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1)

(1)

Kenji Kajiwara*1

Graduate School of Mathematics, Kyushu University

1 Introduction
We consider the series of q-Painlevé equations characterized by the degeneration diagram of affine Weyl

groups[1]:

E
(1)
8 → E

(1)
7 → E

(1)
6 → D

(1)
5 → A

(1)
4 → (A2 + A1)(1) → (A1 + A1

|α|2=14
)(1) (1)

The q-Painlevé equations arise as birational actions of translation subgroups of the corresponding affine
Weyl groups. Other actions can be regarded as the Bäcklund transformations.

It is well-known that the differential Painlevé equations admit particular solutions expressible in terms
of the hypergeometric functions for special values of parameters. In [2] the simplest hypergeometric
solutions to the q-Painlevé equations in the diagram (1) have been constructed. The following is the
degeneration diagram of corresponding hypergeometric functions:

balanced

10W9
→ 8W7 → balanced

3φ2
→ 2φ1 → 1φ1 →

1φ1

„

a
0

; q, z

«

1φ1

„

0
b

; q, z

« → 1φ1

„

0
−q

; q, z

«

In this talk, we consider the simplest case type (A1+A′
1)

(1), and develop further study of hypergeometric
solutions. The q-Painlevé equation is given by

(FF − 1)(FF − 1) =
at2F

F + t
, (2)

where F = F (t), F = F (qt), F = F (t/q), and a is a parameter. Equation (2) admits a continuous limit
to the Painlevé II equation and hence it is sometimes referred as a q-PII equation. The purpose of this
talk is to present the hypergeometric solutions with their determinant formula for eq.(2) and to discuss
the continuous limit in detail. This is a joint work with T. Hamamoto and N. S. Witte.

2 Hypergeometric Solutions
It is possible to find the case of eq.(2) where it is specialized to the Riccati equation. Then linearizing

the Riccati equation by the standard technique, it is reduced to a second-order linear difference equation.
By constructing power-series solutions of the linear equation, we obtain the following hypergeometric
solution to eq.(2):
Proposition 1. For a = q, eq.(2) admits the particular solution given by

F =
Φ
Φ

, Φ + tΦ = Φ, Φ(t) = A1ϕ1

(
0
−q

; q,−qt

)
+ Beπi log t

log q
1ϕ1

(
0
−q

; q, qt
)

. (3)

1ϕ1

(
0
−q

; q,∓qt

)
=

∞∑

n=0

(−1)nq(
n
2)

(q; q)n(q;−q)n
(∓qt)n. (4)

It is known that eq.(2) admit the Bäcklund transformation T

T (a) = q2a, T (t) = t, T (F ) = t
qatF + FF − 1

(FF − 1)(tF + FF − 1)
, (5)

by which we obtain “higher” solutions from the “seed” solution in Proposition 1. Such solutions are given
as rational functions in terms of Φ and Φ, but in fact the denominators and numerators are factorized,
and each factor admits determinant formula as follows:
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Theorem 2.

F (t) =





1
qN

τN (t)τN+1(qt)
τN (qt)τN+1(t)

(N ≥ 0),

− 1
qN+1

τN (t)τN+1(qt)
τN (qt)τN+1(t)

(N < 0),
τN (t) =





det(Φ(q−i+2j−1t))i,j=1,...,N (N > 0)
1 (N = 0)

det(Φ(qi−2jt))i,j=1,...,−N (N < 0)

satisfies eq.(2) with a = q2N+1.

3 Continuous Limit
Proposition 2. With the replacements

F = ie−δw, a = e−
η
2 δ3

, q = e−
δ3
2 , t = −2ie−

s
2 δ2

= −2iq
s
δ , (6)

eq. (2) as δ → 0 has a limit to the Painlevé II equation (PII)

d2w

ds2
= 2w3 + 2sw + η. (7)

It is known that PII admits the hypergeometric solution for η = 2N + 1 (N ∈ Z)

w = − d

ds
log

κN+1

κN
, κN =





det(v(i+j−2)(s)))i,j=1,...,N (N > 0)
1 (N = 0)

det(v(i+j−2)(s))i,j=1,...,M (N = −M < 0)
(8)

d2v

ds2
= −sv, v(s) = CAi(e

πi
3 s) + DAi(e−

πi
3 s), (9)

where Ai is the Airy function. The above limit works well for the hypergeometric solutions, except that
naive application of the above procedure to power-series solutions does not yield meaningful limit. This is
because q = 1 is the essential singularity of the hypergeometric functions when viewed as functions in (t, q).
This difficulty can be overcome by constructing integral representations of the hypergeometric functions
in eq.(3)[3], and applying a generalization of the saddle-point method[4] to obtain their asymptotic
expansions for q ∼ 1 (δ ∼ 0). As a result, we obtain the limit of the hypergeometric functions:
Theorem 3.

Ψ(t) = e−
πi
2

log t
log q Φ(t) = −Ae−

πi
2

log t
log q

1ϕ1

(
0
−q

; q,−qt

)
+ Be

πi
2

log t
log q

1ϕ1

(
0
−q

; q, qt

)

∼ 2π
1
2 δ−

1
2

[
Ae

π2

2δ3 + πi
12 Ai(e

πi
3 s) + Be−

π2

2δ3 −πi
12 Ai(e−

πi
3 s)

]
(10)
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