VANISHING CYCLE SHEAVES AND HOLONOMIC SYSTEMS OF DIFFERENTIAL EQUATIONS

By

M. Kashiwara Research Institute for Mathematical Sciences Kyoto University

1. Let X be a complex manifold and f a holomorphic function on X. Then, for a complex of sheaves \underline{F} on X, we can define a "vanishing cycle sheaf" $\mathbb{R}\Psi\underline{F}$ (in Deligne's notation) on $f^{-1}(0)$ (See [3], [1]). The purpose of this paper is to give a corresponding holonomic system when \underline{F} is given as a de Rham complex of a regular holonomic system.

2. Let X be a smooth complex manifold and Y a smooth submanifold of X. We denote by $\boldsymbol{0}_X$ and \underline{I}_Y the sheaf of holomorphic functions on X and the defining Ideal of Y. We denote by A the graded $\boldsymbol{0}_X$ -Algebra $\bigoplus_{k \in \mathbb{Z}} \underline{I}_Y^{k} t^{-k} \subset \boldsymbol{0}_X[t,t^{-1}]$. Here, \underline{I}_Y^{k} stands for $\boldsymbol{0}_X$ if $k \leq 0$. We denote by $\pi: \tilde{X} \to X$ the space Specan A over X. Then \tilde{X} is smooth and t defines a hypersurface of \tilde{X} isomorphic to the normal bundle T_yX of Y.

Let $\tilde{\mathbf{C}}$ be the real manifold $(\mathbf{C}-\{0\}) \mathbf{U} S^1$ with the boundary $S^1 = \mathbf{C}^{\times}/\mathbf{R}^+$, with the obvious projection $\tilde{\mathbf{C}} \neq \mathbf{C}$. For a complex of sheaves $\underline{\mathbf{F}}^{\cdot}$, we define

(2.1) $v_{\gamma}(\underline{F}^{\cdot}) = i^{-1} R j_{*} p^{-1} \underline{F}^{\cdot}.$

Here p is the projection $\tilde{X} - T_Y X = (C - \{0\}) \times \tilde{X} \to X$ and j: $\tilde{X} - T_Y X \hookrightarrow \tilde{C} \times \tilde{X}$, which are given by t: $\tilde{X} \to C$. The map i is the inclusion $T_Y X \hookrightarrow S^1 \times T_Y X \hookrightarrow \tilde{C} \times \tilde{X}$ given by (1 mod \mathbb{R}^+) ϵS^1 .

By using a local coordinate system $(x_1, \ldots, x_\ell, \ldots, x_n)$ of X such that Y is $x' = (x_1, \ldots, x_\ell) = 0$, the stalks of $v_Y(\underline{F})$ are described as follows. For $(x_0, v) \in T_Y X$ $(x_0 \in \mathbb{C}^{n-\ell}, v \in \mathbb{C}^{\ell})$, we have

(2.2)
$$H^{j}(v_{Y}(\underline{F}^{\cdot}))(x_{o},v) = \underline{\lim} H^{j}(U;\underline{F}^{\cdot}).$$

Here, U runs over the set of open subsets of X which contain $\{x=(x^{\prime},x^{\prime})\in \mathbb{C}^{\ell}\times\mathbb{C}^{n+\ell}; |x^{\prime}|<\varepsilon, |x^{\prime\prime}-x_{\circ}|<\varepsilon, x^{\prime}\in\Gamma\}$ for some $\varepsilon > 0$ and an open cone $\Gamma \ni v$ of \mathbb{C}^{ℓ} .

3. Let \mathbf{D}_{χ} be the sheaf of differential operators on X and M a regular holonomic \mathbf{D}_{χ} -Module. We shall then construct a regular holonomic $\mathbf{D}_{T_v \chi}$ -Module \mathbf{M} ' such that

$$v_{Y}(\mathbb{R} \xrightarrow{\text{Hom}} \mathfrak{p}_{X}(\mathfrak{m}, \mathfrak{O}_{X})) = \mathbb{R} \xrightarrow{\text{Hom}} \mathfrak{p}_{T_{V}X}(\mathfrak{m}', \mathfrak{O}_{T_{Y}X}).$$

If such an $\mbox{$\mathfrak{M}$}^{\prime}$ exists, it is unique up to an isomorphism. We shall denote it by $\nu_v(\mbox{$\mathfrak{M}$}).$

4. Keeping X and Y as in the preceding section, we shall define the filtration F' = F'(\mathbf{p}_{χ}) of \mathbf{p}_{χ} by

(4.1)
$$F^{k}(\mathfrak{p}_{\chi}) = \{ P \in \mathfrak{p}_{\chi}; P(\underline{I}_{\Upsilon}^{j}) \subset \underline{I}_{\Upsilon}^{j+k} \text{ for any } j \}.$$

Then, one can show easily the following

<u>Proposition 1</u> (1) $F^{k}(\mathfrak{p}_{\chi})/F^{k+1}(\mathfrak{p}_{\chi})$ is isomorphic to the sheaf of

5. Now, let **m** be a coherent \mathbf{p}_X -Module. A filtration F_I^* of **m** is called a good filtration of **m** with respect to $F^*(\mathbf{p}_X)$ if it satisfies

(5.1) $F^{k}(\mathbf{p}_{\chi})F^{j}_{I} \subset F^{k+j}_{I}$ for any k and j

(5.2) $F^{k}(\mathfrak{p}_{\chi})F^{j}_{I} = F^{k+j}_{I}$ if $j \gg 0$ and $k \ge 0$ or if $j \ll 0$ and $k \le 0$.

(5.3)
$$F_{I}^{j}$$
 is a coherent $F^{0}(\mathfrak{p}_{\chi})$ -Module.

$$(5.4) \qquad \mathbf{ft} = \mathbf{U} \mathbf{F}_{\mathrm{T}}^{\mathrm{J}}.$$

The following proposition is proved in [2].

Proposition 2. Let \mathbf{m} be a regular holonomic system. Then there exist locally a coherent $\mathbf{0}_X$ sub-Module \mathbf{F} of \mathbf{m} and a non-zero polynomial $\mathbf{b}(\mathbf{\theta}$) such that

(5.5)
$$b(\theta) \mathbf{F} \subset (\mathbf{p}_{\chi}(\deg b) \wedge \mathbf{F}^{1}(\mathbf{p}_{\chi})) \mathbf{F}$$

 $(5.6) \qquad \mathfrak{M} = \mathfrak{D}_{\chi} \mathcal{F} .$

Here $\mathfrak{p}_{\chi}(m)$ denotes the sheaf of differential operators of order $\leq m$, and θ is the one given in Proposition 1.

6. Let **R** be the abelian category of coherent p_{χ} -Modules satisfying the conclusion in Proposition 2. Let G be a subset of **C** satisfying the following condition:

(6.1) For any $a \in C$, $G \cap (a+Z)$ consists of a single point.

Then we have the following

Theorem 1. (1) For any $\mathfrak{m} \in \mathfrak{R}$, there exists a good filtration $F_{G}^{\cdot}(\mathfrak{m})$ of \mathfrak{m} satisfying the following condition: there exists a polynomial $b(\theta)$ such that $b^{-1}(0) \subset G$ and $b(\theta-k)F_{G}^{k}(\mathfrak{m}) \subset F_{G}^{k+1}(\mathfrak{m})$ for any k.

Moreover such a filtration is unique.

(2) For $\mathfrak{m} \in \mathfrak{R}$, $\operatorname{gr}_{F_{\mathbf{G}}}(\mathfrak{m})$ does not depend on the choice of G as a (not graded) $\operatorname{gr}_{F}(\mathfrak{p})$ -Module. We shall denote it by $\operatorname{gr} \mathfrak{m}$. (3) $\mathfrak{m} \mapsto \operatorname{gr} \mathfrak{m}$ is an exact functor from \mathfrak{R} into the category of coherent $\operatorname{gr}_{F}(\mathfrak{p})$ -Modules.

 $(4) \quad \nu_{Y}(\mathbb{R} \ \underline{\operatorname{Hom}} \ \mathfrak{p}_{X}(\mathfrak{m}, \mathfrak{O}_{X})) = \mathbb{R} \ \underline{\operatorname{Hom}} \ \mathfrak{p}_{T_{Y}X}(\mathfrak{p}_{T_{Y}X} \ \underline{\operatorname{gr}} \mathfrak{p}_{X} \ \operatorname{gr} \mathfrak{n}, \mathfrak{O}_{T_{Y}X})$

$$v_{Y}(\mathbb{R} \ \underline{\text{Hom}} \ \mathfrak{p}_{X}(\mathfrak{O}_{X}, \mathfrak{m})) = \mathbb{R} \ \underline{\text{Hom}} \ \mathfrak{p}_{T_{Y}X}(\mathfrak{O}_{T_{Y}X}, \mathfrak{p}_{T_{Y}X} \otimes \text{gr}\mathfrak{p}_{X}).$$

(5) If \mathfrak{m} is regular holonomic, so is $\mathfrak{p}_{T_YX} \otimes \mathfrak{gr}\mathfrak{m}$.

We shall indicate the proof of the theorem. <u>Proof of (1)</u>. By using Proposition 2, there exists a good filtration F_{I}^{\cdot} of **m** and a non-zero polynomial b such that

(6.2)
$$b(\theta-k)F_{I}^{k} \leq F_{I}^{k+1}$$
 for any k.

In fact, setting $F_I^k = F^k(\mathbf{D}) \mathbf{F}$ we apply the following lemma.

Lemma 1. For any $f(\theta) \in \mathbb{C}[\theta]$ and $P \in F^{k}(\mathfrak{p})$, $f(\theta)P - Pf(\theta+k) \in F^{k+1}(\mathfrak{p})$.

Now, assume that $b(\theta)$ in (6.2) is a product of two polynomials $b_1(\theta)$ and $b_2(\theta)$ and we set $F_{II}^k = F_I^{k+1} + b_1(\theta-k)F_I^k$. Then F_{II} is a good filtration satisfying $b_1(\theta-k-1)b_2(\theta-k)F_{II}^k \subset F_{II}^{k+1}$. Repeating this procedure, we can show the existence of F_G^{\cdot} .

The uniqueness of F_{G}^{*} is proved as follows.

Let F_I and F_{II} be two good filtrations and $b_I(\theta)$ and $b_{II}(\theta)$ two polynomials satisfying $b_J(\theta-k)F_J^k \subset F_J^{k+1}$ and $b_J^{-1}(0) \subset G$ for J = I, II. There exists $N \ge 1$ such that $F_I^k \subset F_{II}^{k-N}$ for any k. Then $b_I(\theta-k)F_I^k \subset F_I^{k+1} \subset F_{II}^{k-N+1}$ and $b_{II}(\theta-k+N)F_I^k \subset b_{II}(\theta-k+N)F_{II}^{k-N} \subset F_{II}^{k-N+1}$. Since $b_I(s-k)$ and $b_{II}(s-k+N)$ have no common root, $F_I^k \subset F_{II}^{k-N+1}$. Repeating this, we finally obtain $F_I^k \subset F_{II}^k$. (3) is proved by a similar discussion.

<u>Proof of (2)</u>. Let G and G' be two subsets of C satisfying (6.1). We shall show gr $F_G \simeq$ gr F_G . We may assume G $\ni \lambda$ and G' = (G-{ λ }) U { λ +1}. We write gr F_G for gr $_{F_G}$ **m**.

Let b(θ) be a polynomial such that $b^{-1}(0) \subset G$ and $b(\theta-k)F_G^k \subset F_G^{k+1}$. Set b(θ) = $(\theta-\lambda)^m a(\theta)$ with $a(\lambda) \neq 0$. Then F_G^k , = $(\theta-\lambda-k)^m F_G^k + F_G^{k+1}$. Let us take $\varphi, \psi \in \mathfrak{C}[\theta]$ satisfying

(6.3) $\begin{aligned} \varphi &\equiv 0 \mod (\theta - \lambda)^m (\theta - \lambda - 1)^m, \\ \varphi &\equiv 1 \mod a(\theta), \\ \psi &\equiv 0 \mod a(\theta)a(\theta - 1), \\ \psi &\equiv 1 \mod (\theta - \lambda)^m. \end{aligned}$

We shall define f: gr $F_G \rightarrow$ gr F_G , and g: gr F_G , \rightarrow gr F_G as follows.

(6.4) f: gr
$$F_G = \oplus F_G^k / F_G^{k+1} \ni [u_k \mapsto [v_k \in gr F_G], = \oplus F_G^k, / F_G^{k+1}]$$

$$v_k = \Psi(\theta - k)u_k + \psi(\theta - k - 1)u_{k+1}$$

(6.5) g: gr
$$F_G$$
, $\ni [v_k \mapsto [u_k \in gr F_G]$

by
$$u_k = v_k + \psi(\theta - k)v_{k-1}$$
.

Then one can easily show that f and g are inverses to each other.

(4) is shown by reducing the problem to the following special case, which is easy to prove.

<u>Proposition 2.</u> Let $b(\theta)$ be a non-zero polynomial of degree m with $b^{-1}(0) \subset G$ and P an N × N matrix of differential operators in $F^{1}(\mathfrak{p}) \cap \mathfrak{p}(m)$.

Set $\mathbf{m} = \mathbf{p}^{N} / \mathbf{p}^{N}(\mathbf{b}(\theta) - \mathbf{P})$. Then (4) in Theorem 1 is true for \mathbf{m} .

(5) is proved in [2].

7. Suppose that Y is a smooth hypersurface of X given by f = 0. Then, for a complex of sheaves F' whose cohomology groups are constructible, one can define $\mathbb{R}\Psi$ and $\mathbb{R}\varphi$ and can: $\mathbb{R}\Phi \to \mathbb{R}\Psi$ and Var: $\mathbb{R}\Psi \to \mathbb{R}\Phi$ (See [3]). If we take a vector field ϑ such that $\vartheta f \equiv 1 \mod \underline{I}_Y$, then $\theta = f\vartheta$ and $\operatorname{gr}_F^0(\mathfrak{P})$ is isomorphic to \mathfrak{P}_Y . Suppose $\underline{F}' = \mathbb{R} \operatorname{Hom} \mathfrak{p}_X(\mathfrak{m}, \mathfrak{O}_X)$ for a regular holonomic \mathfrak{P}_X -Module \mathfrak{m} . Then we have the following

<u>Theorem 2.</u> Assume $G \subset C$ satisfies (6.1) and contains 0.

(0) $\operatorname{gr}_{G}^{k} \mathfrak{m} \quad \underline{\operatorname{is}} \ \underline{\operatorname{a}} \ \underline{\operatorname{regular}} \ \underline{\operatorname{holonomic}} \quad \mathfrak{p}_{\operatorname{Y}} - \underline{\operatorname{Module}}.$ (1) $\mathbb{R} \Psi = \mathbb{R} \quad \underline{\operatorname{Hom}} \ \mathfrak{p}_{\operatorname{Y}} (\operatorname{gr}_{G}^{0} \mathfrak{m}, \mathfrak{O}_{\operatorname{Y}}) \quad \underline{\operatorname{and}} \quad \mathbb{R} \Phi = \mathbb{R} \quad \underline{\operatorname{Hom}} \ \mathfrak{p}_{\operatorname{Y}} (\operatorname{gr}_{\operatorname{G}}^{-1} \mathfrak{m}, \mathfrak{O}_{\operatorname{Y}}).$ (2) can $\underline{\operatorname{is}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ f: \ \operatorname{gr}_{\operatorname{G}}^{-1} \mathfrak{m} \ \mapsto \ \operatorname{gr}_{\operatorname{G}}^{0} \mathfrak{m} \quad \underline{\operatorname{and}} \quad \operatorname{Var} \quad \underline{\operatorname{is}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{sis}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{by}} \ \underline{\operatorname{and}} \quad \underline{\operatorname{var}} \ \underline{\operatorname{is}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{sis}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{sis}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{sis}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{sis}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{by}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}} \ \underline{\operatorname{given}}} \ \underline{\operatorname{given}} \$

<u>Remark 1</u>. We can replace in (2), f and $\partial \frac{e^{2\pi i\theta}-1}{\theta}$ with $\frac{e^{2\pi i\theta}-1}{\theta}$ f and ∂ .

<u>Remark 2</u>. If we replace $\mathbb{R} \xrightarrow{\text{Hom}} \mathbf{p}_{\chi}(*, \mathbf{0}_{\chi})$ with $\mathbb{R} \xrightarrow{\text{Hom}} \mathbf{p}_{\chi}(\mathbf{0}_{\chi}, *)$, then (1) holds by replacing $\mathbb{R} \xrightarrow{\text{Hom}} \mathbf{p}_{\chi}(*, \mathbf{0}_{\chi})$ with $\mathbb{R} \xrightarrow{\text{Hom}} \mathbf{p}_{\chi}(\mathbf{0}_{\chi}, *)$. Accordingly, (2) holds by exchanging Var and can.

<u>Sketch of proof</u>. The theorem is essentially equivalent to the following one-dimensional case. Let $X = \mathbb{C}$ and $Y = \{0\}$. Let V_0 and V_{-1} be two vector spaces and let $A: V_0 \to V_{-1}$ and $B: V_{-1} \to V_0$ be two homomorphisms. Let **m** be a P_X -Module generated by $V_0 \oplus V_{-1}$ with the fundamental relation:

xu = Bu for
$$u \in V_{-1}$$

 $\partial v = Av$ for $v \in V_0$.

If we assume the eigen-values of AB are contained in G, then $gr_G^k \blacksquare = V_k$ for k = 0, -1.

Let U be a non-empty convex cone in ${\mathbb C}$ such that U ightarrow 0. Then we have

$$\mathbb{R}^{\Psi} = \operatorname{Hom} \mathfrak{p}_{X}^{(\mathfrak{n}, \mathfrak{O}_{X}^{(U)})} \text{ and}$$
$$\mathbb{R}^{\Phi} = \operatorname{Hom} \mathfrak{p}_{X}^{(\mathfrak{n}, \mathfrak{O}_{X}^{(U)})} \mathfrak{O}_{X}^{(\mathfrak{C})}.$$

The homomorphism can is given by $\mathbf{0}_{\chi}(\mathbf{U}) \rightarrow \mathbf{0}_{\chi}(\mathbf{U}) / \mathbf{0}_{\chi}(\mathbf{C})$. The homomorphism Var is given as follows: for $\mathbf{\varphi} \in \operatorname{Hom}_{\mathbf{0}_{\chi}}(\mathbf{m}, \mathbf{0}(\mathbf{U}) / \mathbf{0}(\mathbf{X}))$ and $\mathbf{s} \in \mathbf{m}$, let us choose a representative $\mathbf{u} \in \mathbf{0}(\mathbf{U})$ of $\mathbf{\varphi}(\mathbf{s})$. Then \mathbf{u} can be continued to a multi-valued holomorphic function on \mathbf{C} -{0}, so that we can obtain the holomorphic function Tu defined on \mathbf{U} by the analytic continuation of \mathbf{u} along a path around the origin. Then Tu-u does not depend on the choice of a representative \mathbf{u} and $\mathbf{s} \mapsto \mathrm{Tu}-\mathbf{u}$ gives a homomorphism from \mathbf{m} to $\mathbf{0}_{\mathbf{v}}(\mathbf{U})$. This is the homomorphism Var.

Now, $\mathbb{R}\Psi$ and $\mathbb{R}\Phi$ are isomorphic to \mathbb{V}_0^* and \mathbb{V}_{-1}^* as follows:

$$\mathbb{V}_{0}^{*} \cong \operatorname{Hom}_{\mathbf{p}}(\mathfrak{m}, \mathfrak{o}_{\chi}(\mathbb{U})), \quad \mathbb{V}_{1}^{*} \cong \operatorname{Hom}_{\mathbf{p}}(\mathfrak{m}, \mathfrak{o}_{\chi}(\mathbb{U})/\mathfrak{o}_{\chi}(\mathfrak{c}))$$

by $V_0^* \ni \alpha \mapsto \varphi$ and $V_{-1}^* \ni \beta \mapsto \psi$, where $\varphi(u) = \langle \alpha, x^{BA-1}Bu \rangle$, $\varphi(v) = \langle \alpha, x^{BA}v \rangle$ and $\psi(u) = \langle \beta, x^{AB-1}\Gamma(1-AB)u \rangle$, $\psi(v) = -\langle \beta, Ax^{BA}\Gamma(-BA)v \rangle$ for $u \in V_{-1}$ and $v \in V_0$.

Remark that $x^{\lambda}\Gamma(\lambda)$ defines well an element of $\mathbf{0}(\mathbf{U})/\mathbf{0}(\mathbf{C})$ by the analytic continuation on λ (e.g. $x^{\lambda}\Gamma(\lambda) = \log x$ at $\lambda = 0$ and $x^{\lambda}\Gamma(\lambda) = \log x + ((\log x)^2/2 - \gamma \log x)N + ((\log x)^3/6 - \gamma(\log x)^2/2 + (\pi^2/3 + \gamma^2/2)\log x)N^2$ at $\lambda = N$ with $N^3 = 0$; γ is the Euler constant).

Thus with these identification, can is given by $\alpha \mapsto \alpha B(\Gamma(1-AB))^{-1}$ and Var is given by $\beta \mapsto \beta(2\pi iAe^{\pi iBA}/\Gamma(1+BA))$. Finally it is enough to note that x, ∂ , θ correspond to B, A and BA (or AB-1) and $(\Gamma(1-AB))^{-1}$ is invertible under the condition on the eigenvalues of AB.

References

- [1] J. L. Verdier, in this volume.
- [2] M. Kashiwara, T. Kawai, Second microlocalization and asymptotic expansions, Lecture Notes in Physics, 126, pp.21-76, Berlin-Heidelberg-New York, Springer, 1980.
- [3] P. Deligne, Le formalisme des cycles evanescents, Lecture Notes in Mathematics, 340, pp.82-115, Berlin-Heidelberg-New York, Springer, 1973.