VANISHING CYCLE SHEAVES AND HOLONOMIC SYSTEMS
 OF DIFFERENTIAL EQUATIONS

By

M. Kashiwara
Research Institute for Mathematical Sciences Kyoto University

1. Let X be a complex manifold and f a holomorphic function on X. Then, for a complex of sheaves $\underline{F}^{\text {• }}$ on X, we can define a "vanishing cycle sheaf" $\mathbb{R} \Psi \underline{F}^{.}$(in Deligne's notation) on $f^{-1}(0)$ (See [3], [1]). The purpose of this paper is to give a corresponding holonomic system when E^{*} is given as a de Rham complex of a regular holonomic system.
2. Let X be a smooth complex manifold and Y a smooth submanifold of X. We denote by ${ }^{0} X$ and I_{Y} the sheaf of holomorphic functions on X and the defining Ideal of Y. We denote by A the graded $\hat{0}_{X}$-Algebra $\underset{k \in Z^{\prime}}{\oplus} I_{Y}^{k} t^{-k} \subset 0_{X}\left[t, t^{-1}\right]$. Here, I_{Y}^{k} stands for \boldsymbol{o}_{X} if $k \leq 0$. We denote by $\pi: \tilde{X} \rightarrow X$ the space Specan A over X. Then \tilde{X} is smooth and t defines a hypersurface of \tilde{X} isomorphic to the normal bundle $T_{Y} X$ of Y.

Let $\tilde{\mathbb{C}}$ be the real manifold $(\mathbb{C}-\{0\}) \cup S^{1}$ with the boundary $S^{1}=\mathbb{C}^{\times} / \mathbb{R}^{+}$, with the obvious projection $\tilde{\mathbb{C}} \rightarrow \mathbb{C}$. For a complex of sheaves F^{*}, we define

$$
\begin{equation*}
\nu_{Y}\left(\underline{F}^{*}\right)=i^{-l_{R \cdot j} p^{-1}} \underline{F}^{*} \tag{2.1}
\end{equation*}
$$

Here p is the projection $\tilde{X}-T_{Y} X=(\mathbb{C}-\{0\}) \underset{\mathbb{C}}{ } \tilde{X} \rightarrow X$ and j : $\tilde{X}-T_{Y} X \hookrightarrow \tilde{\mathbb{C}} \times \tilde{X}$, which are given by $t: \tilde{X} \rightarrow \mathbb{C}$. The map i is the

By using a local coordinate system ($x_{1}, \ldots, x_{\ell}, \ldots x_{n}$) of X such that Y is $x^{\prime}=\left(x_{1}, \ldots, x_{\ell}\right)=0$, the stalks of $\nu_{Y}\left(F^{\circ}\right)$ are described as follows. For $\left(x_{0}, v\right) \in \mathbb{T}_{Y} X \quad\left(x_{0} \in \mathbb{C}^{n-\ell}, v \in \mathbb{C}^{\ell}\right)$, we have

$$
\begin{equation*}
H^{j}\left(V_{Y}\left(\underline{F}^{*}\right)\right)\left(x_{0}, V\right)=\underset{U}{\lim } H^{j}\left(U ; F^{*}\right) \tag{2.2}
\end{equation*}
$$

Here, U runs over the set of open subsets of X which contain $\left\{x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{C}^{\ell} \times \mathbb{C}^{n-\ell} ;\left|x^{\prime}\right|<\varepsilon,\left|x^{\prime \prime}-x_{0}\right|<\varepsilon, x^{\prime} \in \Gamma\right\}$ for some $\varepsilon>0$ and an open cone $\Gamma \ni v$ of \mathbb{C}^{ℓ}.
3. Let D_{X} be the sheaf of differential operators on X and a regular holonomic D_{X}-Module. We shall then construct a regular holonomic $\boldsymbol{D}_{\mathrm{T}_{\mathrm{Y}}}$-Module . such that

$$
\nu_{Y}\left(\mathbb{R} \underline{H o m} \boldsymbol{o}_{X}\left(\mathbb{m}, o_{X}\right)\right)=R \underline{H o m} \boldsymbol{D}_{T_{Y} \mathrm{X}}\left(\mathbb{I}, \boldsymbol{o}_{\mathrm{T}_{\mathrm{Y}} \mathrm{X}}\right)
$$

If such an $\mathbb{I I}^{\prime}$ exists, it is unique up to an isomorphism. We shall denote it by $\quad \nu_{Y}(\mathbb{M})$.
4. Keeping X and Y as in the preceding section, we shall define the filtration $F^{\cdot}=F^{\cdot}\left(D_{X}\right)$ of D_{X} by

$$
\begin{equation*}
F^{k}\left(D_{X}\right)=\left\{P \in p_{X} ; P\left(I_{Y}^{j}\right) \subset I_{Y}^{j+k} \text { for any } j\right\} \tag{4.1}
\end{equation*}
$$

Then, one can show easily the following

Proposition 1. (1) $F^{k}\left(D_{X}\right) / F^{k+1}\left(D_{X}\right)$ is isomorphic to the sheaf of
differential operators on $T_{Y} X$ homogeneous of degree k. Hence its graduation $E r_{F} .\left(D_{X}\right)$ is a subring of $D_{T_{Y} X}$.
(2) There exists (locally) a vector field θ tangent to Y acting on I_{Y} / I_{Y}^{2} as the identity.
5. Now, let be a coherent D_{X}-Module. A filtration F_{I} of iil is called a good filtration of m with respect to $F^{\prime}\left(\mathbf{p}_{\mathrm{X}}\right)$ if it satisfies

$$
\begin{equation*}
F^{k}\left(D_{X}\right) F_{I}^{j} \subset F_{I}^{k+j} \text { for any } k \text { and } j \tag{5.1}
\end{equation*}
$$

$$
\begin{array}{r}
F^{k}\left(D_{X}\right) F_{I}^{j}=F_{I}^{k+j} \text { if } j \gg 0 \text { and } k \geq 0 \tag{5.2}\\
\text { or if } j \ll 0 \text { and } k \leqq 0 .
\end{array}
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{I}}^{j} \text { is a conerent } \mathrm{F}^{0}\left(\mathrm{D}_{\mathrm{X}}\right) \text {-Module. } \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{m}=U F_{I}^{j} \tag{5.4}
\end{equation*}
$$

The following proposition is proved in [2].

Proposition 2. Let M be a regular holonomic system. Then there exist locally a coherent 0_{X} sub-Module F of ill and a non-zero polynomial $b(\theta)$ such that

$$
\begin{equation*}
b(\theta) F C\left(p_{X}(\operatorname{deg} b) \cap F^{1}\left(p_{X}\right)\right) F \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{m}=\mathrm{o}_{\mathrm{X}} \mathfrak{F} \tag{5.6}
\end{equation*}
$$

Here $D_{X}(m)$ denotes the sheaf of differential operators of order $\leqq m$, and θ is the one given in Proposition 1 .
6. Let \mathbf{a} be the abelian category of coherent D_{X}-Modules satisfying the conclusion in Proposition 2. Let G be a subset of d satisfying the following condition:
(6.1) For any $a \in \mathbb{C}, G \cap(a+Z)$ consists of a single point.

Then we have the following

Theorem 1. (1) For any in \in, there exists a good filtration
$F_{G}(\mathrm{~m})$ of $\boldsymbol{I l}$ satisfying the following condition: there exists a polynomial $b(\theta)$ such that $b^{-1}(0) \subset G$ and $b(\theta-k) F_{G}^{k}(\mathbb{m}) \subset F_{G}^{k+1}(\mathbb{m})$ for any k .

Moreover such a filtration is unique.
(2) For $\boldsymbol{m} \in \mathbb{R}, \mathrm{gr}_{\mathrm{F}}^{\mathrm{G}}$ (m$)$ does not depend on the choice of G as a (not graded) gr F^{\prime} (D -Module. We shall denote it by gr m.
(3) $\boldsymbol{m l} \rightarrow \mathrm{gr} \mathrm{m}$ is an exact functor from in into the category of coherent gr ${ }_{F}$.(D)-Modules.

We shall indicate the proof of the theorem.
Proof of (1). By using proposition 2, there exists a good filtration F_{i} of m and a non-zero polynomial b such that
(6.2)

$$
b(\theta-k) F_{I}^{k} \subset F_{I}^{k+I} \text { for any } k
$$

In fact, setting $F_{I}^{k}=F^{k}(D) F$ we apply the following lemma.

Lemma 1. For any $f(\theta) \in \mathbb{C}[\theta]$ and $P \in F^{k}(\mathbb{D}), f(\theta) P-\operatorname{Pf}(\theta+k) \in$ $\mathrm{F}^{\mathrm{k}+1}(\mathrm{D})$.

Now, assume that $b(\theta)$ in (6.2) is a product of two polynomials $b_{1}(\theta)$ and $b_{2}(\theta)$ and we set $F_{I I}^{k}=F_{I}^{k+1}+b_{1}(\theta-k) F_{I}^{k}$. Then $F_{I I}$ is a good filtration satisfying $b_{1}(\theta-k-1) b_{2}(\theta-k) F_{I I}^{k} \subset F_{I I}^{k+1}$. Repeating this procedure, we can show the existence of F_{G}.

The uniqueness of F_{G} is proved as follows.
Let F_{I} and $F_{I I}$ be two good filtrations and $b_{I}(\theta)$ and $b_{I I}(\theta)$ two polynomials satisfying $b_{J}(\theta-k) F_{J}^{k} C F_{J}^{k+1}$ and $b_{J}^{-1}(0)<G$ for $J=I$, II. There exists $N \geqq I$ such that $F_{I}^{k} \subset F_{I I}^{k-N}$ for any k. Then $b_{I}(\theta-k) F_{I}^{k} \subset F_{I}^{k+1} \subset F_{I I}^{k-N+1}$ and $b_{I I}(\theta-k+N) F_{I}^{k} C b_{I I}(\theta-k+N) F_{I I}^{k-N} \subset$ $F_{I I}^{k-N+1}$. Since $b_{I}(s-k)$ and $b_{I I}(s-k+N)$ have no common root, $F_{I}^{k} \subset F_{I I}^{k-N+1}$. Repeating this, we finally obtain $F_{I}^{k} \subset F_{I I}^{k}$ (3) is proved by a similar discussion.

Proof of (2). Let G and G be two subsets of \mathbb{C} satisfying (6.1). We shall show $g x F_{G} \simeq g r F_{G}$. We may assume $G \ni \lambda$ and $G^{\prime}=(G-\{\lambda\}) \cup\{\lambda+1\}$. We write $g r F_{G}$ for $\operatorname{gr}_{F_{G}} \mathbb{M}$.

Let $b(\theta)$ be a polynomial such that $b^{-1}(0) C G$ and $b(\theta-k) F_{G}^{k} C$ $\mathrm{F}_{\mathrm{G}}^{\mathrm{K}+1}$. Set $\mathrm{b}(\theta)=(\theta-\lambda)^{\mathrm{m}} \mathrm{a}(\theta)$ with $a(\lambda) \neq 0$. Then $\mathrm{F}_{\mathrm{G}}^{\mathrm{k}}$, $=$ $(\theta-\lambda-k)^{m_{F}}{ }_{G}^{k}+F_{G}^{k+1}$. Let us take $\varphi, \psi \in \mathbb{C}[\theta]$ satisfying

$$
\begin{align*}
\varphi \equiv 0 & \bmod (\theta-\lambda)^{m}(\theta-\lambda-1)^{m} \tag{6.3}\\
\varphi \equiv 1 & \bmod a(\theta) \\
\psi \equiv 0 & \bmod a(\theta) a(\theta-1) \\
\psi \equiv 1 & \bmod (\theta-\lambda)^{m}
\end{align*}
$$

We shall define $f: g r F_{G} \rightarrow g r F_{G}$, and $g: g r F_{G}, \rightarrow g r F_{G}$ as follows.

$$
\begin{align*}
& f: g r F_{G}=\oplus F_{G}^{k} / F_{G}^{k+1} \ni \sum u_{k} \mapsto \sum v_{k} \in g r F_{G}=\oplus F_{G}^{k}, / F_{G}^{k+1} \tag{6.4}\\
& v_{k}=\varphi(\theta-k) u_{k}+\psi(\theta-k-1) u_{k+1} \\
& g: g r F_{G}, \ni \sum v_{k} \mapsto \sum u_{k} \in g r F_{G} \tag{6.5}\\
& \text { by } u_{k}=v_{k}+\psi(\theta-k) v_{k-1} .
\end{align*}
$$

Then one can easily show that f and g are inverses to each other.
(4) is shown by reducing the problem to the following special case, which is easy to prove.

Proposition 2. Let $b(\theta)$ be a non-zero polynomial of degree m with $b^{-1}(0) C G$ and P an $N \times N$ matrix of differential operators in $\mathrm{F}^{\mathrm{l}}(\mathrm{D}) \cap \mathrm{D}(\mathrm{m})$.

Set $\mathbb{H}=\mathbf{D}^{N} / \mathbf{D}^{\mathrm{N}}(\mathrm{b}(\theta)-P)$. Then (4) in Theorem 1 is true for II.
(5) is proved in [2].
7. Suppose that Y is a smooth hypersurface of X given by $f=0$. Then, for a complex of sheaves F^{*} whose cohomology groups are constructible, one can define $\mathbb{R} \psi$ and $\mathbb{R} \varphi$ and can: $\mathbb{R} \Phi \rightarrow \mathbb{R} \psi$ and Var: $\mathbb{R}^{\Psi} \rightarrow \mathbb{R}^{\Phi}$ (See [3]). If we take a vector field ∂ such that $\partial \mathrm{f} \equiv 1 \bmod I_{Y}$, then $\theta=\mathrm{f} \partial$ and $\mathrm{gr}_{\mathrm{F}}^{0}$. (D) is isomorphic to D_{Y}. Suppose $\mathbb{F}^{*}=\mathbb{R}$ Hom $D_{X}\left(\operatorname{Ha}_{X}\right)$ for a regular holonomic D_{X}-Module \mathfrak{m}. Then we have the following

Theorem 2. Assume $G \subset \mathbb{C}$ satisfies (6.1) and contains 0 .
(0) $\mathrm{gr}_{\mathrm{G}}^{\mathrm{k}} \mathrm{ll}$ is a regular holonomic D_{Y}-Module.

(2) can is given by $f: \mathrm{gr}_{\mathrm{G}}^{-1} \mathfrak{m} \mapsto \mathrm{gr}_{\mathrm{G}}^{0}$ and Var is given by $\partial \frac{e^{2 \pi i \theta}-1}{\theta}: \operatorname{gr}_{G}^{0} m \rightarrow \mathrm{gr}_{\mathrm{G}}^{-1} \mathfrak{m}$.

Remark 1. We can replace in (2), f and $\partial \frac{e^{2 \pi i \theta}-1}{\theta}$ with $\frac{e^{2 \pi i \theta}-1}{\theta} f$ and ∂.

Remark 2. If we replace $R \underline{H o m} D_{X}\left(*, O_{X}\right)$ with $\mathbb{R} \underline{H o m} D_{X}\left(0_{X}, *\right)$, then (1) holds by replacing \mathbb{R} Hom $\mathrm{p}_{\mathrm{X}}\left({ }^{*}, 0_{\mathrm{Y}}\right)$ with R Hom $\mathrm{D}_{\mathrm{Y}}\left(0_{\mathrm{Y}},{ }^{*}\right)$. Accordingly, (2) holds by exchanging Var and can.

Sketch of proof. The theorem is essentially equivalent to the following one-dimensional case. Let $X=\mathbb{C}$ and $Y=\{0\}$. Let V_{0} and V_{-1} be two vector spaces and let $A: V_{0} \rightarrow V_{-1}$ and $B: V_{-1} \rightarrow V_{0}$ be two homomorphisms. Let Ill be a ${ }^{\mathrm{D}} \mathrm{X}^{\text {-Module generated by } \mathrm{V}_{0} \oplus \mathrm{~V}_{-1}, ~}$ with the fundamental relation:

$$
\begin{array}{lll}
x u=B u & \text { for } & u \in V_{-1} \\
\partial v=A V & \text { for } & v \in V_{0} .
\end{array}
$$

If we assume the eigen-values of $A B$ are contained in G, then $\mathrm{gr}_{\mathrm{G}}^{\mathrm{k}}$ III $=\mathrm{V}_{\mathrm{k}}$ for $\mathrm{k}=0,-1$.

$$
\text { Let } U \text { be a non-empty convex cone in } \mathbb{C} \text { such that } U \neq 0 \text {. }
$$

Then we have

$$
\begin{aligned}
& \mathbb{R}^{\Psi}=\operatorname{Hom}_{\boldsymbol{D}_{X}}\left(\mathbb{I}, \boldsymbol{o}_{X}(U)\right) \text { and } \\
& \mathbb{R} \Phi^{\Phi}=\operatorname{Hom}_{\boldsymbol{p}_{X}}\left(\mathbb{I}, \emptyset_{X}(U) / \emptyset_{X}(\mathbb{C})\right) .
\end{aligned}
$$

The homomorphism can is given by $0_{X}(U) \rightarrow 0_{X}(U) / 0_{X}(\mathbb{C})$. The homomorphism Var is given as follows: for $\varphi \in \operatorname{Hom}_{\mathrm{X}}$ ($\left.\mathbb{I I}, 0(U) / 0(X)\right)$ and $s \in \mathbb{M}$, let us choose a representative $u \in O(U)$ of $\varphi(s)$. Then u can be continued to a multi-valued holomorphic function on $\mathbb{C}-\{0\}$, so that we can obtain the holomorphic function Tu defined on U by the analytic continuation of u along a path around the origin. Then Tu-u does not depend on the choice of a representative u and $s \mapsto T u-u$ gives a homomorphism from to $\mathbb{O}_{X}(\mathrm{U})$. This is the homomorphism Var.

Now, \mathbb{R}^{Ψ} and $R \Phi$ are isomorphic to V_{0}^{*} and V_{-1}^{*} as follows:

$$
V_{0}^{*} \simeq \operatorname{Hom}_{D}\left(\mathbb{m}, o_{X}(U)\right), \quad V_{1}^{*} \simeq \operatorname{Hom}_{D}\left(\mathbb{m}, o_{X}(U) / o_{X}(\mathbb{C})\right)
$$

by $\quad V_{0}^{*} \ni \alpha \mapsto \varphi$ and $V_{-1}^{*} \ni \beta \mapsto \psi$, where $\varphi(u)=\left\langle\alpha, x^{B A-1}{ }_{B u}\right\rangle$, $\varphi(v)=\left\langle\alpha, x^{B A} v\right\rangle$ and $\psi(u)=\left\langle\beta, x^{A B-1} \Gamma(1-A B) u\right\rangle, \psi(v)=$ $-\left\langle\beta, A x^{B A} \Gamma(-B A) v\right\rangle$ for $u \in V_{-1}$ and $v \in V_{0}$.

Remark that $x^{\lambda} \Gamma(\lambda)$ defines well an element of $O(U) / 0(\mathbb{C})$
by the analytic continuation on $\lambda\left(e \cdot g \cdot x^{\lambda} \Gamma(\lambda)=\log x\right.$ at $\lambda=0$ and $x^{\lambda} \Gamma(\lambda)=\log x+\left((\log x)^{2} / 2-\gamma \log x\right) N+\left((\log x)^{3 / 6}-\right.$ $\left.\gamma(\log x)^{2} / 2+\left(\pi^{2} / 3+\gamma^{2} / 2\right) \log x\right) N^{2}$ at $\lambda=N$ with $N^{3}=0 ; \quad \gamma$ is the Euler constant).

Thus with these identification, can is given by $\alpha \mapsto \alpha B(\Gamma(1-A B))^{-1}$ and Var is given by $\beta \mapsto \beta\left(2 \pi i A e^{\pi i B A} / \Gamma(1+B A)\right)$. Finally it is enough to note that x, ∂, θ correspond to B, A and $B A$ (or $A B-I$) and $(\Gamma(I-A B))^{-1}$ is invertible under the condition on the eigenvalues of $A B$.

References
[1] J. L. Verdier, in this volume.
[2] M. Kashiwara, T. Kawai, Second microlocalization and asymptotic expansions, Lecture Notes in Physics, 126, pp.21-76, Berlin-Heidelberg-New York, Springer, 1980.
[3] P. Deligne, Le formalisme des cycles evamescents, Lecture Notes in Mathematics, 340, pp.82-115, Berlin-Heidelberg-New York, Springer, 1973.

