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Borsuk-Ulam theorem and formal group

Minoru Nakaoka | AIRALE, if)

In this lecture I shall give a generalization of the
classical Borsuk-Ulam theorem in connection with the formal
group for a generalized cohomology theory.

This work was done in cooperation with Prof. Munkholm.

j]u Formal group law for multiplicative cohomology

We recall first some facts on multiplicative cohomology

theory (see Dold [1]).
veY cohomology

We fix once and for all a multiplicati
theory h  defined on the tegory of finite CW complexes
; (corresgoma'ﬂ};) S
with base point. There 1s theVmultiplicative cohomology
theory h  defined on the category of finite CW pairs.
Let ; be a real n-dimensional vector bundle over a
finite CW complex B, and denote by M(%) the Thom space
for 3. For each b &€ B let ;b denote the restriction of

~/ N
; ove? b. Then h(M(Eb)) is a free h(pt)-module on one

generator. 3 1is said to be h-orientable if there exists
t(3) € h“(m(})) such that t(;)]MQ}b) is a generator of
E(M(ib)) for each b € B. Such t(35) 1is called an h-

orientation or a Thom class of § . By an h-oriented vector




16

bundle we mean a vector bundle in. which an h-orientation is
given.

Let D(§) (or S(5)) denote the total space of the disc
bundle (or the sphere bundle) associated to § , and consilder

the homomorphism

J¥ p¥-1

B H3)) = nh0G), 8(5) = 8D n"(8),

where j 1s the inclusion and p 1s the projection. The
image of t(3) wunder this homomorphism is called the Euler
class of the h-oriented bundle 5 , and is denoted by e(}).

>

The following facts are easily proved:

1

(1.1) If there is a bundle map f : ¥ — 3! and ¢
is h-oriented, then % 1is h-oriented so that f#* : h(B') —
h(B) preserves the Euler classes.

(1.2) 1If 51 ‘and }2 are h-oriented, then the Whitney

5 15} i ot $ ¥ = 2 P
sum $, + 7, 1is h-oriented so that e(§, +J,) = e(J)e(,).
(1.3) If § has a non-zero cross section, then e(2) = 0.
The classical Leray-Hirsch theorem on fibering can be

generalized to the multiplicative theory A , and so we

have Thom isomorphism

¢ : n(B) = nG3))
given by @ (&) = & - t(3). As a consequence, the Gysin exact
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sequence

L1-1 -e(3) p¥
ces = (s(5)) — ni () —= ni(s) —> nl (8(3)) >~

holds.

A complex vector bundle $ 1is called h-orientable if the
real form ER is h-orientable. Let Zn denote the canonical
complex line bundle over the complex n-dimensional projective
space cpm. Throughout this section the following will be -
assumed ;

(1L.4) For each n, ?rx is h-oriented so that the homo-
morphism h(CPn+1) — h(CPn) preserves the Euler classes.

It follows from this assumption that every complex line
bundle § over a finite CW complex is h-oriented so that
every homomorphism f# : h(B) —» h(B') induced by evéry bundle
map T f ; — g' preéerves the Euler classes.

We can prove

(1.5) The algebra h(CPn) is a truncated polynomial

algebra over h(pt): h(cp" L—ﬁ?ﬂ&%? ))/(e(zn)n+l

= % ) = ¥ .
(1.6) Put e(?m)l Py e(?m) and e(?n)2 P e(fn)
for the projections Py ¢ cP™ x cp” -_ CPm and Py ¢ cp™ x CPn

— CP™. Then the isomorphism

RGBT % OPM e ([)1s o100/ ()T (/n>§+1
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holds.
For a CW complex X with finite skelton, we define

h(X) as the inverse limit with respect to skelton:

h(X) = 1im n(xX™).
é__

. oo
Then, for the infinite dimensional projective space CP , the

following result is obtained from (1.5) and (1.6).
o<
(1.7) h(CP ) and h(CP”x< CP") are rings of formal

power series:
n(cP™ = h [[x] , h(cP”x cp”) = hixys %00

where X, X; X, are the elements defined by e{?n), e(7,)1>

1 2
e(?n)2 respectively. -
. . o0

Let 7 denote the canonical bundle over CP , and
consider the external tensor product Z(§ 7 which is a

o o0 o oo
complex line bundle over CP X CP_#ngthyﬂM; CP X CP —»
o0 2 SN CLIC NS LA
CP  be a cléssif/ﬁ\} map for ? ®? , and put
F(x) = 2: a.. xT xY (a,, & hz(l—l_J)(pt))
/* s ij 71 72 iJ
' 13-3:0

for /u* : h(CPﬁ3 —_— h(CPas< CPQS. Then we obtain easily

(1.8) For the tensor product §1 C)fz of any complex

line bundles ? 1 and .§2 over a finite CW complex,
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¢(3,93,) = i%‘Zo ?1j e(fl)i e(§2>j

holds.
Consider now a power series F(xXx,y) with coefficients

in h(pt), which is defined by

F(X, y) = Z a Xl yJ

1,520

with aij above. Then it follows that F(x, y) is a formal

group law over h(pt), i.e. the identities
F(X, 0) = Xi = F(O, X) P F(X> y) = F(.V: X):
F(x, F(y, z)) = F(F(x, y), 2z)

hold. For each integer 1 £ 1, let [il(x) € h[[x]] denote
the operation of "multiplication by i" for the formal group,

i.e.
[i](X) = X, [i](x) = F([i-11(x), x).
Since the formula in (1.8) is rewritten as
e(5,® 3,) = Fle(F)), e(3,)),

we have for the i-fold tensor product ‘§l =5® ...@%§



e(3h) = [11(e()).

Given a positive integer q, let G denote a cyclic group

of order q. Define a G-actlon on the standard (2n+l)-sphere

52n+1 = E(ZO’ Zys s zn)e Cn+1l Zi:lzi’{z = 1}‘ by

(z LU zZ_) = (z, ex __27&'1 o s 7z  ex .____.2“1)

0° s %p go 0 p q > > 2n D q >
where g is the generator of G. This yields a principal
G-bundle f; . g2n*tl ' 1%(q) over the lens space " (q).
Let L denote a l-dimension complex G-module given by c-gg =

¢ exp 27i/q, and consider the ‘associated complex line bundle

rn =.fé’é L. For the canonical projection 1 : Ln(q)—‘ s cp?

we have fn = T*(?ﬂ), and hence e(/"n)n+1 = 0 holds.

Proposition 1. Let P(x) € h(pt)[f{x} . Then the element

P(e(f,)) of n(L'(a)) is zero if and only if P(x) is in

Pl ond - [q1(x).

the ideal generated by x

Proof. Consider the g-fold tensor product an = 7n.®
.o ®?x1' Then it 1s easily checked that the total space
S(Jn9) of the sphere bundle associated to 7r;1 is homeomorphic

with 1"(q). Therefore we have the Gysin sequence
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q
. oee(7 ) . ¥
— pi™2(cpy 1 7“» nt(cp?)y

>t (L7 (q)) =

Since e(;nq) = [q](e(]h)),.the sequence and (1.5) derive

" the desired result (see [2]).

$2. The element s¥*(8)

As in § 1, let G denpte a»eyclic\group of order q.
We shall assume that g islggi.> -

For any space X, let XG denote the product of q copies
of ’X. ertlng 1ts elements as 2 Xg8, & G—aotlon on XG 1is

geG
given by

(ng)h~zxgh-1g (he G).
geG geG

We denoﬁe byr 4 X the’diagenéi in kXG.

Let Z: be a homotopy (2n+l)-sphere (which is a differen-
tiable manifold), and assume that there is given a free
differentiable G-action on 2, . We denote by £ ; ‘the orbit
space. | f

Let M be a differentiable mgnifold, and consider the
diagonal action on 2, X MG whose orbit space is denoted by
2 ’é MG. Z X aM is an invariant submanifold of the G-
manifold Z:x MG, and its orbit space is regarded as Za}x aM,

We denote by V¥ the normal bundle of ZG XaM in F X MG.
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This is a real m(g-l)-dimensional vector bundle.

Choose a point Yo € M, and we shall identify ‘ZG with

a subspace g X yo,G of 2 X«&M.
Let ' : 3 —» EYG denote the principal G-bundle defined

by the G-action on 2 , and consider the associlated complex

. - 1 ¢
line bundle A = A" § L.

We have the following (see [4])

Proposition 2. The normal bundle ¥ has a éomplex

structure for which

1*(v) = m(AeX2 @ ... & X112y

holds, where 1 : EZG —-*,Zé X &M 1is the inclusion.

Proof. If Vl : Nl —> aM denote the normal G-vector
bundle of a M in MG, then we have vy =1 E Vs 2% N7

g %2 M. Therefore i1t suffices to prove that there exists

]

an G-equivariant complex structure on ul with the fiber over

yOG being m(L @ .o @ L(Q"l)/2).
To prove this, let IG ©be defined by the exact sequence

of real G-modules

0 — aR —™ ]G — I6 -2 0.
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View this as a sequence of real G-vector bundles over a point,
.and identify aM with M X pt = M in the obvious way. Then

we have the exact sequence
A : A A
0 — TM ®@4R —2 TMO® RG — TMQ® IG —™ 0

of real G-vector bundle over M, where T M denotes the tangent
bundle over M. Since T(MG) = (TM)G, an equivariant isomor-

phism

P :Tme)|anm — M & re

can be given by
| = M M).
F(gvg%) Zg'vg@g‘ (vy e T, (M), ye ); 

Since 2, vgg is in T (4aM) if and only if all vg are equal,
> :

8 maps T (AM) onto T M@ AR. Thus it holds that v, &TM & 16
as real G-vector bundles. From elementary representation

theory of gréups, it follows that IG 1is the real form of

L® -+ & (a-1)/2 gy gives ¥, 1its complex structure,

and we get

» ... (d-l)/z
(vl)yo 'CyOM ® (L& ®L )

Rm® (L 4 e 4 L(Q"'l)/2) = m(L@ P @ L(q-l)/-?)
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to be the image of the Thom class t(v) under the homomorphism

as desired. This completes the proof.

As in 1l, let ' h be a given multiplicative cohomo-
logy theoryl In the following we shall assume the folldwing
conditions: .

(2.1) every complex vector bundle of any dimension is
h-orientable.

(2.2) r°%¥ph = o.

Assuming, that M 1is closed, consider the normal bundle
v . Then, by Proposition 2 and (2.1), we have a Thom class
t(v) € gm(q-l)(M(V)), and the corresponding Euler class

e(v) & hm(q“l)(ZZG x4aM) such that

i*e(y) = e(m(ABA @ - ®AT"1)/2)

(2.3)
(q-1)/2 o
( 7 [ilCelANT.

i=1

As usual we shall regard the total space N of v as
a tubular neighborhood of F, XaM in Z E}\ MG. Then we can
identify h(M(v)) with h( Z’g MG, Zé;MG - N) canonically.

Define

b e "9V (7 x o)

10
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2* i n( Z% MG, ZEMG - N) —> h(ZZMNE) induced by the
inclusion. We have immediately '

(2.4) For the homomorphism j¥* : n( Z % MG) —» h( ZG XaM)
induced by the inclusion, j¥(¢) = e(y) holds. '

Given a continuous map f : 2 -» M, define a continuous

map S:ZG —-—%«Z’éMG by

s(xG) = (x, Jfixg Hga.
7

For the projection p : 2Z % MG -2 2., Dos 1is the

identity.

Proposition 3. For the homomorphism s¥ : h(Z >é MG) -2

h( ZG) and the homomorphism i¥* : h(Z, x aM)—> h( Z;’G),

we have

s¥(g) = i*(e(¥)).

Proof. It is easily seen that there exist a continuous
map f; ¢ L —> M and an open set vV of 2, satisfying
the following conditions: 1) f 1is homotopic to fl, ii) v
is homeomorphic to ﬂ2n+l, iii) fl(Z - V) = yg, 1iv) chgi‘ v
for any g # 1 and any x € V. Define s, : 2o — Z’é MG

from f, as in s, then s and s, are homotopic. Let (MG,

1

11



denote the subspace of MG consisting of points with at most
one coordinate # Yo+ Then (MG)l is an invariant subspace
of the G-space MG, and the orbit space 2§ (MG)l contains
slﬁ ¥y). Since Z -V is contractible, there exists a '

homot opy “f‘t : (V, aV) = (2, 5- V) such that ¥, -is
(&3V)
the inclusion and fl(?-v) = Xdi Put V. = (V) for the

projection T : I ~—» ETG’ and let V, VG denote the closure

of V,,VG respectively. Consider now the following diagram:
51
> —_— 2% (MG)q
3o 31
v v
k Sq

Al
7T
3 | H (1, £1) T
(V, DV) '——'—-—? (Z; Xo) > ( Z_K M: Zx yo):

where Jl’ 32, k are the inclusions, and f is given by

f(x, y) = (x, y-1+ 2/ yqe)G.
g#1

Since a homotopy Tt : (V, a V) — ( Z:é (MG)l, .Zé X yOG)

of s,oke I to jéa(l, 15'1)01'l can be defined by

1

12
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B (v) = (b (v), £,(h (¥))-1 + g;:l ¥,8)G (ve W),

the above diagram is homotopy commutative. Therefore we
L% ok o ¥ LI
have s k"es] ‘fla(l, f‘l) aj’o : h(Z:é (MG)l, ZG X yOG) -

n(¥, a V).

We have

nMa ) (7 x 0y = BTl (g0l L pm(am)=(2nm1) (pyy 2 g

by (2.2), and k¥ and g * are isomorphisms. Therefore

. pla-1) Zé‘ (M), Z5 x ¥48) “'?hm(q_l)(zg’ g = V)

4]
bk

is trivial, and consequently
¥ ox . p(a-1) = x m(q-1)
31031 3 h (2. G (MG)].’ ZG X yOG) —> h (ZG)

is trivial.

Next consider the commutative diagram

h( ZEMG) > h( Ty x4 M)
C%
‘ |
s* E( g (MG)y) ;i*
s¥ ’ 1¥ {
1 p¥ 1
/ v
n(Zg) = hnlZy) = h(zG ¥o@)

13
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where 1 i are the inclusions. Putting ,' = p*iiig(a)

12 =2

- ig(g) we have
s1(g') = 1%3%(8) - s¥*(8) = 1*(e(¥)) - s*(4)

by (2.4), and i¥*(g') = 0. Therefore ' is in the image
1'6 8
.5 m(g-1 m(g-1 —
or 3%+ w™MOT(z e ey, g xype) = n™OHC T xaue) ),

and hence si(é) = 0 by the fact proved above. ' . Thuws

we have proved i¥(e( )) = s*( ).

§ 3. Generalization of Borsuk-Ulam theorem

Let 2 be as in §$2, and let f : 3 —» M be a

continuous map to a differentiable m-manifold. Put
A(f) = 5xﬁz ff(x) = f(xg) for any ge G .

In this section we shall consider the covering dimension of
A(T).
For the image A(f)CT = w(A(LD)), it follows from

dimension theory that dim A(f) = dim A(f)G.

Proposition 4. Assume that M is closed. Then

dim A(f) < 24 implies e(dA) s*(4) = 0.

14
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Proof. Since dim A(f)G < 2d - 1, it follows that dA
has a non-zero cross section over A(f)G (sée (3], Lemma 2).
By standard facts on extension of cross section, this cross
section extends to a non-zero cross section over the closure
W of some neighborhood W of A(f), in ZTG' Here we may
assume that W is a finite CW complex, and that
s( Zg - W) ¢ zé MG - N by taking N small. We have then
e(dx | W) = 0, and 50 e(d\) is in the image of ji : h(ng, W)

— h(ZG) induped by the inclusion.

On the other hand, it follows from the commutative

diagram |

*
n(ZxMe, Zyxue - N) Lo n(zx Moy

. |
ls*, . if*
- .

MZ g Zg - W —225 n(Zp

(2, Lo inclusions), that s¥(4) is in the image of 1;.

Therefore e(d\) s*(¢) is in the image of the homomor-
phism h(Z,, W U(Z, - W) =n( T, Zg) ~> n(2;), and
hence we have the desired result.

We shall now prove the main theorem.

Theorem 1. Let G be a cyclic group of odd order g,

15



and 7. be a (2n+1)-sphere on which a free differentiable

G-action is given. Let M be a differentiable m-manifold.

Assume that there exists a continuous map f : 2 — M

with dim A(f) <€2d. Then, for any multiplicative cohomology

theory ‘vé; defined on the category of finite CW pairs

and satisfyving the conditions (2.1), (2.2),

d (g-1)/2 0
x( T 41 (x))7 € n{{x]IL
i=1

n+1

is contained in the ideal generated by X and [al(x).

Proof. Recall that any differentiable m-manifold is
regarded as an increasing union of compact differentiable
m-manifold, and that any differentiable m-manifold with boundary
is contained in‘a Gifferentiable m-manifold without boundary.
Since ;Z is connected and compact, it follows from these
facts that we may assume M to be closed without loss of
generality.

Then, in virtue of (2.3), Prop. 3 and Prop. 4, we have

(q-1)/2

e T
i=1

[1] (eON™

= e(d)@-i*e(v) = e(d\)-s*(é} = 0.

Since r; is a principal G-bundle whose base space 1is
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(2n+l)-dimensional CW complex, and since A' 1is a (2n+l)-

-universal principal G-bundle, there is a bundle map of f11

to A . Hence the last equation implies
q,(a-1)7/2 o
e(f%) ¢ T [i] (e(f%))) =0

i=1

From this and Prop. 1 we have the desired result.
. ‘ ’?Eiﬁlﬁ%ﬁ%D

As typical examples of theVvcohomology theory
satisfying the conditions in Theorem, we have the classical
integral cohomology theory H*( ; Z), the Grothendieck-
Atiyah-Hirzebr‘ch periodic. gohomology thedfy K¥( ) of K-
theory, and the complex cobordism theory U*( ). obtainecd
from the Milnor spectrum MU (see [5]). '

As is well known, H'(pt; 2) = 2 (1= 0), = 0 (1 # 0)
and the formal group law for H¥( '§ 2Z) is given by
F(x, y) = x + y. Hence the conclusion in Theorem 1 for

h( ) = H¥( ; 2) 4is stated that
(i;_L!)m xd+m(q-l)/2c_ 20x]

is contained in the ideal generated by xn+1 and gx.
From this we obtain the following result.
(3:1) If q is an odd prime, for any continuous map

f: 3 — M we have dim A(f) € 2n - m(qg-1).

17
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Remark. The conclusion in (3.1) is strengthened to

dim A(f) € 2n + 1 - m(g-1) (see [6], [71).

Keven Kodd

For X¥( ) it is known that (pt) = 2, (pt) = 0

and the formal group law is given by F(x, y) X +y + Xy.

Therefore the conclusion in Theorem for h( ) = K¥( ) is

stated that

3 (q:_l)/2 i ' 0
x (77 ((x+ 1) - 1)) e Zlx]
i=1 '
. . . n+l q
is contained in the ideal generated by x and (x+1)°* - 1.

Putting y = x + 1 this is restated that

(q-1)/2
(v - DT T - 1)™e a0y
i=1
is contained in the ideal generated by (y - l)n+l and yqﬁl.

If q 1is én odd prime power pa, it can be proved by making use
of elementary algebraic number theory that the above statement

is equivalent to

d¥n + pa_l - A;am(pa - p

a-1
> )

(see [3]). Thus thedrem 1 implies the following theorem

containing (3.1) and being a generalization of a result in [3].

18
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Theorem 2. If g 1s an odd prime power fpa, for any

continuous map f : Z — M we have

dim A(f) 2 2n + 2pa"l - am(p? - pa—l) - 2.

For U¥( ) it is known that U¥(pt) is a polynomial
ring over 2Z with one generator of degree —=21{ for each
positive integer ‘i, However the formal group law for U*{ )
is rather complicata{see e.g. [8]) and I have no method to
derive numerical condition equivalent to the cénclusion in
Theorem 1. Since the qobordism theory is stronger tﬁan K-
theory in general, it is expected that sharper result than

Theorem 2 will be obtained from Theorem 1 for complex cobordism.

19
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