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Let us consider a degenerate Garnier system of the form
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for (s, t) ∈ C2. This system admits singular loci s = ∞ and t = ∞. For each
s0 ∈ C, the restriction of (G) to the complex line s = s0 is a fourth order
differential equation belonging to PI-hierarchy. Recently, for the first Painlevé
hierarchy of 2m-th order with large parameter, Y. Takei constructed instanton-
type formal solutions containing 2m integration constants.

In this talk, we give a family of asymptotic solutions of (G) near the singular
locus t = ∞. By a suitable canonical transformation, the Hamiltonian system
(G) is reduced to a system with the Hamiltonian functions
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where the constants λ, κ20, κ11, κ02 are given by

λ = 23/4151/12e−i(ω−π/2), cos 2ω =
√

5/6, sin 2ω =
√

1/6,

κ20 = (−7 + 2
√

5 i)/24, κ11 = 2
√

30/5, κ02 = κ20 .
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Substituting a solution of the new system, for example,
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into the canonical transformation, we obtain a family of asymptotic solutions of
(G) in a sector of the form{

(s, t)
∣∣ |s| < R0, |t| > R1, θ0 < arg t < θ1

}

near t = ∞.
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