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Introduction to the work of Sullivan

on the splitting of various K-theories

By S. Morita

In this note, we will briefly summarize the results of
Sullivan [7], [8].

The starting point was

To establish a uniqueness theorem of Novikov-Browder’theory

in PL and, Diff category, i.e., given a hémotopy equivalence
.E:N—/M

of closed PL or Diff manifolds of dimension 2 5, to decide when

f 1is homotopic to PL or Diff isomorphism.

This is a question in manifold theory. However the :=-regularity
theorem and the surgery technique ﬁake it possible to convert this
problem into that in homotopy theory, at least partially. (The
Alexander duality!)

To putjit concretely, let g : M —> N be a homotopy inverse
to f£. Theg, since g 1is a homotopy‘equivalence, the étabie bundle
™) & g* Yy(N) (where T and V are the stable tangent and
normal bundle respectively) is fibre homotopy trivial."Sullivan
showed that this bundle has a canonical G/H-framing (H = PL or O
according as the category is PL or Diff) [6]. From homotopy
theoretical point of view, this means that there is a}canonical
map

N(f) : M — G/H
which is called the claséifying map for the associated G/H-bundle

with £.



Now assume>that/ f. is'a homeomorphism, theg N(f£) = 0 as
a G/Top bundle and by def’initio'n, if £ Pi, or Diff isomor-
phism, then

N(f) = 0.

Moreover Sullivan showed that if 77:1(M) =0 and H = PL,

then
N(f) =0 &< £ =~ PL isomorphism.

Thus the "Alexander duality" is complete in this case.
Sulli\}an solved the Hauptvermutung under the hypothesis that
'HA(M; Z) has no 2-torsion.

In case T # 0, the'Alexander duality" is not complete as
the manifold S3 X Sl X S1 presents an interesting counter example.
(Shaneson [5], also cf. the work of Fukuhara).

Thus we meet with the

Problem (unstable obstruction).

If T, # 0, H=PL or Diff, then what is the additional
obstruction for f =~ PL or Diff isomorphism besides N(f) = 0.

Comments N(f) =0 implies that £ = PL or Diff isomorphism
on (n-3)-skeleton (n = dim M).

(1) The (n~2)-obstruction seems to be ver}; difficult to analyse.
Perhaps some theory of codim 2 manifolds pair will serve to this
problem (cf. the work of Y. Matsumoto).

(2) The (n-~1)-obstruction is zero for PL and Diff_ cases.

(3) The n-obstruction is: H = PL => zero (by the generalized
Poincaré conjecture). H = Diff = the obstruction group is Jdn,

the group of homotopy n-spheres.
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Henceforth we will be concerned in only the stable obstruction
= normal invariant N(f) : M —> G/H.
Thus we need a homotopy theory of G/PL and G/O.

Classifying spaces, homotopy groups

Let us consider the following diagram of various universal

spaces which are important in geometric topology.

PL/0O PL/O = PL/O
1 l
b } L
*—> S0 —/™> SG —™ G/O0 —@™» BSO —/™¥» BSG —» "

v | ! bl

- —> SPL —> SG —» G/PL —* BSPL —> BSG —> '

b | |

4 3
' '
.

+
0
t

1. T(SG) =~ T, (S)

R

~im J ©® cok J (J. F. Adams [1]1).

2. w,(PL/0) = s
~ [[(97) @ cok J.

The second equality is valid at odd-primes; at 2 we have the
Kervaire invariant one problem. (Conjectured by Novikov, proved
by Brumfiel [2]).

3. ™, (G/PL) T L, (1)

~ (0 ¥ =1, 3 (mod 4)
22 % = 2 (mod 4)
2 *# =0 (mod &)

(Kervaire-Miinor [4], Sulli.un).

s

4. 7, (G/0) ’s'{ cok J * 0 (mod &)

0 (mod &)  (Sullivan [6]).

1

Z @ cok J *
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These theorems are all “group level" theorems, and it wiii ..
very convenient to geometric topology if we have more deep theorcns,
i.e., "spacerlevel theorems" or at least '"functor-level theorems'.

Sullivan has done this.

Homotopy type of G/PL

Theofem (Sullivan and Kirby-Siebenmann)

G/PL(2) = R(Z,, 2) X_K(Z, 4) X TT x(z,, 4i+2) x TT R(z, 4i)
Ss? izl i22
q
localized at 2

G/Top(2) = TT K(z,, 4i+2) x T] X(z, 4i) localized at 2
120 122

G/PL(0dd) G/Top (odd)

1 X BSO(odd)

(where 1 x BSO is the classifying space for KSO* = 1%-£§6).

PL-bundle theory at odd primes

Theorem. Oriented PL microbundle is Koodd-orientable.

Proof. cf. [7], [9].

The ?oint is as follows. Following the idea of Conner-Floyd
[3], Sullivan characterizes geometrically the Koodd—theory using
bordism. Then the Thom isomorphism theorem for bordism of PL-
microbundles (this follows from the t-regularity theorem) implies
the existence of the Koodd-Thom class.

Now consider the fibration

G/PL — BSPL — BSG.
5

T 3 < 'R P - == N PR
In the last section, we saw .net G/PL odd 1X BSO,..

0}

C

Thus we have
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Corollary. Stable PL-microbundle theory = KO 4q oriented

stable spherical fibration theory at odd primes.

The Minkowski-Hasse principle in geometric topology.

Let X be a sufficiently nice space (e.g. 7tl(X) = 0 and.
7ti(X) : finitely generated for all i > 0). Then we have the

: 1"
""geometric square' .

>

2

G

Ly

—c
0
_—

S
B

0 f.c. A

where XO is the localization at 0, ¢ 1is the profinite com-~
pletion, £f.c. 1is the formal completion and XA is the finite
Adele type of X. The point is that the above square is a fibre
square. Now we need a homotopy theory of various cliassiiiriag spaces
‘which appear in geometric topology, e.g. BSO, BSPL, BSTop, G/O,
G/PL, G/Top, etc. These spaces are all sufficiently nice. Hence we
can construct the "geometric square'' for these spaces. Since the
"geometric square'' is a fibre product, to study the homotopy type
of these spaces, we have only to investigate the following three
theories:

(1) The rational theory.

(1i) The profinite theory.

(iii) The compatibility condition‘of the above two theories on
the Adele theory. |
Now in case X 1is a homotopy associative H-space (which is

all we need), the rational theory of X 1is equivalent to the

Q-cohomology theory H*(X; Q).



For example the rétiohai théofiés éfv BSé; ﬁSPL, BSTop, G/0.
G/PL, G/Top equal the theory of PontrjaginAclaéses aﬁ& that of
BSG 1is trivial. |

Next we consider the profinite theory. One of the most
convenient properties of the profinite theory is that it factors
as the direct product of p-adic profinite theorie;‘fbf‘all prime

p. Algebraically this can be seen by obsérving the fact that

i- T 2,

p:prime
The Adele theory equals the A-cohomology theory, where

— ‘ .
A = 71' Qp is the set of finite Adeles. (Here we also assume that
p .

X 1is a homotopy associative H-space. ).
The compatibility condition is the problem to decide whether
a cohomology class with A-coefficient is ratiomal or not.

” . : )
‘Ztale homotopy type of algebraic variety.

Let V be a normal algebraic variety ofvfinite type over ¢.
Then, a "Cech-like nerve construction" using fﬁe Zariski opens
and étale covers provides the complete étale homotopy type cf V,
Vet' (Artin-Mazur, Lubkin).

From our point of view, the point is that.the finite cohomo-
logy of V 1is known by an algebraic methodﬁ

H*(V; finite) =~ H*(V finite).

et
By the construction of Vor» the homotopy groups of vet are

profinite groups. Thus if 7?1(V) = 0, then we have

V =V,
et

Now the algebrdic nature of the construction of the complets

I

- Q -
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étale homotopy type'indﬁces a certain algebraic symmetry. More
precisely, if V is defined over &, then [the Galois group G =
Gal(Q/Q) (where Q is an algebraic closure of @) acts on Vet
by isdmorphisms. Thus we obtain many self-homotopy equivalences
of V.

The Galois group in geometric topology

Let BSO = 1im G . (R) be the direct limit of the finite real
4 n,k ~ .
b

Grassmannians. Gn,kQR) = 0(n+k)/0(n) x 0(k). To use the étale theory,
we replace 0(n) by O0(n, €) and Gn,kGR) by
" Gn’k(lR) " = 0(nt+k, €)/0(n,C)x 0(k,C).
By the theorem of Chevalley [3a], these replacements do not
alter the homotopy types.
Now “Gn’kﬂR)” is an algebraic variety defined over @, thus

G = Gal(Q/Q) acts on

-~ ° 1t 11
BSO g'ilm Gn,kﬂR) ot

by self homotopy equivalences.
This action is abelian, i.e., it reduces to the action of

G/[G, G] = Gal(maximal abelian extension of Q/Q)

ot
b

"
N

This follows from a cohomology calculation and the fact that

[BSO™, BSO"] (C _ H¥(BSO™; 2)® Q =~ Zlp., ps»r ---] ® Q.
~ 1’ P
pheZ

Now let 4'kﬂ: BSO~ —> BSO~ be the profinitely completed Adams
operation and let

a(k) € z*
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be defined by

a) = [T ]1,
pfk  plk

Then it is easy to verify that
a(k) == \]Pk"
on ] BSO_ .

pAk
On the other hand, the Galois action exists in the unstable

range:
§c G = T : BSO(K)" — BSO"(k)  for all k.
From this fact, we can deduce that the following diagram is

homotopy commutative,

i.e. the Galois action preserves the underlying fibre homotopy type.

From the above facts, the Adams conjecture follows.

Splitting of various K-theories.

Consider the following situation:
K : Z -module |
and 2§ acts on K by 2b~endomorphism (p: odd prime). (For
, KSPL” etc. satisfies the above condition)

P
Z/p-1 & ip as  topological groups. Let §e 25 e

example, KSO

T

Anle

Now 2~
P

0

a generator for 2/p-1 and let T : K — X Dbe thr associated

action on K with E . Consider the following operations
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T =-W'_I‘.._:_.ﬁi ¢+ K —K
S R |

It is easy to verify the following properties of TC T

3
(0 1 #3)
T.°T, =
507 | Ty GE=9
p-2
2: TC . =1 =~ etc.
i= ¥t

From these facts, we can deduce that K splits as a direct sum of
various eigenspaces:
K:Kl@Kl®"'@Kp_2
3 g
Ky ==éx € K; Tx =x }
- . - ¢l
Kgi = {x € K; Tx = ¥x %.
Since K i's depend on the choice of g , Wwe group these
factors and obtain
N
K=K1€BKE
= +..-+ .
(K§ Kgl K p_2)
We apply this splitting to various K-theories which admit a
Galois action. Thus we obtain, for example,
XS0~ = (KS07), @ (K80~
5 = &S00y, @ (KS0)),
KSEL” = (KSPL™)., @ (KSPL™)
P p’l p’§
The action of i; on ﬁg?ig-theory is defined via the characteriza-
tion theorem of PL-microbundles at odd primes, (See p.5)
Remark. 27 = zZ/2 & Z,.

Let E be the generator of Z/2. Then, § acts on BSO™ trivially

(A cohomology calculation).
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The main theorem.

In this section, X will stand for X odd.

(X = SPL, SG, BSO etc.)

SPL —>» PL/O —> 280 —> BSPL
v Y i v
S¢G —> G/0 —> BSO ——> BSG
I d 4 il
SG —> G/PL —> BSPL —> BSG

I

Coker J —* Coker J ——> % -~ —> B Coker J

X X X X
SO —_ ———> BSO, ———— BSO
1 1 1
X X X b X
S0¢ — 7) —> BSO§ —_— Bsog
J, | !l |
% L?

Coker J X /B Coker J
X G/0 —_— BSO1 —_— X
Im J X B Im J

BSO
5 Ipt. v
X
| )
X
[ b
Y \/}

% ——> B Coker J

X a X
BSO — BSO
1 1

X ~ X

BRSO, ———  BSPL.

g 5

~

Remark. The question mark ? at BSG corresponds to th

[p)

question: To what extent is the splitting SG = Coker J X Im J

additive?

G/0-bundle theory

Consider the following fibration

t
e
O

I
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s¢ —=» /0 —> BSO —= BSG.

Let E be an element in 'ké/o(X) and let n = j*(g) € §§6(X}.
Here X is a finite CW-complex.

Since G/O = fibre (B Spin —» B Spin G), % has a canonical
spin structure. Let 47 € ﬁB(T(72)) be a Thom class (which is
not unique, but we choose one so that the necessary conditions for
the following argument will be satisfied). Since 7 comes from

£, we have a fibre homotopy trivialization:

E(}Z) __f.._.+.XXIR7'\‘
| l Py
X = X

This induces,

ota

RO(T (7)) <—KO(s¥,)

2T?f ?T 3

K(X) === KX)

The above diagram is not commutative in general and we set

]

6(5) = & e M ap e 1+TBX).
Since 7tl(G/O) = 0, we have
6(g) e 1+ KSO®).
Thus we have a map
b : G/O —> BSO.
Since A(7,8® %,) = A(7)xA(%n), themap & is additive.

Now we define a map A : G/0 —>BSO0" as follows:
AT Ay
P

: G/0° —> BSO~
)‘p p p

- 11 -



(1) X, = 0
2 2 . . .
natural . . Pprojection
.. . . —~ bt i
A5 Agga 1t /%aq G/PLogq = BS054q B30 ¢
. naturag 450" projection .
' Noad e+ ©/8aq 7P 0dd T > BSOi4qy -
Let o € 2* be such that dp is a topological generator for

2 topologically generates 22 C 2;. Now

since 7 is fibre homotopy trivial, there 1s a (canonical) vector

each odd prime p and
bundle t ¢ RO(X) such that

Consider the following diagram

o ‘
=7 o X - <
0 £ 7 = § f canonical fibre homo- 0

topy trivialization

This construction induces a map
& : G/0T —> SG.
Now consider the map
(XN, ) : G/0° —> BSO” xSG.
Sullivan elaims that there is a sub-theory /¢ SG such that
(% », £ ) 1s an isomorphism onto the theory BSO X < .

Moreover °<Todd = Coker J 44 -

For the details, see [8].
In this note, we have been concerned only with odd primes.

However, Sullivan seems to have finished a similar analysis at 2.

<
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[9]
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