Moderate and formal cohomology

associated with constructible sheaves
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Abstract

On a complex manifold X, we construct the functors -(VXV>(’)X and Thom(-,0Ox) of
formal and moderate cohomology from the category of R-constructible sheaves to that of
Dx-modules. It allows us to treat functorially and in a unified manner C°° functions,
distributions, formal completion and local algebraic cohomology.

The behavior of these functors under the usual operations on D-modules is system-
atically studied, and adjunction formulas for correspondences of complex manifolds are
obtained.

This theory provides a natural tool to treat integral transformations with growth
conditions such as Radon, Poisson and Laplace transforms.

Résumé

Sur une variété complexe X, nous construisons les foncteurs RO x et Thom(-,Ox)
de cohomologie formelle et modérée de la catégorie des faisceaux R-constructibles a valeurs
dans celle des D x-modules. Cela permet de traiter fonctoriellement et de maniere unifiée les
fonctions C'*° | les distributions, la complétion formelle et la cohomologie locale algébrique.

On étudie systématiquement le comportement de ces foncteurs pour les opérations
usuelles sur les D-modules, et on obtient des formules d’adjonction pour les correspon-

dances de variétés complexes.
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Cette théorie fournit les outils naturels pour traiter les transformations intégrales avec

conditions de croissance comme les transformations de Radon, Poisson et Laplace.
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Introduction

“Algebraic analysis”, following Mikio Sato’s terminology, is an attempt to treat classical
analysis with the methods and tools of Algebra, in particular, sheaf theory and homo-
logical algebra. This approach has proved its efficiency, especially when applied to the
theory of linear partial differential equations (see [S-K-K]), which has become, in some
sense, a simple application of the microlocal theory of sheaves (see [K-S]). However, while
this sheaf theoretical approach perfectly works when dealing with holomorphic functions
and the various sheaves associated to it (hyperfunctions, ramified holomorphic functions,
etc.), some important difficulties appear when treating growth conditions, which is quite
natural since such conditions are obviously not of local nature. However, as is commonly
known, classical analysis is better concerned with distributions and C°°-functions than
with hyperfunctions and real analytic functions.

These difficulties have been overcome by the introduction of the functor Thom(-, Ox)
of temperate cohomology in [Ka3] and its microlocalization, the functor T'uhom(-, Ox) of
Andronikof [An]. The idea of Thom(-, Ox) is quite natural: the usual functor R Hom(F, Ox )|}
may be calculated by applying Hom(F, -) to By, the Dolbeault complex with hyperfunction
coeflicients, which is an injective resolution of Ox. If B is replaced by Dby, the Dolbeault
complex with distribution coefficients, one gets a new functor which is well-defined and
behaves perfectly with respect to F' when F' is R-constructible. If X is a complexification
of a real analytic manifold M and if one chooses for F' the orientation sheaf on M (shifted
by the dimension), then the sheaf of distributions on M is recovered (this was already
noticed by Martineau [Mr]). If Y is a closed complex analytic subset of X and if one
chooses F' = Cy, one recovers RI'jy1(Ox), the algebraic cohomology of Ox with support
in Y. The functor Thom(-,Ox) is an inverse to the functor Sol(-) :== RHomp, (-,Ox) in
the Riemann-Hilbert correspondence, and this was the motivation for its introduction in
[Ka3]. However, as we shall see below, it has many other applications.

The functor Thom(-, Ox) being well understood, and corresponding -roughly speaking-
to Schwartz’s distributions, it was natural to look for its dual. This is one of the aims of

this paper in which we shall introduce the new functor ~<§>(9 x of formal cohomology. In
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fact, we shall treat in a unified way both functors, Thom(:,Ox) and ~<§>O x starting with
an abstract result. We show that a functor 1 defined on the category Sx of open rela-
tively compact subanalytic subsets of a real analytic manifold X with values in an abelian
category and satisfying a kind of Mayer-Vietoris property, extends naturally to an exact
functor on the category R-Cons(X) of R-constructible sheaves (see Theorem 1.1 for a
precise statement). The functor U > Thom(Cy,Dbx) := Dbx /I'x\v)yDPbx as well as
the functor U — CU%)C)O(O := the subsheaf of C§ consisting of sections vanishing up to
infinite order on X \ U satisfy the required properties, and thus extend as exact functors
on R-Cons(X). When X is a complex manifold, the functors Thom(-,Ox) and - ®0Ox are
the Dolbeault complexes of the preceding ones. When X is a complexification of a real
analytic manifold M, C M%(’) x is nothing but C3; and if Y is a closed complex analytic
subset of X, Cy(%O x is the formal completion of Ox along Y. Moreover, if F' is an R-
constructible sheaf, then RI'(X; F(%(’)X) and RT.(X; Thom(F,Qx[dx])) are well-defined
objects of the derived categories of F'S-spaces and DF'S-spaces respectively, and are dual
to each other (see Proposition 5.2, and its generalization to solution sheaves of D-modules,
Theorem 6.1).

In this paper, we present a detailed study of the usual operations (external product,
inverse and direct images) on these functors. Of course, the results concerning Thom were
already obtained in [Ka3|, but our treatment is slightly different and more systematic.
Our main results are the adjunction formulas in Theorems 7.2, 7.3 and 11.8. In order to
prove Theorem 7.3 we have made use of the theory of Ox-modules of type FFN or DFN
of Ramis-Ruget [R-R] (see also [Ho]) and we thank J-P. Schneiders for communicating his
proof of Theorem 8.1.

Applications of our functors will not be given here. Let us simply mention that the
adjunction formulas appear as extremely useful tools in integral geometry (see [D’A-S1],
[D’A-S2]) and representation theory (in the spirit of [Ka-Sm]) and the specialization of the
functor of formal cohomology leads to a functorial treatment of “asymptotic developments”
(see [Col). Finally, in a forthcoming paper, we shall apply this theory to the study of

integral transforms with exponential kernels, and particularly to the Laplace transform.
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A preliminary version of this paper appeared as a preprint in RIMS-999, Research
Institute for Mathematical Sciences, Kyoto University (1994).

1. Functors on R-constructible sheaves

We shall mainly follow the notations of [K-S] for derived categories and sheaf theory.
In particular, if A is an additive category, we denote by C?(A) the additive category of
bounded complexes of A, and by K°(A) the category obtained by identifying with 0 the
morphisms in C®(A) homotopic to 0. If A is abelian we denote by DY(A) its derived
category with bounded cohomologies, the localization K°(A) by exact complexes. We
denote by @ the canonical functor from K°(A) to D?(A). We define similarly C*(A)
or K*(A) (*x = 4+ or —) by considering complexes bounded from above or below. If R
is a ring or a sheaf of rings, we write for short C*(R), etc. instead of C*(Mod(R)), etc..
For example, if X is a topological space, D?(Cx) is the derived category with bounded
cohomologies of sheaves of C-vector spaces on X.

Let X be a real analytic manifold and denote by R-Cons(X) the abelian category
of R-constructible sheaves of C-vector spaces (see [K-S] for an exposition). Denote by
R-Cons,.(X) the thick subcategory consisting of sheaves with compact support.

Let Sx be the family of open relatively compact subanalytic subsets of X and let us
denote by the same letter Sx the category whose objects are the elements of Sx and the
morphisms U — V are the inclusions U C V, U and V in Sx. Then U — Cy gives a
faithful functor

Sx — R-Cons.(X).

Let A be an abelian category over C. This means that Homa (M, N) has a structure
of C-vector space for M, N € A, and the composition of morphisms is C-bilinear. Let

1 : Sx — A be a functor, and consider the conditions:

(1.1) (@) =0.

for any U, V in Sx, the sequence
(1.2) {¢(UﬁV)—>¢(U}@1/J(V)—>¢(UUV) —0

1s exact.

(1.3)  for any open inclusion U C V in Sx, ¥(U) — ¢ (V) is a monomorphism.
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Theorem 1.1. (a) Assume (1.1) and (1.2). Then there is a right exact functor, unique
up to an isomorphism,

U : R-Cons.(X) — A

such that U(Cy) ~ 1 (U) functorially in U € Sx.

(b) Assume (1.1), (1.2) and (1.3). Then V¥ is exact.

(c) Let ¢ and 1o be two functors from Sx to A both satisfying (1.1) and (1.2), and let
U, and ¥o be the corresponding functors given in (a). Let 0 : ¢ — 1o be a morphism of

functors. Then 6 extends uniquely to a morphism of functors
O : \1’1 — \Ijg.

(d) In the situation of (a), assume that A is a subcategory of the category Mod(Cx) of
sheaves of C-vector spaces on X, and that A is local, that is: an object F' of Mod(Cx)
belongs to A if for any relatively compact open U there exists F’ in A such that F|y ~
F'|y. Assume further that 1 is local, that is: supp (w(U)) c U for any U € Sx.

Then 1 extends uniquely to R-Cons(X) as a right exact functor ¥ which is local, that
is, V(F)|y ~ ¥(Fy)|y for any F € R-Cons(X) and U € Sx. Moreover the assertion (b)

remains valid, as well as (c), provided that both 1, and 1y are local.

Proof. Let Vect denote the category of C-vector spaces and let Sx v be the category of
contravariant functors from Sx to Vect. Let £ : R-Cons(X) — Sx " denote the canonical
functor. Let P be an object of SxV satisfying the following two conditions similar to
(1.1-2).
(1.4) P() =0,
(1.5) For any Uy, U, € Sx,

0— P(UyUU;) — P(Uy) @ P(Us) — P(Up NUy)

is an exact sequence.

Lemma 1.2. Assume that P € Sx" satisfies (1.4) and (1.5). Then for any V € Sx, the

composition

(1.6) Homg,v(&(Cy), P) = Homvyect (§(Cy ) (V), P(V)) = Homyect (C, P(V)) >~ P(V)
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is an isomorphism.

Proof. Let us first remark that P(UU;) ~ @P(U;) for a finite disjoint family {U;} of
objects in Sx. Also recall that any relatively compact subanalytic subset has a finite
number of connected components.

Let us prove the injectivity of (1.6). For U C V let us denote by 1y the canonical ele-
ment of {(Cy )(U). Then the map (1.6) is given by Homs, v (£(Cy ), P) 5 a— a(V)(1ly) €
P(V). Let a be an element of Homg, v (£(Cy ), P). Assuming that a(V)(1y) € P(V) van-
ishes, we shall prove that o(U) : I'(U; Cy ) — P(V') vanishes for any U € Sx. By the above
remark, we may assume that U is connected. If U is not contained in V then {(Cy )(U) =0
and hence o(U) = 0. If U is contained in V, then £(Cy)(U) is a one-dimensional vector
space generated by 1y. Then «(U) = 0 follows by the commutative diagram

§CV)(V) — P(V)

I |
§Cv)(U) — PU)

in which the left vertical arrow sends 1y to 1p.

Let us prove the surjectivity by tracing backwards the arguments above. Let a be
an element of P(V). For a connected U € Sx, define a(U) as follows. When U is not
contained in V', set a(U) = 0. When U is contained in V, define a(1y) to be the image of
a by the restriction map P(V) — P(U). For a general U € Sx, letting U = UU; be the
decomposition of U into connected components, we set a(U) = @a(U;). Then we can see

easily that a belongs to Homg, v ({(Cy ), P) and the map (1.6) sends « to a. Q.E.D.

Now we are ready to prove Theorem 1.1. First we assume that v satisfies the condition
(1.1) and (1.2), and we shall prove (a) in Theorem 1.1.

For an object M € A and U € Sx, we set
P(M)(U) = Homa (4:(U), M)

Then P(M) is an object of SxV and it satisfies the conditions (1.4) and (1.5). Now we

shall show



(1.7) For any F' € R-Cons.(X), the functor U(F) : M — Homgs,v(,(F), P(M)) is
representable by an object of A.

If F = Cy for V € Sx, then U(F) is represented by (V) by Lemma 1.2. Hence
if F'is a finite direct sum of sheaves of the form Cy, then W(F’) is representable. Every
F € R-Cons.(X) is the cokernel of a morphism F; — F» in R-Cons.(X), where F; and F
are finite direct sums of sheaves of the form Cy. Since ¥(F;) and ¥(F,) are representable,
U(F) is represented by the cokernel of W(F}) — W(F,). This completes the proof of (1.7).

Thus we obtained the functor ¥ : R-Cons.(X) — A and it is obvious that ¥ satisfies
the desired condition.

We shall show (b). Namely assuming (1.1), (1.2) and (1.3), we shall show that U(F") —
U(F") is a monomorphism if F' — F” is a monomorphism in R-Cons.(X). There is a finite
family of {U; }j=1..... of relatively open subanalytic sets and morphisms f; : Cyy, — F' such
that F' = > Im f;. Set Fj, = F—I—Z?zl Im f;. It is enough to show that W(Fy) — W(Fj11)
is a monomorphism. Hence replacing F and F’ with F) and Fj,1, we may assume from
the beginning that F/ = F +1Im f for some f : Cy — F’. Let us consider the commutative

diagram with exact columns and rows:

0 0 0
! ! b

O »- 0 » F = F =0
! ! \

0 - K - FoeCy —» F — 0
|| I |

0 - K — Cy — F'/JF — 0
! ! \
0 0 0

Since K is a subobject of Cy, it is equal to Cy, for some subanalytic open subset V' C U.

Applying ¥ to the diagram above, we obtain a commutative diagram :

0 0 0
1 \ 1

o - 0 - U(F) -  YF) — 0
} S 1

0 — V) —» ¥Y(F)eylU) — YEF) — 0
1 1 1

0 — V) — Y(U) — Y(F'/JF) — 0
+ i i
0 0 0



The rows are exact by (1.3) and the right exactitude of ¥, and the columns are exact

except the right one. Hence the right column is also exact.
The property (c) is obvious by the construction above. The assertion (d) follows easily

from supp(W(F')) C supp(F'). This completes the proof of Theorem 1.1. Q.E.D.

Now we consider a stronger condition than (1.2)

for any U, V in Sy, the sequence

{O—>¢(UHV) —YpU)ey(V) = yp(UUuV)—=0
Is exact.

Proposition 1.3. Assume (1.1) and (1.8). Then for any U € Sx and any exact sequence

in R-Cons,.(X)

(1.8)

0-G—F—->Cy—0,
the sequence 0 — ¥(G) — V(F) — U(Cy) — 0 is exact.

Proof. 'We shall prove this in two steps.
(Step 1)  Assume that F' = @%_;Cy, for connected subsets U; in Sx.

We shall prove the proposition by induction on r. We may assume that Cy, — Cy
is given by 1. For r = 2, this is nothing but (1.8). Set U’ = U§:2 U;. Then we have a

commutative diagram with exact rows and columns

0
!
1 5 Go

!

— F — Cy — O

\ 1

0 — CU’HUl — CU/ EB(CUl — (CU — 0.

!
0

We can see easily that u is an isomorphism. By applying the right exact functor ¥ we

0o —»

— Q<+« N+ o

O <

obtain a diagram

0
!
VE) S WG
\J 3
0o — ¥ (G) — U (F) — Y(Cy) — O
\J \J \J
0 — \D(CU’DUl) — \I/((CU/)EB\I/(CUI) — \I/((CU> — 0
! 3
0 0



In this diagram, the bottom row is exact by (1.8) and the columns are exact by the
induction hypothesis. Hence the middle row is exact.
(Step 2) In the general case, we can find an epimorphism F’ — F, where I’ = ©Cy;.

Then we have a diagram

0 0
oo
K — K
) )
o — G — F — Cy — O
\: ) \J
O — GG — F — Cy — 0.
1 )
0 0
By applying ¥, we obtain
U(K) = Y(K)
\J )
0 — ¥(G) — YF) — Y Cy) — 0
\J ) }
0 — ¥YG) — Y(F) — Y(Cy — 0.
\J )
0 0

Since the columns are exact as well as the middle row by (Step 1), the bottom row is also

exact. Q.E.D.

Proposition 1.4. (i) Assume (1.1) and (1.8). Then the functor ¥ : R-Cons.(X) — A,
which is right exact, is left derivable. Let LY denote the left derived functor and set
L;W=H"70L¥. Then L;V =0 for j >1 and L1¥(Cy) =0 for any U € Sx.

(ii) Under the locality condition as in Theorem 1.1 (d), ¥, as a functor on R-Cons(X) is
left derivable.

Proof. Let us denote by P the subcategory of R-Cons.(X) consisting of objects P such
that for any exact sequence 0 - G — F' — P — 0 in R-Cons.(X), the sequence 0 —
U(G) — ¥ (F) — ¥(P) — 0 remains exact. One checks easily that if 0 - P — P —
P" — 0 is exact and if P’ and P” belong to P, then so does P.

Now, let K be a subobject of ©7_;Cy;. Arguing by induction on r, one gets that
K € P. Then the proof follows. Q.E.D.

10



Proposition 1.5. Let U1 and V4 be two functors of triangulated categories from D%_C((C X).
to a triangulated category, and let © : W1 — Wy be a morphism of functors of triangulated
categories. We assume the following conditions:

(i) for any F € D% _(Cx), ©(F) is an isomorphism if ©(F) is an isomorphism for any
compact subanalytic subset Z of X,

(ii) for any closed (resp. open) subanalytic subset Z (resp. U) of X, ©(Cy) (resp. ©(Cy))

is an isomorphism.

Then © is an isomorphism.

Proof. 1t is enough to show that O(F') is an isomorphism for any F' € R-Cons(X) with
compact support. For such an F, there exists a finite filtration X = X D X1 D --- Xy =0
such that F' ‘ XX 41 is a constant sheaf. Since there exist exact sequences 0 — Fx \x,,, —

Fx, — Fx,,, — 0, it is enough to show that ©(Cz) is an isomorphism for any locally

j+1
closed subanalytic subset Z of X. Since Z may be written as the difference of two closed

(resp. open) subanalytic subsets, the assertion follows. Q.E.D.

2. The functors %C;}O and Thom(-,Dbx)

In this section and the two subsequent ones, X denotes a real analytic manifold. We
denote by Ax,CS,Dbx,Bx the sheaves on X of complex-valued real analytic functions,
C*°-functions, Schwartz’s distributions and Sato’s hyperfunctions. We denote by orx the
orientation sheaf on X, by (x the sheaf of real analytic differential forms of maximal

degree and we define the sheaf of real analytic densities:
.AB/( =Q0Ox orx.

If F is an Ax-module, we set

.7:\/:./4}/(®,4X.7:.

We denote by Dx the sheaf of rings on X of finite-order differential operators with coeffi-
cients in Ax. Recall that Mod(Dx) (resp. Mod(D¥”)) denotes the category of left (resp.
right) Dx-modules, and D?(Dx) (resp. DY(DY¥?)) its derived category with bounded

cohomologies.
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We denote by wx(~ orx[dimX]) the topological dualizing complex on X, and for
F € D*(Cx), we set:

D'y (F) =RHom(F,Cx),

Dx(F)=RHom(F,wx).

Let U be an open subanalytic subset of X and Z = X\U. We shall denote by 1% 4

the subsheaf of C§ consisting of functions which vanish on Z up to infinite order. We set:
(2.1) Co®CE = IF,

and we define Thom(Cy, Dbx) by the exact sequence:

(2.2) 0—TIzDbx — Dbx — Thom(Cy,Dbx) — 0.

Let us recall the following result, due to Lojaciewicz (see [Lo|, [Ma]), which will be a basic

tool for all our constructions.

Theorem 2.1 (Lojaciewicz). Let U; and Us be two subanalytic open subsets of X.
Then the two sequences below are exact:
0 —Cu, 0, ®CE = (Cu, &CF) @ (Cu, ®CF)— Cuuw, ®CFE — 0,
0 —Thom(Cy,uu,, Dbx) — Thom(Cy,, Dbx)®Thom(Cy,, Dbx)
— Thom(Cy,nuv,, Dbx ) — 0.

By this result, the condition (1.2) is satisfied and (1.1) is obvious as well as (1.3).

Applying Theorem 1.1, we obtain two exact local functors :

(2.3) -®C : R-Cons(X) — Mod(Dx),

(2.4) Thom(-,Dbx) : (R-Cons(X))°"? — Mod(Dx).

We call the first functor the Whitney functor and the second one the Schwartz functor.
Of course this last functor is nothing but the functor THx () of [Ka2]. Notice that for
F € R-Cons(X), the sheaves F%C}O and Thom(F,Dbx) are C¥-modules, hence are soft

sheaves.
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If £ be a locally free Ax-module of finite rank, we set:

F&CE @uy L) = (FRCT) @4, L,

Thom(F,Dbx ®a, L) = Thom(F,Dbx) @4, L.

For the notions on topological vector spaces that we shall use now, we refer to
Grothendieck [Grl]. In particular we say that a vector space is of type FFN (resp. DFN)

if it is Fréchet nuclear (resp. the dual of a Fréchet nuclear space).

Proposition 2.2. Let F € R-Cons(X). There exist natural topologies of type FN on
I(X; F%C}}O) and of type DFN on T'.(X; Thom(F,DbY)) and they are dual to each other.

Proof. (a) We first prove the result when F' = Cy,U an open subanalytic subset of X.

Set Z = X\U and consider the two sequences:

(2.5) 0—  D(X;CueC¥) — D(X;0P) —  T(X;CzeC¥) —0,

(2.6) 0 ¢ Do(X; Thom(Cy, DbY)) 4 To(X; DY) < To(X; Thom(Cyz, DbY)) < 0.
These two sequences are exact since they are obtained by applying the functors I'(X; -)

or I'.(X; -) to exact sequences of soft sheaves. Moreover I'(X; CU%C?) =T(X;I% ) is

a closed subspace of the F'N-space I'(X;C$), hence inherits a structure of an F'N-space

as well as the third term of (2.5). The space I'.(X;DbY) is the topological dual space

of T'(X;C%¥). Hence in order to see that I'.(X;Thom(Cy,DbY)) is the dual space of

IX; CU%C)O(O), it is enough to show that

F.(X;Tz(Db%)) = {f € T(X;DbY); /uf =0 for any u € F(X;CU%])C?(O)}.
This is easily obtained by the following result.

Lemma 2.3. For any open subanalytic subset U of X, I'.(U;CS) is dense in I'( X ; CU%’)C)O(O)..

The proof is given in Chapter I, Lemma 4.3 of [Ma].
(b) We shall say that two complexes V' and W of topological vector spaces of type F'N
and DF' N respectively are dual to each other if:

(2.7) Vi s Viayil o
(2.8) W s W law
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W =" is the topological dual of V* and w® is the transpose of v°.
(c) Let us prove the proposition when F' € R-Cons.(X). In such a case F' is quasi-

isomorphic to a bounded complex:
F:..oF15F" 50

where F© is in degree 0 and each F7 is a finite direct sum of sheaves of type Cy, U being
open relatively compact and subanalytic (see [K-S, Chap.VIII]). Applying the functors
I'(X; %C)O(O) and I'.(X; Thom(-,DbY)), we obtain two complexes V' and W" of type FFN
and DFN, dual to each other. Moreover V* = 0 for i > 0, W* = 0 for ¢ < 0 and these
complexes are exact except in degree 0. Hence all w® have closed range and consequently
their adjoints v® have also closed range. Therefore, H°(V") and H°(W") are of type FN
and DF N respectively, and dual to each other. It follows from the closed graph theorem
that the topologies we have defined by this procedure do not depend on the choice of the
resolution of F.

(d) Finally consider the general case where F' € R-Cons(X). Let us take an increasing
sequence {Z, },, of compact subanalytic subsets such that X is the union of the interiors of
Zyp. Then I'(X; F(%C‘;(O) is the projective limit of I'(X; Fz, %C}’f) with surjective projections
and T'.(X; Thom(F,DbY)) is the inductive limit of I'.(X; Thom(Fz,,Db%)). Then the
result follows from (c). Q.E.D.

Corollary 2.4. Let u : F — G be a morphism in R-Cons(X). Then the morphisms
['(X;: F&CE) — D(X;GRCYE) and To(X; Thom(G, DbY%)) — T'o(X; Thom(F, Db%)) have

closed ranges.

;From now on, we shall work in D?(R-Cons(X)), the derived category of R-Cons(X).
Recall that D®(R-Cons(X)) is equivalent to the full triangulated subcategory D% (Cy)
of D?(Cy) consisting of objects whose cohomology groups belong to R-Cons(X) (see
[Ka3]). The functors %C}}o and Thom(-,Dbx) being exact, they extend to functors
from D% (Cx) to D®(Dx). We keep the same notations for these functors on the derived

categories.
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Proposition 2.5. Let F and G be in D} __(Cx). There are natural morphisms in

D®(Dx), functorial with respect to F and G':

(2.9) F®Ce - FRCS,
W L W w
(2.10) (FRCY) @4y (GRCF) — (F® G)RCS,
w L
(2.11) (FRCY) @ay Thom(G,Dbx) — Thom(RHom(F,G),Dbx).
Proof.

(i) First let us construct (2.9). Applying Theorem 1.1, we may assume F' = Cy, for an
open subanalytic subset U of X. In this case, the construction is clear.

(ii) Let us construct (2.10). For F', G in R-Cons(X ), the morphism:
(FOCE) ® (GHCT) — (F 0 Q)BCL,

is easily constructed, by using Theorem 1.1, and reducing to the case where F' = Cy
and G = Cy, for U and V two open subanalytic subsets of X. Since this morphism is

Ax-bilinear, it defines a morphism of D x-modules:
(FRCE) ®.a, (GHCT) = (F & G)RCL.

L
Using the natural morphism 9" ® 4, N — M @4, N for complexes of Dx-modules N,
N, we obtain the desired morphism.

(ii) In order to construct (2.11), we need several lemmas.

Lemma 2.6. Let U be an open subanalytic subset of X. Then the composition of mor-

phisms:
(Cu&CE) ® T (x\)Dbx — CF @ Dbx — Dby

1S zero.

This follows immediately from Lemma 2.3.
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Lemma 2.7. Let G € R-Cons(X) and let U be an open subanalytic subset of X. There

exists a natural morphism:
(Cu&C) @ Thom(Gy, Dbx) — Thom(G, Dby ).

Proof. Using Theorem 1.1, we may reduce the proof to the case where G = Cy for a

subanalytic open subset V' of X. Consider the diagram in which we set S = X\(U NV):

(Cu®CE)@TsDby — (Cy®CE) @ Dby — (Cy®CE)® Thom(Cyay, Pbx) — 0

I a
0— F(X\V)Dbx — Dbx — MOm(Cv,Dbx) — 0.

Here « is given by the multiplication. Then it is enough to check that « sends (CU%C}’?) ®

I'sDbx to I' x\v)Dbx. This follows from Lemma 2.6. Q.E.D.

End of the proof of Proposition 2.5. Let j : U — X denote the embedding. In Lemma
2.7, we replace G by j,j !G and use the isomorphism (j.j 'G)y ~ Gy. Applying the

morphism Gy — G, we get:
(Cu®CT) ® Thom(G, Dby ) — (CyRCE) @ Thom (G, Dbx) — Thom(j.j G, Dby).

We can write 7, 'G as Hom(Cy, G). Then, applying Theorem 1.1, we have constructed
a morphism, for F' and G in R-Cons(X):

(FRCY) @ Thom(G, Dby) — Thom(Hom(F,G), Dby).
(Notice that both terms are right exact in F'.) This morphism being A x-bilinear, it defines:
(FRCY) ®.4, Thom(G, Dbx) — Thom(Hom(F,G), Dby).

This construction extends naturally to a morphism in K°(Dy) for F,G € K?(R-Cons(X)).

For F' and G given in R-Cons(X), there exists a simplicial set & and a homeomorphism
i: & — X, such that F' and G are the images of simplicial sheaves (see [Ka3] or [K-S]).
On the category R-Cons(&), the functor Hom(F, G) admits a right derived functor with
respect to F', and it coincides with the usual R Hom(F,G). Now recall that @) denotes

the functor from K° to D® and that “li_r>n” and “li;n” denote ind-objects and pro-objects
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(see [K-S] Chapter 1, §11). Then we obtain “li_r>n” Q(Hom(F',G)) ~ RHom(F,G). where
F'—F
F" — F ranges over the family of quasi-isomorphisms in K°?(R-Cons(X)). Thus we obtain

QUPECE) B.ax Q(Thom(G.Dby)) — i’ Q((F'ECF) ®.4, Thom(G, Dbx))
F'—F
— “lim” Q(Thom(Hom(F',G), Dbx))
F'—F

~ Thom(R Hom(F,G),Dbx) .

This completes the proof of Proposition 2.5. Q.E.D.

Proposition 2.8. Let F and G be in D% _(Cx). There are natural morphisms in

D%(Dx), functorial with respect to F and G:

(2.12) DY F & CE — Dy F&CE — Thom(F, Dbx) — RHom(F, Dbx),
(2.13) G ® (FECT) — (G F)SCT,

(2.14) Thom (G ® F,Dbx) — RHom (G, Thom(F, Dbx)),
(2.15) D' (F ® G)®CE — RHom(G, Dy F&C),

(2.16) '«G @ Thom(F,Dbx) — Thom(G @ F,Dby).

Proof. The first morphism in (2.12) is (2.9). The second one is obtained by choosing
G = Cx in (2.11). The third morphism is equivalent to F' @ Thom(F,Dbx) — Dbx. This

last morphism is obtained by:
w L
(FRCY) ®@ay Thom(F,Dbx) — Thom(RHom(F, F),Dbx).

The morphism (2.13) follows from (2.9) and (2.10). The morphism (2.14) follows from
(2.9), (2.11) and F — RHom(G,G ® F). The morphism (2.15) follows from (2.13) and
G ® D\ (F ® G) — D\ F. Finally, the morphism (2.16) follows from (2.14) and D\ G ®
(G®F) - F. Q.E.D.
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Remark 2.9. Let F € D} __(Cx). Then there is a commutative diagram in D?(Dx):

D (F) ® Ax >y  RHom(F,Ax)
l 1
DY (F)®C¥ — DW(F)®C¥ —  RHom(F,C)
(2.17) 1 l 1
D/X(F)@)Dbx —)7710m(F,Dbx) — RHom(F,DbX)
1 1
D\ (F) ® Bx > RHom(F,Bx).

3. Operations on %C;}O

We follow the notations of [K-S]. In particular we denote by f -1 f,, [, & the operations
of inverse image, proper direct image, direct image and external product in D-modules
theory. Let f:Y — X be a morphism of real analytic manifolds. We denote by ory,x
the relative orientation sheaf ory ® f~lorx. Let Dy_ x and Dx._y be the the “transfer

bimodules”. Recall that they are defined by

Dy_x = Ay @14, [ 'Dx,

Dxcy = Ay ®4, Dyx Qp-1.44 (f AP

and they are a (Dy, f~!Dx)-bimodule and an (f~!Dx, Dy )-bimodule, respectively. For
a left Dx-module M (or more generally, an object of D®(Dx)), we define

1 L —1
STM =Dy ,x Qp-1p, [~ M
and for a left Dy-module 9 (or more generally, an object of D®(Dy)), we define

L
[ =RA(Dxey ®p, N),

L
f. N =Rf(Dxcy @py N).
We can define the same functors for right D-modules. For example for 9t € D?(D?)

L

[N =RAM ®p, Dy_x),
L

f.N=Rf.(M&p, Dyx).
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Proposition 3.1. Let X andY be two real analytic manifolds. Then there exists a natural

morphism in D®(Dx «y), functorial with respect to F € D%__(Cx) and G € D% __(Cy):
(3.1) (FOCE)B(GHCE) - (FEG)®CE,y.

Proof. First assume G = Cy for an open subanalytic subset V' of Y. Denote by v; and

19 the two functors on Sx defined by:
1 (U) = (Cy ®CF) B (Cy &C),

There is a natural morphism v, — 5. Applying Theorem 1.1, we get the result in case

G = Cy. Now let F' € R-Cons(X). We apply the same argument to the functors:
9i(V) = (F&CF)B(Cy ©.CF)
a(V) = (FRCy)®Cxy
and the result follows. Q.E.D.

Remark that morphism (3.1) is not an isomorphism in general. To have an isomorphism,

one has to consider the topological tensor product -&- of [Grl].

Proposition 3.2. Let F' € R-Cons(X) and G € R-Cons(Y'). Then:
(3.2) NX XY; (FRG)®CE, ) ~T(X; FOCL)ED(Y;G & CX).

Proof. The functor -®- being exact on the category of vector spaces of type FN, one
may reduce the proof (using Theorem 1.1) to the case F' = Cz,, G = Cg,, where Z; and

Zy are closed subanalytic subsets of X and Y respectively. Then it is enough to prove:
(X x YiI%v 2, «Zs) = F(XQI?,ZJ@’F(YSI;?ZQ)-
It is well-known that

[(X xY;C%uy) = T(X;C3)RT(Y;C5°).
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For x € X (resp. y € Y) let us denote by E, (resp. Fy) the set of C*°-functions on X
(resp. Y') that vanish at = (resp. y) to infinite order. Then we can see easily that Ea;@Fy
is the set of C°>°-functions on X x Y that vanish at (x,y) to infinite order. Now we remark
that for an FN-space E/ and a complete space F' and a family of closed subspaces F} of F,

we have

((E&F)) = E&((F),

J J
since EQF coincides with the space of continuous maps from E* to F. Applying this

remark, we obtain

['(X x Y§I§(O><Y,lezg) = ﬂ Ea@Fy = ( ﬂ E:c)@( ﬂ Fy) = F(X§I§21>®F(Y§I§?ZQ)~

z€Zy ASYAY yEZo
yEZg

Q.E.D.

Now, let f: Y — X be a morphism of real analytic manifolds.

Theorem 3.3. Let F € D} __(Cx).

(i) There exists a natural morphism in D®(Dy), functorial in F':

(3.3) FUFRCY) = fFIF &S,

(ii) This morphism is equivalent to the morphism in D?(f~1Dx) :
(34) f_l(F®C§—O) — RHomDY (Dy_>x, f_1F®C§./O) .

(iii) If f is a closed embedding, (3.3) is an isomorphism.
(iv) If f is smooth, (3.4) is an isomorphism.

Proof

(i) For U € Sx, set:
U1(U) = Dy_x ®p1py, [ HCy ®CF),
wg(U) — Cffl(U) ®C}O/o
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These two functors satisfy conditions (1.1) and (1.2). Let Z = X \ U. The natural
morphism

Ay @145 [TIR 7z = I3 (2)
defines the morphism:

O(U) : 1 (U) = 2(U).

Theorem 1.1 gives a morphism
Dyox ®p-1py [ (FOCF) = (7 F) & CF.
Then to obtain (i), it remains to use
JTHF®CE) = Dy ox @pp, [HFBCF).
(ii) follows from the adjunction formula:
Hom ps(py ) (Dy - x éffl'px M, M) ~ Hompe(p-1p,) (M, R Homp, (Dy - x,N))

applied with M = f~L(F®CY) and N = f~1F & CF.

(ili) We may assume that Y is a closed submanifold of X. Arguing by induction on
codim Y, we may assume that Y is a hypersurface defined by the equation g = 0, with
dg # 0. Using Proposition 1.3, we may also assume F' = Cy; for an open subanalytic subset

U of X. Let Z =X\ U. We have to show that the natural morphism:

0 : Ij'éz/gfgéz — I%fzmy

is an isomorphism.

Since 1% , N gCY = 9I% z, 0 is injective. On the other hand, any h € I3,y may be
extended to h € I3 7zny- By Theorem 2.1, we may decompose hash=h+ Bg, with
ill € I;’(O’Z, fNLZ € Ij'gy. Hence 6 sends Bl to h.

(iv) We may argue locally on Y and make an induction on dimY — dim X. Hence we may

assume that Y = X x R and f is the projection. Moreover, by Proposition 1.3, we may
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assume F' = Cy for an open subanalytic subset U of X. Let Z = X \ U. Denoting by ¢

the coordinate of R, it is enough to show that
oo . d/0t oo

0= IRz = W1z — Wip-1z) = 0
is exact. This is an easy exercise. Q.E.D.
Remark 3.4. 1If f is smooth, the isomorphism (3.4) defines a morphism:
(3.5) LT FecEY) 5 FocgY.
In fact we may write (3.4) as

L w w

Dxey @py, ([[TFRCF @ory)[—d] ~ fHF®C¥ ®@ory),
where d = dimY — dim X, or equivalently:
15 ¥ hoovy L L W ooV

(ST FRCY") @py Dyox ~ f(FRCYY).

Then (3.5) follows by adjunction.

The morphism (3.5) is also constructed as in Proposition 4.3 by using the integration

along the fiber fi(C*Y) — C¥Y.

Theorem 3.5. Let G € D __(Cy) and assume that f is proper on supp(G). Then there

is a natural isomorphism in D®(Dx), functorial with respect to G :
(3.6) RAG®CE S Rfi(RHomp, (Dy_x,G®CF)).

Proof
(i) Using morphism (3.4) with F' = RfiG, we get the morphism:

RAG®CE — Rf.RHomp, (Dy_x, f 'Rf.G®CT).

By composing with f~'Rf.G — G, we get morphism (3.6). Let us prove that this is an
isomorphism. By decomposing f as a product of a smooth map and a closed embedding,
we may argue separately in these cases.

(ii) First assume that f is smooth. We may suppose supp(G) is contained in an arbitrarily
small open subset of Y (if Z = supp(G) and Z = Z; U Zs, use the distinguished triangle
G—= Gz, Gz, = Gz,nz, Jr—1>) Hence we may assume that ¥ = X x RP and f is the
projection. Arguing by induction, we may assume p = 1. Moreover, by Proposition 1.3,

we may assume GG = Cz, where Z is a closed subanalytic subset of Y.
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Lemma 3.6. There exists a disjoint locally finite family {Z;} of locally closed subanalytic
subsets of Y satisfying the following properties:
) Z=U,;Z;,

(i
(ii) f(Z;) is locally closed and Z; is closed in f~1f(Z;) for any j,
(iii) for any j and z € f(Z;), f~'(z) N Z; is connected,

(

iv) for any j, Z;\Z; is a union of Z’s.

Proof. Since f.(Cz) is a constructible sheaf, there exists a subanalytic stratification
X = UaX4 such that f,.(Cy) ‘X is locally constant of rank N,. Then for any x € X,
f~1(z) (N Z has exactly N, connected components, say {Z;(z)};=1,...n,. We order them
so that if we take z; € Z;(z) then 2; < zj for j < j'. Set Z, ; = J,cx, Zj(z). Hence Z
is a disjoint union of Z, ;.

Let us show that Z, ; is closed in Z|) f~YX,). Take x9 € X,. There exists a disjoint
family {U;},=1,.. n, of open subsets of Y such that Z;(z¢) C U;. Then there exists a
neighborhood W' of xq such that Z( f~1(W) C U, U;. Since f.(Cz) =~ @; f«(Cznu,)

on W, fi(Czny,) is a locally constant sheaf of rank 1, by taking W such that

‘WQXQ
W N X, is connected. Then the fiber of Z(U; — X is connected over W () X, and hence
ZaiNW =ZOU; N f (XN W). This shows that Z, ; is closed in Z () f~1(Xa).
Therefore Z, ; is subanalytic. The family {Z, ;},; satisfies the desired property. Q.E.D.
By this lemma, we may assume G = Cz where Z is a locally closed subanalytic subset

of Y satisfying the following properties:

T = f(Z) is a locally closed subanalytic subset of X,

for any z € T, Z() f~*(z) is connected,

(3.7)
Z is closed in f~1(T),

Z — X is proper.

Moreover we may assume that Z is contained in X x {t € R;—1 < t < 1}. Set S =
(T\T) x {t e R;—1 <t < 1}. Then Z; = S|J Z is a closed analytic subset with connected

fibers over X. Then it is enough to prove the theorem for G = Cg and G = Cz,. Hence we
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reduced the theorem to the case G = Cz where Z is a closed subanalytic subset satisfying
the following two properties:
(3.8) {for any x € f(Z), Z() f~(x) is connected,
ZCcXx{teR0<t<1}.
Let py : Y xR>9 — Y be the map ((a:,t), s) — (z,t£s). Set Zy = pi(ZxR>0) [ X X
[0,1]. Then Z4 is a closed subanalytic set and Z = Z, (1 Z- and T x [0,1] = Z, J Z_.

Therefore we have an exact sequence
0= Crxjo1] > Cz, ®Cz. - Cz - 0.

Hence it is enough to check the theorem for G = Cz,, Cryo,1)-
Thus we have finally reduced the theorem to the case G = Cz, Z being a closed
subanalytic subset of Y satisfying:
Z is proper over X,
(3.9 { for any z € f(Z), Z( f~!(x) is a closed interval containing 0.
Set T'= f(Z). Then Rf.(G) = Cp. We have a commutative diagram with exact columns:

0 0 0
\ ! 1
50 00 a/0t 0

0 = IXr —  f(Z§2) f@yy)  — 0
!

0/0t

0 - ¥ -~ L) Y% neE) - o0
\ \ o 1

0 = Crecy — f(CrocE) 2% f(Cczoce) — 0
\ ! 1
0 0 0

Since /0t has a right inverse given by u(x,t) — fg u(x,t) dt, the top and the middle rows
are exact and hence the bottom row is exact.

(iii) Finally assume that f is a closed embedding. Arguing by induction, we may assume
Y = {z, = 0}, where (x1,...,2,) is a local coordinate system. Moreover, by Proposi-
tion 1.3, we may assume GG = Cz, Z being a closed subanalytic subset of Y. Then we have

Dy x =~ ®r>0Dy (0/0x,)* /k!. Hence for a Dy-module N, we have the isomorphism

Homp, (Dy_x,M) ~ N[a,]] = [[ N® Cal
k=0
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given by
Homp, (Dyx,M) > f+— Zxﬁf((@/@xn)k/k') :
k=0

Hence taking Cy (%C?,O as M, (3.6) reduces to the bijectivity of:
(3.10) Cz0CK = (Cz0Cy)[[zn]]

Let us consider the commutative diagram :

0o — 1% 4 — CY — CZ<V§>Cj’§ — 0

la lﬁ l(s.lo)

0 — TE ] — CFllea]] — (CzeC¥)[z]] — 0

Then Ker o ~ Ker 8 ~ I¥y and « and 3 are surjective. Hence (3.10) is an isomorphism.
Q.E.D.

Remark 3.7 Note that Theorem 3.5 does not remain true if we replace %) with ®.

4. Operations on Thom(-, Db)

The results of this section already appeared in [Ka2], but our construction of the direct

image morphism is slightly different.

Proposition 4.1. Let X and Y be two real analytic manifolds. Then there exists a

natural morphism in D®(Dxyy ), functorial in F € D} (Cx) and G € D% __(Cy):
(4.1) Thom(F,Dbx )X Thom(G, Dby ) — Thom(F X G, Dby ).

The proof is similar to the one of Proposition 3.1 and we do not repeat it.

Remark that the morphism (4.1) is not an isomorphism in general. Similarly to Proposition

3.2, we have:

Proposition 4.2. For F' € R-Cons(X) and G € R-Cons(Y'), we have
(4.2) To(X x Y; Thom(FR G, Dbx xy)) =~ T'e(X; Thom(F, Dbx ))& (Y; Thom(G, Dby)).

Proof. This follows by duality ( Proposition 2.2) from Proposition 3.2. Q.E.D.
Now let f: Y — X be a morphism of real analytic manifolds.
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Proposition 4.3. There is a natural morphism in D*(DY?), functorialin F € D}_ (Cx) {i}
(4.3) £, Thom(f~'F,Dby) — Thom(F,DbX).

Proof. Let Z be a closed subanalytic subset of X. For a Dy-module 9, we have the
Spencer sequence Sp.(9M) and a quasi-isomorphism Sp.(9) — M. Denoting by Oy the
sheaf of real analytic vector fields on Y, we have Spp (M) = Dy @4, A* Oy @4, M. Then
Sp.(Dy s x) gives a resolution of Dy, x as a (Dy,f 'Dx)-bimodule locally free over Dy-.
Hence Fffl(Z)Db¥ (EL@»DY Dy _, x is represented by the complex . = Fffl(Z)Dbg// XDy
Sp.(Dy—x). We have Ky = T'y-1(5)Dby @4, Aoy ®p-14, [ 'Dx. Hence we have
filo) = Tzfi(Dby) ®4, Dx. The integration of distributions gives a morphism [ I
f1(Dby.) — DbY,. Since Db¥ is a right Dx-module, we obtain the morphism u : fi(Ko) —
I'2DbY,. We shall show that the composition

A1) L5 f1(KCo) = T2 Db%
vanishes. The homomorphism
di : K1 = Ff71(Z)'Db§// XAy Oy ®f—1AX f_l'DX — ’Co = Ff71(Z)'Db¥ ®f71-AX f_1DX

is given explicitly as follows. For ¢ € Dby, v € Oy and P € Dy, writing the image of v

by the morphism Oy — Ay ®;-14, f7'Ox as > a; ®w; (a; € Ay, w; € Ox), we have

d1(<p®v®P):<pv®P—Zg0aj®ij.

j

Let s be a section of fi(K1). We may assume s = ¢ ® v ® P, where the support of ¢
is small enough. In order to see that udi(s) = 0, it is enough to show that (ff ov)P —
Zj(ff paj)w;jP = 0. For any C*-function g on X we have

/X ((/f@v)P—;(/nga])ij)g
:/X(/fwv)(Pg)—;/X(/f@aj)ijg
= [o(er o - Sasrra) <o
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Hence we obtain ud; = 0. Thus we have constructed a morphism of complexes
AT p-12(Dby) @p, Sp.(Dy_x)) = Tz(Db%).

Since F + fi(Thom(f~'F,Dby) @p, Sp.(Dy—x)) is an exact functor from R-Cons(X) to
the category of complexes of D x-modules, we may apply Theorem 1.1 and define a natural
morphism:

fi(Thom(f~'F,Dby.) ®p, Sp.(Dy_x)) — Thom(F, DbY)

for F € R-Cons(X) and hence for F' € K°(R-Cons(X)). Thus we get (4.3) since D4 __(Cx)
is the derived category of R-Cons(X). Q.E.D.

Theorem 4.4. Let G € D (Cy) and assume that f is proper on supp G. Then there

is a natural isomorphism in D®(Dy), functorial with respect to G
(4.4) f,Thom(G, Dby) = Thom(Rf.G, Dbx).

Proof. The morphism is constructed applying Proposition 4.3 with F' = Rf.G, and then
using f~'Rf.G — G. By using the graph embedding, it is enough to prove the theorem
in the case of a closed embedding and the case of a smooth morphism.

When f is a closed embedding, applying Proposition 1.3, we can reduce to the case G = C»
for a closed subanalytic subset of Y, and then one easily sees that (4.4) is an isomorphism,

using the local structure theorem of distributions supported by a submanifold:
I'y (Dbx) ~ Dxy &p, Dby .

If f is smooth, the proof that (4.4) is an isomorphism goes as in Theorem 3.5, and one
can reduce the theorem to the case where Y = X x R and f the projection to X, G = Cy4
where Z satisfies the condition (3.9). Thus we have to check the exactitude of

0/t f~dt
0— fgrz'Dby — fgrz'Dby — Ff(Z)DbX — 0.

This is an easy verification (cf. [Ka3, Lemma 4.5]). Q.E.D.
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For F € D% __(Cx), the morphism (4.3) defines the morphisms

(4.5) Dxey Gp, Thom(f'F,Dby) — f'Thom(F, Dby)

(4.6) Thom(f~*F,Dby) — RHoms1p, (Dxcy, f Thom(F, Dbx)).

Theorem 4.5. Let F € D} __(Cx).

(i) Assume that f is smooth. Then (4.5) defines the isomorphism:

(4.7) RHomp, (Dy_x, Thom(f ' F,Dby)) = f~Thom(F,Dbx).

(ii) Assume that f is a closed embedding. Then (4.6) defines the isomorphism:
(4.8) Thom(f ' F,Dby) > RHomp, (Dxy, Thom(F, Dbx)).

Proof. (i) Set d = dimY —dim X. Since f is smooth, f'S >~ f~1S @ ory, x[d] for any sheaf
Son X, and Dx.y <§I§>DY N ~ RHomp, (Dy_x,N) ® ory,x[d] for any Dy-module 1.
This defines the morphism (4.7). To prove that it is an isomorphism, we may reduce the
proof to the case Y = X xR, f is the projection and F' = Cz, Z being a closed subanalytic

subset of X. Then one checks that the sequence:

0— f_lrzpbx — Ff—1(Z)DbY 8/—6; Ff—1(Z)Dby — 0

is exact. Here ¢ denotes the coordinate of R.

(ii) Let us prove first
(4.9) RHomp, (Dxcy, Thom(Fx\y,Dbx)) = 0.

The question being local, we can write Y = {x = (x1,...,2,);21 = -+ = x; = 0}.

Set Y; = {z;x; = 0}. Then we have an exact sequence

0+ Fx\y < @iFx\y, ¢ DiziFx\(viuy;) < - -
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Hence by replacing F' with Fx\yv,, Fx\(v;uy;), etc., we may assume that Fx\y = Fx\y,

for some 7. Since we have

RHO’H’LDX (Dxey, 'Thom(FX\y, Dbx))
L
~ RHomp, (Dxcy, @by, Dy,cv, Thom(Fx\y, Dbx))

>~ R?‘[O?TLDYi (’D}/i<_y, RHO'/TLDX (’DX<_YI.,77l0m(FX\y,'DbX))> R

we can reduce to the case when Y is a hypersurface defined by the equation {g = 0} with
dg # 0. We may also assume F' = Cy, U being an open subanalytic subset of X. The
multiplication by g on Thom(Cyy, Dbx ) is surjective (resp. injective) since it is a quotient
of Dbx (resp. a subsheaf of j,Dby\y where j : U\Y — X is the open embedding). This
shows (4.9).

Using (4.9) and the distinguished triangle Fx\y — F — Fy+—l>, it remains to prove

4.8) when F = f,G with G € D%_ (Cy). Then by Theorem 4.4,
( ) R—c y

L
RHomp, (DX<_y,77L0m(F, DbX)) ~ RHomp, (DX<_y,DX<_Y ®Dpy 77zom(G,Dby))

L
~ RHomp, (Dxcv,Dxey) @p, Thom(f 'F,Dby)
and the result follows from

RHomp, (Dx«v,Dx«y)~Dy.

Q.E.D.
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5. The functors - (%(’)X and Thom(-,Ox)

i,From now on, all manifolds and morphisms of manifolds will be complex analytic. If X
is a complex manifold, one denotes by Ox its structural sheaf and by Og?) the sheaf of
holomorphic p-forms. One denotes by dx the complex dimension of X, and we also write
2 x instead of OE?X). We denote by X the underlying real analytic manifold of X and by
X the complex conjugate of X, i.e. the complex manifold with real underlying manifold
Xr and structural sheaf O+, the sheaf of anti-holomorphic functions on X. Then, X x X
is a complexification of Xg by the diagonal embedding Xgp — X x X. If f: Y — X is a
morphism of complex manifolds, we denote by fr the real analytic underlying morphism.
However, if there is no risk of confusion, we often write X or f instead of Xg or fr. For
example, we shall always write C§ instead of C§ , or D} . (Cx) instead of D __(Cx,).
We denote by Dx the sheaf of rings of finite order holomorphic differential operators on
X, and by f -1 f P S, & the operations on holomorphic D-modules. We denote by Dy _, x
and Dy, y the “transfer bimodules”. Notice that Dx and D+ are two subrings of Dx,

and if P € Dy, Q € D, then [P,Q] = 0.
Definition 5.1. Let F € D} _(Cx). We set:

F&O0x = RHomp_(O, F&CF).

Thom(F,Ox) = RHomDY(Oy, Thom(F, Dbx)) .

We call - ®0O x and Thom(-,Ox) the functors of formal and moderate cohomology,
respectively. The objects F®Ox and Thom(F, Ox) belong to D*(Dx). If G is a locally

free Ox-module of finite rank, we set:

F®G=(F®0x) 20, G,

7710m(F, g) = 77zom(F, OX) ®(9X g.
Notice that:
w L w
F®Ox ~Qx @p_ (F®CY)[—dx]
and similarly for Thom(F,Ox).
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Let F € D%_C(C x ). Applying Proposition 2.8, we get a sequence of morphisms:
D\ F ® Ox — D F&Ox — Thom(F,Ox) — RHom(F,Ox).
Moreover, if G € D __(Cx), there are natural morphisms:

G® (FeOx) — (G F)®0x

Thom(G @ F,Ox) — RHom (G, Thom(F,Ox)) .

We shall have to work in the derived categories of FFN or DF N-spaces. Let us recall
their constructions. Denote by C?(FN) the additive category of bounded complexes of
topological vector spaces of type F'N and linear continuous morphisms and by K?(FN) the
category obtained by identifying to 0 a morphism homotopic to zero. Then D®(FN) is the
localization of K®(FN) by the complexes which are algebraically exact. The construction
of D*(DFN) is similar. The duality functors between FN and DFN spaces being exact,
they extend to duality functors between the derived categories.

The bifunctor -®- on the category of FN-spaces (resp. DFN-spaces) being exact, it

extends to the derived category:

® : DY(FN) x DY(FN) — D°(FN)

® : D(DFN) x D*(DFN) — D*(DFN).
Proposition 5.2. Let F € D% __(Cx). Then we can define
RU(X;F®Ox) and RU.(X;Thom(F,Qx)[dx])

as objects of D*(FN) and D*(DFN) respectively, and they are dual to each other.
This proposition will be generalized to the case of solutions of D-modules in § 6.
Proof. First assume F' € R-Cons(X). Set:
Vi=T(X; Focy®)
W = T'o(X; Thom(F, Db T)).
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By Proposition 2.2, the space V' (resp. W™¢) is naturally endowed with a topology of
type FN (resp. DFN) and these two spaces are dual to each other. The complexes
RU(X; F ® Ox) and RI'.(X; Thom(F,Qx[dx])) are represented by the complexes:

0 —Vl =V —... sVvix 90
]

0 — W —wdxtl ... W0 0,
D

respectively. Now let FF € D} (Cx). By [Ka3, Theorem 2.8], F is represented by a
bounded complex of R-constructible sheaves, and the proof is similar. Q.E.D.
We shall now study the functorial operations on the functors of formal and moderate

cohomology.

Proposition 5.3. Let X and Y be two complex manifolds. Let F' € D%_C((CX), G e
D% _(Cy). Then there exist natural morphisms in D®(Dx xy ), functorial with respect to

F and G:

(5.1) (F&Ox)R(G®Oy) — (FRG)® Oxxy,
(5.2) Thom(F, Ox)XThom(G, Oy ) — Thom(F K G,Oxxy).
Proof.  Apply RHomp_ _(Ox,5, -) to the morphisms (3.1) and (4.1). Q.E.D.

Proposition 5.4. Let F € D% _(Cx) and G € D% __(Cy). Then there are natural

isomorphisms:

(5.3) RT(X x Y;(FRG)®Oxyy)~ RT(X; F®Ox)®RI(Y;G & Oy),

(5.4) RT.(X xY;Thom(FXG,Oxxy)) ~ RT.(X; Thom(F,Ox))&RT.(Y; Thom(G, Oy)).

Proof. The results follow from the corresponding ones with O replaced by C*> or Db in
Propositions 3.2 and 4.2. Q.E.D.
Now let f:Y — X be a morphism of complex manifolds. We shall often make use of

the following morphisms.
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Lemma 5.5.

(i) For 91 € D®(Dy, ), we have the canonical isomorphisms:
(5.5) RHomy-1p_ (f71Ox, RHomp,, (Dy,—xz, M)
X~ R'HOTI’LDY ('Dyﬁx, R,HOTTLD?(O?, ‘ﬁ)) y
(56) i*R ’HomD?(O?, ‘ﬁ) [dy] ~ R’HOmDY(Oy, E* 9?) [dx] 5
(57) LRHomD?(O?, ‘Jt) [dy] ~ R’Hompy((’)y, fLR! ‘ﬂ) [dx] .
(ii) For M € D*(Dx,), we have a canonical morphism:
(5.8) [T RHomp_(O5, M) = RHomp_(Og, fr'M).
Proof. Let us prove first (5.6). For a Dy,-module N, we have
L L L
Dxzevi @Dy, M~ Dz, v ®p_ (Dxy @py N).
Hence we have
L
Ox @p_ fr, N
1 L L L
~ Rf, (f Qy ®f—1DY D7<_7 ®D7 (DXeY XDy ‘ﬁ))
L 1 L L
~ Rf.(Dxey @py (/7 Q% @p-1pg Px oy @y M)

L
Hence (5.6) follows from f~'Qx @s-1p_ Dy 3 = Q5

The proof of (5.5) is similar. We have
RHoms-ip_ (f~'O%, RHomp,, (Dy,—x,,MN))
~ RHomp, (Dy—x, RHoms-p_(f 'O, RHomp_(Dy 5, M)
~ RHomp, (Dy—x, RHomp_(Dy 5 &5 1p_ f~'Og.M).)

L
Then (5.5) follows from Dy ,+ ®p-1p_ [10% ~ O
The isomorphism (5.7) is obtained by the same method as for (5.6).

Let us prove (5.8). There is a morphism
F R Homp_(Ox, M) = RHomp_(Dy 5 Gpp_ f 105, Dy 5 Gprp_ f100)
~ RHomp_(Og Dy_x é)f—lpy ftom).
Applying the functor Dy _, x é} f-1Dy *, We obtain the desired morphism. Q.E.D.
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Theorem 5.6. Functorially in F € D} _ _(Cx), there are a natural morphism in D®(Dy):
(5.9) U F@0x) — fTIFR Oy,

and a natural morphism in D*(Dx):

(5.10) [, Thom(f~'F, Oy[dy]) — Thom(F, Ox[dx]).

Proof. In order to get (5.9), we apply (5.8) with 0t = F %C;}O and apply Theorem 3.3. In
order to get (5.10), we apply (5.7) with 9 = Thom(f~'F,Dbx) and use Proposition 4.3.
Q.E.D.

Theorem 5.7. Let G € D%_C(Cy) and assume that f is proper on supp G. Then there

are natural isomorphisms in D(Dy), functorial with respect to G:

(5.11) Rf.RHomp, (Dy_x,G®0y) < RAHG® Ox,
(5.12) L’Thom(G, OY [dy]) ;> ’Thom(Rf!G, OX [dx]) .

Proof. In order to get (5.11), apply (5.5) with 9t = G%’)C%" and use the isomorphism (3.6).
Similarly, to obtain (5.12), apply (5.7) with 91 = Thom(G, Dby ) and use the isomorphism
(4.4). Q.E.D.

Theorem 5.8. (i) If f is smooth, there are natural isomorphisms in D°(f~1Dx):

(5.13) FUF®Ox)"5RHomp, (Dyx, [ F & Oy),

(5.14) RHMomp, (Dy_x, Thom(f1F, Oy ))—>f 1 Thom(F,Ox) .

(ii) If f is a closed embedding, there are natural isomorphisms in D?(Dy):

(5.15) FUF®0x) S5 F® 0y,
(5.16) ﬁom(f’lF,Oy);i_l’Thom(F, Ox).
Proof.

(i) Assume that f is smooth. To obtain the isomorphism (5.13), we apply (5.5) with
N = f‘lF(}%Cl‘}o and then Theorem 3.3 (iv). Similarly to obtain the isomorphism (5.14),
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we apply (5.5) with 91 = Thom(f~1F, Dby) and then Theorem 4.5 (i).

(ii) Assume that f is a closed embedding. First, let us prove

L w
(5.17) 'Dy_>X ®DX (Fx\y ®C§<O) = O,

L
(518) DY_>X ®DX MOm(FX\y,Dbx) =0.

As in the proof of Theorem 4.5, we can reduce to the case where Y is a hypersurface
defined by a holomorphic equation {g = 0} with dg # 0. Using Proposition 1.3, we may
assume that F' = Cy, U being open subanalytic in X. Let Z = X\U. Then we have to
check that g acting on 7% 5,y as well as g acting on Thom(Cyny, Dbx ) are isomorphisms,

which is clear. Applying R Homp_(Ox, -) to (5.17) and (5.18), we get

X

i_l(Fx\Y(VXV)OX) =0,

[ Thom(Fx\y,Ox) = 0.

Using the distinguished triangle Fx\y — F — Fy +—1>, we may assume F' = f,G for some

G € D% __(Cy). Then the isomorphisms (5.15) and (5.16) follow from Theorem 5.7 by
L

applying Dy ,x ®p, - to (5.11) and (5.12), noticing that:

L
Dy _x ®py Dxcy =~ Dyldx — dy]

L
Dy_x @py, RHomp, (DY%X,W) ~ MN.

Q.E.D.

Proposition 5.9. Functorially in F € D% _,(Cx), there are a natural morphism in

Db(Dx).‘

(5.19) [ (f T F®Oyldy]) — F & Ox|dx]
and a natural morphism in D®(Dy):

(5.20) f Y Thom(F,Ox) — Thom(f~'F, Oy).

Proof. By decomposing f as the product of the graph embedding ¥ — X x Y and the

projection X x Y — X it is enough to define those morphisms for a closed embedding
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and a smooth morphism.

(i) Closed embedding case. We have by (5.5)

[P @Oy dy)Ef,(f7H(F © Ox)[dy])

~

L w
v ®py (Dysx ®py (F®Ox)[dy])

12

Dx
Dxcy @py RHomp (Dxey, (FOx)[dx])

We get (5.19). The morphism (5.20) is nothing but (5.16).
(ii) Smooth case. We have by (5.14)

[ Thom(F,Ox) = Dy_,x ®-1py f~ " Thom(F,Ox)
<:,DY%X ®f—1DX R'HOWLDY (DY%X, Thom(f*lF, Oy))
— 77l0m(f_1F, Oy) .

Similarly by (5.13)

[T IFEOy[dy)) = RA(Dx oy ®p, (fFE0y[dy)
~ RfiR Homp, (Dy_x, [~ F&0y[dy])[dy — dx]
ERAF N (FRO0x)[2dy — dx]
~ Rfif(F®Ox)[dx]
— FoOx[dx] .

Q.E.D.

As a consequence of the stability by external product (Proposition 5.3) and by inverse

image (Theorem 5.8), we get natural morphisms for F and G in D} __(Cx)
w L w w
(5.21) (Fo0x) R0y, (Gr0x) = (F @ G)®0x,
L
(5.22) Thom(F,Ox) @0y Thom(G,O0x) — Thom(F ® G,Ox).

Let us give a few applications of the preceding results.

Let M be a real analytic manifold, X a complexification of M, i : M — X the
embedding.
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Theorem 5.10. Let F € D% __(Cps). Then we have
(5.23) iWF®Ox ~ i (F®CY),
(5.24) Thom (i F, Qx[dx]) ~ i, Thom(F, Dby,).
In particular:
Cy ® Oy ~ Chrs
Thom(D'yCyr, Ox) ~ Dbyy.
Notice that (5.24) is a result of Andronikof [An]|, and the last formula is due to
Martineau [Mr].
Proof. Let us identify X and Xy for simplicity. Then
i,F ®Ox = RHomp_(Ox, i F & CF)
by the definition, and
i, F ©CE ~ RHompy (Dy_, x5 F O CF)
by Theorem 3.5. Hence we have
i F&Ox ~ RHomp_(Ox, R Homp (DX%XXy,FgZI)Cﬁ))
~ RHompy (Dy_, vy (Iéfpy OX,F%CX;)
~ RHomp, (DX,F<VXV>C]?/?)
~ i (FRCT).
The proof of (5.24) is similar, using Theorem 4.4. Q.E.D.

Next, we consider a closed complex analytic subset Z of X. Let Z, denote the defining

ideal of Z in X. Recall (|[Gr2]) that one sets for an Ox-module F:
Flz =limF/TLF,
k

Liz(F) = h_n;Hom@X(O/zg,f).
k

One denote by RI'(z(-) the derived functor of I'iz(-). One calls F TZ the formal comple-
tion of F along Z, and RI'[z)(F) the algebraic cohomology of F supported by Z.
It is a well-known fact that OXTZ is a flat O x-module and ]:TZ ~ F Qoy (OXTZ) for a

coherent O x-module F.
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Lemma 5.11. For a closed submanifold Z of X, we have the isomorphism

-~

(5.25) OX |Z%HOmDZ(DZ*>X,OZ).

Proof. We have the homomorphism Dy, x ®p, (OXTZ) ~ Oz ®oy ((OXTZ) — Og.

Since it is Dy-linear, we obtain the D x-linear homomorphism

~

(5.26) OX ‘Z — Hompz (Dzﬁx, Oz) .

We shall show that it is an isomorphism. The question being local, we may assume
X ={(v,y);z €C"ye C"} and Z is given by z = 0. For a = (a1, -+, ) € Z5, let us
denote by DY the differential operator (9/0x1)* ---(9/0x,)*. Then we have

Dyx ~®.DyzDy.

This implies
Homp,(Dz—x,0z) ~ H Oz ® (CDY)*,

~

and the homomorphism (5.26) is given by Ox |z > u — (Dgu‘z)a €[, Oz ® (CDY)*. It

is obvious that this is an isomorphism. Q.E.D.

Theorem 5.12. Let Z be a closed complex analytic subset of X. There are natural

isomorphisms:
(5.27) Cz®O0x =~ Ox |z,
(528) Thom((CZ, O)() ~ RP[Z](O)() .

In particular, C» <§ Ox is concentrated in degree 0.

Notice that Dufresnoy [Du| already proved that Cy %O x is concentrated in degree
ZETO0.
Proof. (i) Let us prove (5.27). The morphism Ox ~ Cx %OX — C4 (%(’)X induces a

morphism

(529) OX —>H0(Cz(§0){).
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Set F = H(Cy ® Ox). Then applying the functor ‘TZ to (5.29), we obtain
(5.30) Oxlz = Flz.

Hence in order to see (’)XTZ ~ JF, it is enough to show that this morphism and the

morphism
(5.31) F—Fly

are isomorphisms.
Now the question being local, we can find a closed embedding f : X — X’ from X into
a smooth manifold X’ and a closed smooth submanifold Z’ of X’ such that Z = f~1(Z).

Theorem 5.7 and Lemma 5.11 imply
Ox/ |z ~Cz ®Ox .
Theorem 5.8 implies
Cz®0x ~ f{(Cyr ®Ox).
On the other hand, i_l(OX/TZ/) =0Ox GL@oX, (C’)X//]\Z/) ~ OX/]\Z. Hence we have
Ox |z ~Cz®0x.
Then to see that (5.30) and (5.31) are isomorphisms, it is enough to remark that

(Ox12)]z ~0x|z.

(ii) Let us prove (5.28). It is enough to show a similar result with Ox replaced by Dbx.
Since the germ of Dby is injective over the germ of Ox [Ma: Chapter VII, Theorem 2.4],
RI'(7(Dbx) ~ I'z(Dbx). Hence it is enough to prove

ﬁom(@z,'DbX) = I‘[Z] (DbX) )

that is,
Fz(Dbx) ~ F[Z} (Dbx) .

This is equivalent to saying that a distribution with support in Z is locally annihilated by
T% for k>>0. We can reduce this to the case where Z is a hypersurface and it is well-known

in this case. Q.E.D.
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6. Duality theorem

Let X be a complex manifold of complex dimension dx. As usual, one denotes by

Db

g—coh(Dx) (resp. D% (Dx)) the full triangulated subcategory of D®(Dx) consisting

coh
of objects having quasi-coherent (resp. coherent) cohomologies.

The following theorem generalizes Proposition 5.2.

Theorem 6.1. Let M € Db, (Dx) and let F,G € D% _(Cx). Then we can define
w L

RT(X; RHomp, (M ® G, F®Ox)) and R (X; Thom(F,Qx)[dx] ®py (M ® G)) as

objects of D*(FN) and D*(DFN), functorially with respect to M, F and G. Moreover,

these two objects are dual to each other.

Proof. 'We shall use the results of the appendix. Following the notations there, D__, (P(Dx))|l}
is equivalent to D_, (Dx). Here we take as S in A.2 the set of relatively compact open
subsets. Also D™ (P (X)) is equivalent to Dy (Cx). Here we take as S in A.3 the set
of relatively compact open subanalytic subsets. As in the appendix, for a locally finite
family & = {U,}ies of relatively compact open subsets, set Lp(U) = @;e;(Dx)y,. For
a locally finite family U = {V;};c; of relatively compact open subanalytic subsets, set

Lc(0) = @jesCy;. Then for F' € R-Cons(X), we have
P2 Moo (£t & L), F 5 )) (v )
i?j

and

Lo (X5 Thom(E, D7) @, (Lp() @ Le()) )
~ (P Te(U; N Vj; Thom(F, DbE¥ > ~H)).

ij
They are an FN-space and a DFN-space respectively and are dual to each other.

For a complex 4" € C~ (P(Dx)), a complex ¥ € C~(P(X)) and a bounded complex

F" of R-constructible sheaves,
AL, F) = F(X; Hompy (Lp() ® La (W), Fr&C ))) and
B, F') = (X 5 Thom(F, DO ™)) ap (Lp(t) @ Lo(W)))
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are a complex of FN-spaces and a complex of DFN-spaces respectively, and they are dual
to each other. Hence they give an object of D' (FN) and an object of D~ (DFN) dual to

each other. Forgetting the topology, they become

RF(X; RHompy (Lp() ® Lo(), F %OX))
and

R, <X;7'hom(F',QX)[dX] Sy (Lp(l) @ LC(QT))> .

Hence the functors A and B send quasi-isomorphisms to quasi-isomorphisms, and they

induce the functors

Dcoh

(P(Dx))P? x D™ (P(X))°PP x Db(R-Cons(X)) — DT (FN)
and
D-

coh

(P(Dx)) x D~ (P(X)) x D*(R-Cons(X))°?? — D~ (DFN).
To obtain the theorem, it is enough to recall that

D, (P(Dx)) ~ D, (Dx) and D~ (P(X)) = Dy_,(Cx).

Q.E.D.

Let us derive an easy corollary. Let 91 be a regular holonomic D x-module, and let F

be an object of D} _(Cx). It is proved in [Ka3] that the natural morphism:
L L
(6.1) Thom(F,Qx) @py, M — RHom(F,Qx) @p, M

is an isomorphism.

Corollary 6.2. Let 9 be a regular holonomic Dx-module, and let F' be an object of

D% _(Cx). Then, the natural morphism:

(6.2) RHomp, (M, F @ Ox) — RHomp, (M, F®Ox)
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is an isomorphism.

Proof.  We shall deduce (6.2) from (6.1) by duality. Let U be an open relatively compact

subanalytic subset of X. Set

Ay = RT(U; RHomp, (M, F @ Ox))
Ay = RT(U; R Homp (M, F & Ox))
L
By = R (U; Thom(F,Qx[dx]) ®p, M)

L
By = RU'.(U; RHom(F,Qx[dx]) ®p, M)

Then we have morphisms A; — Ay and By — By in D?(Vect). By (6.1), By — Bj is an
isomorphism. In order to prove the assertion, it is enough to show that A; — A, is an
isomorphism. There are pairings A; ® By — C and A; ® By, — C, which are compatible,

namely, the following diagram commutes.

A1 ®By — Ay® By

\ \
A1®B1 — C

By [Kal], the cohomology groups of A; and Bj are finite-dimensional and they are dual to
each other in D®(Vect). Since By — Bj is an isomorphism in D®(Vect), the cohomology
groups of By are finite-dimensional. By Theorem 6.1, A, is the dual of By in D*(FN)
and hence the cohomology groups of Ay are finite-dimensional and A, is isomorphic to the

dual of By in D?(Vect). Therefore A; — A, is an isomorphism. Q.E.D.
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7. Adjunction formulas

The purpose of this section is to give adjunction formulas for the functors ~<§>(’)X and
Thom(-,Ox), using D-modules theory. Some of the proofs will be given in §9.

We say that a quasi-coherent Dx-modules 9 is good (resp. quasi-good) if, on ev-
ery relatively compact open subset of X, it admits a filtration {9t} by coherent Dx-
submodules such that each quotient 9% /M;_1 admits a good filtration and My, = 0 for

|k|>>0 (resp. k<<0). One defines the full triangulated subcategory Dgood(DX) (resp.

Dg_good(DX)) of D?(Dx) consisting of objects with good (resp. quasi-good) cohomolo-
gies. Ome defines similarly DY, (D¥?), Db_  , (DY"), D}y oq(DY”) and D?_ 4 (DY?)

for right D-modules.
Let 9 be an object of D’ , (Dx). We defines its dual by the formula:

(7.1) DM = R Homp, (M, Dx[dx]).

This is an object of D , (DS?).

coh

Let f:Y — X be a morphism of complex manifolds. We set:
dY/X = dy - dX =dimY — dim X.

Let us recall the following well-known results.

Theorem 7.1. (i) Let M € D*(Dx) and N € D°(DFP). Then there is a natural isomor-
phism in D?(Cx):

(7.2) RA(N Gp, f100) 2 00 &, 0.

(i) Assume 9 € Db | (Dx) (resp. Dgood(Dx)) and f is non characteristic for 9.

(a) We have ifl‘)ﬁ € Db, (Dy) (resp. Dgood(Dy)) and
DM ~ Dy £
(b) Moreover, for £ € D*(Dx), we have the isomorphism:
RfiRHomp, (f 7'M, £[dy,x]) ~ RHomp, (M, f,L).
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(iii) LetM € Dgood (Dy) and assume that f is proper of supp(I) . Then fne Dgood(Dx)

and:
i*Dy‘ﬁ ~ @Xi*‘ﬁ.

(iv) For Mt € D’C’l_good (Dy) and £ € D*(Dy), there is a natural isomorphism:

Rf.RHomp, (N, [~ &[dy,x])+RHomp, (f N, L)

Proof. (i) is obvious, (ii.a) is proved in [S-K-K] and (ii.b) follows immediately, (iii) is
proved in [Ka2|, [Sc] (see also [S-Sc]). The morphism Li_lOX [dy/x] = Ox defines the
morphism f, f ~'€[dy,x] — £ which defines the morphism in (iv). To prove that it is an
isomorphism, we first reduce this to the case where 9 is quasi-good, then to the case where
it is good. Then it remains to apply (iii). Q.E.D.

We can now state our adjunction formulas.

Theorem 7.2. Let M € D?(Dy) and let G € D% (Cy). Assume that f is proper on

supp(G) . Then there are natural isomorphisms:

(7.3)  RfiRHomp, (f ', G ® Oy) <= RHomp, (M, RfG® Ox),

(74)  RA(Thom(G,Qy[dy]) ©p, F~'9M) < Thom(RAG, Qx[dx]) $p, M.

Notice that if M € DY , (Dx) and f is non characteristic for 9, (7.4) is equivalent to

the isomorphism:

(7.5) RfiRHomp, (f~'M, Thom(G,Oy))[2dy,x]
— RHomp, (M, Thom(RAG,Ox)).

Proof. By Theorem 5.7, we have the isomorphism:

RHomp, (M, RAG® Ox)

5 RHomp, (M, Rf.RHomp, (Dy_x,G®0y)).

Then (7.3) follows by adjunction.
The isomorphism (7.4) follows from Theorem 5.7 and the formula (7.2). Q.E.D.
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Theorem 7.3. Let M € Dg_good(Dy) and assume that f is proper on supp(9). Let

F € Db (Cx). Then there are natural isomorphisms:

(7.6) Rf.RHomp, (N, [~ F & Oy)ldy] & RHomp, (f N, F & Ox) [dx],

L - L
(7.7) Rfi(Thom(f~'F,Qy) ®p, N) = Thom(F,Qx) @py [N
The proof will be given in §9.

8. Ox-modules of type FFN or DFN

We shall recall here some constructions and results of Ramis-Ruget [R-R] and Houzel
[Ho.

A sheaf F on a real manifold X is said of type FN (resp. DFN) if for each open
(resp. compact) subset U (resp. K) of X, the space I'(U; F) (resp. I'(K;F)) is endowed
with a topology of type F'N (resp. DFN), and the restriction mappings are continuous.
For example, if X is real analytic and F' € R-Cons(X), then F' écgg is a sheaf of type F'N.
However, one shall take care that Thom(F,Dby) is not of type DF N in general.

Let X be a complex manifold. Following [Ho|, we consider Ox as a sheaf of complete
bornological algebras and deal with Born(Oyx ), the category of complete bornological O x-
modules. Houzel (loc. cit.) has defined a tensor product bifunctor -®e, - on this category.
This category contains the category of Ox-modules of type F'N and that of type DFN as
its full subcategories.

On the other-hand, [R-R] defined the notion of an F N-free (resp. DF N-free) Ox-
module as an Ox-module of type FN (resp. DFN) isomorphic to E®Ox for some FN
(resp. DFN) vector space E. This is an object of Born(Ox).

Let EQOx be an F N-free (resp. DF N-free) O x-module and let G be an O x-module
of type FFN (resp. DF'N). Then one has the isomorphism.

(8.1) (E20x)®04G ~ E®G.

Notice that E®G, as defined by [Ho] is the same as that defined by [R-R]. For example, in
the F'N-case, E®G is the sheaf U — EQI'(U;G).
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In particular, for a continuous O x-linear homomorphism FE; R0O0x — Ey®@0x of FN-free
(resp. DF N-free) Ox-modules and an Ox-module G of type F'N (resp. DFN), we can

define a continuous O x-linear homomorphism E1®G — F>2&G.

Let £ = EQOx be an FN-free or DF N-free Ox-module, and let G be a coherent
Ox-module. Then we have the natural isomorphism: £ ®p, G ~ E&®G. This implies that
the functor £ ®p, - is exact on the category of coherent O x-modules. Hence £ is O x-flat.
In other words, F'N-free and DF N-free Ox-modules are flat over Ox.

Let U (resp. K) be an open (resp. compact) subset of X, and let E©Ox be an
FN-free (resp. a DFN-free) Ox-module. Then RI'(U; E®QOx) ~ EQRT(U;Ox) (resp.
RI(K; E®Ox) ~ EQRT(K; Ox)).

Examples of FFN or DF N-free Ox-modules may be obtained as follows. Let Z be
a Stein complex manifold, K a Stein compact subset of Z, fz (resp. fx) the projection
Zx X — X (resp. K xX — X). Then Rfz.(Ozxx) ~T(Z;02)®0x is FN-free, and
Rfk+(Ozxx| e, ) 2 TK;02)®0x is DFN-free.

The following theorem is an essential tool in the proof of Theorem 7.3. Although it
has already been used in [S-Sc], its proof, due to J-P. Schneiders, was not written down in
this paper and for the reader convenience we include it here. This proof is an adaption of

the techniques developed by Ramis-Ruget [R-R].

Theorem 8.1. Let R' be a complex of F'N-free (resp. DF N-free) O x-modules and let G
be an Ox-module of type N (resp. DFN ). Assume that R has bounded Ox-coherent

cohomology groups. Then the natural homomorphism

is a quasi-isomorphism.

We shall only treat the case of sheaves of type F'N, the other case being similar. Let
F be an Ox-module of type F'N. Define the O x-module:



where F(X) = I'(X; F), Ox(X) = I'(X;0x) and Ox(X) appears n-times, The Ox-
module structure of S,,(F) is defined by the first factor. Define for n > 1:

On : Sp(F) = Sp-1(F)

by:
Jo® ® fni1 ’_>Z(_1>jf0®"'®fjfj+1®“‘®fn+1
and define: J_O
e:S9(F) = F
by:
h® f— hf.

One checks that §,,_1 0 d,, = 0. Hence we get a complex S.(F) € C~(Ox).

Lemma 8.2. Assume F is F N-free. Then ¢ induces an isomorphism:
e:S.(F) > F in K~ (Ox).
Proof. First assume F = Ox. We construct the homotopy operators:

hn : Sn(OX) — Sn+1(OX)

by:
fo@ @ o= ()o@ © fa @1
and
n:O0x — So(Ox)
by:

f—f®l

One checks that:

(i) for n > 0, 641 0 hyy + hyy_q 08y, = id,
(ii) for n =0, 61 0hg +noe =id,
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(iii) e on =1id.
This proves the lemma in case F = Ox. The case F = EQOx follows by applying

the exact functor E®- to the preceding complexes.

Q.E.D.

Lemma 8.3. Let F  be a complex of F'N-free Ox-modules, and let G be an O x-module
of type FN. Assume F'is exact. Then f‘@oxg is exact.

Proof. Since the problem is local, we may assume X is Stein. For a double complex H ",
we denote by s(H ) the associated simple complex : s(H )" = @,=p4+,H??. Remark the
following well-known property:

(8.2) If HP is exact for every p, then s(H ") is exact.

By Lemma 8.2 we have S.(F¥) ~ F* in K(Ox) for any k. Hence tensoring G, we have
S(FM®0,G ~ FF®0,G in K(Ox). Hence, by applying (8.2) to the double complex

SF)®0xG = F®o, 0,

(8.3) 5(S.(F)®0yG) = F®o,G is a quasi-isomorphism.

We set F'(X) = I'(X; F’). Since the F7’s are F'N-free and X is Stein, one has H*(X; /) =|J}

0 for k # 0. This shows that RI'(X;F") ~ F'(X), that is, 7 (X) is exact. This implies:
Ox®0,O0x(X)® - 80x(X)RF (X)®0, G is exact.

Hence by applying again (8.2)

(8.4) 5(S(F R0, 9) is exact.

Then the lemma follows from (8.3) and (8.4). Q.E.D.

Lemma 8.4. Let u : F; — F, be a morphism of complexes of F'N-free Ox-modules,
and assume that u is a quasi-isomorphism. Let G be an Ox-module of type FN. Then

u®G : F; R0, G — F3®04 G is a quasi-isomorphism.

Proof. Let M(u) denote the mapping cone of w. This is a bounded from above complex of
FN-free Ox-modules quasi-isomorphic to 0. Then M (u)®G is quasi-isomorphic to 0 by

Lemma 8.3, and it remains to notice that M (u)®¢, G is the mapping cone of u®G.
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Q.E.D.
Proof of Theorem 8.1.

Since R* has bounded and coherent cohomology, locally on X, there exist a bounded
complex L of free Ox-modules of finite type and a quasi-isomorphism
uw: L ~R.

qis

Since any F'N-free Ox-module is flat, we have:
L @0y Qq%sR' ®oyx G.
On the other hand we have by Lemma 8.4:
L®0yG = R @0 6.

Since £ @0y G ~ L @0, G, the proof is complete.

Q.E.D.
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9. Proof of Theorem 7.3

We begin by the proof of (7.6) and we shall deduce later (7.7) by duality. Notice
that since Thom(F,Dbx) is not a sheaf of type DF N in general, it would not have been
possible to copy the argument of the proof of (7.6) (in particular, when using Theorem 8.1
as we shall do), to obtain (7.7).

In view of Theorem 7.1 (iv), we have to prove that the morphism defined by (5.9)

(9.1) RfiRHomp, (M, f~(F®Ox)) = RARHomp, (N, f~'F & Oy)

is an isomorphism. By Theorem 5.8, this morphism is an isomorphism if f is a closed
embedding. Hence, using the graph decomposition of f, we may assume from the beginning
that Y = Z x X and f is the second projection. Moreover we may assume F' € R-Cons(X)
and 91 admits a good filtration. Then we can reduce to the case where 91 = Dy ®o, F
for a coherent Oy-module F with proper support over X. Now the left hand side of (9.1)

is isomorphic to

RfRHomo, (F,Oy 10, f-HF&0x)) = RfiRHomo, (F,0y) Goy (F&Ox).
Hence it is enough to show that
(92)  RfRHomo, (F.Oy) Go, (F&O0x) - RfiRHome, (F, [ 'F&Oy)
is an isomorphism. Let us introduce the sheaf:

fTUF®0CE = RHomp, (07, f ' F&CF).

Instead of proving (9.2), it is enough to prove that
(93) Rf.RHomoy (F,0y) Goy (FECF) — Rf.RHomo, (F, f~F & 0CE )

is an isomorphism. The morphism (9.2) is obtained by applying R Homp (Ox,-) to (9.3).
For zy € X, we shall prove that (9.3) is an isomorphism on a neighborhood of xg.
Let us take an open neighborhood W of xy and a subanalytic Stein compact subset K

such that W C K. Let p: Z x K — Z be the projection. Then A = p*(Oy’ZXK) is
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a coherent ring on Z. The category of coherent Oy| 2 ic-modules is equivalent to the
category of coherent A-modules by the functor G — p,(G). Hence F = p,(F ’ Iwr) 18 a
coherent A-module. Now let us apply the results in §A.2 in the appendix. Let us take
as S in §A.2 the set of relatively compact Stein open subsets in Z. Then S satisfies the
conditions (A.7) and (A.8). Hence there exists 4" € C7(P(A)) and a quasi-isomorphism
L) — F. Writing uk = {Uk.i}icror), we set ﬂk = {Uk,i x W}icr)- Then there is a

quasi-isomorphism

For any relatively compact Stein open subset V' of Z we have
(9.4) Rf.RHomo, ((Oy)vxx,Oy) =L(V;05)80x
and

(9.5) Rf.RHomoy ((Oy)vxx. [ 'F®OCE ) ~T(V;02)8(FECE)

~ (D(V; 02)80x)B oy (FECF) .

We set R = f. Homo, (Loy (1), Oy)‘W. By (9.4), each R* is an FN-free Oy -module.

In the derived category, R is isomorphic to Rf.RHomoe, (F,Oy Hence R has

)
L w
bounded coherent cohomology groups. The object Rf.RHomo, (F,Oy) Qo (FQCF)

is represented by R Q0 (F%)C}?), and by (9.5) Rf.RHomo, (F, f_lF%)OC{’f}X) is
represented by R ®¢, (F (%C}}O) on W. Hence to prove that (9.3) is an isomorphism, it is

sufficient to apply Theorem 8.1.

Finally, let us prove (7.7). Set:

H1 = Rf.RHomp, (N, f_lFéV) Oy )[dy]
Ha = RHomp, (f N, F & Ox)[dx]

K1 = Rfi(Thom(f~'F,Qy) épy n),
Ko = Thom(F,Qx) &y f,0.
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The morphism
(9.6) K1 — Ks
is equivalent to the morphism:

RfiRHomp, (DyN, Thom(f'F,Qy[dy]))

— RHomp, (f DyN, Thom(F, Qx [dx])),

which follows from Proposition 5.6. Hence, to prove that (9.6) is an isomorphism, it is

enough to prove that for each open subset U of X, the morphism:
(9.7) RT(U; K1) = RLc(U; Ks)

is an isomorphism. Consider the morphism deduced from (7.6):
(9.8) RU(U;H2) — RT'(U; Hq) -

By its construction, this last morphism is well-defined in the category D?(FN), and is dual
to (9.7) by Theorem 6.1. By (7.6) and the closed graph theorem, (9.8) is an isomorphism

in D(FN). Hence (9.7) is an isomorphism and the proof is complete. Q.E.D
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10. Integral transformations

10.1. Tempered C*° functions In this section, in order to study a multiplicative struc-
ture of - ®Oyx and Thom(-,Ox), we shall construct an auxiliary functor Thom(F,C¥). It
is not exact in F' but left exact. We show that, for a complex manifold X, Thom(F,Ox)
can be also calculated by the Dolbeault complex of Thom(F,CS).

Let X be a real analytic manifold. Let U be an open subanalytic set. A function
f e C>(U) is called with polynomial growth at p € X if it satisfies the following condition.
For a local coordinate system (z1, - - -, x,) around p, there exist a sufficiently small compact
neighborhood K of p and a positive integer N such that

(10.1) xeslglr)w (dist(z, K\U))N|f($)] < 00.

Here, dist(z, K\U) is the distance from x to K\U. It is obvious that f has polynomial
growth at any point of U. We say that f is tempered at p if all its derivatives are with
polynomial growth at p. We say that f is tempered on an open set € if it is tempered at

any point of ). Remark that in this case f can be extended to a distribution defined on

Q.

Proposition 10.1. Let X = R" and A = Y, 0?/0z7. Let u be a distribution on X.
Assume that Au is C* on an open subanalytic subset U and that Aul|y is tempered at

p € X. Then u|y is also tempered at p.

Proof. By the ellipticity of A, v is C* on U. Let us take a distribution K (x) and a C*
function R(x) such that
d(x) = AK(z) + R(x)

and the support of K (x) and the support of R(z) are contained in {x € X;|z| < 1}. Then
K (z) is integrable. For ¢ > 0, set

Ke(r)=c*"K(c'z) and R.(z)=c "R(c 'x).

Then we have again

d(z) = AK.(x) + Rc(x).
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Hence we have

— / K. (z —y)(Au)(y)dy + / Re(z — y)u(y)dy .

Now we take z € U and set ¢ = dist(x, X\U)/2. Then we have

[ B - @yl < (swp [Aa))) [ 1Kol - y)ldy < const. e

lz—y|<c
for some Ni. On the other hand, we have

|/ (x — y)dy| < const. Z sup | Dy Re(z — y)| < const. ¢~V
ja <N ¥EX

for some N. Thus u|y has polynomial growth at p.
Since ADSu(z) = DY Au(x), any derivative of u|y has polynomial growth at p and

hence u|y is tempered at p. Q.E.D.

10.2. The functor Thom( - ,C¥) Let X be a real analytic manifold. For a subanalytic
open subset U, we shall define the Dx-module Thom(Cy,C¥) as follows. For an open
subset Q, I'(2; Thom(Cy, CF)) is the set of C* functions on N U which are tempered
on . Then U — Thom(Cy,CS) is a contravariant functor from Sx to the category of

D x-modules.

Proposition 10.2. For any subanalytic open subsets U and V,
0— Thom((Cqu,C}’(o) — ’77zom(CU,C§(°) S¥) ’Thom(CV,C}’(") — 7710m((CUmV,C§<°) —0

1s exact.

Proof. 1t is enough to show the exactitude of the following sequence, assuming that

X =R"™ and that U and V are relatively compact.

0 — I'(X; Thom(Cyyuv, CX)) — T (X; Thom(Cy, CF)) @ (X; Thom(Cy,CS))
i>F(Xv; 7710m(CUm/, C_(;(O)) — 0.
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The property Ker(a) = I'(X; Thom(Cyyuy,CS)) easily follows from the existence of a
positive integer N and C' > 0 such that

dist (z, X \(U U V))N < C(dist(z, X\U) + dist(z, X\V)) for any z € UUV.

Let us prove the surjectivity of a. Set Fy = {x € U;dist(x, X\V) < dist(z, X\U)/2} C
U\V and F| = {x € V;dist(z, X\U) < dist(z, X\V)/2} C V\U. Then UNV C X\(Fy N
F).

Now recall the following lemma on cut-off functions.

Lemma 10.3. ([H6 : Corollary 1.4.11]) Let Fy and F; be closed subanalytic subsets.
Then there exists ¢ € C>(X\(Fo () F1)) such that

(10.2) 1 =0 on a neighborhood of Fy\F1,
(10.3) ¥ =1 on a neighborhood of Fi\Fy,
(10.4) Y is tempered at any points of X\ (Fy () F1).

Take 1 € I'(X; Thom(Cx\(rynr,),CX)) as in the lemma above.
For f € F(X;77Lom((CUmV,C§(°)), define fy € C*°(U) by

_JYx)f(x), fxeUNnV,
Jol@) =1 o, if z € U\V.

For x € UNV Nsupp(yy) C (U NV)\Fo, we have
dist(z, X\U) < 2min (dist(z, X\U), dist(z, X\V)) < dist(z, X\(U NV)).

Therefore fy belongs to I‘(X;’Thom((CU,C%O)). Similarly define f; € C>(V') by

A =vy@)f(z), fzeUNnV;
Silw) = {o, if 2 € V\U.

Then f; belongs to F(X;ﬁom(@v,cg}o)) and f = a(fo @ f1). Q.E.D.

By the proposition above and Proposition 1.4, we can extend the functor Thom(Cy,C¥ )}
to

(10.5) Thom(-,C¥) : D} _.(Cx) ~ D’(R-Cons(X)) — D’(Dx) .
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Namely, the functor ¢(U) = Thom(Cy,CY¥) can be extended to a contravariant functor
U; R-Cons(X) — Mod(Dx) and Thom(-,C¥) is its right derived functor. By Proposition

1.4, we have:

(10.6) HI(Thom(F,C¥)) =0 for any F' € R-Cons(X) and j # 0,1,

(10.7)  H?(Thom(Cy,C¥)) =0 for any open subanalytic set U and j # 0.
We can see easily that there is a sequence of morphisms
Co®CE — Thom(Cy,CE) — Thom(Cy, Dby ).
This induces functorial morphisms in D?(Dx)
(10.8) Dy (F)&CE — Thom(F,CE) — Thom(F, Dbx).
Proposition 10.4. We have a functorial morphism in F,G € D __(Cx)
(10.9) Thom(F,C) Gay ((F® G)ECT) = GECT .

Proof. We can easily reduce this to the case where F' = Cy and G = Cy for open

subanalytic subsets U and V. Then we have

(10.10) Thom(F,C¥) @4y ((F ® G)RCF) =Thom(Cy,CY) ®ax (Cony®CY)

= Thom(Cury,CF) @y (Conv@CT).

For f € Thom(Cyny,C¥) and g € CUQV%C}’?, the product fg belongs to (CUngi)C}’(o.

Hence it defines
(10.11) Thom(Cuny,CF) ®ax (Conv@CE) = Cony@CE — Cy®CF = GRCE .
Composing (10.10), (10.11) and

Thom(F,C%) G4y (F® G)ECT) — Thom(F,C¥) ®ay ((F ® G)HCT),

we obtain the desired morphism. Q.E.D.
10.3. Complex case Now we assume that X is a complex manifold.
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Theorem10.5. For any F € D%__(Cx), the morphism R Homp (OX,'Thom(F, C)O(O)) —
RHomp, (Ox,Thom(F,Dbx)) is an isomorphism in D*(Dx).

Proof. The morphism is constructed in (10.8). As the question is then local, we may
assume that X = C"™ and F' = Cy for a subanalytic open subset U. Let A be the

differential operator > | 8%/0x;0;. There exists an exact sequence of Dy,-modules:
0 +— Dx, @p, Ox +— (Dx./Dx. A)®N0 +— (Dx, /Dx, A)PN «— ...

This sequence is constructed from a free resolution of C[dy, -+, 0,01, -+, 0n]/ (01, -, Op)
as a module over C[01,---,0p, 01, -, 0n]/(A).
Hence it is enough to show that the vertical arrows in the following diagram give a quasi-

isomorphism from the complex of the top row to the one of the bottom row.

0 —  Thom(Cy,C¥) 25 Thom(Cy,C¥) — 0
\ 4 \ {
0o — 7710m(CU,DbX) A) ’Thom(CU,DbX) — 0

It is well-known that Thom(Cy, Dbx)iﬂ'hom((CU, Dbx ) is an epimorphism. Let us prove
the surjectivity of A : Thom(Cy,C¥) — Thom(Cy,CY¥). For g € Thom(Cy,C¥) let us
take f € Dbx such that g = Af. Then by Proposition 10.1, f belongs to Thom(Cy,C¥).

Hence it is enough to show that if f € Thom(Cy,Dbx) satisfies Af = 0 then f belongs to
Thom(Cy,C¥). This also follows from the same proposition. Q.E.D.

This proposition says that to define Thom(F, Ox), we can use the Dolbeault complex
of Thom(F,C¥) instead of Thom(F,Dbx).
Proposition 10.6. There exist functorial morphisms in F,G € D% __(Cx):
L w w
'Thom(F, Ox) Koy ((F & G)@C)O(—o) — G@C%O
L w w
77L0m(F, Ox> ®(9X ((F (%9 G)@Ox) — G@OX .
Proof. It is enough to apply the functor R Homp . (Ox, - ) to the morphism in Proposition
10.4. Q.E.D.

In the following theorem, (10.14) and (10.15) are due to J.E.Bjork [Bj:Theorem 7.9.11].
We denote by D2, (Dx) the full subcategory of D®(Dx) consisting of objects with regular
holonomic Dx-modules as cohomologies. We set Sol(9) = R Homp, (MM, Ox). Then Sol

is a contravariant functor from D% (Dx) to D&__(Cx).
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Theorem 10.7. Let 9t € DY, (Dy) and F € D _(Cx). We have canonical isomorphisms
in Db(Dx)

(10.12) RHomo, (M, FECE) ~ (Sol(M) @ F)&CE
(10.13) RHomoy (M, FROx) ~ (Sol(M) @ F)20x

and

(10.14) m éox Thom(F,Dbx) ~ Thom(Sol(9) @ F,Dbx)
(10.15) M o, Thom(F,Ox) ~ Thom(Sol (M) @ F, Ox).

Proof. The isomorphisms (10.14) and (10.15) are proved in [Bj]. Let us prove the others

by duality. Set G = Sol(9M). Then M = Thom (G, Ox) by [Ka3|. By Proposition 10.6,
L W w

there exists a morphism M ®p, ((G® F)®CF) — FRCF. This gives

(10.16) (G ® F)®CE — RHomo. (M, FECT).

Let us prove that this is an isomorphism.
For any open subset U, RI'(U; (G®F)(§>C§(°) is the dual of RT'.(U; Thom(G® F, DbY,)).

If U is sufficiently small, there exists a bounded exact complex of Ox-modules on U
00— M+— O «— OB ..

where Iy, I1,--- are countable sets. Hence RF(U;RHomoX (o, F%C;?)) is the dual of
L
RT(U; M @0, Thom(F,DbY)). Since (10.14) implies that

L
RT.(U; Thom(G ® F,DbY)) < RU(U; M R0, Thom(F,DbY))
is an isomorphism, we conclude by duality that
RI(U; (G ® F)®CY) — RT(U; R Homo, (M, FECT))

is an isomorphism. This shows that (10.16) is an isomorphism. Thus we obtained (10.12).

To obtain (10.13), it is enough to apply the functor R Homp (Ox, -) to (10.12). Q.E.D.
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10.4. Integral transformations Let us consider the following situation. Let X, Y and
S be complex manifolds, and let dx, dy and dg be their dimension. Let us consider a

diagram of morphisms of complex manifolds.

S

loo N

X Y.
Let M € Dg_good(DX), G € D% (Cy) and £ € DY (Dg). Set L = Sol(£). We assume
that
(10.17) f~supp("M) Nsupp(L) is proper over Y,

. g1 supp(G) Nsupp(L) is proper over X.

We define
(10.18) Mo £ =g, ([ Mo, L)
and
(10.19) LoG=Rf(L®g™'q).

Theorem 10.8. We have isomorphisms:
(10.18) RT (X; RHomp, (M, (Lo G)é@x)) [ds]

~ RT (Y; RHomp,, (Mo &, G%Oﬂ) ldy],

L
(10.19) Rl“c(X; Thom(L o G, Qx) &p, im> ldx]
L

~ R, (Y; Thom(G, Qy) Gp, (Mo 2)) [ds] .

and there are similar formulas by exchanging I' and T'...

Proof. Theorem 7.3 implies

R (Y; RHomop, (9,(f ' M@0, £), G%Oy)) [dy]

~ RT (S; RHomp, (f'Meo, £, g—lG%OS)) [ds].
We have

L w w
RHomp, (f "M o, £,9 'G0s) = RHomp, (f~'M, R Homoy (L, g ' G0s)) .
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Theorem 10.7 implies
RHomo, (£,9G0s) ~ (L& g7 G)20s.
Hence we obtain

RD(Y; R Homp, (Mo £,GEOy) ) [dy]

~ Rr(s; RHomp, (f ', (L® g—le)éos)> [ds] .
We have by Theorem 7.2

RD(S; R Homop, ({7190, (L® 7' G)205))

~ RT (X; RHompy (M, Rf.(L® g—lc)%ox)) .

Thus we obtain (10.18). The other isomorphism is similarly proved. Q.E,D.

Remark 10.9 By replacing -(%V)OX and Thom(-,Ox) with - @ Ox and R Hom(-,Ox), the
similar formulas to those in Theorem 10.8 hold under conditions different from (10.17).

Instead of (10.17), assume that 9t € Dgood(DX) and

f~ L supp(9) N supp(L) is proper over Y,
(10.20) 2N is non characteristic with respect to f,
Char (f~'9t) N Char(£) C TES.

Then we have

(10.21) RT. (X; RHomp, (M, (LoG)® OX)) [ds]

~ RFC(Y;RHomDY (Mo l,G® Oy)> [dy],

(10.22) R (X: RHom (Lo G, Qx) $p, M) [dx]

L
~ RT <Y; RHom(G,Qy) &p, (Mo 2)) [ds] .

In the case where £ = Og (10.21-22) was obtained in [D’A-S1]. Such formulas have

nice applications (see e.g. [D’A-S 1,2]).
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Appendix. Almost free resolutions

A.1. General theory In this appendix, we shall show that a complex with coherent
cohomology groups has a resolution by “almost free” modules. In order to see this, we
first discuss the problem in a general setting.

Let us denote by Ab the category of abelian groups. Let P be an additive category and
A an abelian category. We are given an additive functor L : P — A, an additive bifunctor
H :P°PP x A — Ab, and a morphism of bifunctors a : H(X, M) — Homa (L(X), M)
in XePand M € A.

For X € P and M € A, we call an element ¢y € H(X, M) a morphism from X to

X, M

M and write ¢ : X — M. Then we can consider the composition ¢y o f : Y — M for a
morphism f : Y — X in P and the composition uov : X — N for a morphism v : M — N.
In fact o f = H(L(f), M)(¢) and uotp = H(X,u)(v)). We have (uot)of =wuo(gpof). In
another word, PLIA is a category. We have a(uot) = uoa(y) and a(vpo f) = a(yp) o L(f).

For morphisms f: X — Y and g: Y — Z in P, we say that X Loy 5, 7 is exact
if gof =0and L(X) it L(Y) L) L(Z) is exact. Similarly for a morphism f: X — Y
inPandgp:Y—>MwithM€A,WesaythatXLYLMisexactifgpof:O
and L(X) L) L(Y) “®) M is exact. For a morphism f : X — Y in P, we say that X

is a cover of Y if L(X) L) L(Y) is an epimorphism. Similarly for X € P, M € A and

v: X — M, we say that X is a cover of M if L(X) M M is an epimorphism.

We assume that these data satisfy the following four axioms.

(A.1) For any X € P, the functor H(X, M) is left exact in M € A.
(A.2) For any morphism g : Y — Z in P, there exists a morphism f : X — Y in P such
that X 5 Y —% Z is exact.
(A.3) For any epimorphism u: M — N in A, Y € P and ¢ € H(Y, N), there exist a cover
g: X =Y of Y and ¢ € H(X, M) such that 1) o g =wuo .
(A.4) For any X,Y € P and ¢ € H(X, L(Y)) there exist a cover f : X’ — X of X and a
morphism ¢ : X’ — Y such that L(g) = a(¢ o f) in Homa (L(X"), L(Y)).

We say that an object M of A is P-coherent if M satisfies the following two condi-

tions.
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(A.5) There exists a cover f: X — M of M.
(A.6) For any Y — M in H(Y, M), there exists a morphism X — Y in P such that
X =Y — M is exact.

We shall denote by C the full subcategory of A consisting of P-coherent objects.
Proposition A.1. C is stable by kernels, cokernels and extensions.

Proof. Let 0 - K %5 M -5 N be an exact sequence in A and assume that M and
N are P-coherent. Let us show that K is P-coherent. Let us take a cover v : X — M
of M. Then there exists Y € P and an exact sequence Y %+ X — N. By (A.1) there
exists ¢ : Y — K such that uo ¢ =1 og. It is easy to see that a(y) : L(Y) — K is an
epimorphism. Therefore K satisfies (A.5).

Now X € P and ¢ : X — K are given. Then there exists f : ¥ — X such that
Y — X — M is exact. Then by (A.1), po f =0and L(Y) — L(X) — K is exact. Hence
K isin C.

To see that C is stable by taking the cokernel, it is enough to show that for an exact

sequence 0 - K —» M —» N — 0, if K and M are P-coherent, then N is P-coherent.
It is obvious that N satisfies the condition (A.5).
To see (A.6), let X € P and ¢ : X — N. Then by (A.3), there exists a cover f:Y — X
of X and ¢ : Y — M such that ¥ o f =vog. Let us take £ : Z — K such that L(Z) — K
is an epimorphism. Let us consider Z &Y — M given by £ and ¢. Then there exists
h:W — Z@Y suchthat W - Z®Y — M is exact. Then W — X — N is exact. Hence
N is P-coherent.

Finally let us show that C is stable by the extension. Let 0 - K — M - N — 0
be an exact sequence and assume that K and N are P-coherent. Let us show that M
satisfies (A.5). There exists a cover X — N of N. By (A.3), replacing X with its cover,
we may assume that X — N decomposes into X — M — N. Let us take a cover Z — K
of K. Then L(Z ® X) — M is an epimorphism. Hence M satisfies (A.5).

In order to see that M satisfies (A.6), let ¢ : X — M be an element of H (X, M). Let us
take Y — X such that Y — X =% N is exact. Then by (A.1), Y — M decomposes into
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Y - K — M. Let us take an exact sequence Z — Y — K. Then Z — X — M is exact.

Q.E.D.

The functor L : P — A induces a functor K~ (P) — K~ (A). Let us denote by N (P)
the full subcategory of K~ (P) consisting of complexes X such that L(X) is exact. Then
we can easily see that N'(P) is a null system (see [K-S:Definition 1.6.6]). We define D~ (P)
the quotient of K~ (P) by N(P). The category D~ (P) is described as follows. We say
that a morphism f: X — Y in K~ (P) is a quasi-isomorphism if H"(L(X)) — H™(L(Y))
is an isomorphism for every n. The set of objects of D~ (P) is the same as the one of

K~ (P) and

HOIHD*(P)(XJ/): h_r>n HOHIK*(P)(X/,Y)
X/'—=X
= lim  Homg p)(X',Y7)
X'=X,Y =Y/
= h_r)n Homg - p)(X,Y").
Y =Y’

Here X’ — X and Y — Y’ range over the sets of quasi-isomorphisms. Then L induces a

functor

L:D~(P) > D (A).

Let us denote by D__, (A) the full subcategory of D™ (A) consisting of the objects whose co-
homology groups are P-coherent. By the preceding proposition, D__, (A) is a triangulated
category. Similarly, let us denote by D__, (P) the full subcategory of D~ (P) consisting of
objects X such that H"(L(X)) is P-coherent for every n. Then it is also a triangulated
category and we have a functor

L:D

coh

(P) - D_

coh

(A).

We shall show that it is an equivalence of categories. The following proposition says that

it is essentially surjective.
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Proposition A.2. Let M be a complex in A. Assume that H"(M") is P-coherent for
every n and H" (M) = 0 for n>>0. Then there exists X € C~(P) and ¢ : X° — M such
that a(v) : L(X') — M is a quasi-isomorphism.

Proof. Let us denote by Z" the kernel of d;? : M™ — M"*! and by B™ the image of

d}f]l : M1 — M™. Assume that we have constructed a commutative diagram
xn N Xn—!—l N Xn—|—2 N

1 i S

- M1 - Mt - ML M
such that H*(X') — H*(M") is an isomorphism for & > n and an epimorphism for k = n.
Let us take an exact sequence W — X" — X"T1 Then W — X" — M™ decomposes
into W — Z" — M™. By the assumption W — Z" — H"(X') is an epimorphism.
Since H™(M") is P-coherent, there is an exact sequence ¥ — W — H"™(M"). Then
Y - W — Z" decomposes into Y — B" — Z™. By (A.3), replacing Y with its cover, we
may assume that Y — B" factors through Y — M"~! — B".

Take a cover U — H™ (M) of H" Y(M"). By (A.3), replacing U with its cover,
we may assume that U — H" 1(M") decomposes into U — Z"~1 — H" 1(M"). We
set X" ! = U®Y. We define d}*l : X" — X" by the zero morphism U — X"
and Y - W — X" on Y. Define 9" ! : X» ! - Mt by U — Z" 1 - M" ! and
Y — M" ', Then " odyx ' = di;* o', Furthermore, H*(X') — HF(M') is an
isomorphism for £ = n and an epimorphism for ¥ = n — 1. Thus the induction proceeds

and we can construct a desired complex X" and X — M. Q.E.D.
Proposition A.3. Let Y',Z° € C~(P). Let u : L(Y') — L(Z') be a morphism in
C~(A). Assume that the cohomology groups of L(Y ") are P-coherent. Then there are
X' € C7(P) and a quasi-isomorphism f : X' — Y and g : X' — Z' such that L(g) =
wo L(f) € Homa (L(X"), L(Z")).

Proposition A.4. Let g : Y — Z' be a morphism in C~(P). Assume that the coho-

mology groups of L(Y") are P-coherent. If L(g) : L(Y") — L(Z") is homotopic to 0, then

there exists a quasi-isomorphism f : X' — Y such that go f : X' — Z" is homotopic to 0.

We shall give the proof of these two propositions in §A.4.

Now we are ready to prove the following main result in this subsection.
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Theorem A.5. D

coh

(P) — D

won(A) is an equivalence of triangulated categories.

Proof. We saw already that this functor is essentially surjective. Hence it is enough to

show that for any XY € C~(P),
HomD;Oh(P)(X',Y') — HomD;Oh(A) (L(X7),L(Y"))

is bijective.
Injectivity. Let f : X — Y be a morphism in C~(P) such that L(f) vanishes as an

element of Homp— (4 (L(X"),L(Y")). Then there exists a quasi-isomorphism u : M~ —
coh

L(X') in C~(A) such that the composition M* — L(X") it L(Y") is homotopic to

0. Then by Proposition A.2, we may assume that M = L(Z") for some Z° € C~(P).
Then by Proposition A.3, there exist a quasi-isomorphism ¢g : W° — Z° and a morphism
h: W™ — X such that

L(h)=wuoL(g): LW") — L(X").

Then L(foh) = L(f)ouo L(g) is homotopic to 0. Hence by Proposition A.4, there exists
a quasi-isomorphism U~ — W™ such that U" — W" — Y is homotopic to 0. Since the
composition U - W' - Y isequal to U - W —- X - Y and U — W — X isa
quasi-isomorphism, f is 0 as an element of Hoch_Oh(P)(X LY.

Surjectivity. Let us consider a morphism L(X') — L(Y") in D__

coh

(A). Then there is a
quasi-isomorphism w : M" — L(X') and a morphism v : M~ — L(Y") in C~(A) such

that v ou™! is the given morphism L(X') — L(Y") in D_, (A). There exist Z° € C~(P)

coh
and a quasi-isomorphism w : L(Z) — M. Then by using Proposition A.3, there is a
quasi-isomorphism f : W — Z together with morphisms g : W* — X" and h : W' = Y~
such that L(g) = uowo L(f): L(W") — L(X") and L(h) =vowo L(f): L(W") — L(X").
Then g is a quasi-isomorphism and the morphism hog=!: X" — Y in D_, (P) is sent to

coh

voulinD_,(A). Q.E.D.
A.2. Almost free resolutions of coherent modules Let us apply the theory above
to the situation of coherent modules. Let X be a paracompact and locally compact space
and A a sheaf of rings on X (with 1 but not necessarily commutative) which is coherent as

a left A-module. Let us take a set S of relatively compact open subsets of X. We assume
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the following two conditions on S.
(A.7) For any z € X, {U € S;x € U} is a neighborhood system of x.
(A.8) For U,V € §, UNYV is a finite union of open subsets belonging to S.

Let us take Mod(.A) as A in the situation of the last subsection. We define P(A) as
follows. The set of objects of P(A) is the set of locally finite families of open subsets in S.
For two objects 4 = {U; }ier and U = {V;},e; of P(A), we define

Homp (4 (4, T) = E (,2, DT:A)

= {(a/id‘)ie],jej;axi’j € I'(U;; A) and a; ; = 0 unless U; C Vj} )

Note that for any ¢ € I, {j € J;U; C V;} is a finite set. For W = {Wi}lrer, we
define the composition ¢ = (¢;x) € Homp(4) (4, ) of a = (a;,;) € Homp(4) (U, W) and
b= (bjx) € Homp(4)(T, ) by

Cik = Z ai7j(bj7k|7i) cI'(U;; A).

J

The sum ranges over the j € J with U; C V; C Wj. It is easy to see that P(A) is an

additive category.

We define the functor L4 : P(A) — Mod(A) by

for 4 = {U; };cr. We can easily see that it is well defined.
We define the bifunctor H : P(A)°PP x Mod(A) — Ab by

H(y, M) =[][r@;M).

We can easily see that it is a well-defined functor. We define
AR H(U, M) — Homu(La(), M)
by the restriction map [] T'(U;; M) — [[ T'(U;; M) = Hom 4 (L4 (L), M).
i€l icl
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Proposition A.6. The axioms (A.1)-(A.4) hold.

Proof. The axiom (A.1) is obvious.

In order to prove the other axioms, we shall prepare the following lemma.

Lemma A.7. Let K be a compact subset of X and W a neighborhood of K. Then for
any U € S, there exists a finite family {V;} of open subsets belonging to S such that

UNKcUV;cUnWw.
Proof. By (A.7) , there exists a finite family {V;} of open sets in S such that
KcuV; CcW.

Since U N'V; is a union of finite subsets belonging to S by (A.8), we obtain the desired
result. Q.E.D.
Proof of (A.2) Let us take 8 = {U;}ier and U = {V}};ecs and a morphism f = (a; ;) :
U — Y. For any v € X, set I(x) = {i € I;x € U;}. Then there exists a neighborhood
W (z) of 2 such that W(x)NU; = 0 for any i € I\I(x). By shrinking W (z), we may assume
that a; ; extends to a; ; € I'(U; UW (z);.A). Then for any subset G of I(z), @ ; defines a

morphism A — A%/ |W (2)" Since A is coherent, its kernel is finitely generated on

GBG‘
a neighborhood of z. Hence shrinking W (x) if necessary, we may assume that there are a

finite index set N(G,z) and an exact sequence
®N(G,z) ha, @G ®J
A ‘W(m) — A ‘W(z) — A ‘W(m) :

There exists a locally finite covering {W}, }xex of X such that W), € S and there exists x
with Wy, € W (zy). Write Wi (N;eq Ui) = Umec,q) W(k,G,m) for a finite index set
C(k,G) and W(k,G,m) € S. We set

K' ={(k,G,m,n);k € K,G C I(x};), m € C(G, k), n€ N(G,xy)}

and W(k,G,m,n) = W(k,G,m). Then W = {W(k,G,m,n)} % G mmn)ck’ is an object of
P(A). The morphism

 @{n} SN (Gzr) ®G ®{i}
ha = A |W(mk) — A * |W(mk) — A ’W(wk) — A ‘W(mk)

67



gives c(k,gn); € (W (k,G,m,n);A). This defines a morphism from 20 — . By the
construction, it satisfies the desired conditions: 20 — 4 — U vanishes and L 4(20) —
L A() = L 4(0) is exact.

Proof of (A.3) Let uw: M — N be an epimorphism in Mod(A), & = {U; };cr an object of
P(A) and ¢ : 4 — N an element of H(, N). Set ¢ = (s;)ies with s; € ['(U;; N). For
any x, we define I(z) C I as above and take an open neighborhood W (x) of = such that
W(z) N U; =0 for i ¢ I(x). Shrinking W (x) again, there exists t(; ,y € (W (z); M) such
that “(t(z’,m))‘W(m)mE = Si{W(m)ﬂE'
that Wy, C W (xy) for some z and Wy € S. Write W, N U; = Unec(k,i) W(k,i,n) with a
finite index set C'(k,7) and W (k,i,n) € S. Then set K’ = {(k,i,n);k € K, i € I(z}), n €
C(k,i)} and 20 = {W(k,4,n)}k,in)er’- Then t(; .,y gives a morphism 20 — M and

Then take a locally finite covering { W}, }recx of X such

Akin),i0 = Oir € D(W(k,i,n); A) defines a morphism 20 — 4. We can easily see that

W@ — U
{ {
M — N

is commutative and L 4(20) — L4 (i) is an epimorphism.

Proof of (A.4) Let us take objects U = {U;}icr and U = {V,},c; of P(A) and ¢ :
U — LA(D). We have H(U, Lo(D)) = [[,T(Us; ®;Av,) ~ I I'(Ui; Av,). Let a;; €
'(Us; Ay,) be the element corresponding to ¢. Then supp(a;, ;) is a compact subset of V.
Hence by Lemma A.7, there exists a finite family {W; jn}nex( ;) such that W;;, € S

and
Uimsupp(ai,j) C U Wi im C UlﬂV] :
neK(i,5)
By the same lemma, there is also a finite covering {W} ; ,,, }mex(i,j) such that W/, €S
and

U Wi jm) C U Wi jm C Ui\ supp(a; ;) -
neK (i,j) meK’(i,5)

Set K = {(i,j,n);TiNV; £ 0, n € K(i,j)} and K’ = {(i,4,m); TnV; £ 0, m & K'(i,§)}.
Set W = {Wijn}iijnyex and W' = {W/; Y jmyex - They are objects of P(A). Define
W — 8 by b jmy.ir = 050 € T(Wi g A) and W — B by (i sy 0 = 0557015 € D(Wiyms A).

Define 20" — $ by b(”n) o = i € I’(WZ’J“,A) and 20" — U by 0. Then 20 ¢ Q' — U
and 20 ® 0’ — U satisfy the desired conditions. Q.E.D.
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Proposition A.8. An A-module M is coherent if and only if M is P(A)-coherent.

Proof. First let us show that a coherent A-module M is P(A)-coherent. The property
(A.5) for coherent sheaves is obvious. Let us show (A.6). The proof is similar to the
proof of (A.2). Let & = {U;}icr be an object of P(A) and let ¢ : 4 — M be given by
s; € T(U;; M). For x € X, let us define I(x) as in the proof of (A.2) and a neighborhood
W (z) of x such that W (z) NU; = 0 for ¢ ¢ I(x). We may assume that s; is extended to
W (z)UT;. For G C I(x), let us take an exact sequence, by shrinking W (z) if necessary,
AN(G ) |W(x) — AG‘W(m) — M‘W(m). As the rest of the arguments is similar to the proof
of (A.2), we shall omit it.

Let us show that a P(A)-coherent A-module M is coherent. Let us take 3 = (U;)iers
and a cover ¢ = (8;)icr : 4 — M. For any z in X, s; € I'(U;; M) extends to a neighborhood
W of x. Then LA(SJ)|W — M}W decomposes as LA(LL){W — A@N|W — M}W for some
integer N. Hence M is locally finitely generated. We may assume further that W is in S.
Set 20 = {W}. Then we have 20%" — M, which is surjective on . There is an exact
sequence U — WwON s M. By a similar argument as above, the kernel of L A(%®N) — M

is finitely generated on a neighborhood of . Hence M is coherent. Q.E.D.

Let us denote by D__, (A) the full subcategory of D™ (.A) consisting of objects with
coherent cohomology groups. Similarly, we denote by D__, (P(A)) the full subcategory
of D™ (P(A)) consisting of objects Y such that L4(Y) has coherent cohomology groups.

Then Theorem A.5 implies the following theorem.

Theorem A.9. D

coh

(P(A)) = D,

won(A) is an equivalence of triangulated categories.

Let us define the additive category P(A) by Ob(P(A)) =Ob(P(A)) and
Homg 4 (8L, D) = Hom 4 (L(H), L(D)).

Then P(A) is a full subcategory of Mod(.A). We can define similarly D_, (P(A)). The

following theorem is also easy to prove.
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(P(A)) — D,

coh

Theorem A.10. D

coh (A) is an equivalence of triangulated categories.
We call a complex M of A-modules almost free if each component M™ is isomorphic

to @; Ay, for a locally finite family {U;} of relatively compact open subsets of X. Then

the above theorem says that any complex of .A-modules with coherent cohomology groups

is quasi-isomorphic to an almost free complex.

A.3. R-constructible case Let X be a real analytic manifold of dimension dx. Let &
be a set of open subanalytic subsets of X. We assume that any relatively compact open
subanalytic subset is a finite union of open subsets in S. For example we can take as S the
set of open subanalytic subsets U of X such that (U, dU) is homeomorphic to (B9x, §9x)
( by the subanalytic triangulation theorem). Here BYX is the dx-dimensional ball and S9x
is its boundary. Let us take R-Cons(X) as A. We define the category P(X) as follows.
The set of objects of P(X) is the set of locally finite families of open subsets belonging to
S. For Y = {U, }ier € P(X), we set

Lo (M) = @ierCy,
and set
Homp (x) (4, V) = Hom (L(U), L(V))
and
H(U, F) = Hom(L(), F)

for 4,0 € P(X) and F' € R-Cons(X). Hence P(X) is a full subcategory of R-Cons(X).
Remark that any F' € R-Cons(X) has an epimorphism L¢(4) — F for some 4 € P(X). By
this, we can easily check that (A.1)—(A.4) are satisfied. We see also that any R-constructible

sheaf is P(X)-coherent. Thus we obtain the following proposition.

Theorem A.11. D~ (P(X)) — D~ (R-Cons(X)) — D% __(Cx) are equivalences of cate-

gories.

Remark that we have
D\ (L(Y)) ~ @:e1Cqr
for 4 = {U;}ie; € P(X) such that every (U;, 0U;) is homeomorphic to (Bx, §4x).

A.4. Proof of Propositions A.3 and A.4 We shall remark first the following lemma.
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Lemma A.12. Let f,g: X — Y be morphisms in P. If L(f) = L(g), there exists a cover
h: X" — X such that foh=go f.

Proof. By (A.2), there exists an exact sequence
x' xSy

Then L(h) : L(X’) — L(X) is an epimorphism and foh = go h. Q.E.D.

Proof of Proposition A.3. We shall construct X' € C~(P), a quasi-isomorphism f : X' —
Y,p: X — LY )and g : X' — Z such that

(A.9) L(g) =uo L(f): L(X") — L(Z")
and
(A.10) L(f)=a(p) : L(X) = L(Y").

Assume that we are given

xXr - Xt
1fr }ofrtt

- yr1 - Yn - ynrti —

X - Xxntl
b o™ b ntt
— L(Y”_l) — LY™) — L(Y”“) —

and
X" - Xxntl

I g" }gntt
- gzt 5 oz 5 gZntl

such that they satisfy (A.9) and (A.10). We assume further that H*(L(X")) — H*(L(Y"))
is an isomorphism for £ > m and an epimorphism for £k = n. Let us take an exact
sequence U — X" — X"l Set Z"(L(Y")) = Ker (dL’(TYA) : L(Y™) — L(Y™"!)) and
B"(L(Y")) = Im (d’LL(_;) : L(Y™ ') — L(Y™)). Then U — X" LN L(Y™) decomposes
into U — Z™(L(Y")) — L(Y™). By the assumption, the composition U — Z"(L(Y")) —
H™(L(Y")) is an epimorphism. Since H"(L(Y ")) is P-coherent, there is an exact sequence
V—->U— H"(L(Y)). Then V- U — Z"(L(Y")) decomposes into V- — B"(L(Y")) —
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Z™(L(Y")). Hence by replacing V' with its cover, we may assume that V' — B"(L(Y"))
decomposes into V' N L(Y™ 1) — B"(L(Y")). By (A.4), by replacing V with its cover, we
may assume that there exists b : V' — Y71 such that L(h) = a(¢). We have L(d} toh) =
LV —->U— X" —-Y") € Homa (L(V),L(Y™)). Hence by Lemma A.12, replacing V' with

its cover, we may assume that
Vv = X"

Lh Ly
yr~=t — yn
commutes. By the similar arguments, by replacing V' with its cover, we may assume that

there exists b: V — Z"~! such that L(b) =u""to L(h): L(V) — L(Z" 1) and
Vo - X"

Lb Lg"
A AL
commutes.

Since H"~1(L(Y")) is P-coherent, there is a cover G — H" 1(L(Y")). By replacing G with
its cover we may assume that G — H"'(L(Y")) decomposes into G —= Z" Y(L(Y")) —
H"™ Y(L(Y")). Then by the similar arguments as above we may assume that, after replacing
G with its cover, there exists G —~+ Y"1 such that the composition G — Y"1 — Y™
vanishes and L(G) i N L(Y™ 1) coincides with L(g). Replacing again G with
its cover we may assume that there exists ¢ : G — Z"~! such that G - Z»~1 — 2Z»
vanishes and L(c) = u" 1o L(u) : L(G) — L(Z"1).

We set X" 1 =G@V. Define frt: X"t 5y lbyg:G—-Y"tandh:V = YL
Define "~ ! : X*» 1 - LY" ) by € : V = L(Y" ) and G -5 2" Y(L(Y")) —
L(Y™ 1), We define g"=t : X" 1 — Z" by bp:V — Z» L and ¢ : G — Z" L. Then
H™"(L(X")) — H"(L(Y")) is an isomorphism and H" 1(L(X")) — H" 1 (L(Y")) is an
epimorphism. Thus the induction proceeds.

Proof of Proposition A.4. The proof is similar to the above proof. Let s™ : L(Y"™) —

L(Z™1) be a homotopy. We shall construct X € C~(P) and a quasi-morphism f: X  —
Y, p: X — L(Y')and t" : X" — Z"~! such that

(A.11) gto " :d%_lot”—l—t”Jrl ody ,
(4.12) L(f) = a(g) s LX) = L(Y"),
and
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(A.13) L(t") = s" o L(f™).

Assume that we are given

D G D G

1 }ofrrt

- yn1 - Yy - ynrtl — ,
X - Xt —
Lo L ntt

— LYY — LY — LYy Y —

and t* : X¥ — ZF-1(k > n) satisfying the conditions (A.11)-(A.13). We assume further
that H*(L(X")) — H¥(L(Y")) is an isomorphism for k¥ > n and an epimorphism for
k = n. By the similar arguments with the above proof, we can construct a : V. — X",
h:V = Y™l ¢:V - L(Y™) such that L(h) = a(€) : L(V) — L(Y™ 1), the
composition V — X" — X"+ vanishes,

/S &

Lh L

yr=t - yn

commutes and the cohomology of L(V) — L(X™) — L(X™™1) is isomorphic to H"(L(Y")).
By replacing V with its cover, we may assume that there exists t’ : V — Z"~2 such that
L(t'") = s""' o L(h). We have L(g" ' oh—dy 2ot —t"oa) = L(g" ' oh) — L(d} ?) o
s" Yo L(h) —s" o L(f") o L(a) = L(g" ) o L(h) — L(d% *)os" o L(h) —s" o L(d% 1) o
L(h) = 0. Hence by Lemma A.12, by replacing V with its cover, we may assume that
g" toh—di %ot —t"oa=0.

As in the above proof, we can construct g : G — Y™ ! and n: G — Z"Y(L(Y"))
such that the composition G —= Z" 1 (L(Y")) — H" (L(Y")) is a cover of H" 1(L(Y"))
and L(G) X% L(y™=1) coincides with L(G) 2 z7=1(L(Y")) — L(Y""1). By replacing
G with its cover, we may assume that there is ¢/ : G — Z"~2 such that L(t") : L(G) —
L(Z"2) coincides with L(G) 24 L(y"=1) ¥ L(Z"?). Set X"' = V & G. Define
dy ' : X" 1 - X" bya:V — X" and zero on G. Define f*~1 : X"t — yn=! by
h:V Y"1 and g: G — Y™ ! Define t" ! : X"t - Zn 2 byt :V = Z" 2 and
t": G — Z"2 Then, H"(L(X")) — H"(L(Y")) is an isomorphism and H" !(L(X")) —
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H" Y(L(Y")) is an epimorphism. We have also g" ! o f*~! = di 2ot ! 4" o dy !,
L(f" 1) = a(e™ ') and L(t" 1) = s" 1o L(f"!). Hence the induction proceeds. This

completes the proof of Proposition A.4.

[Grl]

[Gr2]
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