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In the context of the isomonodromy deformation method, we present a constructive procedure (a
matching procedure) to obtain the critical behavior of Painlevé VI transcendents and solve the connection
problem. This procedure yields two and one parameter families of solutions, including logarithmic
behaviors and three classes of solutions with Taylor expansion at a critical point. The matching procedure
was developed by A.Kitaev for the fifth Painlevé equation.

Let us call y = y(x) a solution of PVI. We consider its associated system of isomonodromy deforma-
tions:

dΨ

dλ
=
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A0(x, θ)

λ
+

Ax(x, θ)

λ − x
+
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λ − 1

]

Ψ, (1)

A0 + A1 + Ax =
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=: −A∞. Eigenvalues (Ai) = ±
1

2
θi, i = 0, 1, x;

The matrix elements are certain rational functions of x, y, dy/dx and
∫

y dx. Conversely, a solution is

y(x) = x (A0)12
{

x [(A0)12 + (A1)12] − (A1)12
}

−1
.

For x → 0, we divide the λ-plane into two domains. In the “outside” domain, defined for λ sufficiently
big, namely |λ| ≥ |x|δOUT , δOUT > 0, we approximate (1) by:
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In the “inside” domain, defined for λ comparable with x, namely |λ| ≤ |x|δIN , δIN > 0, we approximate
(1) by:
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+
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Here, NIN and NOUT are suitable integers.

Then, we compute two fundamental matrix solutions ΨOUT (λ, x), ΨIN(λ, x), and we match them in
the region of overlap, provided this is not empty:

ΨOUT (λ, x) ∼ ΨIN (λ, x), |x|δOUT ≤ |λ| ≤ |x|δIN , x → 0 (4)

This relation is to be intended in the sense that the leading terms of the local behavior of ΨOUT and
ΨIN for x → 0 must be equal. As a result, we obtain the leading terms of the behavior of y(x) for x → 0,
without any a priori assumption.

The computation of the monodromy data of the systems (2), (3) and a careful matching of ΨIN

and ΨOUT with a fundamental solution Ψ of (1), yield the monodromy data of (1) associated with the
solution y(x).

From the matching procedure we obtain different kinds of behaviors, depending on the choice of
NOUT and NIN :

1) A well known two parameter family of solutions, with parameters (a, σ) ∈ C
2, σ 6= 0, |<σ| < 1:

y(x) ∼
1

a

[σ2 − (θ0 + θx)2][(θ0 − θx)2 − σ2]

16σ3
x1−σ +

θ2
0 − θ2

x + σ2

2σ2
x −

a

σ
x1+σ , a 6= 0.

2) A one-parameter family of solutions, depending on a parameter a ∈ C:

y(x) = y0(x) + y1(x) axσ + y2(x)
(

axσ
)2

+ ... =

∞
∑

N=0

yN(x)
(

ax
)Nσ

, x → 0; (5)

The yN (x)’s are Taylor series yN (x) =
∑

∞

k=0 bk,N (θ1, θ∞, θ0, θx) xk . y0(x) is (7) and σ = ±(θ∞±θ1−1) 6=
0. The bk,N (θ1, θ∞, θ0, θx)’s are certain rational functions of their argument.
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3) Logarithmic one-parameter families of solutions, with parameter a ∈ C:

y(x) ∼







x
(

θ2

x
−θ2

0

4 log2 x − 2
(

a + θ0

2

)

log x + 4 a(a+θ0)
θ2

x
−θ2

0

)

, θ0 6= ±θx,

x (a ± θ0 ln x), θ0 = ±θx.

x → 0 (6)

4) Three classes of Taylor expansions at x = 0. The first class is represented by one of the following
series, defined for θ∞ 6= 1 and θ1 − θ∞ 6∈ Z, or for θ∞ 6= 1 and θ1 + θ∞ 6∈ Z respectively:

y(x) =
1 ± θ1 − θ∞

1 − θ∞
+

∞
∑

n=2

bn(±θ1, θ∞, θ0, θx) xn, (7)

The coefficients are certain rational functions of θ0, θ∞, θ0, θx. No parameter appears.

The second class is represented by a solution defined for θ1 = θ∞ 6= 1, θ0 = ±θx. This solution depends
on a parameter a ∈ C:

y(x) =
1

1 − θ∞
+ ax +

∞
∑

n=2

bn(a; θ0, θ∞)xn. (8)

The third class is represented by a solution defined for θ∞ = 1, θ1 = 0. Also this solution depends on a
parameter a ∈ C:

y(x) = a +
1 − a

2
(1 + θ2

0 − θ2
x) x +

∞
∑

n=2

bn(a; θ0; θx)xn. (9)

The coefficients are certain rational functions of their argument.

The symmetries of PVI (birational transformations) can be applied to the above solutions. For
example, solutions (7), (8), (9) are the representatives of the three equivalent classes including all the
solutions with Taylor expansion at a critical point.

The parameters a and σ can be computed in terms of the monodromy data. In this way, the
connection problem is solved.
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