ' ' •)

(ii) T^ = 0 for p = q, T^ = T^ for p < 0,

(in) T^ =£xt^q(£xtq^M,S),S),

(iv) T^ = 0 for q < 0,

(v) T^ = 0 for i + q < 0.
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Now, let X be an n-dimensional complex manifold, and let S = Vx- Clearly, if
M is a coherent T^c-module, then Tp ̂  is also a coherent P^-module.

Proposition 3.2.2. Let M. be coherent Vx -module. Then,

(vi) T^(M) == 0 for p > n, T^ = T^ for q>n,

(vii) T^(M) = 0 for i +p > n,

(viii) T^(M)=Ofori<0,

(ix) T^(M) = 0 for i + 0, p < 0, q ̂  n,

(x) T^(M) = M for i = 0, p < 0, q > n,

(xi) T^(M) =0forp<0,n^l,

(xii) T^(M) = 0 forp < 0, n > 2.

Proof, (vi). Since H'RHom^M.V) == 0 for i > n, we get

o'^pR'Hom^(A/l,'D) = 0 for p > n,
(j^qR^Hom^M^) = TW,om^{M.^V} for q > n.

(vii). Using an induction on q —p, and (i), we are reduced to the case p = q — 1.
Then,

UM) = Sxt^^Sxt^M^V)^) = 0

for i + q > n'
(viii). In the same way, working by induction on q —p, we may assume p = q — 1.

It is sufficient to show

Sxt^Sxt^M^V)^) =0 for p < q.

Using Theorem 3.1.3, we get

cdchar(<?^(.M,P)) ^ q,

and Theorem 3.1.2 shows that

£xt^ (Sxt^ (M, V), P) = 0 for p < q.

(ix), (x). I f p < 0 , and q > n, the conclusion follows from

p^a^qRHom^M.V) = RHom^{M,V),

M = RHom^(RHom^(M,V),V).
(xi), (xii). I f p < 0 , we have

p^a<oRHom^(M,V) = Hom^{M,V).
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Furthermore,
WM) = Ex^Hom^M^)^).

If we choose a free resolution 0 <— M. <— CQ <— C\, we get the exact sequence

0 -> Uom^(M, V) -> Hom^{CQ, Z>) -^ Hom^{C^ P).

Let us denote by A/^ the cokernel of

^omp(/;o^)-^Mom^(£i,P).

We know that

proj-dim7^om^(.M, P) < max(proj-dimA/' — 2,0)
< max(n-2,0).

From this, (xi) and (xii) follow. D

Proposition 3.2.3. Let M. be a coherent Vx-^odule. Then,

cd(T^(M))>i+p

Proof. Working by induction on q — p, we may assume q = p + 1. Then,

T^(M) = ̂ P+1(<?^+1(^1,P),P).

Following Theorem 3.1.3
cd( r^ )>z+p+i .

D

Proposition 3.2.4. Assume M. is a system such that cd{M) > q. Then,

T^{M)=0.

Proof. Working by induction on q — p, it is enough to consider the case p = q — 1.
Then,

T^(M) = Ext^^xt^M^V).

Following Theorem 3.1.2, Sxt'1 (M,V) =0. D

Theorem 3.2.5. Let M be a system on X. Then,

0 = T^(M) C T^(M) C T^(M) C .. • C To°J.M) c T°^(M) = M,

and
T^n(M) = {s e M : cd{s) > q}.
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Proof. We have already proven in Proposition 3.2.2 that T°^ n(M) = M, T^(M) =
0. We have the exact sequence

Tq~-\q(M)^T^(M)^T^{M).

Following Proposition 3.2.2, we get

Tg--ll,,(•̂ ) = 0.

Hence, T^^(M) ~~^T^_^^(M) is injective. So, we have proven:

0 = T^(M) C T^(M) C • . . C T°^{M) = M.

Following Proposition 3.2.3,
cd(T^(M)) > q.

Assume for a while that
cd(M) > q.

Then, the last term of the exact sequence

Q^T^(M)^T°^{M)^T^{M)

is 0, following Proposition 3.2.4. Therefore, M = T°{M).
For any fixed x G X, set

Mq = {s C Mx : cd(5) > q}.

Let M-q be a coherent sub Vx -module of M.^ extending Mq in a neighborhood of x.
Shrinking this neighborhood if necessary, we may assume

cd(Mq) > q.

Naturally, T^(M) C Mq. If we consider the diagram

Mq————————>M

T^n(Mq)———————T,°J.M),

we get
Mq C T^{M).

Hence, T^(M) = Mq. Moreover, for any x, we get T^(M)x = Mq. D

Theorem 3.2.6. Let M be a system, and d an integer. Then, the following two
conditions are equivalent.
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(a) £xt1^ (.M, Vx) = 0 for i < d,

fb) cd(A^) > d.

Proof. We have already proven that (b) => (a). Let us prove that (a) => (b). To
this end, let us consider the exact sequence

T^(M)-.T°_^M)^T\,(M).

Following Proposition 3.2.3, we have

cd{T^{M)) > d.

From (a), we get
T\d^) = 0.

Hence, recalling that M = T\^{M), we get cd{M) > d. D

Proposition 3.2.7. For any system M,

n

char(M) = Jchar(f^(.M,Px)).
i=0

Proof. We have already proven the inclusion D. Let us now prove the opposite
inclusion. Set Z = |j, char(^^(A^,P)). For p = q - 1, char(r^) c Z. If we use
the exact sequence

mi mi mi
^p+l^ •'-P.q -'-p.p+li

and an induction on q — p, we get

char(r^) C Z

for any %, j), and g. Hence,

char(A^) = char(r°^(.M)) C Z.

D

Theorem 3.2.8. Let M be a coherent Vx-module. In order for M to locally admit
a resolution of length k:

0-^M-^V^^V^->---^V^,

it is necessary and sufficient that

T^{M)=0 fori<k.
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Proof. Let Af be the cokernel of V^-1 -^T^. Let

'"^jC^Co-^M-^0

be a free resolution of M.. Then,

••'-^c^-^Co-^v^-^y1 '-'-^V^^AT-^O
becomes a free resolution of AT. Moreover,

RHom^Af.V) = {D^ -^V^-1. • . -.V0 ̂ Hom^Co^) -^ •' • }
RHom^M, V) = {nom^(Co,V) -^ Hom^(C^V) -^''' }.

Hence, denoting by T the image of "Hom^^Co^ P) —>• 7^om-p(£i, P), we get:

a^oRHom^(M,'D) = {Z-^omp(/;i,P) - ^ ' ' ' }
= (a>fe+i^omp(A/',P))[A;+1].

So,

R7iom^{a>oRHom^{M,V),V) = RUom^((j^^RUom^{N\V),V)[-k - 1]

and
T^M)=T^\Ar).

It follows that the left side is zero for i — k — 1 < 0, or, in other words, that for
% < k, TQ n(^) = 0- Conversely, assuming TQ ^(.M) = 0 for i < k, let us prove that
M. has a right free resolution of length k. Let

0 ̂  Uom^{M, V) ̂ - Co <- /:i <- • • • ̂ - /:fc

be a free resolution of length k of Hom^{M,V). Using

.M -^ Hom^d-Lom^M, P), P),

it follows that

0 -^ A^( ̂  riom^CQ, V) -> Uom^^, P) • • • ̂  Uom^^ V).

To prove that this is a free resolution of .A/f, we have to show that

Ext^d-Lom^M.V}^) =0, for 0 < i < k (if k > 1 ),
M —> 'Komp(7Yomp(.M, P), P), is injective for /? = 0,
.M ̂  nom^d-Lom^M^)^), for fe > 1.

However
n _ TI—Io=^rllo(^)^^o%(A^)^^ol^(A^)^^ol,o(A^)-^^ol,(A^)^T^l^(A^)=o,
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where T°^(M) = M,

o-^j^-r^^-^j^-r^j^^o
for i > 1, and

T^(M) = ker(A^^om^om^(A^),P)),

TO^CM) = cokev(M^Hom^(Hom^(M,V),V)),

^n(^) = f^l(Wom^(^^,P),P)for^>l.

Moreover, by hypothesis T^^(M) = 0 for % < A;, and the conclusion follows immedi-
ately. ' D

In the constant coefficient case (where the ring is commutative), the preceding facts
are found in Palamodov [13].
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Chapter 4

Index theorem in dimension 1

In this chapter, X is a complex manifold of dimension 1. Therefore, P*X -^ X.

4.1 Special properties of systems in dimension 1
Proposition 4.1.1. Let M. be a system on X.

(a) In order for M to be protective, it is necessary and sufficient that M be
torsion-free.

(b) In order for M. to be maximally overdetermined1, it is necessary and sufficient
that M. be a torsion module.

Proof, (a). If M. is projective, then M. C V^ and M. is torsion-free. Conversely,
assume M is torsion-free. We get an inclusion M C P^. Since the global dimension
of T)^ is 1, the projective dimension of V^/M is < 1. Therefore, it follows from

O^M-^V^^V^/M-^0

that M. is projective.
As for (b), in the one dimensional case, M. is maximally overdetermined if and

only if char(A^) + P*X. D

Proposition 4.1.2. Assume that M. is a maximally overdetermined system. Then,
for x € X the Vx,x -module Mx has finite length.

Proof. It is sufficient to show that a decreasing sequence Mi D M^ D • • • of sub-
modules of Mx is stationary. Let us extend Mi to a maximally overdetermined
system M.i in a neighborhood of x. Let us denote by mi the order of A^, and
rii its multiplicity at x (see Definition 4.2.2). Obviously, m^ ^ rr^+i, n, > n^+i.

1 Translators' note: In general, a system A4 on X is called maximally overdetermined ifcd(A^) >
dimX. In today's literature, such systems are called holonomic.

SOCIETE MATHEMATIQUE DE FRANCE



60 MASAKI KASHIWARA

Therefore, mi = m^+i, ni = n^+i for i ^> 0. Hence, the order and the multiplicity
oiM.i/M.i^.\ are 0. Therefore,

A^^/A^z+i = 0, and Mi = M^+i.

D

4.2 Local index theorem
The aim of this section2 is to show that for a maximally overdetermined system .M,
and for x € X, the local index of M. at a:, defined by

i
Xx{M) = ̂ (-l)' dime ̂ ^(M, Ox).

v=o

may be obtained using "commutative" invariants ofA^The first step in this direction
will be to compute this local index for a maximally overdetermined system M of a
special type. Using the second invariance theorem for the index in Banach spaces, we
can obtain a similar result. But, here, we will use a direct method based on Taylor
series expansions. (In the following proof, we follow the ideas of Prof. Aomoto.)

Proposition 4.2.1. Let V be a finite dimensional vector space, A(t) be an End(V)-
valued holomorphic function defined in a neighborhood of the origin 0. Then, the
kernel and cokernel of

P=tn9t-A(t) :V^Oo-^V^Oo

are finite dimensional, and

dim ker P — dim coker P = (1 — n) dim V.

Proof. For n = 0, the theorem is clear (in fact dim ker P = dimY, coker P = 0).
Below, we assume n > 1. Let us endow V with a suitable hermitian metric. A(t) is
holomorphic for t < R (R > 0), so we may develop it as

00

A(t)=^A^
v=Q

with
|A^| <cR^ ( c>0) .

2 Translators' note: The index theorem for holonomic systems in higher dimension was later
treated by Kashiwara in [M. Kashiwara, Index theorem for a maximally overdetermined system of
linear differential equations, Proc. Japan Acad. Ser. A Math. Sci. 49 (1973), 803-804]. For recent
developments on the index theorem for P-modules, see [P. Schapira and J.-P. Schneiders, Index
theorem for elliptic pairs, Asterisque 224 (1995)]
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Set
B^ = {a = {a^)^N : ay G V, dv\ <, cr~1' for some c > 0}.

Using the norm defined by
\\a\\r = sup a^ T^,

v>N

B^ becomes a Banach space. Below, we assume 0 < r < R. Let us define the linear
operator

A* : B? -^ B?
a i—^ &,

where

We have

- y-[-n—\

uy^ ^ = v ^
li=N

b = (by), b^ = - ^ A^n-1-p.a'p, for v>.N.
v IJ,=N

. ^+n-l
\h I < —— \^ ^R-(l/+n-l-^)y.- ̂ ||/7||l^i/l -^ ,T- / ^ G-^L ' ll^llr?

p.=N

cr^_ r ,
- N [1 R'

Therefore,
^l—n y.

^^-(i-^)-1!!^,
and

^1—n ^
IIA-HS^d-,,)-.

Hence, for N > cr1-7^! - r/R)-\

| |A*||<1.

Hence, using the Neumann series,

1-A*:^^^

is bijective for N > cr1"7^! — r / R ) ~ 1 . Let us set
00

A^ = {ueV^tNOo :u= ̂  a^,^ GV, |a^ | < ar-1' for ^a > 0},
i/=N

oo

^N = {ueV^tNOo :u= ̂  a^.a^ ey,|a^| < a(^ + l)^ for ^a > 0}.
î =7V

Set also Ar = A0., Ar = A0.. We get

hmA^ = liinj^ = V0^0o.
ri0 r[0
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Let us define (p : A^ —> B^ by the formula

A^ 3 u = ̂  a^ ̂  a = (a^) € B ,̂
^>N

and ^ : A^ ̂  B^ by the formula

^3n= ]^a^^ &=(&,) e^, ^^^a^-i.
i^^N v

Then, the diagram

^N Pr- JN
•''•r • ^••r

^ ^

K?^ oA/'
^ I_A- ) ̂

is commutative. In fact, for n = ]>^>^ a^^, we get

P,̂  = ^^^+n-1- ^ A,-^a^
i^^TV N<IJL<V

= ^ (^-n+l)a^_n+i- ^ Av-^a^ i " .
y>N N<^<v

Therefore, if we set ^{P^u) = 6, then

by = dy — — y ^ A^-(-^_i_^a^,
N<p,<^-{-n-l

and b = (1 — A*)a. So, the diagram is commutative. Since (p is bijective, and ^ is
surjective with kernel

N-\-n-2y v^w = c{n~l)dlmv,
i^=N

it follows that

Pr-.A^A?

is injective with cokernel C^-1^1"11". Note that Pr : Ar -> Ar induces

P-.V^OO-^V^OQ
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by restriction. The diagram

0 0

I 1
0 ————. A^ ———> A^ ——> C^-^ dim v —^ 0

0 —> kerPr ———> Ar ———> Ar ————> cokerPr ——> 0

0——.ker/——^Ar/A^ -^Ar/A^———.coker/———>0

0 0

is commutative, and its lines are exact. Since the second and third columns are also
exact, we get the exact sequence

0 -^ ker Pr -^ ker / --> C^-^ dim v -> coker Pr -^ coker / -. 0.

Since
dm^Ar/A^) = dim^/A^) = NdimV < oo,

dim ker/ = dim coker/ < oo. Therefore, dim ker Py, dim coker Pr are finite and

dim ker Pr — dim coker Pr = (1 — n) dim V.

Note that
ker P = Inn ker P^, coker P = Inn coker Pr.

rl0 rl0

Moreover, kerPy. ̂  kerP (0 < r < R). This follows from the fact that, since
P is non-degenerate for t ^ 0, the solutions of P extend naturally. Therefore,
dim ker P = dim ker Pr < oo, so dim coker Pr does not depend on r. Below, we prove
that coker Pr —^ coker P is injective. To this end, consider u G V (g) OQ. Assume that
v = Pu C Ar. It is sufficient to show that u e Ar. Following the definition of Ar,
we may assume

00

u= ̂ a,', = ̂  a^.
i/==7V

Working as above, it follows from

_ N+n-2
^=P(^)+ ^ V^t^C

v=N
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that it is possible to write

N+n-2

v=Pu+ ^ c^, ueA^ c^eV
v=N

Therefore,
N+n-2

[ U - U ) = ^ CytP(u-u)= ^ c,^,
v=N

and u - u is analytic on D = {t : \t\ < R}. Hence, u - u € Ar, and so u e Ay.
Therefore, coker Py, —>cokerP is injective. Hence, for 0 < r ' < r,

coker Pr —> coker Pr'

is injective. Since dim coker Py. = dim coker P r ' ,

coker Py. -^ coker Py./ for 0 < r' < r < R

and
coker Py. -^ Inn coker P^/ ̂  coker P.

r'iO

Therefore,

dim ker P — dim coker P = dim ker Pr — dim coker Pr
== (l-n)dimy.

D

In order to extend the preceding results to the case of a maximally overdetermined
system, we introduce the following definition.

Definition 4.2.2. Let M. be a maximally overdetermined system. Outside its char-
acteristic variety, M. is locally of the form 0'^. For X connected, this m depends
only on M.. We call it the order of M..

We will extend the preceding discussion to the general case of Proposition 4.1.1.
Let M be a maximally overdetermined system, and x e X. The local index \x(-M)
of M. at x is defined by

i
Xx(M) = ̂ (-l)1 dim£xt^(M^ 0),.

i=0

For x ^ char(.M), it is clear that the local index of M is its order.

Theorem 4.2.3. Let M be a maximally overdetermined system of order m. Let
x C X, and n be the multiplicity ofM at x (see Definition 1.4.7). Then, the local
index ofM. is m — n.
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Proof. Step one. Let V be a finite dimensional vector space, let x = 0, let A(t) e
r(X; 0(g) End(Y)), let P = fQt - A(t), and assume M is the cokernel of

V^V^-V^V.
c c

From the exact sequence

O^M^-V^V^-V^V^-O,

it is clear that char(.M) = {0}. The group Sxt^M.O)^ is the cohomology of

p0^y*-.0,0y*.

Following Proposition 4.2.1,

^(M) = ( l-n)dimy.

If we endow M with the filtration induced by V (g) V, we get

gTM =(V/tnTV)(S)V,

where r is the section of V associated to Qf Therefore, the multiplicity of M is
n dim V. In a neighborhood of x ^ 0, since M -^ 0^ y, the order of M is dim V.
Hence, the theorem holds for the special case treated above.

Step two. The case suppM C {x}. In this case the order is 0. Since both the
multiplicity and the local index are additive, we may assume that M is generated
by a section u. Let us choose a coordinate such that x = 0. Since supp(Ou) € {0},
there is n such that

fu = 0.

Hence, we get the filtration

M = V u 3 V t u 3 ' " 3 Vtn~lu^Vtnu=0.

Passing to the corresponding graduation, we are reduced to the case where tu = 0
and u -^ 0. Next we will use the following lemma.

Lemma 4.2.4. Let X = C71, let x C X, and let m be the maximal ideal of C^.
Then, Vx/^x ̂  is a simple V^ -module.

Proof. An element P of M = Vx/^x iri may be represented by

^ a^ a ,€C, %=%1--^:.
|o:|<m

Let N C M be a non zero sub P^-module. We must prove that N = M. Let
p = Sial^m^^ ^ N- Moreover, assume that Oo, ^ 0 for some a such that
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a| = m, that is, assume that P has order m. For m > 0, there is i such that da -^ 0,
a\ =m, a.i> 0. For such an %, we have

[P^Xi}= ^ (a, + l)a,+^ e TV,
|o;|<m—-l

where <^ = (0 , . . . , 1 ,0, . . . , 0), 1 being at the z-th position. This shows that we may
assume m = 0. Hence, N == M. D

Using the preceding lemma, it follows from the fact that M. is a quotient of V/Vt,
that M = V/Vt. In this case, M. has multiplicity 1,

£xt°^M^ 0)o = ker(0o -^ Oo) = 0,
£xt^(M, 0)o = coker(0o -^ Oo) = C,

and the theorem holds.
Step three. The general case. Let x = 0. If m denotes the order of M., it is

possible to find in a neighborhood U of a;, m sections HI, ... ̂ Um of .M, such that
HI , . . . ,'Uyn, generate M. as an Ojc-module on U \ {0} except on a discrete subset.
Let F be the coherent Ox-module generated by HI, . . . , Um, <9t 'u i , . . . , 9tUm- If we
consider on U\ {0} the locally free sheaf Q = ̂  Oui of rank m, then supp(.F/<?) is a
discrete set. Hence, shrinking U if necessary, we may assume that supp(.F/<?) C {0}.
Moreover, for a sufficiently large n,

fOtUi^Q.

So, ^QtUi = Y^^ aijUj for some a^- e r(£7; 0). Set

Q=f^ -(a,,),

and denote by M' the cokernel of V171 ̂ —P771. Consider the homomorphism

M^-M'

induced by Ui. The support of its kernel is included in {0}. The support of its
cokernel is a discrete subset of U \ {0}. Therefore, shrinking U if necessary, we may
assume that M <—.M' is an isomorphism outside {0}. Let J\f' and Af be its kernel
and cokernel. In the exact sequence 0<—^V<—A / (<—A / ( / ^—A/ ' / < (—0, we have already
proven the theorem for A^', A/7 and M. Thanks to the additivity property of order,
multiplicity, and local index, the theorem also holds for M.. D

Theorem 4.2.5. Let X be a, 1-dimensional complex manifold admitting a finite
triangulation. Let M. be a maximally overdetermined system of order m. Then,
char(.A/() is a finite subset of X. Let x(^) ^e ̂ e Euler characteristic of X. Then,
Ext^ (X; M, Ox) is finite dimensional, and

2
^(-l)MimExt^(X;.M,Ox) = mx(X) - ^ n,,
^=0 irCchar^)

where n^ is the multiplicity ofM at x.
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Proof. Set Z = char(.A/(). For any x e Z, let Dx denote an open disc centered at re,
not containing other elements of Z. Set U = X \ (LLez ^ ) x ) ' Because of the exact
sequence

• • • -^ Ext^^ (X; M, 0) - Extp(X; M, 0) -^ Ext^l/; M, 0) -^ • • • ,

we have

^(-l^diiiiExt^Xs.M,^) = ^(-1)'dimExt\,(U;M,0) +
i i

+E(-l)tEdimExtWX;•M•o)•
i xCZ

From
Ext^(£/;A^,0) = H^U'.Hom^M.O)),

it follows that

^{-^dimH^U^nom^M^O)) = mx((7)
i

= m(x(X)-#Z).

Following the exact sequence

• • • ̂  Extp 3^ (X; A^, 0) ̂  Extp ̂  (X; M, 0) ̂  Ext^(D^; M, 0) -^ • • • ,

we get

^(-l^dimExt^JX;^^) = ^(-^ dimEx^^X-^^O) +
i i

+ ̂ (-l)1 dimExt1p(A,; ̂ (,0).
i

Moreover,

Ext^^(X;.M.O) = Hg^{X;Hom^M,0))

= H^^D^Hg^om^M^))).

Therefore,
^(-^Ext^^ (X;M,0) = -mx(9D.) = 0.
i

Moreover,
Ext^(A,; M, 0) ̂  Sxt^{M, 0)^.

As a matter of fact, denoting by D^ the disc centered at x of radius £, we get

£xt^{M^ 0), = InnExt^D,; ̂ , 0).
£
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We have the exact sequence

•••^Ext^^(^;^,C))^Ext^(D,;A^,0)^Ext^(^;^^)^

and the isomorphism

^P^D^-A^) = H^^(D^Hom^M^O)).

Since H'^^^^Hom^M.^ 0)) = 0, the second term vanishes. Therefore,

Ext^(D,; .M, 0) -^ Ext^(D,; .M, 0).

So,
Ext^(A,;.M,0) -^limExt^(D,;A^,0) = Sxt^M.O)^

£

and hence

^(-irdimExt^(X;^,0) = ^(-l)^dim<f.^^(A^, 0),
i i

= m — rix.

Finally,

^(-^dimExt^^;^,^) = m(x(X)-#Z)+^m-n,
i xez

= mxW-^n^.
xez

D

Proposition 4.2.6. Let M be a real analytic manifold of dimension 1, let X be a
complex neighborhood of M, and let M. be any system over X. Then,

EX^(M^AM)=^
SX^(M,BM)=O^
£xt^(M^CM)=^

for i > 0.

Proof. We have an exact sequence O—^M'^M—^M'^ where M' is maximally
overdetermined and M" is projective. Hence, we may assume, from the begin-
ning, that M. is a maximally overdetermined system. Furthermore, we may as-
sume char(A^) C M. Let us show that Sxt^M.A) = 0 on the upper half part
M+ C S*M. Consider a resolution

O^-A^^'D^&P7'1 &P7'2.
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Then, £xt^(M,A) is the cohomology of A^ -4 A7'1 -4 A7'2. Let /i e (A^o)^ and
assume Pi/i = 0. In the upper half part of X \ M, we may assume M -^ 0^.
If we consider /i as defined on a simply connected region U, then /i = Po/o with
/o e 0(£/)7'0. So, £^^(^,^) = 0. From the exact sequence

t^M. A) is the cohomolos-v of A^ ^ Jn P!

O-.TT-^-^J-^C-^O,

we deduce the exact sequence

0 = 8xt^{M, A) -^ Ext^(M,C) -^ Ext^M, TT-^) = 0.

Hence, Sxt^M.C) = 0. Since B = TT^A/A, we have the exact sequence

0 = £xt^(M^ ̂ A) -^ 8xt^(M^ B) -^ Sxt^(M^A) = 0,

8ind8xt^{M,B) = 0. D

Theorem 4.2.7. Let M be a real analytic curve, X a complexification of M, let
M be a maximally overdetermined system on X, and consider x C M. Let m be
the order of M, and n its multiplicity at x. Then,

dim Hom^(M,B)x = n + m,

dimHom^(M,C)x±io = n.

Proof. We may assume that char(A^) = {0}, X = {t : \t\ < e}, x = 0. We have
Hom^(M,B)^ = Rom^{X',M,B) = Ext^(X;.M,0). From the exact sequence

•••^Ext^(X;^,0)^Ext^(X;^(,0)^Ext^(X\M;A^,0)-^... ,

it follows that

dimHom^M'.B)^ = dimExt^ ^(X;.M, 0)

= ^(-1)' dim Ext^(X \ M; M, 0)
i

-^(-irdimExt^X^O)
i

= 2m — (m — n)
= m + n.

Moreover, thanks to the exact sequence

0^.4-^-^C->0,
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we get

dimHom^(M,7r^C)x = dimHom^(M,B) - Xx(M)
= (m + u) — (m — n)
= 2n.

Therefore, to conclude, it is sufficient to show that

Hom^M,C)^io ^Hom^(M,C)^o.

To define an isomorphism

T : nom^{M,C)^io -^ Hom^{M,C)^-io,

consider f-^(x-{-i0) € 'Hom^M.^C^x+iQ- Since /+ is a multivalued analytic function
on x ^ 0, it may be extended as an analytic function on X \ {x < 0}. We denote
its restriction to the lower half plane by f-(x — %0). If we set

r(/+(^+z0))=/-(^-z0),
T is clearly an isomorphism. D
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