Borsuk-Ulam theorem and formal group

Minoru Nakaoka (大阪大学,程)

In this lecture I shall give a generalization of the classical Borsuk-Ulam theorem in connection with the formal group for a generalized cohomology theory.

This work was done in cooperation with Prof. Munkholm.

§ 1. Formal group law for multiplicative cohomology

We recall first some facts on multiplicative cohomology theory (see Dold [1]).

we fix once and for all a multiplicative cohomology

theory h defined on the category of finite CW complexes

with base point. There is the multiplicative cohomology

theory h defined on the category of finite CW pairs.

Let ξ be a real n-dimensional vector bundle over a finite CW complex B, and denote by M(ξ) the Thom space for ξ . For each b ϵ B let ξ_b denote the restriction of ξ over b. Then $h(M(\xi_b))$ is a free h(pt)-module on one generator. ξ is said to be h-orientable if there exists $t(\xi) \in h^n(M(\xi))$ such that $t(\xi) | M(\xi_b)$ is a generator of $h(M(\xi_b))$ for each $b \in B$. Such $t(\xi)$ is called an h-orientation or a Thom class of ξ . By an h-oriented vector

bundle we mean a vector bundle in which an h-orientation is given.

Let $D(\S)$ (or $S(\S)$) denote the total space of the disc bundle (or the sphere bundle) associated to \S , and consider the homomorphism

$$\tilde{h}^{n}(M(\xi)) = h^{n}(D(\xi), S(\xi)) \xrightarrow{j*} h^{n}(D(\xi)) \xrightarrow{p*-1} h^{n}(B),$$

where j is the inclusion and p is the projection. The image of t(5) under this homomorphism is called the <u>Euler class</u> of the h-oriented bundle 5, and is denoted by e(5).

The following facts are easily proved:

- (1.1) If there is a bundle map $f: \xi \longrightarrow \xi'$ and ξ' is h-oriented, then ξ is h-oriented so that $f^*: h(B') \longrightarrow h(B)$ preserves the Euler classes.
- (1.2) If \S_1 and \S_2 are h-oriented, then the Whitney sum $\S_1 + \S_2$ is h-oriented so that $e(\S_1 + \S_2) = e(\S_1)e(\S_2)$.
 - (1.3) If ξ has a non-zero cross section, then $e(\xi) = 0$.

The classical Leray-Hirsch theorem on fibering can be generalized to the multiplicative theory ${}^{\downarrow}h$, and so we have Thom isomorphism

$$\Phi$$
: h(B) $\simeq h(M(\S))$

given by $\vec{\Phi}$ (α) = $\alpha \cdot t(\xi)$. As a consequence, the Gysin exact

sequence

$$\cdots \to h^{i-1}(S(\xi)) \to h^{i-n}(B) \xrightarrow{\cdot e(\xi)} h^{i}(B) \xrightarrow{p^{*}} h^{i}(S(\xi)) \to \cdots$$

holds.

A complex vector bundle \mathfrak{z} is called h-orientable if the real form \mathfrak{z}_R is h-orientable. Let \mathfrak{z}_n denote the canonical complex line bundle over the complex n-dimensional projective space \mathbb{CP}^n . Throughout this section the following will be assumed:

(1.4) For each n, n = 1 is h-oriented so that the homomorphism $h(CP^{n+1}) \longrightarrow h(CP^n)$ preserves the Euler classes.

It follows from this assumption that every complex line bundle \S over a finite CW complex is h-oriented so that every homomorphism $f^*: h(B) \longrightarrow h(B')$ induced by every bundle map $f: \S \longrightarrow \S'$ preserves the Euler classes.

We can prove

- (1.5) The algebra $h(CP^n)$ is a truncated polynomial algebra over h(pt): $h(CP^n) = \Re(pt) \{e(\gamma_n)\}/(e(\gamma_n)^{n+1})$.
- (1.6) Put $e(\gamma_m)_1 = p_1^* e(\gamma_m)$ and $e(\gamma_n)_2 = p_2^* e(\gamma_n)$. for the projections $p_1 : \mathbb{CP}^m \times \mathbb{CP}^n \longrightarrow \mathbb{CP}^m$ and $p_2 : \mathbb{CP}^m \times \mathbb{CP}^n \longrightarrow \mathbb{CP}^n$. Then the isomorphism

$$h(CP^{m} \times CP^{n}) = h(p)[e(/m)_{1}, e(/n)_{2}]/(e(/m)_{1}^{m+1}, e(/n)_{2}^{n+1})$$

holds.

For a CW complex X with finite skelton, we define h(X) as the inverse limit with respect to skelton:

$$h(X) = \lim_{n \to \infty} h(X^n).$$

Then, for the infinite dimensional projective space CP, the following result is obtained from (1.5) and (1.6).

(1.7) h(CP) and $h(CP) \times CP$ are rings of formal power series:

$$h(CP^{\infty}) = h[x], h(CP^{\infty}x CP^{\infty}) = h(x_1, x_2)],$$

where x, x_1 x_2 are the elements defined by $e(\gamma_n)$, $e(\gamma_n)_1$, $e(\gamma_n)_2$ respectively.

Let η denote the canonical bundle over $\operatorname{CP}^{\infty}$, and consider the external tensor product $\eta \otimes \eta$ which is a complex line bundle over $\operatorname{CP}^{\infty} \times \operatorname{CP}^{\infty}$. Let $\mu: \operatorname{CP}^{\infty} \times \operatorname{CP}^{\infty} \to \operatorname{CP}^{\infty}$ be a classifying map for $\eta \otimes \eta$, and put

for \nearrow^* : h(CP) \longrightarrow h(CP) \times CP). Then we obtain easily (1.8) For the tensor product $\S_1 \otimes \S_2$ of any complex line bundles \S_1 and \S_2 over a finite CW complex,

$$e(\xi_1 \otimes \xi_2) = \sum_{i,j \ge 0} a_{ij} e(\xi_1)^i e(\xi_2)^j$$

holds.

Consider now a power series F(x,y) with coefficients in h(pt), which is defined by

$$F(x, y) = \sum_{i,j \ge 0} a_{ij} x^{i} y^{j}$$

with $a_{i,j}$ above. Then it follows that F(x, y) is a formal group law over h(pt), i.e. the identities

$$F(x, 0) = x = F(0, x), F(x, y) = F(y, x),$$

$$F(x, F(y, z)) = F(F(x, y), z)$$

hold. For each integer $i \ge 1$, let $[i](x) \in h[[x]]$ denote the operation of "multiplication by i" for the formal group, i.e.

$$[1](x) = x,$$
 $[i](x) = F([i-1](x), x).$

Since the formula in (1.8) is rewritten as

$$e(\overline{s}_1 \otimes \overline{s}_2) = F(e(\overline{s}_1), e(\overline{s}_2)),$$

we have for the i-fold tensor product $\xi^i = \xi \otimes \cdots \otimes \xi$

$$e(\xi^{i}) = [i](e(\xi)).$$

Given a positive integer q, let G denote a cyclic group of order q. Define a G-action on the standard (2n+1)-sphere $s^{2n+1} = \left\{ (z_0, z_1, \cdots, z_n) \in \mathbf{C}^{n+1} \mid \sum_i |z_i|^2 = 1 \right\} \text{ by }$

$$(z_0, \dots, z_n)g_0 = (z_0 \exp \frac{2\pi i}{q}, \dots, z_n \exp \frac{2\pi i}{q}),$$

where g_0 is the generator of G. This yields a principal G-bundle $\int_n^i: S^{2n+1} \to L^n(q)$ over the lens space $L^n(q)$. Let L denote a 1-dimension complex G-module given by $c \cdot g_0 = c \exp 2\pi i/q$, and consider the associated complex line bundle $\int_n^i = \int_n^i \chi_G^i$ L. For the canonical projection $\pi: L^n(q) \to CP^n$ we have $\int_n^i = \pi^*(\gamma_n)$, and hence $e(\gamma_n)^{n+1} = 0$ holds.

Proposition 1. Let $P(x) \in h(pt)[[x]]$. Then the element $\frac{P(e(f_n)) \text{ of } h(L^n(q)) \text{ is zero if and only if } P(x) \text{ is in }}{\text{the ideal generated by } x^{n+1} \text{ and } [q](x)}.$

Proof. Consider the q-fold tensor product $\gamma_n^q = \gamma_n \otimes \cdots \otimes \gamma_n$. Then it is easily checked that the total space $S(\gamma_n^q)$ of the sphere bundle associated to γ_n^q is homeomorphic with $L^n(q)$. Therefore we have the Gysin sequence

$$\cdots \rightarrow h^{i-2}(CP^n) \xrightarrow{\cdot e(\gamma_n^q)} h^i(CP^n) \xrightarrow{\pi^*} h^i(L^n(q)) \rightarrow \cdots$$

Since $e(n^q) = [q](e(n^q))$, the sequence and (1.5) derive the desired result (see [2]).

undiante mas . Il lun es les les este les

§ 2. The element $s^*(\theta)$

As in \S 1, let G denote a cyclic group of order q. We shall assume that q is odd.

For any space X, let XG denote the product of q copies of X. Writing its elements as $\sum_{g \notin G} x_{gg}$, a G-action on XG is given by

$$(\sum_{g \in G} x_{gg}) \cdot h = \sum_{g \in G} x_{gh} - 1g \qquad (h \in G).$$

We denote by ΔX the diagonal in XG.

Let Σ be a homotopy (2n+1)-sphere (which is a differentiable manifold), and assume that there is given a free differentiable G-action on Σ . We denote by $\Sigma_{\rm G}$ the orbit space.

Let M be a differentiable manifold, and consider the diagonal action on $\mathbb{Z} \times \mathrm{MG}$ whose orbit space is denoted by $\mathbb{Z} \overset{\mathsf{X}}{\mathsf{G}} \mathrm{MG}$. $\mathbb{Z} \times \Delta \mathrm{M}$ is an invariant submanifold of the G-manifold $\mathbb{Z} \times \mathrm{MG}$, and its orbit space is regarded as $\mathbb{Z}_{\mathsf{G}} \times \Delta \mathrm{M}$. We denote by \mathbf{v} the normal bundle of $\mathbb{Z}_{\mathsf{G}} \times \Delta \mathrm{M}$ in $\mathbb{Z} \overset{\mathsf{X}}{\mathsf{G}} \mathrm{MG}$.

This is a real m(q-1)-dimensional vector bundle.

Choose a point $y_0 \in M$, and we shall identify Σ_G with a subspace $\Sigma_G \times y_0^G$ of $\Sigma_G \times 4M$.

Let λ' : $\sum \longrightarrow \sum_G$ denote the principal G-bundle defined by the G-action on Σ , and consider the associated complex line bundle $\lambda = \lambda' \stackrel{\times}{\sim} L$.

We have the following (see [4])

Proposition 2. The normal bundle ν has a complex structure for which

$$\underline{i^*(v)} = m(\lambda \oplus \lambda^2 \oplus \cdots \oplus \lambda^{(q-1)/2})$$

holds, where $i: \Sigma_G \longrightarrow \Sigma_G \times AM$ is the inclusion.

Proof. If $\mathcal{V}_1: \mathbb{N}_1 \longrightarrow \Delta \, \mathbb{M}$ denote the normal G-vector bundle of $\Delta \, \mathbb{M}$ in MG, then we have $\mathcal{V} = \mathbb{1} \stackrel{\times}{G} \mathcal{V}_1: \stackrel{\times}{\Sigma} \stackrel{\times}{G} \mathbb{N}_1 \longrightarrow \stackrel{\times}{\Sigma}_G \times \Delta \, \mathbb{M}$. Therefore it suffices to prove that there exists an G-equivariant complex structure on \mathcal{V}_1 with the fiber over \mathcal{V}_0 G being $\mathbb{M}(\mathbb{L} \oplus \cdots \oplus \mathbb{L}^{(q-1)/2})$.

To prove this, let IG be defined by the exact sequence of real G-modules

$$0 \rightarrow 4R \rightarrow RG \rightarrow IG \rightarrow 0.$$

View this as a sequence of real G-vector bundles over a point, and identify $\triangle M$ with $M \times pt = M$ in the obvious way. Then we have the exact sequence

of real G-vector bundle over M, where τ M denotes the tangent bundle over M. Since $\tau(MG) = (\tau M)G$, an equivariant isomorphism

$$\beta: \tau(MG) | \Delta M \rightarrow \tau M \hat{\otimes} RG$$

can be given by

$$\beta \left(\sum_{g} v_{g}^{g} \right) = \sum_{g} v_{g} \otimes g \quad (v_{g} \in \tau_{y}^{(M)}, y \in M).$$

Since $\sum_g v_g g$ is in $T(\Delta M)$ if and only if all v_g are equal, β maps $T(\Delta M)$ onto $T(\Delta M)$. Thus it holds that $v_1 \cong T(M)$ is as real G-vector bundles. From elementary representation theory of groups, it follows that IG is the real form of $L \oplus \cdots \oplus L^{(q-1)/2}$. This gives v_1 its complex structure, and we get

$$(v_1)_{y_0} = \tau_{y_0}^{M} \otimes (L \oplus \cdots \oplus L^{(q-1)/2})$$

$$= \mathbf{R}^{m} \otimes (L + \cdots + L^{(q-1)/2}) = m(L \oplus \cdots \oplus L^{(q-1)/2})$$

as desired. This completes the proof.

As in $\$ l, let $\$ h be a given multiplicative cohomology theory. In the following we shall assume the following conditions:

(2.1) every complex vector bundle of any dimension is h-orientable.

(2.2)
$$h^{\text{odd}}(pt) = 0$$
.

Assuming that M is closed, consider the normal bundle ν . Then, by Proposition 2 and (2.1), we have a Thom class $t(\nu)\in \widehat{h}^{m(q-1)}(M(\nu)) \quad \text{and the corresponding Euler class}$ $e(\nu)\in h^{m(q-1)}(\sum_G \times_A M) \quad \text{such that}$

(2.3)
$$i^*e(\nu) = e(m(\lambda \oplus \lambda^2 \oplus \cdots \oplus \lambda^{(q-1)/2})$$
$$= (\underbrace{(q-1)/2}_{i=1}[i](e(\lambda))^m.$$

As usual we shall regard the total space N of ν as a tubular neighborhood of Σ_G XAM in Σ_G^{\times} MG. Then we can identify $h(M(\nu))$ with $h(\Sigma_G^{\times}$ MG, Σ_G^{\times} MG - N) canonically. Define

$$\partial \in h^{m(q-1)}(\sum_{k=1}^{\infty}MG)$$

to be the image of the Thom class $\,\,{\sf t(\nu)}\,\,$ under the homomorphism

 ℓ^* : h($\sum_G MG$, $\sum_G MG - N$) \rightarrow h($\sum_G MG$) induced by the inclusion. We have immediately

(2.4) For the homomorphism $j^*: h(\sum_G^\times MG) \longrightarrow h(\sum_G^\times AM)$ induced by the inclusion, $j^*(A) = e(\nu)$ holds.

Given a continuous map $f: \Sigma \to M$, define a continuous map $s: \Sigma_G \to \Sigma \times MG$ by

$$s(xG) = (x, \sum_{i} f(xg^{-1})g)G.$$

For the projection p : \sum $\stackrel{\times}{G}$ MG \longrightarrow \sum_G , pos is the identity.

Proposition 3. For the homomorphism $s^*: h(\sum_G MG) \to h(\sum_G)$ and the homomorphism $i^*: h(\sum_G \times \Delta M) \to h(\sum_G)$, we have

$$s^*(a) = i^*(e(\nu)).$$

Proof. It is easily seen that there exist a continuous map $f_1: \Sigma \longrightarrow \mathbb{M}$ and an open set V of Σ satisfying the following conditions: i) f is homotopic to f_1 , ii) V is homeomorphic to \mathbb{R}^{2n+1} , iii) $f_1(\Sigma - V) = y_0$, iv) $xg \notin V$ for any $g \neq 1$ and any $x \in V$. Define $s_1: \Sigma_G \longrightarrow \Sigma_G^\times \mathbb{M}^G$ from f_1 as in s, then s and s_1 are homotopic. Let $(\mathbb{M}^G)_1$

denote the subspace of MG consisting of points with at most one coordinate $\neq y_0$. Then $(\text{MG})_1$ is an invariant subspace of the G-space MG, and the orbit space $\sum_G^{\times} (\text{MG})_1$ contains $s_1(\Sigma_G)$. Since $\Sigma - V$ is contractible, there exists a homotopy $\psi_t: (\overline{V}, \ \partial V) \to (\Sigma, \Sigma - V)$ such that ψ_0 is the inclusion and $\psi_1(\partial V) = x_0^{(E \partial V)}$ Put $V_G = \pi(V)$ for the projection $\pi: \Sigma \to \Sigma_G$, and let $\overline{V}, \overline{V}_G$ denote the closure of V, V_G respectively. Consider now the following diagram:

where j_1 , j_2 , k are the inclusions, and f is given by

$$\varphi(x, y) = (x, y \cdot 1 + \sum_{g \neq 1} y_0 g)G.$$

Since a homotopy $\bar{\psi}_t: (\bar{V}, \, \partial \, V) \to (\, \sum_G^\times (MG)_1, \, \sum_G^\times \chi \, y_0^G)$ of $s_1 \circ k \circ \mathcal{R}$ to $\gamma \circ (1, \, f_1) \circ \psi_1$ can be defined by

$$\bar{h}_t(v) = (h_t(v), f_1(h_t(v)) \cdot 1 + \sum_{g \neq 1} y_0 g)G \quad (v \in \bar{V}),$$

the above diagram is homotopy commutative. Therefore we have π^* k^* $s_1^* = \gamma_1^*$ $o(1, f_1)^*$ $p^* : h(\sum_G (MG)_1, \sum_G \times y_0^G) \rightarrow h(\bar{V}, \partial V)$.

We have

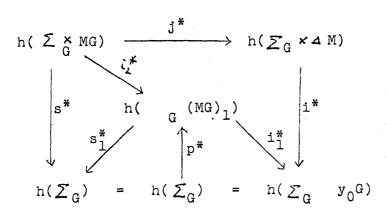
$$h^{m(q-1)}(\mathcal{L}, x_0) = h^{m(q-1)}(s^{2n-1}) = h^{m(q-1)-(2n-1)}(pt) = 0$$

by (2.2), and k* and π^* are isomorphisms. Therefore $s_1^*: h^{m(q-1)}(\sum_G (MG)_1, \sum_G \times y_0^G) \longrightarrow h^{m(q-1)}(\sum_G, \sum_G - V_G)$ is trivial, and consequently

$$s_1^* \circ j_1^* \; ; \; h^{m(q-1)}(\underset{G}{\Sigma} \overset{\times}{}_{G} (MG)_1, \; \underset{G}{\Sigma}_{G} \times y_0^G) \; \longrightarrow \; h^{m(q-1)}(\underset{G}{\Sigma}_{G})$$

is trivial.

Next consider the commutative diagram



where i_1 , i_2 are the inclusions. Putting $\theta' = p^*i_1^*i_2^*(\theta)$ $-i_2^*(\theta)$ we have

$$s_1^*(\theta') = i*j*(\theta) - s*(\theta) = i*(e(\nu)) - s*(\theta)$$

by (2.4), and $i_1^*(\theta') = 0$. Therefore θ' is in the image of $j_1^*: h^{m(q-1)}(\sum_G (MG)_1, \sum_G \times y_0^G) \longrightarrow h^{m(q-1)}(\sum_G (MG)_1)$, and hence $s_1^*(\theta) = 0$ by the fact proved above. Thus we have proved $i^*(e(\cdot)) = s^*(\cdot)$.

$\boldsymbol{\xi}$ 3. Generalization of Borsuk-Ulam theorem

Let \sum be as in § 2, and let $f:\sum\longrightarrow M$ be a continuous map to a differentiable m-manifold. Put

$$A(f) = \left\{ x \in \sum \left\{ f(x) = f(xg) \text{ for any } g \in G \right\} \right\}.$$

In this section we shall consider the covering dimension of A(f).

For the image $A(f)_G = \pi(A(f))$, it follows from dimension theory that dim $A(f) = \dim A(f)_G$.

Proposition 4. Assume that M is closed. Then $\underline{\dim A(f)} < 2d \quad \text{implies} \quad e(d\lambda) \quad s^*(\theta) = 0.$

Proof. Since $\dim A(f)_{\mathbb{G}} \leq 2d-1$, it follows that $d\lambda$ has a non-zero cross section over $A(f)_{\mathbb{G}}$ (see [3], Lemma 2). By standard facts on extension of cross section, this cross section extends to a non-zero cross section over the closure $\overline{\mathbb{W}}$ of some neighborhood \mathbb{W} of $A(f)_{\mathbb{G}}$ in $\Sigma_{\mathbb{G}}$. Here we may assume that $\overline{\mathbb{W}}$ is a finite CW complex, and that $s(\Sigma_{\mathbb{G}} - \mathbb{W}) \subset \Sigma_{\mathbb{G}}^{\times} M\mathbb{G} - \mathbb{N} \text{ by taking } \mathbb{N} \text{ small. We have then } e(d\lambda \mid \overline{\mathbb{W}}) = 0$, and so $e(d\lambda)$ is in the image of $\mathbf{M}_1^* : h(\Sigma_{\mathbb{G}}, \overline{\mathbb{W}}) \longrightarrow h(\Sigma_{\mathbb{G}})$ induced by the inclusion.

On the other hand, it follows from the commutative diagram

$$h(\sum_{G}^{\times} MG, \sum_{G}^{\times} MG - N) \xrightarrow{f^{*}} h(\sum_{G}^{\times} MG)$$

$$\downarrow s^{*} \qquad \qquad \downarrow s^{*}$$

$$h(\sum_{G}, \sum_{G} - W) \xrightarrow{f^{2}} h(\sum_{G})$$

(ℓ , ℓ_2 : inclusions), that $s^*(\theta)$ is in the image of ℓ_2^* .

Therefore $e(d\lambda)$ s*(θ) is in the image of the homomorphism $h(\Sigma_G, \overline{\mathbb{W}} \cup (\Sigma_G - \mathbb{W})) = h(\Sigma_G, \Sigma_G) \longrightarrow h(\Sigma_G)$, and hence we have the desired result.

We shall now prove the main theorem.

Theorem 1. Let G be a cyclic group of odd order q,

and Σ be a (2n+1)-sphere on which a free differentiable G-action is given. Let M be a differentiable m-manifold. Assume that there exists a continuous map $f: \Sigma \to M$ with dim A(f) < 2d. Then, for any multiplicative cohomology theory h defined on the category of finite CW pairs and satisfying the conditions (2.1), (2.2),

$$x^{d} \left(\frac{(q-1)/2}{\prod_{i=1}^{m} [i] (x)^{m}} \in h \left[x \right] \right]$$

is contained in the ideal generated by x^{n+1} and [q](x).

Proof. Recall that any differentiable m-manifold is regarded as an increasing union of compact differentiable m-manifold, and that any differentiable m-manifold with boundary is contained in a differentiable m-manifold without boundary. Since \sum is connected and compact, it follows from these facts that we may assume M to be closed without loss of generality.

Then, in virtue of (2.3), Prop. 3 and Prop. 4, we have

$$e(\lambda)^{d} \left(\frac{(q-1)/2}{\prod_{i=1}^{m}} [i] (e(\lambda)) \right)^{m}$$

=
$$e(d\lambda) \cdot i^* e(\gamma) = e(d\lambda) \cdot s^*(\theta) = 0$$
.

Since \int_{n}^{1} is a principal G-bundle whose base space is

(2n+1)-dimensional CW complex, and since λ' is a (2n+1)-universal principal G-bundle, there is a bundle map of f_n to λ . Hence the last equation implies

$$e(\int_{n}^{a})^{d} (\prod_{i=1}^{(q-1)/2} [i] (e(\int_{n}^{a}))^{m} = 0$$

From this and Prop. 1 we have the desired result.

As typical examples of the cohomology theory

As typical examples of the cohomology theory satisfying the conditions in Theorem, we have the classical integral cohomology theory H*(; 2), the Grothendieck-Atiyah·Hirzebr ch periodic cohomology theory K*() of K-theory, and the complex cobordism theory U*() obtained from the Milnor spectrum MU (see [5]).

As is well known, $H^{\frac{1}{2}}(p^{\frac{1}{2}}; \mathbf{Z}) = \mathbf{Z}$ (i = 0), = 0 (i \neq 0) and the formal group law for $H^{\frac{1}{2}}(\mathbf{Z})$ is given by F(x, y) = x + y. Hence the conclusion in Theorem 1 for $h() = H^{\frac{1}{2}}(\mathbf{Z})$ is stated that

$$(\frac{q^{i}-1}{2}!)^{m} x^{d+m(q-1)/2} \in \mathbf{Z}[x]$$

is contained in the ideal generated by \mathbf{x}^{n+1} and $q\mathbf{x}$. From this we obtain the following result.

(3.1) If q is an odd prime, for any continuous map $f: \sum \rightarrow M$ we have dim $A(f) \ge 2n - m(q-1)$.

Remark. The conclusion in (3.1) is strengthened to dim $A(f) \ge 2n + 1 - m(q-1)$ (see [6], [7]).

For $K^*()$ it is known that $K^{\text{even}}(\text{pt}) = \mathbf{Z}$, $K^{\text{odd}}(\text{pt}) = 0$ and the formal group law is given by F(x, y) = x + y + xy. Therefore the conclusion in Theorem for $h() = K^*()$ is stated that

$$x^{d} \left(\prod_{i=1}^{(q-1)/2} ((x+1)^{i} - 1) \right)^{m} \in \mathbf{Z}[x]$$

is contained in the ideal generated by x^{n+1} and $(x+1)^q - 1$. Putting y = x + 1 this is restated that

$$(y-1)^{d}(\frac{(q-1)/2}{1}(y^{1}-1))^{m} \in \mathbf{Z}[y]$$

is contained in the ideal generated by $(y-1)^{n+1}$ and y^{q-1} . If q is an odd prime power p^a , it can be proved by making use of elementary algebraic number theory that the above statement is equivalent to

$$d \ge n + p^{a-1} - \frac{1}{2} am(p^a - p^{a-1})$$

(see [3]). Thus theorem 1 implies the following theorem containing (3.1) and being a generalization of a result in [3].

Theorem 2. If q is an odd prime power p^a , for any continuous map $f: \Sigma \to M$ we have

$\dim A(f) \stackrel{>}{=} 2n + 2p^{a-1} - am(p^a - p^{a-1}) - 2.$

For U*() it is known that U*(pt) is a polynomial ring over Z with one generator of degree -2i for each positive integer i, However the formal group law for U*() is rather complicated(see e.g. [8]) and I have no method to derive numerical condition equivalent to the conclusion in Theorem 1. Since the cobordism theory is stronger than K-theory in general, it is expected that sharper result than Theorem 2 will be obtained from Theorem 1 for complex cobordism.

References

- [1] A. Dold: On general cohomology, Aarhus Univ., (1968).
- [2] P. Landweber: Coherence, flatness and cobordism of classifying space, Proc. Adv. Study Inst, Alg. Top., (1970).
- [3] H. Munkholm: On the Borsuk Ulam theorem for \mathbb{Z}_{p^a} actions on S^{2n-1} and maps $S^{2n-1} \to \mathbb{R}^m$, Osaka J. Math. 7, (1970).
- [4] ----: Addendum to my paper "On the Borsuk Ulam ". (unpublished)
- [5] P. Conner and E. Floyd: The relation of cobordism to K-theories, Lec. Note in Math. 28, Springer, (1966).
- [6] H. Munkholm: Borsuk-Ulam type theorems for proper Z_p -actions, Math. Scand. 24, (1969).
- [7] M. Nakaoka: Generalizations of Borsuk-Ulam theorem, Osaka J. Math. 7, (1970).
- [8] J. Adams: Quillen's work on formal groups and complex cobordism, Univ. of Chicago, (1970).