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An analytic study of a pseudo-complex-structure.
Isao NARUKI

_70;‘ Introduction. _ »

- In this paper we give an analytic study of a pseudo--
cdmplex«structure, which is roughly speaking, the abstract
substitute of an imbedding of a real manifold into a complex
manifold. Until now the main tool of this analysis was the
theory of partial differential equations developed by Kohn {4]
and Hormander [2]. But the results obtained so far seem to be
applied only to the Z-regular case. (See-Definition 2 for the
concept of the regularity.)

On the other hand, the geometric study of pseudo-complex-
structures was already made by N. Tanaka [8], [9], [10]. And
thisfformulation, when combined with a recent work of Hormander
{3}, yields a powerfull theorem (Theorem 1.5) which is a
partial generalization of Kohn-HGrmander theory to. the general
u-regular case.. - e

This theorem is of particular importance in the study of
a-complex manifold. In fact it follows from this the finite-
dimensionality‘Bf the space of gloval sections of every
anélytic vector bundle over a complex manifold having some
nice real submanifold, which is in general neither compact,
nor pseudo-concave. ,

I am greatly indebted to Professor N. Tanaka not only
for the formulation of basic geometric materials, but also
for a number of stimulating conversations. out of which
especially Theorems 1 - 2 grew. Therefore this paper might
be regarded as a collaboration with him. I thank also
Professor S. Matsuura for his serious interest and encouragement.

1. The concept of a pseudo-complex-structure and maﬁy other
concepts related to it were already introduced in [9] [10].
But we reproduce these here. We assume the differentiability
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of class C. . Let E' be a (real or complex) vector bundle
over a manifold M . We shall denote by E the sheaf of

- - oo - ~ ™
germs of local C sections.of E . For péeM , En denotes

S - ' : ... ) . ) o7
the fiber of " E over p . Similarly xfn is a stalik of )/
. 7. . - ‘ I . .
over p 1if « is a sineaf over M . T,(w) 1is the set of

~ 'sections over 0 andr‘?(xf}f denotes.the set of global sections;
?o;~simplicity wé use TQLE)', I'(E) 1instead of FQ(E), T (E)
'respectively.v |
Let M be a real submanifold of &.Complex.manifoldi & and
let TC(M), Tc(ﬁ] &enote the complexified tangent bundles of M,

M respectively.. As usual, T (M)‘ is regarded as a subspace of

=N @]

Tg{ﬁ)v for any -p of M . Now we set

11 Comy m 7(150) iy

1.1 S = T-Myn T "7 (M) e M

1.1 s, =T ATV eD pe
iy (1,0 iy 5o N L Coi |
where Tp (M} 1is the holomorphic part of TP(M) . Then
there uniquely exists a (complex) vector bundle S over M

whose fiber over p is just Sp provided that

r
3
(8]
~

dim'Sq = dim Sq, d, q'eM .

The pait (M,S) has the following properties:
(i) 'S is a subbundle of TO(M) .
ii) S A5 = (0
(i) AR (;)

(iii) S 1is completely integrable, i.e. [S, Slc S .



Thus a real submanifoid M of a complex manifold M gives rise
to a pair (M,S) with the properties (i}, (i), (iii) if (1.2)
Conversely, if M 1is an arbitrary real analytic manifeld
and 1f moreover S 1is a real analytic subbundie of
properties.(ii), (iii), then there exists a complex manifold M

of which M 1is a real submanifold and for which {1,1) holds.

Definition L. A patr (M,S) with the properties (i), (ii),

(iii) ts called a pseudo-complex-structure over M .

4‘In general the concept of a pseudo-complex-structure Will%
provably be much wider than that of a real submanifold of a
complex manifold satisfying (1.2}. Bspécially-a pseudo-complex-
#tructure M,S) Constructéd.as above from an imbedding of M
into a complex manifold will be called the pséudo-complex-
structure induced by the imbedding under consideration.

Now let (M,S) Dbe a pseudo-complex-structure and put

>

5

D_ = {Rex; x€&$S
p = tRex; x€S,

where Re x denotes the real part of x . We call the Pfaffian

system -D- whose fiver over  p- is Dp the first Pfaffian

system of M,s) .

Definition 2. A pseudo-complex-structure (M,S) is called
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w-regular {f there exists a serisz o7 Pfaffian systems

? ces ; D* = T(M)  cwcn zhat Ql = [2} D]+Dl 1

The above Di is uniquely determined for a given u;regﬁlar
‘pseudo~tomplex—structure M,S) . So we call Di the-i-th
Pfaffian system of (M,S) . By succesive use of the Jacobi
identity

*, pJ1 ¢ I,
Where. Di = T(M) for i > TN Thu§ the usual ézacket operation
for vector fields gives rise to a Lievalgebra structure of PC_)
M@Z = _§ ééi gﬁi = Di/Diqll and the bracket operation of this

~shall be denoted by { 4, }* . But we have then
[£X, gY]* = fg[X, Y]* X,Y eI

where  f,g  are ¢® functions. Therefore 'L » 1* induces
also a Lie algebra structure of.awp = Z dﬁ for any point p
of M, whose bracket operation we shall denote by [, ];

This Lie algebraﬂyfp has the properties:

(i) w s finite-diminsional.
. J*Cfl h! 1=o .
(ii) [gzp 5Zp]p < p ‘(gZp for i >u)

L. . L1
(1i1) 'mp is generated by 54p-.



{(iv)~ [Re ix, Re iy]g"' [Re x, Re y}?

® i=/-1 X, y& S
T p 1}’\ p

-

We call this niopotent Lie algebra the Levi-Tanaka form
of (M,S) at p (which will be short refered t L-T form

at p. ). Put
Lp(x,y) = [Re x, Re iy]; v ;,ye Sp .
Then Lp is a gz;-valued symmetric bilinear form by (iv).

Definition 3. Let (M,S) be a regular pseadb—compiex-
structure and let o = é‘i L be as above. We sa
: ' N P iz d&p ? P ¥
that (M,S) is totally indefinite at p if, for any non-zero
linear form o of- gﬂ; ,» the (real-valured) symmetric bilinear
form

< L ,¥)>
@, Ly(x,y)

ig indefinite (not semi-definitel. When (M,S) <8 totally
indéffnita at every point of M , we simply call M,S) totally

indefinite.

Total indefiniteness was suggested by the conditien of

sub-ellipticity in H6rmander [ l]>.

In order to state our main theorem we need still the concept
of an analytic vector bundle over a pseudo-complex-structure.

First of all we define the analyticity of a function.
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Definition 4. Let (M,S); be a pseudo-complex-siructure
and let £ be a C function on an open-set Q of M . We
say~that £ <s CK,S)-analytic,in @ 2f Xf =0  for.any
X€T,(5) . | '

The (M,S)-analyticity is a local property, that is, f is
M,S)-analytic in Q =~L}QA if and only if £ 1is (M,S)-analytic
in‘each 9 - Y

Définitionf&. Let- (M,S) tis a pseudo-complex-structure
: énd tet E be a vector bundle over M and ,x? be a subsheaf of
E .

The pair {E,)ja is called an analytic vector bundle over
(M,S) <f it satisfies the following conditions:

“At) , 1f the values in Ep of sections S1s%°sSy of *f
over an open set . are linearly independent at every p of Q,
then 'gl f.s. 18 a section ofvxf tf and only <if fl,--*,fm
are al%—(ﬂ,S)-dnalytic in Q.

(it), for any peM , there exist a series of local
sections S1»"* 55, (e = fiber dim. of E) eof )y whose values

in - E_  are linearly independent.

Remark 1. -Let (M,S) be the induced pseudo-complex-structure

by an imbedding of M into a complex manifold M and let E be

an>analytic'vector bundle aver M and )J? denote the sheaf of ‘

~

germs of local analytic sections of E . Denote by ;j “the
smallest subsheaf of E (E = EIM) ccm:a;ining)J!IvI with property

(1) of definition 5.



Then (E,«/) is an analytic vector bundle over M and we call

e 6

(E,) the restriction of
Our main theorem is now stated as follows:

Theorem L. Let (M,S) be a totally indefinite regular
pseudo-complex-structure over a compact manifold M and let
(B,)f) be an analytic vector bundle over (M,S) . Then

PQK?) is a finite-dimensional vector>space {over C )

Now we proceed to formulate another important theorem.

Let (M,S)  be a pseudo-complex-strutture. Then E% is a
Lie subalgebra of TC(M}U since S 1is completely integrable.

e

Then there exists a unique Lie algeb;ggsheaf gﬁf' whose stalk

-
ﬂf’p over p 1is the normalizer of §p in T"M)_ . The

o

D
~is a subsheaf of'ﬁﬁ' such that Eé is an ideal of Jﬂ; . So

v2¢=dﬁ9/§ is again a Lie algebra sheaf of (M,S). We call this
shgaf’~g¢ the tangential sheaf of (M,S) . Our second theorem

is the following.

Theorem 2. Let (M,S) be a totally indefinite regular
pseudo-complex-structure over a compact mantifold M and let
uﬂ{'denote its tangential sheaf. Then Fﬁp¢) is finite-

dimensional.

" Remark 2. J&fis , of course; a subsheaf of TC(M){E_.
If (M,S) is induced by an imbedding of kM into a complex-

manifold M , E = TC(M)/§‘ can be naturaliy identified with



41
tive restriction to: M of the {real) tangent bundle T(i) df
ﬁ and moreover (E,;ﬁj is the restriction of T(ﬁ) in the
~sense- - of Remark 1. Therefore, in this case,; Theorem 2 is a
14 consequence of Thedrem 1.

The key of the proofs of Theorems 1-2 is a consequence of

Hormander [ 3 ] stated as below.

Lemma L. Let (M,S} be a QQPeguaZr pseudo~-complex-

1

structure on M and suppose that Xp,*'~,Xm (Xﬁ'GP(S)} span

: p

'Sp for every p of M . Then, for any compact set K of M
and for any @ < €“<”%~} there extists a positive constant such
that

L 4

m R .. .
ity < °C. L Tl Coy ¥ uligy) + Tullgy)  we o

But what we really need is the following refinement of Lemma 1

for a totally indefinite regular pseudo-complex-structure.
“

Lemma 2. In addition to the hypothesis of lemma 1, assume
that (M,S) <s totally indefinite. Then, for any compact
subset K of M and for any 0 < € < i , there exists a

positive constant C such that
2 N - TR o
il (e) A C(jgl X7 ul (0) Hull(o)) u€ CO(K)

This lemma follows from Lemma 1 by generalizing a

technique of Kohn [ 4]: S - Now, in view of Lemma 2,



m1

the proof of Theorem 1 is almost evident. The proof of Theorem
still needs a minor differential geometric trick.
proofs in paragraph 3

2. Now we are in a position to apply Theorems 1-Z to the
study of the automorphism group of a pseudo-complex-structure

and to the study of an analytic vector bundle over a complex

manifold.

aDefinitiaﬁ 6. Let (M,S) , (M',S') be two pseudo-
abmplex;structures A diffeomdrphism f of M onto M' <s
called an isomorphism‘of‘ (M,S)k onto (M',S') <f (df)n maps

Sp tsomorphically onto Sé(p} for any peM . An isomorphism

k&f (M,S) onto itself is called an automorphism of (M,S) .
As an,applicatiod of Theorem Z we have

" Theorem 3.. Let,  (M,S) . be a totally indefinite F@gul&r
pseudo-complex-structure over a compact manifold M. Then the
automorphism group of (M,S) <is a Lie transformation group

over M with respect to some natural topology.

Proof. Let #& denote the infinitesimal autoﬁorphism
group of (,S) (i.e. the Lie algebra of generators of 1-
parameter subroups of the automorphism group of (M,S)).
Let Jﬁf be the tangenfial sheaf of (M,S) and p -denote

the natural projection of F(TC(M)) to F(TC(M)/g) . Then
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o) = T(ine(r(

But - p- is.one-to-one on. T(TM)) since 'S 50 S = (0) .
Thus (¥ 1is finite-dimensional. Now a theorem of Palais [6]
implies the conclusion of Theorem 3 .

Remark 3. his theorem was. proved by Naruki [ 4] . when
M,S)  is -~ 2-regular. It was-shown—by N. Tanaka that the
finite-dimensionality of the automorphism group'ofgagpseudo-
:omplexfstruéture fOllOWS‘(WithOUt caompactness. assumption}
under the assumptions of strong-regularity and non;degeneracy
~of . (M,S). For all of these, we refer to [97] .

Now let (M,S} be th&‘pseu&o#complexgsﬁructure induced
by an imbedding of M into a complex manifold & and let
{B,g?} be the restriction to M of an analytic vector bundle

(E;Xf) over M . Assume
(z.1) fiber dim. of S + complex dim. of M = real dim. of M.

" Then the restrictioﬁ mapping of F(x?} into P()f} is one-to-
one, In fact the condition (2.1) implies that. Tp(ﬁ) is the
unique complex subspace of (%) which contains TP(M) for
every p of M , and vice versa. We say'that M is generally
zmbedded if the condition (2. 1) is satlsfled As an application

.of Theorem 1 we have
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Theorem 4. - Suppose that a complex manifold M has a compact

£

generally imbedded éubmanifold M and taget the pseudeo-compl
structure induced by the inclusion map of M invo M satisfies
the hypotheses of Theorem 1. Then the space of global sections

of an analytic vector bundle over i 18 qlways finite-dimensional.
In particular, the holomorphic automorphism group of i is a

Lie transformation group.over &A with respect to some natural

topology.

- This theorem was suggested by N. Tanaka. Note that for any
‘neighbourhood of M in & the conclusion of this theorem holds.
So one can easily construct a complex manifold M which is
neither compact, nor pseudo-concave andrfor*which the conclﬁsion

of Theorem 4 holds. (See Example 2).

Example 1. We give some examples which clarify what the
validity of the conclusion would be in Theorems 1-3 without

the total indefiniteness. Set -

Mrz fzclz *‘jz {E-iz - . lz fz _v Ez, 2 = 0

where {zo,---,zn} is thévhamogeneous coordinate of Pn{C)ﬂ
- The pseudo-complex-structure (Mr’ Sr} induced by the inclusion

Mrﬁ;Pn(C) is. regular, but not totaily indefinite when 1 = 0 ,

or r = n-1 . Sincer, MO (or M can be imbedded into: ct

n—l)
and since C" is a Stein manifold, .global sections of an
énalytic vector bundle over Cn , hence also over GMO, SO)'

(or (Mnrl’ Sn_l)) form an infinite-dimensional vector space.
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ut the automorphism group of (MO, SG) {or of (Mn-l’ S 1)

[an]

M S I e s rr v v T gy A ~ .
tili Lie transiocrimation group.

th

of N. Tanaka remarked after Theorem 3. However this is not true

E

for MOX Pm{C) in Pn(C) x P7(C) (m > 1) Dbecause of the
infinite-dimensionality of the space of (MO, SO}—anélytic
fﬁnétions, But, when 1 < r < n-1, the hypothesis of Theorems
1-3 holds for M_ x PT(C) im P7(C) x P™(C) , although the

~ pseudo complex structure is degenerate,in the sense of [9].

~Example 2. (due to N. Tanaka) Put

G = GL(n,C) , K = U(n)

-0 if [i-j| > 2 or if i: evenk

s
[}
Fama)
—
™
-
m
[}

-
)
i

Then M = K/KnH is imbedded generally into the complex
manifold M =G/H . M 1is obviously compact and the pseudo--
complex-structure induced by this imbedding is (n-1)-regular

and totally indefinite. -

- 12 -
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3. In this paragraph we shall prove Lemma 2 and Theorems 1l-I.
Before proceeding we need an algebraic lemma which makes the
meaning of total indefiniteness moré clear. Let V#* be the
dual space of a n-dimensional complex vector space V . The
(feal) vector space bf Hermitian forms on V (resp. V¥) shall
be denoted by F (resp. F*). The notation F* may be
justified by the fact that F* ‘can be naturélly identified with
‘the dual space of F . Inbfact, we can define the bilinear
formon. F x F* by setting

n

= - | ® ok , F#
(f, g*) j,12(=lf(ej se)g* (ef,e%) f€F , gheF

vwhere {e*,‘~¢,e§} is the dual base of a base {el,---,en}
of V . Note that ( , } 1is independent of the choice of
{él,**',en} and that (f,g*) = 0 for any g*e€ F* implies

f =.0 . These facts gives us the desired identification.

Lemma 3. Notatioms being as above, for a subspace of
ﬂ,, the following statements are equivalent.
() L contains no semi-definite element except 0
(i) LY contains a (positive) definite element, where

- = {g*€ F* . (f,g*) = 0 -for any f€L }.

This.lemma folloﬁs from a corresponding theorem for
Quadratic forms due to L. L. Dines [1], but we prefér to
give a direct proof in the Appendix. |

Now let (M,S) be a totally indefinite regular pseudo-

complex-structure and let Pp (resp. F;) denote the vector

- 13 -
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space of Hermitian forms on Sp (resp.'S;). Put

n®(x,y) = <n,[Re(X3,Re(iY)1§>+i<ﬂ,[Re(X),Re(Y)]§>
_ i =y e 2
= <y<n, [x,y]> : x;ye¢Sp n G(gﬁp)*
where [ ,. I;‘ is the bracket operation of the Levi-Tanaka
u - - ‘

1 " - P
form- m. = ) T at -« Then n% 'is a usual Hermitian
HoT P iZI %P oB o .

. - Set

yfo?m-om~ Sp‘
L= 0 ne(@de .

The subspace L(p)L‘ of F;’ being as: in Lemmé~3
— }cdnsider‘the vector bundle Ef wi£h~it$ fiber L(pIL\ over
P . Since L(p)> contains. certalnly a positive deflnlte
'elemént by Leﬁma 3 and since the set of posztzve deflnlte
elemenfs in L(p}L ls‘convex, there exists gé& T'(L )}  such
'that the value g(p) at p of g  1is positive definitevfor
any peéM . Thus if- {xk}m=l<:F(§¥‘ is a frame of S (,that

. - kym . = ! \ :
is, if {Xp}£=1 is a base of Sp for p€ M ), we have .

. m v . : —k l
(3.1) 1 gX), TIer(ses)

NI B X Kym o o s
where g.k(p) = ng)(Yp’ Yp) ({Yp}k 1 1s the dual basg of
{X }k 1 ).

Proof of Lemma 2.  Since the validity of (Z.I)’is .

eﬁtirelyré local property, we may assume -that XI,*--,Xg

- 14 -
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‘are linearly independent for any p €M replacing M by some
suitable open subset of M | gk being as above, we shall
define three norms ‘J{ s Nl Hl_’ il I, on C§X--~XCO

by setting

I
I ~10
AR
by LN
~
o
-

ol ? = 2
L ,;5 | e :
: HUﬁl =581 (gikuj’uk)(ﬂ)r U= (up,=u)
oz - e Y
wkerég €, }(65 ‘15 thﬁapolaf form of || ”%G)~‘q
_H;V H, 1l Hi, it I, are equivalent on CS(K)D‘ for

ény‘ﬁcmpact subset K of M, since.z(gjk(p)}~>is positive
'&efiniﬁe1;jNote»that, for any <X€ T(TQ(M)); there exists

cQC,w(M) such that

ﬁxu’Vj(Qi%(u’iV}{O);g'(CQ’V}(O} u,v € Cg(M),*

-~

- Therefore it follows from (3.1} that there exists 'XOE'FCSGS§)

suéh‘that

1 ((gjkxju,xku)-(gjkxku’xju))

leut? - g
ek 3Lk

.(u,Xou) ,

where we have put Xu = (Xlu;-'-,Xpu) s Xy = (Ylu,---;fpu).,

This implies that,'forvany compact subset K there

- 15 -
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F4

exists a positiveiéonstant C such that
IBE IS < 13 uldecliull gy A1 Xoull + Bl ) uwechm) .

‘Since | i, !ll;,“ I, are equivalent on C§(K)p s

we thain
B? < IS aliPullg, (1 ulls 1Py wecqm
'fOr.sqmefother ’C >'0».

 Using the inequality |ab| i_&[alz + %[blz for -

sufficiently small & , we obtain

(2.3) | 1Bl < calE i ] to)

for another C > 0 . On the other hand, Lemma 1 implies

(2.4) iy < cd Xul? « | Bl <llull?y,  wecim.

Combining (2.3) and (2.4) we conclude that there eXists a

positive constant C such that
lullfey < cdiZ ull® « Null?) u€CcyH -

Q.E.D.

- 16 -
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Proof of Theorem 1. Let (M,S) be a regular compact
pseudo-complex -structure and let - (E,»d) 1is an analytic
vector bundie over (M,S). First we shall introduce the
Sobolev norms || H(c) on T(E) suitable for our purpose.
Let {Qa} be a finite convering of M such that there exist
sections of & s;,-°-,5:’ satisfying (ii) iﬁ Definition 5
for any p€ Q, and let { ¢u} is a partition of unity

. subordinate to {Qa} .- Define

[UH(U} g Jil”:“’u“i“%g)' ué I (E)

[N ION

where U = Fulsi .
;ﬁﬁere,.ﬂv umsa -

.

j=1

: Recall that U is an element of T (J) if and only if

wl are all analytic. Applying (2.2) to 9 u

J ) .
-, we obtain
N oo

-

3 H -iy'z T ’ﬂf"
llpgu H(E) <cCl Ploke Dull? sl uli?) UE T ()

k §

since X uy =0 by the (M,S)-analyticity of ui .

Therefore there exists a positive constant C such that
. HU l(e) Z H‘P H(S) < C“UH (0) UEFG& N

By the generalized Rellich lemma. T (J) 1is finite-dimensional.

Q.E.D.

- 17 -
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Proof of Thecrem 1.6. Chaosiﬁg the {complex-valued)

; ) - e ' -1 =4
1-forms cl,-"qﬂ such- that C;"‘.’Cg~ span Sp where S
is the bundle of annihilators in T*G(M) of § , we introduce »'
Sobolev norms || H{g) on T(TC(M)/g) by setting

T . ‘ ‘ : :
sl =4j§£ch(X)H%G) ser(rten/s)

where we have chosen a vector field X such that o(X) = 5
v(pﬁ"the canonical projection of F(TC} onto T(TC/S}.).J
' Tﬁe,right,hand side is independent  of~ the choice of such a
:  X, sa || H(G)f is well defined.

E Suppose that o(X)€ r(4) and that x;,s**ixg where
XjG'F(g) (3 = 1,2,++«+,p) span §§‘ for any pé?&v. Then

2;3@(1()“: a .

Taking the Lie derivative of this with respect to X ,

we obtain
0 = <Ly &) X5+ <l [k x1s
- <Ly [

since [XS,X]€T(S) by o€ (A

This can be rewritten in the form



(93]
s

Kidogy = afad, o

N
o
%
-
P
o
¥

From the complete 1nfegrab111ty of §, it follows
xMagde rh

This together with (2.5) implies that there exists a positive

constant . C such that
SR N S |
k‘-g—‘lllx (¢ (X))H(O < CHSH(O)

where s = p{X}

Applying Theorem 2.2 to this we obtain

for some- C > d , and hence
sIZ, - E eold, < sy, sered

for‘énother> C>0. By the generalized Rellich lemma,

T(A) is finite-dimensional. | Q.E.D.
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Appendix
In this appendix we shall prove Lemma 3.  Let { , )
be a (fixed) positive definite hermitian form on an n-dimensional

complex vector space V . For AE HomC(V,V) we define

A*G’HGmC(V,V) by the following identity:

(Au,v) = (u,A*v) .

A is-called a hermitian endomorphism (with respect to
C , 3y if 1A = A* - Given a Hermitian form £ on V ,
there exists one and only one Hermitian endomorphism Af such
that -

£(u,v) = (AgCu),v) -

We denote by Eg the. vector space of Hermitian endomorphisms.
F, can be then identified with F by the mapping £ ~» Ag .

We also introduce an inner product ( , )} of F_ by putting
(A,B} = Sp(A,B)

Then Lemma 3 is equivalent to the following.

Lemmaq 8'. For a subspace L of Pe the following
conditions are equivalent. ‘
(2) L containg no semi-definite element except 0

contains a (positive) definite element.

{(<7) L

Here we have put o= {Fea A (A,B) = 0 - e L} .
Proof of (i) =(ii). Assume fhat4 1t contains no

defiﬁite element. Note that the set of positive definite

Hermitian endomorphism: P iIs an open convex cone. Since
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the linear space it does ndt’intéresect with P ,'thefe exists
a ‘hyperplane H of Fe containing L* such that H does
not meet P, in view of a Theorem of *Minkowsky {[5]. Since
}YLQEJ, a generator A of Ht is not semi-definite. Let
€15 "€, be the unit eigen vectors of A and let l1’°"’An
: ; .

-be the corresponding eigenvalues. We may assume Ay 2 e n°

Then Ay >0, A, <0 - Therefore there exist positive numbers

ul,"‘;up such that k1u1'+--~+ Rn“n =0 . T1f we define a

i

Hermitian endomorphism B by setting
Be.
]

then (B,A} = 0 and hence B¢g GﬁﬁL = H . But the positive
definiteness of B contradicts to H(\P"= ¢ , thus (1) > (ii)
‘is-proved..

Proof of (ii) i?(i} . Let B be a positive-definite
element of L' and let A be a semi-definite element. of L

Let > ses > Xn > 0 be the eigenvalues of A and let

A
1 - —

1 E R be the corresponding eigen vectors. If we set

i

{Eej,ej) = uj (3=1,2,=++,n), we obtain

Alul +voqo,+,~,xnun = 0 .

But this is impossible unless A, = ==+ =\ = 0 since

A

uj > 0 by the positive definiteness of B . Thus A =20

and (ii) = (i} 1is proved.
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