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Ultradistributions and hyperfunctions

By Hikosaburo Komatsu

In the last conference of March, 1971, the speaker announced
the following theorem and applied it to the theory of ordinary
differential equations with real analytic coefficients.

Theorem. Let £ = [F] be a hyperfunction on an interval

(a, b) with a defining function F. . Then f is an ultradistri-

bution of Gevrey class of order s of Roumieu type (of Beurling

type) if and only if for every compact interval K C (a, b) _and

every L > 0 there is a constant C (there are constants L and

C) such that

1
s-1
sup | cf(x+iy)| <cC e@{(ﬁ;) }

x€K

In this lecture we develop the theory of ultradistributions

and give a proof of the theorem in a generalized form.

1. Ultradifferentiab1g~§ggggiggg. Let Mp, p=0,1, 2,

A

be a sequence of positive numbers. An infinitely differentiable
function £ on an open set L in R% will be called an

ultradifferentiable function of class Mp of Roumieu type (of

Beurling type) if for every compact set K in JL there are
constants h and C (and for every h > 0 there is a constant

C) such that

(1) I D¥E || <chPuM lxl =p =0, 1, 2,

C(K) P’

We will impose the following conditions on Mp:

(M.1) (Logarithmic convexity)



2
< =

(2) MIT S M M, P, 2,

(M.2) (Stability under convolution) There are constants A and

H such that

3) Mb < AHP pin M p=20,1, 2,

(M.3) (Strong non-quasi-analyticity) There is a constant A such

that
0 M. pM

(4) > g, p=1,2,3,
=P Moy p+l

In some problems (M.2) and (M.3) may be replaced by the fol-

lowing weaker conditions:

(M.2)' (Stability under differentiation)

(5) Moyl SAHPMP , p=0,1, 2,
M.3)' (Non-quasi-analyticity) |

aid Mj
(6) D

j=0 "j+1

It is easy to check that the Gevrey sequences '

p

() M = D%, p® and T (1+sp),
where s > 1, satisfy these popditions.‘ These‘sequenceé determine

the same class of ulﬁradifferentiébiéffunctions'caliéa the Gevreg‘

class of order s.

It is convenient to relate the above conditions with:the

behavior of the associated function

pou
(8) M(f ) = log sup v
P P

(M.1) is equivalent to

e 2 ;
My 550 exp M(p)

P
€))
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Under this condition ,
f
(10) M(y)=f0ﬂ%ld,\ ;

where m()\) is the number of ratios mj = Mj /Mj-l which does
not exceed M\ .

(M.2) 1is equivalent to
(11) ZM(f ) £ M(H 3)) + log(A MO)_'

(M.3) implies
>3]
(12 J mA) g5 < AM(P).
) P L a2 P

On the other hand, (M.2)' is equivalent to

log(A/A")
(13) m(\) 2. Tog H .

(M.3)' is equivalent to

L Do
(14) f}—%g—)-dy= f “—‘i-)g—)-d)\<oo
0 . 0 A '

Definition 1. Let K be a!compact set in R" and h > 0.
iM},h regular : S
g "

We denote by the Banach space of all functions

f € C®%K) in the sense of Whitney such that

ID*£ (%)
(15) WEl ¢M3,n =89 TR <%
. p°’ Tl ,X %)
é (K) ’
(M) 5h S |
and by o@KMp the Banach space of all functions f € CN(IRn)

with support in K which satisfies (15).

. {M} ,h
sl

, {M},h
may be looked upon as a closed subspace of P

(X) .
Proposition 2. If h <k, ~ the injectibns

{M},h M3,k
(16) EP ®cE P ®




dian
[

{Mp} ,h {Mp’, Lk
(17) D K C.SK
are compact. If Mp satisfies (M.2)' in addition and if k/h 1is

gufficiently large, then the injections are nuclear.

Definition 3. Let K be a regular compact set and [,

an open set in RY. We defi'ne the spaces of ultradifferentiable
}
functions of Roumieu type g{Mp (K), E,{Mp} (5.) and those of

Beurling type é(Mp) (K) and S(MP) (L) by

{M M },h
(18) é P}ao = lig 8{ ol (K),
h=e
M My
(19) é;{ 4 B =Lim § ' K) ,
Kel
(MP) {M } 9h )
(20) EP®=1m § P ®,
h->0
M) M)
(21) EPm=ing P
Ked ‘
| M5
It follows from Proposition 2 that £ P (K) is a (DFS)-
™) M)
space and & P (K) and & P (L) are (FS)-spaces. If M

p :

satisfies (M.2)', these spaces are all nuclear.
Similarly the spaces of ultra-differentiable functions with

compact support are defined in the following way:

M} {M},h
P _ 14 p
(22) B, P = Lig B¢ :
M M}
= 14 P
(23) | QD P —Igérjzo&)K ,
) {M},h
(24) D P - 1im b P
kT UK
M) ' M)
(25) D Py =lp B, °F
Ke L



M} M} ™)

o8 p‘ and & P (fL) are (DFS)-spaces, oSKp is an

K ,
M)
(FS) -space and D P (L) 1is an (LF)-space as the strict inductive

limit of a sequence of (FS)-spaces. Hence all spaces are Hausdorff,
complete, reflexive and bornologic. If Mp satisfies (M.2)',

then all spaces are nuclear.

M} My
A subset B of 08 PP oor o8 P(JL) 1is bounded
{M},h
if and only if it is contained in a 09 P’ and bounded there,
(M ) (M )
while a subset B of o& or .9 p (L) 1is bounded if and
M )
only if it is contained in a 8 X P for a K and bounded in
{M},n .
all @ P ,
n o my ) ,
It is well known that o& = D g » where M' is the
greatest logarithmically convex sequence such that M' M and

{M"} #0

only if Mp satisfies (M.3)'. Conversely suppose that Mp

that in case Mp is logarithmically convex, if and

satisfies (M.1) and (M.3)'. Then for any ball K of radius £>0
M
. ; P P
there is a function fee ,SK such that ,fe(x) 2 0 and

| {Mp}
J f(x) dx = 1. Hence it follows that 8 (J) is dense in

L(fl) and that there exists a partition of unity by functions in

M
2 P (JL) subordinate to any open covering of J). .

If MP satisfies (M.1) and (M.S)', there is MI; which
satisfies (M.1), (M.3)' and
hP M
(26) lim—= =0  for any h > 0.
' P> MI') g
M )

Thus the same results as above hold for ® P (J) .

1) See Mandelbrojt [8], [9], Roumieu [10], [11l] and Lions-Magenes
[7] for the results up to the end of this section.
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{M ] {M}
1f Mp satisfies (M.1l), the spaces & P (r), é P(&L),
M) M)
£ P () and £ P (f) are stable under multiplication and

M M (M) (M )
;P}, $% ), 8% e 8 PP(L) are

K
i ()
stable under multiplication by functions in E P, £ (L,
™) ) |
é P (K) and 8 P (L) respectively and the multiplications

the spaces o8

are hypo-continuous.
If (M.2) holds, the above spaces are stable under differentiation
and D is continuous for any

The spaces of Roumieu type have been discussed by Roumieu

[10] and [11]. However, it is not clear whether or not the topologies
he employed coincide with the above natural topologies which have

been introduced by Lions-Magenes [7].

The spaces of Beurling type have been discussed in Bjdrck [1] .

from a little different point of view and in Lions-Magenes [7].

2. The Paley-Wiener theorem for ultra-differentiable functions.

Theorem 4. Suppose that M? satisfies (M.1) and (M.2)' and

that K is a compact convex set in Hf{ Then a function ?(x)
MY ™) |
belongs to ‘@K P ("&K P') if and only if there are h and C

(for any h > 0 there is C) such that the Fourier-Laplace

transform

(27) FC8) = Fg ) = jm“ e g0 ax



of ? satisfies

(28) 1§ (XY <€ Cexp(-M(JL)/B) +H (L)),
where
(29) He(¢) = sup Im < x, £

xeK

{Mp} (Mp)
A subset B of QSK (°9K ) is bounded if and only if

we can choose constants h and C (for any h > 0 a constant C)

{M ™)
A sequence of functions ?j GOBK P} (& Py converges if

uniformly for (f € B.

K

and only if for some h > 0 (for any h > 0) exp M( 1§}/h) ’fj(c )

converges uniformly on R"  or equivalently on a strip |Im ¢l < a,

where 0 < a <€ .,

)

M
Since e@K P is a Fréchet space, this shows that the families

of semi-norms

(30) P Mk 1= (8)) §(E), k=1, 2,
and
(31) sup exp M(klgp)gi(g), k=1, 2,

§(-;IRrl )

determine the topology of O&K P

In order to find a family of semi-norms similar to (30) or

{1}

K , we imbed the

(31) which determines the topology of .8

(3

K in a (DFS*)-space.

Fourier-Laplace transform of 8

Let 1< r < o be fixed and consider the sequence of Banach

spaces
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(32) = {yel] (€); expQI(151/0) ~H (L)) Y() € L7 (C )}
h =1, 2,

with the identity mappings Yh *—?Yh_H. Since Yh are reflexive

Banach spaces, this forms a weakly compact sequence and its limit

= . . * -
Y ]i!;l Y, 1is a (DFS¥™)-space.

h

A modified form of Morera's theorem shows that
(33) {\P € Y, s W is entlre on C _}
is a closed subspace of Y We can prove that

M
(34) F8 P} = lim Xh
b
~> 89

i‘ncluding the topology. Morera's theorem prové§ also that the set

M} | {M}

;r,& P° ig closed in Y and that Xh h n ;—,08
i s |
Since -9 P is a Montel space, it is proved that the

M - M iy
original topology of 3‘7.81( P®  induced by that of DQK p} coin-
cides with the relative topology induced by that of Y (cf. [5]

Theorem 7).

Theorem 5. Under the same a’ssumptioﬁé as in Theorem 4 the

topology of ‘;"’QK P is determined'by the famiiy of semi-norms

(35)  sup [exp(M(e(FEI)) - HK(; ) § (g

tec™ o ,
when £ ( y ) runs through the increas1ng functlons on [0 N)
satiéleng |
(36) 1im £C82 _ o,

rqn f

From the Paley-Wiener theorem (Theorem 4) we get easily the



following

Theorem 6. Suppose that Mp satisfies (M.1), (M.2) and (M.3)"'.

Let

&, «
(37) J@Q) = > a, ¢l
loct =0

be an entire function with the growth order that for any L > 0

there is C (there are L and C) such that

(38) 3(g) < CexpMETLIL|), Yec.

Then, for any compact convex set K in R" the differential

operator of infinite order

o«

&
(39) J() = >, aDd
¢} =0
{M ] ™M)
maps KBK P (JQK P ) continuously into itself. Moreover, the

right hand side of

ba
(40) I(D) ¢ (x) = lz OaxD“?(x)
o | =

M ™ )
converges absolutely in the topology of &QK P (QSK.p ) and (40)
{M 3 M)
holds for any P, P (@, P ). More precisely if ¢ is
5% iy 1) -
K P (g@K_P ), the partial sums

!

contained in a bounded set of P,

of (40) are contained in an absolutely convex bounded set B and

the series converges absolutely in the normed space generated by B.

An entire function J({) satisfying (38) will be called a
multiplier for the class {Mb} ( (Mb) ). It is easy to see that
(37) is a multiplier for {P&ﬁ ( (Mp) ) if and only if for an&
L >0 there is C (there are L and C) such that |

\ ot ] =
(41) lagl < CL™YM | l«l =0, 1, 2,

Proposition 7. Suppose that Mp satisfies (M.1), (M.2) and
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(M.3). Then an entire function J({ ) of one variable is a
multiplier’ for {MPZ, ( (Mp) ) if and only if it has Hadamard's

factorization ([2], p.22)

. Ny ¢
(42) J(g) = a§ Tf o)
j=1 j
and for any L >0 there is C (there are L and C) such that
(43) N(p) f’on“)'no dA
P 0 A
éM(Lf)-i-logC, 0<fp<o,

where n(A) is the number of c:j - with ]cjl < /\

Finally we obtain a characterization of the Fourier-Laplace
transforms of ultra-differentiable functions with compact support
in a way similar to Ehrenpreis [3]. Since (40) converges absolutely

in the original topology, ours may be said a better characterization.

Theorem 8. Suppose that Mp‘ satisfies (M.1), (M.2) and M.3) :

and that K 1is a compact convex set in Rn. Then a function 'T(x)
M ; -
belongs to .8 (,& p ) if and only if its Fourier-Laplace

transform T(g ) satlsfles B

(44) | sup {exp(-H (‘Q)J(g)j’(‘;)l <o

for any entire ;Hfunctio:n J'(,g) . of the form
A D ICR SR I CR SO

4
(46) Jo(8) = TT <1+—£1——) ;

J

where s, is +1 or 21 and i"[j is a_sequence of

Positive numbers converging to zero ( 23 is a positive constant).

Moreover, the family of semi-norms (44) determines the

- 10 -
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(MP)

M}
topology of ‘31( P (a&K ).

3\; Ultra-distributions.

Definition 9. Suppose that Mp satisfies (M.1) and (M.3)'
1]

M
and that JL is an open set in R". We denote by & P ()

M)y 'R )
(B p (L)) the strong dual space of D p () (B P (L)) and

call its elements ultra-distributions on JL of class MP of

Roumieu type (Beurling type) or of class {Mp} ( (Mp)) for short.
M ()
since & P (L) (O P (L)) is a dense subspace of 8 (N)
R ™)'
P W) (B P (JL)) contains

and the injection is continuous, &
the distributions B '(SL) as a dense subspace.

On the other hand, since the real analytic functions on ).
M M)
are continuously and densely contained in § P () (& P L)),

it follows that every ultra-distribution is a hyperfunction.
1

M3 M) My
If ae & P (L) (& P (L)) and £e.8 P (N)
™)' '
(09 P (JL)), the product af 1is defined by
{M 3 M)

(47) <af, §>=<f, 28> , ¢ed P () (B P ().

If Mp satisfies (M.2)', the derivative D*f is defined by

M3 M)

48) <0, ¢> = (D <E, 05>, qed P (8 P

Similarly if Mp satisfies (M.2) and J(§) 1is a multiplier

for {Mp} ( (Mp) ), J()f 1is defined by
M)

M} ™
49) IO, §> =<K I(D) gy, ged P () (S P ).

As in the case of distributions, the existence of partition

My CION o
of unity implies that @ (L) (& P (L)), Lc R, with

- 11 -
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the natural restriction mappings forms a soft sheaf on R . 1In
particular, the notion of support is defined.

If S is a closed set in. J) , the subspace of all ultra-
M3 M)
distributions £ in & P () (&L P (n)) with supp £CS

is closed.
Multiplications a-, differentiations D* and J(D) are

sheaf homomorphisms. Namely they do not enlérge‘ the support.

| M Myt L
The dual space £ P° (L) (€ P (L)) of £ P ()

™) o
(& P (L)) 1is identified with the subspace composed of all

M1

™)'
fed P () (H P (JL)) with compact support.

Theorem 10. Suppose that Mp satisfies (M.1), (M.2)' and

(M.3)'. Then, a hyperfunction £ on an open set S in R

M1 (M )1
belongs to 09{ p} (R) (&£ P (L)) if and only if its re-

striction f| G to any relatively compact open set G in QL

can be written

[01]
(50) £le = 2. Dg,,
lot1 =0

where £ € C(G)' or Lr(G)', lgrem, and for any L > 0 there

is C ('the‘re are L and - C) such that

Llo(l

(51) “fo(“ £ C M |
{M }' (M )'

(50) converges strongly in  of Pl (@ P (a)). »

G)
oy M)
A subset B of & p () (o9 P (R)) is bpunded if and

only if constant(s) C (and L) in (51) can be chosen uniformly

in f € B.

Roumieu [10], Chap.I, théoréme 1 gives a stronger statement.

- 12 -



By the Phragmen-Lindelof theorem we can show that the semi-

norm (44) in Theorem 8 is equivalent to

E:anmg)}f(g)l :

Hence we obtain another structure theorem:

Theorem 11. Suppose that Mp satisfies (M.1), (M.2) and

(M.3). Then, a hyperfunction f on an open set JL 12_‘Rn belongs

M f (M !
to QS{ PYP@) (O P (R)) if and only if for any relatively

compact convex open set G there is a multiplier J(g } for the

class {Mp} ((Mp)) and a finite measure f on G such that

(52) £1G = JOD)E .
M }l (M )l
A subset B of L@ PPen) (B P (L)) is bounded if and

only if there is J(D) independent of f € B and |If|| are bounded.

4 Characterization of ultra-distributions. In this section
e s s N N —

we consider only the case where n =1 for the sake of simplicity.
When Mb is a sequence satisfying (M.l), we write
p[)fMO

(53) M*(f) = log sup ——— ,
p p

p
(54) M; = M_ sup —

0 P>0  exp M*(f)
1f mp/p is increasing, we have M; =M /p!.

Theorem 12. Suppose that Mp satisfies (M.1), (M.2) and (M.3).

Then, a hyperfunction £ = [F] on an interval (a, b) belongs to

{Mp}' \(Mp)'
L (a, b) (& (a, b)) if and only if for any compact

- 13 -



interval K in (a, b) and for any L > 0 there is C (there

are L and C) such that the defining function F satisfies

(55) sup |F(x+1iy)| ¢ C exp M* (T%l_)
x€K

for sufficiently small |yl.

M1

A subset B of @ P

™)'
(a, B) (D P (a, b)) 4is bounded

if and only if the constant(s) C (and L) can be chosen uniformly

in £ € B.

Sketch of Proof. Suppose that F satisfies (55) for K =

[c, d]. We will find multipliers J+(§) and J_(f) and holo-
morphic functions G, and G_ which are bounded near (c, d)

such that

J, DG, (x+1iy), y >0
(56) F(x+1iy) = {
J_(D)G_(x+1iy), y < 0.
M 1
Then f = J+(D)G+(x+io) - J_(D)G_(x -10) belongs to o2 p} (c, d)

(
(& P (e, a).

Let y >0 and

o9 ;
(57) 3,(8) = L+ g)? 1 <1+-%7),
J= J

where lj is a positive sequence converging to zero (a positive
. -1 . . ~
constant) Since J+( g) is infra-exponential except on the

negative real axis,

we .
(58) 6, (2) = 7= fo 5, () e at

defines a holomorphic function on the Riemann surface -T < argz

<21

- 14 -



Choose a point 2 in the upper domain V+ of F and

define for 2z in the cone -Tt+¢& < arg(z -zO) < -ECV,

(59) G+F(z) = f[‘ G+(z -w)F (w)dw ,

where [' 1is a simple closed curve starting z, and encircling

the slit [z, zO] counterclockwise. Then we have
(60) J+(D)G+F(z) =F(z).

By deforming the contour [ we have

t
(61) G+F(z) =i Jﬂ g (-iv)F(z+iv)dv+ -+ |
0 +
where
E+ioo
s _ 1 . -1 y(+in)
(62) g, (-iy) = 525 ,( J(g+in) Te dn .
E-ico
Taking it into account that
ioa vE
. 1 d L. €
[s(-iv)| € 53¢ l J __§;__2| inf T3
-iw (L+T)7 1 £50 ‘ml,,_.l_\
(63) ™
eY‘E
< C inf “ons M2
£>0 exp M(%)
where p
N 21.” ng MO
(64) M(%) = log sup M ;
p P
we can choose a sequence 'éj so that the first term of (61) is

- 15 -



bounded. The remainder is also bounded. Hence we have (56).

The proof shows that if the estimate (55) is uniform in f € B,
then {i(D)-l constructed above map F(x+1i0) into a bounded

set in 1*(c, d), and hence B is bounded.
L

Conversely suppose that f & 8 P (a, b) (H P (a, b)).

It foilows from Theorem 10 that

(2]
£] (c, d) = > DP £, £,€Clc, d)' and .

p=
IE cc -2
£l (le,apyr €€ M

Let Fp be the standard defining function of »fp' Then we

have the estimate

P_
P . C L' p.
sup ID°F_(x+1iy)| <
xelc,d] P 2T lylpﬂMP
_ o :
(1 _cA (2HL)P" (p+1) ! M
2 T sup
7P ZIMO P |y|p+lM

pt+1l
Therefore
| ]
F(x+iy) = > DPF (x+1iy)
p=0 P
is a defining function of £ and it satisfies

' : 2HL \
exp M*( T}T) .

sup [Flxt+iy)| € =
x€l[c,d] . 0

It is clear that if a defining function satisfies (55),: any other

defining function satisfies it also.

1
s-T . . . . .
? . Therefore the theorem in the introduction is a special case

For the Gevrey sequence of order s, M*(p) is equivalent to
f q

of Theorem 12.

- 16 -
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