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§0. Introduction

The sheaves of tangent vector fields, differential forms or differential operators are

canonical. Namely they are invariant by the coordinate transformations. We call such

sheaves invariant sheaves.

More precisely for a positive integer n, an invariant sheaf on n-manifold is given by

the data: coherent OX -module FX for each smooth variety X of dimension n and an

isomorphism β(f) : f∗FY
∼
→ FX for any étale morphism f : X → Y. We assume that β(f)

satisfies the chain condition (see §1 for the exact definition).

The purpose of this paper is to study the properties of invariant sheaves on n-manifold.

The first result is that the category I(n) of invariant sheaves is equivalent to the

category of modules over a certain group G (with infinite dimension). Let us recall that

the category of equivariant sheaves with respect to a transitive action is equivalent to the

category of modules over the isotropy subgroup. In our case, manifold may be regarded as

a homogeneous space of “the group” of all transformations, and the category of invariant

sheaves is regarded as an equivariant sheaf with respect to this action. Let us take an n-

dimensional vector space V and let G be the group of (formal) transformations that fix the

origin. Hence G is a semi-direct product of GLn and a projective limit of finite-dimensional

unipotent groups. This G plays a role of the isotropy subgroup and we have

Theorem . The category of invariant sheaves are equivalent to the category of G-modules.

The category I(n) of invariant sheaves has other remarkable structure: filtered rigid

tensor category. The group G contains GL(V ) as a subgroup and it contains Gm as its

center. With respect to Gm, any G-moduleM has a weight decompositionM = ⊕Ml. For

any l let us set Wl(M) = ⊕l′≤lMl′ . Then it turns out that Wl(M) is a sub-G-module of

M . Since the category of G-modules is equivalent to I(n), any object F of I(n) has also a
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canonical finite filtration W , that we call the weight filtration. Thus, I(n) has a structure

of filtered category. We say that F ∈ I(n) is pure of weight w if GrWl F = 0 for l 6= w.

Then the category of pure invariant sheaves of weight w is equivalent to the category of

GL(V )-modules with weight w (with respect to the Gm-action). Hence any pure invariant

sheaf is semisimple.

Moreover I(n) has a structure of tensor category by (F1 ⊗ F2)X = F1 ⊗OX
F2. Thus

I(n) is a rigid tensor category.

The weight is preserved by the tensor product: GrWl (F1 ⊗ F2) = ⊕l=l1+l2Gr
W
l1 (F1)

⊗GrWl2 (F2). This structure is very similar to the category of mixed Hodge structures or

motives. In particular, we can see easily

(0.1) If Fν is pure of weight wν (ν = 1, 2), then

Extj(F1, F2) = 0 for w1 − w2 < j.

We conjecture

Extj(F1, F2) = 0 for j 6= w1 − w2 and j < n.(0.2)

This is translated to a conjecture of Lie algebra cohomology (Conjecture A.8 for Theorem

A.3 in [F]. Hence (0.2) is already known for 2j < n ).

The group Ext1(O,Ω1) is one-dimensional, and its non-zero element is given by the

extension 0 → Ω1 → Ωn⊗−1 ⊗ P(1)(Ωn) → O → 0. Here P(1)(Ωn)X = p1∗((OX×X/I
2) ⊗

p∗2Ω
n
X) where I is the defining ideal of the diagonal of X ×X, and p1 and p2 are the first

and the second projection. Note that O has weight 0 and Ω1 has weight −1. When n = 1,

Ext1(O,Ω1⊗2) is non zero. Its non-zero element gives an extension

0→ Ω1⊗2 ϕ0
→ K

ϕ1
→ O → 0.(0.3)

This is connected with the Schwartzian derivative. Namely, if we take a coordinate f

of X then the sequence (0.3) splits. Hence there is an element s(f) ∈ K such that

ϕ1(s(f)) = 0. if we take another coordinate g, then there exists ω ∈ Ω1⊗2
X such that

ϕ0(ω) = s(g) − s(f). Then ω is given by {g; f}(df)⊗2. Here {g; f} is the Schwartzian
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derivative (d3g/d3f)/(dg/df)−3(d2f/d2g)2/2(df/dg)2. This explains the cocycle condition

of the Schwartzian derivatives:

{h; g}(dg)⊗2 + {g; f}(df)⊗2 = {h; f}(df)⊗2.

For any n, the extension group ⊕n
j=0 Ext

j(O,Ωj) has a structure of ring by

Extj(O,Ωj)⊗ Extk(O,Ωk)→ Extj+k(O,Ωj ⊗ Ωk)(0.5)

→ Extj+k(O,Ωj+k).

There exists a canonical element cj ∈ Extj(O,Ωj) such that

⊕ Extj(O,Ωj) ≃ k[c1, · · · , cn]
′.

Here k[c1, · · · , cn]
′ = k[c1, · · · , cn]/{degree > n}. This follows from a theorem of Lie algebra

cohomologies (cf.[F]). This cj is connected with the Chern classes. Namely for any n-

manifold X, we have the homomorphism

ExtjI(n)(O,Ω
j)→ ExtjOX

(OX ,Ω
j
X) = Hj(X; Ωj

X)

and the image of cj give the j-th Chern class of X.
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§1. Definition

We shall fix a positive integer n. Let S be a scheme. Let us first define the category

Sn(S) as follows. The objects of Sn(S) are smooth morphisms X
a
−→T over S with fiber

dimension n. A morphism ϕ from X
a
−→T to X ′ a′

−→T ′ in Sn(S) is a pair (ϕs, ϕb) where

ϕs : X → X ′, ϕb : T → T ′ are such that

X
ϕs
−→ X ′

a




y





ya′

T −→
ϕb

T ′

commutes and that X → X ′ × T
T ′

is an étale morphism.

An invariant sheaf F is, by definition, given by following data:

To any object X
a
−→T in Sn(S),(1.1)

assign a quasi-coherent OX -module F (X
a
−→T ),

To any morphism ϕ : (X → T )→ (X ′ → T ′) in Sn(S),(1.2)

assign an isomorphism β(ϕ) : ϕ∗
sF (X

′ → T ′)
∼
→ F (X → T ).

We assume that these data satisfy the following associative law:

for a chain of morphisms (X → T )
ϕ
−→(X ′, T ′)

ϕ′

−→(X ′′ → T ′′),(1.3)

the following diagram commutes

ϕ∗
sϕ

′∗
s F (X

′′ → T ′′)
β(ϕ′)
−→ ϕ∗

sF (X
′ → T ′)

≀
∥

∥

∥ β(ϕ)




y

(ϕ′
s ◦ ϕs)

∗F (X ′′ → T ′′)
β(ϕ′◦ϕ)
−→ F (X → T ).

In the sequel for an object X
a
−→T in Sn(S), we write FX/T for F (X → T ) if there is

no afraid of confusion.

The invariant sheaves form an additive category in an evident way. We denote this category

by I(n)S . If there is no afraid of confusion we denote it by I(n).
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The category I(n) is a commutative tensor category. For objects F1 and F2 in

I(n), F1⊗F2 that associates F1X/T⊗OX
F2X/T for any objects X → T in Sn(S) is evidently

an object of I(n). Moreover F1 ⊗ F2
∼= F2 ⊗ F1. Let us give several examples of invariant

sheaves.

Example 1.1 The object O ∈ I(n). This associates to any X → T the sheaf OX .

Example 1.2 The object Ωk ∈ I(n). This associates to any X → T , the sheaf Ωk
X/T

of relative k-forms.

Example 1.3 The object Θ ∈ I(n). This associates to any X → T the sheaf ΘX/T

of relative tangent vectors.

Example 1.4 Sm(Ωk). This associates Sm(Ωk
X/T ).

Example 1.5 For any object X → T in Sn(S), let ∆
(m)
X/T be the m-th infinitesimal

neighborhood of the diagonal of X ×X
T

. Namely if we denotes by I the defining ideal of

the diagonal X →֒ X ×X
T

, then ∆
(m)
X/T is the subscheme of X ×X

T
defined by Im+1. For

i = 1, 2 let pi be the composition ∆
(m)
X/T →֒ X ×X

T
→ X where the last arrow is the i-th

projection. Then P(m) associates p1∗O∆
(m)

X/T

. More generally, for any invariant sheaf F ,

P(m)(F ) that assigns p1∗p
∗
2FX/T is an invariant sheaf. Then there exists an exact sequence

0→ Sm(Ω1)⊗ F → P(m)(F )→ P(m−1)(F )→ 0.

Example 1.6 Wm(D). This associates the sheaf Wm(DX/T ) of the (relative) dif-

ferential operators of order at most m. We regard this as an OX -module by the left

multiplication.

Example 1.7 Wm(Dop). This associates the same sheaf Wm(DX/T ) but we regard

this as an OX -module by the right multiplication.
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§2. Finiteness and flat conditions

2.1 Finiteness condition

For the sake of simplicity, let us assume that

S is Noetherian.(2.1.1)

We keep this assumption in the rest of paper. An invariant sheaf F is called coherent if

FX/T is of locally finite type for any X/T in Sn(S). Then FX/T is necessarily locally of

finite presentation. In fact there exists locally in X and T a morphism X/T to An×S/S in

Sn(S). Since An × S is locally Noetherian, FAn×S/S is a coherent OAn×S-module. Hence

the pull-back FX/T is locally of finite presentation.

Let us denote by Ic(n) the full subcategory of I(n) consisting of coherent invariant

sheaves. Then we can see easily that Ic(n) is an abelian category.

2.2 Flat condition

An invariant sheaf F is called invariant vector bundle if FX/T is flat over T and locally of

finite presentation over OX for any X/T in Sn(S).

Proposition 2.2.1. If F is an invariant vector bundle then FX/T is locally free of finite

rank for any X/T in Sn(S).

Proof. It is enough to show that FAn×S/S is a locally free OAn×S-module. Since this is

flat over S, it is enough to show that for any s ∈ S, FAn×s/s is locally free. Thus we may

assume that S = Spec(k) for a field k. Since FAn is equivariant over the translation group

G and G acts transitively on An. Hence F is locally free. Q.E.D.

Let us denote by Ib(n) the category of invariant vector bundles. If S is Spec k for a

field k, then Ib(n) and Ic(n) coincides. The functor ⊗ is an exact functor on Ib(n), and a

right exact functor on Ic(n). For F in Ib(n), let F ∗ be the invariant sheaf that associates

HomOX
(FX/T ,OX) with X/T in Sn(S). With this, Ib(n) has a structure of rigid tensor

category.
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§3. Main Results

3.1 Infinitesimal neighborhood

Let f : X →֒ Y be an embedding and let I be the defining ideal of f(X). Then for m = 0,

Spec(OY /I
m+1) is called the m-th infinitesimal neighborhood of X (or of f : X →֒ Y ).

3.2 The group G

Let us fix a locally free OS-module V of rank n, (e.g. V = O⊕n
S ). Let V be the associated

vector bundle Spec
(

SOS
(V∗)

)

. Then V → S is an object of Sn(S). Let i : S → V be

the zero section and let us denote by Wm(V ) its m-th infinitesimal neighborhood. Then

S =W0(V ) ⊂W1(V ) ⊂ · · · is an increasing sequence of subschemes of V . Let us set

G(m) =
{

g ∈ AutS
(

Wm(V )
)

; g fixes W0(V )
}

.

Then G(m) is an affine smooth group scheme over S and we have a canonical smooth

surjective morphism G(m)→ G(m− 1). Let G be the projective limit of {G(m);m ∈ N}.

Then G is an affine group scheme over S. Let Wm(G) be the kernel of G→ G(m). Then

W 0(G) = G,(3.2.1)

G/Wm(G) = G(m),(3.2.2)

G/W 1(G) = GL(V ).(3.2.3)

For m > 0, Wm(G)/Wm+1(G) is an abelian unipotent group scheme corresponding

Sm(V∗) ⊗ V (e.g. Wm(G)/Wm+1(G) = Spec
(

S((Sm(V∗) ⊗ V)∗)
)

). Note that G is a

semi-direct product of GL(V ) and W1(G).
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3.3 Statement

A G-module M is by definition a quasi-coherent OS-module with a structure of π∗OG-

comodule, where π : G→ S is the canonical projection. A G-module M is called coherent

if it is coherent over OS .

If M is a coherent G-module then the action of G on M comes from a G(m)-module

structure on M for m >> 0. Our main result is the following.

Theorem 3.1. The category Ic(n) of coherent invariant sheaves is equivalent to the cat-

egory Modc(G) of coherent G-modules.

Remark. Let X → S be a smooth morphism of fiber dimension n and let i : S → X be its

section. Let Wm(i) be the m-th infinitesimal neighborhood of i. Let G(m)i be the group

of automorphisms of Wm(i) that fix W0(i) = i(S). Then Gi = lim
←−
m

G(m)i is isomorphic to

G locally in S with respect to the Zariski topology. Moreover the category of G-modules

is equivalent to the category of Gi-modules.

§4. The weight filtration

4.1 Definition.

The group G contains Gm as the homothetie subgroup by Gm × V ∋ (t, x) 7→ tx ∈ V .

Any coherent G-module M has a weight decomposition

M = ⊕
ℓ∈Z

Mℓ.(4.1.1)

Here Gm acts on Mℓ by

tu = tℓu for u ∈Mℓ, t ∈ Gm.

We set

Wℓ(M) = ⊕
m≤ℓ

Mm.(4.1.2)

We call this the weight filtration of M .

4.2 Weight filtration.

We shall prove that Wℓ(M) is a sub-G-module of M . We shall embed Gm into A1. Let

Gm × G
ϕ
−→ G be the modified adjoint action ϕ(t, g) = t−1gt. We can see easily the

following lemmas.
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Lemma 4.2.1. ϕ : Gm ×G→ G extends uniquely to a morphism ϕ̃ : A1 ×G→ G.

Lemma 4.2.2. For any ℓ ≥ 0, ϕ̃ : A1×W ℓ(G)→W ℓ(G) is equal to the second projection

modulo tℓ, i.e. the composition Wℓ−1(A
1)×W ℓ(G)→ A1 ×W ℓ(G)→W ℓ(G) equals the

second projection. Here Wℓ−1(A
1) = Spec(Z[t]/tℓZ[t]).

These lemmas imply the following result.

Proposition 4.2.3. Let M be a G-module.

(i) Wℓ(M) is a sub-G-module.

(ii) For g ∈Wm(G), (g − 1) sends Wℓ(M) into Wℓ−m(G).

Here g ∈ Wm(G) means g ∈ HomS(T,W
m(G)) for an S-scheme T . In the sequel, we use

the similar abbreviation.

Proof. For any g ∈ G, b ∈ Z and ub ∈ Mb let us write gub = Σgabub with gabub ∈ Ma.

Then ϕ(t, g)ub = Σtb−agabub. Since this is a polynomial in t, gabub = 0 for a > b. This

implies (i). If g ∈ Wm(G), then the coefficients of tc in Σtb−agabub (0 < c < m) vanishes.

Hence gabub = 0 for b > a > b−m. Thus gub − ub ∈ ⊕
a≤b−m

Ma. This shows (ii). Q.E.D.

Since M is coherent, W (M) is a finite filtration of M . For a, b ∈ Z with a ≤ b, we say

that M has weights in [a, b] if Wb(M) = M and Wa−1(M) = 0. For w ∈ Z, we say that

M is pure of weight w if M has weights in [w,w].

Corollary 4.2.4. If M has weights in [a, b], then the G-module structure of M comes

from a unique G(b− a)-module structure on M .

§5. Functor Φ

5.1. Definition

Let F be a coherent invariant sheaf in Ic(n). Let i : S → V be the zero section of the

vector bundle V → S (cf §3). Set Φ(F ) = i∗FV/S . Then Φ(F ) is a coherent OS-module.

In the sequel we shall endow a G-module structure on Φ(F ).
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5.2. Weight decomposition

The group GL(V ) acts on V and hence on i∗FV/S . Therefore Φ(F ) is evidently a GL(V )-

module. Since Gm is contained in GL(V ) as the center, Φ(F ) has a weight decomposition

Φ(F ) = ⊕
l∈Z

Φ(F )l(5.2.1)

where t ∈ Gm acts on Φ(F )l by t
l.

As in §4, we set

Wl(Φ(F )) = ⊕
l′≤l

Φ(F )l′(5.2.2)

Then W is a finite filtration on Φ(F ). We call it the weight filtration of Φ(F ).

Similarly to the G-module case, we say that for a ≤ b, F is with weight in [a, b] if

Wb(Φ(F )) = Φ(F ) and Wa−1(Φ(F )) = 0.

Let X → T be an object in Sn(S) and i : T → X its section.

Proposition 5.2.1. Let f and g be morphisms in Sn(S) from X → T to X ′ → T ′. Let

i : T → X be a section and let T (m) be its m-th infinitesimal neighborhood.

Let F be a coherent invariant sheaf with weights in [a, b]. We assume

The diagram T (m) −→ X




y





yfs

X
gs
−→ X ′

commutes.(5.2.3)

m > b− a.(5.2.4)

Then the following diagram commutes:

(fs ◦ i)
∗FX′/T ′ = i∗f∗sFX′/T ′

ց β(f)




y i∗FX/T .

րβ(g)

(gs ◦ i)
∗FX′/T ′ = i∗g∗sFX′/T ′

The proof will be given in in §5.4.

Admitting this proposition for a while, we shall give its corollary.

Let T be an S-scheme and T (m) a T -scheme. We assume that locally in T, T (m)

is isomorphic to the m-th infinitesimal neighborhood of a section T → X of a smooth

T -scheme X → T with fiber dimension n.
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Corollary 5.2.2. Let F be a coherent invariant sheaf with weights in [a, b] and m > b−a.

Then there exists a OT (m)-module F0 satisfying the following properties (5.2.5) and (5.2.6).

(5.2.5) For g : T ′ → T , let X ′ → T ′ be an object of Sn(S) and let j′ : T ′(m) =

T ′×
T
T (m) →֒ X ′ be an embedding by which T ′(m) is the m-th infinitesimal neighborhood of

i′ : T ′ →֒ T ′(m) →֒ X ′. Then there is an isomorphism γ(j′) : i′∗FX′/T ′

∼
−→g∗F0.

(5.2.6) γ(j′) satisfies the chain condition. Namely let f : (X ′′ → T ′′) → (X ′ → T ′) be a

morphism in Sn(S), j
′′ : T ′′×

T
T (m) →֒ X ′′ a morphism over j′ and i′′ the composition of

T ′′ →֒ T ′′×
T
Tm and j′′. Then the diagram

i′∗FX′/T ′ ≃ i′′∗f∗sFX′/T ′

γ(j′)




y





yβ(f)

f∗b g
∗F0 ←−

γ(j′′)
i′′∗FX′′/T ′′

commutes.

Since the proof is straightforward we omit the proof.

5.3 Deformation of Normal cone.

In order to prove Proposition 5.2.1, we use the deformation of normal cone. Let us recall

its definition. Let X be a scheme and Y ⊂ X a subscheme defined by an ideal I.

Let t be an indeterminate and consider the ring

⊕
n∈Z

Int−n ⊂ OX [t, t−1].

Here we understand In = OX for n ≤ 0.

Set C̃Y/X = Spec(⊕Int−n) and let q : C̃Y/X → X be the projection. This is called

the deformation of normal cone. Then t gives a morphism C̃Y/X → A1. Then p−1(0)

is isomorphic to the normal cone NY/X = Spec( ⊕
n≥0

In/In+1) and p−1(A1\{0}) ∼

X×(A1\{0}). The homomorphism⊕
n
Int−n → ⊕

n≥0
OXt

n → ⊕
n≥0
OY t

n gives the embedding

Y ×A1 ⊂ C̃Y/X .
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If X and Y are smooth over T , then C̃Y/X is also smooth over T . If there is a smooth

morphism X ′ f
−→X and f−1Y ∼= Y ′, then there is a Cartesian diagram

C̃Y ′/X′ −→ C̃Y/X





y





y

X ′ −−−−→ X.

If X is a vector bundle over T and if Y is the zero section of X → T, then there is a unique

isomorphism X ×A1 ∼
−→C̃Y/X such that X ×A1 ∼

−→C̃Y/X → X is given (x, t) → tx and

X ×A1 ∼= C̃Y/X
p
−→A1 is the second projection.

5.4. Proof of Proposition 5.2.1

Let us prove Proposition 5.2.1. By [EGA], we may assume T to be Noetherian. By

replacing T with S we may assume T = S. Locally in Y , there exists a morphism from

Y → S to V → S in Sn(S) such that the composition S → X → Y → V coincides with

the zero section. Hence replacing Y → S with V → S we may assume from the beginning

that

Y = V(5.4.1)

S → X → Y coincides with the zero section.(5.4.2)

Hence C̃S/Y
∼= Y ×A1 as seen in the preceding section. Thus we obtain a diagram of

schemes over S ×A1.

C̃S/X −−−−→ X ×A1

f̃s





y





yg̃s fs×id





y





ygs×id

Y ×A1 ∼= C̃S/Y −−−−→ Y ×A1

Note that f̃s and g̃s are étale and hence f̃s and g̃s give morphisms f̃ and g̃ from

(C̃S/X → S ×A1) to (C̃S/Y → S ×A1) in Sn(S).
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Lemma 5.4.1. f̃s and g̃s are equal modulo tm, i.e.

Spec(OC̃S/X
/tmOC̃S/X

)→ C̃S/X

f̃s
−→−→
g̃s
C̃S/Y

commutes(i.e the two possible compositions are equal).

Proof. Let IX ⊂ OX and IY ⊂ OY be the defining ideal of S ⊂ X and S ⊂ Y . Then

by (5.2.3), OY

f∗

−→−→
g∗

OX → OX/I
1+m
X commutes. Hence IY

f∗

−→−→
g∗

IX → IX/I
1+m
X commutes.

Thus I lY
f∗

−→−→
g∗

I lX → I lX/I
l+m
X commutes for l ≥ 1.

Hence ⊕
l
IY t

−l
f∗

−→−→
g∗

⊕
l
I lXt

−l → OC̃S/X
/tOC̃S/X

= ⊕
0≤l≤m

(OX/I
l
x)t

m−l ⊕ ⊕
l≥1

(I lX/I
l+m
X )t−l

commutes. Q.E.D.

Now let j̃ : S ×A1 → C̃S/X be the canonical embedding. Let j̃Y be the composition

f̃s ◦ j̃ = g̃s ◦ j̃.

Then we obtain the homomorphism ϕ̃:

j̃∗Y F (Y ×A1 → S ×A1)→ j̃∗Y F (C̃S/Y → S ×A1)

∼=j̃∗f̃∗sF (C̃S/Y → S ×A1)
β(f̃)
−→f̃∗F (C̃S/X → S ×A1)

∼
←−
β(g̃)

j̃∗g̃∗sF (C̃S/Y → S ×A1) ∼= j̃∗Y F (C̃S/Y → S ×A1)

∼ j∗Y F (Y ×A1 → S ×A1).

Let us denote by ϕ the composition

Φ(F ) ∼ j∗FY
∼ j∗f∗FY

β(F )
−→j∗FX

∼
←−
β(g)

j∗g∗FY
∼ i∗FY

∼ Φ(F ).

Then outside t 6= 0, ϕ̃ coinsides with t−1ϕt. Thus t−1ϕt extends to t = 0, and equals to

the identity modulo tm by Lemma 5.4.1. Now let us write

ϕ(u) =
∑

ν

ϕνµ(u) for u ∈ Φ(F )µ

with ϕνµ(u) ∈ Φ(F )ν .

Then ϕ̃(u) =
∑

t−νϕνµ(tu) =
∑

tµ−νϕνµ(u).We have ϕ̃(u) ≡ u mod tm. Hence ϕνµ(u) =

0 for µ − ν < 0 and ϕνµ(u) = 0 for m > µ − ν > 0, ϕµµ(u) = u. They imply that

ϕ(u)−u ∈Wµ−m(Φ(F )). Therefore we obtain ϕ = id by (5.2.4). This completes the proof

of Proposition 5.2.1
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5.5 The G-module structure on Φ(F )

Let F be a coherent invariant sheaf and let us take b ≥ a such that

Φ(F ) = ⊕
a≤l≤b

Φ(F )l.

Let us take m > b − a. We shall endow the structure of G(m)-module on Φ(F ) as

follows. For g ∈ G(m), locally on S, there exist a morphism f : V → V such that the

diagram

Wm(S)
g
−→ Wm(S)





y

∩ 



y

∩

V
f
−→ V

commutes. Hence f is étale on a neighborhood of i(S). We define the action of g on

Φ(F ) = i∗F as the inverse of the composition

i∗FV = (f ◦ i)∗FV
∼ i∗f∗FV

β(f)
−→i∗FV .

This definition does not depend on the choice of f by Proposition 5.2.1. This gives evidently

the structure of G(m)-module and hence the structure of G-module via G→ G(m). Thus

we obtain the functor Φ from Ic(n) to the category of coherent G-modules. Evidently Φ

commutes with the tensor product.
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§6. The functor B

6.1. Jet bundle

Let us construct a quasi-inverse B of Φ. We shall use a standard technique that uses jet

bundles. Let us recall the definition of a jet bundle. Let X → T be a smooth morphism

with fiber dimension n. Let △
(m)
X/T be the m-th infinitesimal neighborhood of the diagonal

X in X ×
T
X. Let p1 : △

(m)
X/T → X ×

T
X → X be the first projection and p2 : △

(m)
X/T →

X ×
T
X → X the second projection. The jet bundle J

(m)
X/T of order m is the scheme over X

that represents the functor

X ′ 7→ {ϕ;ϕ is an isomorphism from X ′ ×Wm(An) to X ′×
X
△

(m)
X/T }.

Here X ′×
X
△

(m)
X/T is the fiber product via △

(m)
X/T

p1
−→X. Hence there exists a canonical

isomorphism

J
(m)
X/T ×W

m(An)
∼
−→J

(m)
X/T ×

X
△

(m)
X/T .

Moreover the action of G(m) on Wm(An) induces the action on J
(m)
X/T and π : J

(m)
X/T → X

is a principal G(m) bundle. Note that J
(m)
X/T → X is locally trivial with respect to the

Zariski topology of X.

6.2 Construction of the functor B

Let M be a coherent G-module. Let us take m >> 0 such that the G-action on M comes

from a G(m)-action on M .

For a morphism X → T , let B(M)X be the associated bundle of M with respect to

J
(m)
X/T . Namely let q : J

(m)
X/T → S and π : J

(m)
X/T → X be the projections. Then B(M)X is

the subsheaf of π∗q
∗M consisting of the sections invariant under the action of G(m). Here

the action of G(m) on π∗q
∗M is induced by its action on M and the one on J

(m)
X/T . This

definition does not depend on m. In fact for m′ ≥ m, there is a canonical G-equivariant

morphism J
(m′)
X/T → J

(m)
X/T . Then X 7→ B(M)X is is evidently an invariant sheaf and we

shall denote it by B(M). This definition does not depend on the choice of m and it gives

an exact functor from Modc(G) to Ic(n).

15



6.3 B and Φ

We shall prove that B and Φ are quasi-inverse to each other. We can see easily that

ΦB(M)
∼
= M for M ∈ Modc(G). In the sequel we shall show BΦ(F )

∼
= F for F ∈ Ic(n).

Let us set M = Φ(F ) and let us take b ≥ a such that Wb(M) = M and Wa−1(M) = 0.

Then for m > b − a, G(m) acts on M . Let us take X → T in Sn(S) and let us consider

the diagram

j′
︷ ︷>>>

J
(m)
X/T ×Wm(An)

∼
−→ J

(m)
X/T ×

X
△

(m)
X/T →֒ J

(m)
X/T ×

T
X

fs
−→ X

↓ ↓

J
(m)
X/T −→

fb=π
T

Then π gives a morphism f from (J
(m)
X/T ×

T
X → J

(m)
X/T ) to (X → T ) in Sn(S) and hence an

isomorphism

β(f) : f∗sFX/T
∼
−→F

J
(m)

X/T
×X/J

(m)

X/T

.

Let i : J
(m)
X/T →֒ J

(m)
X/T ×An and i′ : J

(m)
X/T →֒ J

(m)
X/T ×

T
X denote the embeddings. Then by

Corollary5.2.2 we have a canonical isomorphism

i∗F
J

(m)

X/T
×An/J

(m)

X/T

≃ i′∗F
J

(m)

X/T
×
T

X/J
(m)

X/T

.(6.3.1)

We have i∗F
J

(m)

X/T
×An/J

(m)

X/T

= q∗M where q : J
(m)
X/T → S is the canonical projection and

i′∗F
J

(m)

X/T
×
T

X/J
(m)

X/T

= f∗sFX/T . We can see easily that the isomorphism q∗M ≃ f∗sFX/T is

G(m)-equivariant and hence B(M)
∼
= FX/T . This completes the proof of B ◦ Φ

∼
= id.
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§7. The weight filtration

We established the equivalence Modc(G) and Ic(n). Since any object of Modc(G) has a

weight filtration W , any object Ic(n) has a weight filtration W .

The corresponding properties of W for Modc(G) imply the following properties.

(7.1) F 7→Wl(F ) and F 7→ GrWl (F ) are exact functors from Ic(n) to Ic(n).

(7.2) For invariant sheaves F1, F2 ∈ Ic(n), we have

Wl1+l2(Wl1(F1)⊗Wl2(F2)) =Wl1(F1)⊗Wl2(F2).

(7.3) For F1, F2 ∈ Ic(n) and l ∈ Z, the above isomorphism induces an isomorphism

⊕l=l1+l2Gr
W
l1 (F1)⊗Gr

W
l2 (F2)

∼
−→GrWl (F1 ⊗ F2).

(7.4) For F ∈ Ib(n), W−l−1(Wl(F )
∗) = 0 and GrWl (F ∗)

∼
= (GrW−l(F ))

∗.

Thus Ib(n) has a structure of a filtered rigid tensor category.

Example 7.1 O is pure of weight 0. Θ is pure of weight 1 and Ωk is pure of weight

-k.

Example 7.2 P(m) is of weight [−m, 0] (c.f. Example1.5) and P(m)/W−1−l(P
(m)) =

P(l) for 0 ≤ l ≤ m.

Example 7.3 Wm(D) is of weight [0,m] (c.f. Example1.6) and Wl(Wm(D)) =Wl(D)

for 0 ≤ l ≤ m. We have Wm(D) = (P(m))∗.

17



§8. Lie derivative

8.1 Definition

Let F be a coherent invariant sheaf, X → T an object in Sn(S) and v a relative

tangent vector on X/T . Then we can define a Lie derivative L(v) : FX/T → FX/T that

satisfies

L(v)(au) =aL(v)u+ v(a)u(8.1.1)

for a ∈ OX and u ∈ FX/T .

Let us set T ′ = T × Spec(Z[ε]/ε2Z[ε]) and X ′ = X ×T T
′ and define an automorphism

f : X ′ → X ′ over T ′ by x 7→ x + εv(x). Let p be the projection (X ′ → T ′) to (X → T ).

Then we have a homomorphism

ψ : p∗sFX/T ≃ FX′/T ′

β(f)
−→ FX′/T ′ = p∗sFX/T .

Since ps∗p
∗
sFX/T = FX/T ⊕ εFX/T , we define ψ(v) by ψ(u) = u ⊕ εL(v)u. Then L(v)

satisfies the relation (7.1.1). Moreover we have

[L(v1), L(v2)] =L([v1, v2])(8.1.2)

for v1, v2 ∈ ΘX/T .

Note that for any s ∈ FX/T , v 7→ L(v)s is a differential operator from ΘX/T to FX/T .

This definition coincides with the usual definition of the Lie derivative on Ωk
X/T . The

Lie derivative acts on Wm(D) by the adjoint action.

8.2. The infinitesimal action

Let g be the subsheaf of p∗(ΘV/S) consisting of tangent vectors that vanishes at the

zero section. Here p : V → S is the projection. Then we have

g = S+(V
∗)⊗OS

V(8.2.1)

where S+(V
∗) = ⊕l>0S

l(V∗). Set Wl(g) = ⊕1−l′≤lSl′(V∗) ⊗ V. Then W0(g) = g and

g/W−m−1(g) is the Lie algebra of G(m). Hence for F ∈ I(n), g acts on Φ(F ) as its

infinitesimal action. This action coincides with the action through the Lie derivative.
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§9. Characteristic zero case

In this section 9, let us take Spec(k) as S for a field k of characteristic 0. Then V may

be regarded as an n-dimensional vector space over k. In this case, the Lie algebra g in

§8.2 coincides with S+(V
∗)⊗ V where S+(V

∗) = ⊕l>0S
l(V ∗). It contains the Lie algebra

V ∗ ⊗ V of GL(V ). Therefore the category of G-modules coincides with the category of

(g, GL(V ))-modules.

Set W−l(g) = ⊕1−l′≤−lS
l′(V ∗)⊗V. The action homomorphism g⊗M →M preserves

the weight filtration W for a (g, GL(V ))-moduleM . Hence ifM is a pure module, W−1(g)

annihilates M and hence M is a GL(V )-module. Thus we have

Proposition 9.1. Any pure invariant sheaf is semisimple.

This implies the following result by a standard argument.

Proposition 9.2. Let Fν be a pure invariant sheaf of weight wν (ν = 1, 2). Then we have

ExtkIb(n)(F1, F2) = 0 for w1 − w2 < k.(9.2.1)

As stated in the introduction, we conjecture

Conjecture ExtkIb(n)(F1, F2) = 0 for w1 − w2 6= k and k < n.

Since the category of G-modules coincides with the category of (g, GL(V ))-modules,

we can translate results in the Lie algebra cohomology (e.g.in [F]) in our framework. For

example by the result of Goncharova([G]), we have when n = 1

ExtiI(1)(O,Ω
1⊗j) =

{

k for i = 0 and j = 0,
k for i ≥ 1 and j = (3i2 − i)/2 or (3i2 + i)/2,
0 otherwise.
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§10. Variants

10.1 Complex analytic case

We can perform the same construction for the complex analytic case. Namely we take

Sn the category of smooth morphisms X → T of fiber dimension n of complex analytic

spaces. A morphism f from X
a
−→ T to X ′ a′

−→ T ′ is a commutative diagram

X
fs
−→ X ′

a′ ↓ a ↓

T ′ fb
−→ T

such that X → X ′ ×T T
′ is a local isomorphism. Then the invariant sheaves are defined

similarly to the algebraic case. The category of invariant sheaves (in the complex analytic

case) is equivalent to the category of G-modules with S = Spec(C).

Hence it is equivalent to I(n)Spec(C). In another word invariant sheaves are same in

the complex analytic case and algebraic case.

10.2 Multiple case

Instead of working on the sheaves on X, we can work on the sheaves on X×T X. More

precisely we can consider the following category I(n; 2). An object of I(n; 2) is the data:

(10.2.1) To any object X → T in Sn(S), assign a quasi-coherent OX×TX modules FX/T

whose support is contained in the diagonal set.

(10.2.2) To any morphism ϕ = (ϕs, ϕb) : (X → T ) → (X ′ → T ′) in Sn(S), assign an

isomorphism

β(ϕ) : (ϕs × ϕs)
∗FX′/T ′

∼
−→ FX/T .

Here ϕs × ϕs is the morphism X ′ ×T ′ X ′ → X ×T X induced by ϕ.

We assume the similar associative law to the invariant sheaf case. We call an object of

I(n; 2) a double invariant sheaf. Similarly to the invariant sheaf case we define Ic(n; 2) to be

the category of double invariant sheaves F such that FX/T are locally of finite presentation.

For an object X → T in Sn(S), let p1 : X×T X → X be the projection. Then for a double

invariant sheaf FX/T , X/T 7→ p1∗FX/T is an invariant sheaf. Thus we obtain the functor

p1∗ : I(n; 2)→ I(n).
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Let us denote by O∆(m) the double invariant sheaf that associates O
∆

(m)

X/T

to X → T in

Sn(S). Here ∆
(m)
X/T is the m-th infinitesimal neighborhood of the diagonal embedding X →֒

X ×T X. Then for a double invariant sheaf F , there is an action O
∆

(m)

X/T

⊗OX×T X
FX/T →

FX/T if we take m sufficiently large. It induces p1∗(O∆
(m)

X/T

) ⊗p1∗(FX/T ) → p1∗(FX/T ).

Thus we obtain a homomorphism in I(n)

p1∗O∆(m) ⊗ p1∗F → p1∗F.

We can see easily

Φ(p1∗O∆(m)) = p∗OWm(V ).

Here p :Wm(V )→ S is the projection. We have p∗OWm(V ) = S(V∗)/W−m−1S(V
∗). Here

W−l(S(V
∗)) = ⊕l′≥lS

l′(V∗). Thus we obtain

Proposition 10.2.1. Ic(n; 2) is equivalent to a category of G-modules with the struc-

ture of S(V∗)-modules M such that S(V∗) ⊗M → M is G-equivariant (more precisely

W−l(S(V
∗))M = 0 for l >> 0 and S(V∗)/W−l(S(V

∗))⊗M →M is G-equivariant).
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