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ON PSEUDO-DIFFERENTIAL EQUATIONS IN HYPERFUNCTION THEORY

M. SATO, T. KAWAI AND M. KASHIWARA

Since the introduction in 1969 of the sheaf $G$ into hyperfunction theory (to whose sections and

local sections $v^{\gamma}e$ shall give the name micro-hyperfunctions\dagger or simply $microfunctions^{\tau}$ ) the following

scheme of studying linear differential equations has been established: Instead of studying equations

and their hyperfunction solutions on a given manifold $M,$
$1$ ) study the correspondlng pseudo-differential

equations and their microfunction solutions on the cosphere bundle $S^{*}M$ of M. Then this hyper-local

theory on $S^{*}M$ , when projected $do\backslash vn$ onto $M$ , will give us desired informations about hyperfunction

solutions of the given equation, in virtue of the fundamental exact sequence

sp
$0arrow aarrow Barrow\pi_{*}Carrow 0$

in $C$,-theory connecting the sheaves of analytic functions, hyperfunctions, and microfunctions. We

remind the reader that $\pi_{*}$ signifies the O-th direct image by the canonical projection $\pi:S^{*}Marrow M$ .
The image sp $u$ of a hyperfunction $u\in B(M)$ will be called the spectrum of $u$ . $2$) We also remind that,

whereas $\mathcal{B}$ is a flabby sheaf on $M$ on which linear differential operators act as local operators, $O$

constitutes $a$ flabby sheaf on $S^{*}M$ on which pseudo-differential operators (in the hyperfunctior-theoretic
sense) act as (hyper-) local operators.

The simplest and the most immediate application of this principle will be the following results
by Sato and Kawai-Kashiwara, respectively:

1. Let $P$ be a differential operator with analytic coefficients and let $u$ be a hyperfunction
such that Pu is analytic. Then $supp$ sp $u$ , the support of the microfunction sp $u$ , is contained in the

characteristics of the principal symbol $P_{m}$ of $P$ , that is, in the analytic subset of $S^{*}M$ defined by

$P_{m}(x, \eta)=0$ (Sato [1], [2], Sato–Kawai [1], Sato-Kashiwara [1], Schapira [1]). Clearly this gives a
slgnificant generalization of the fact that solutions \’of an eIliptic $eqnat_{\check{1}}on$ are always analytic.

2. Let $P$ be as above and assume that $p_{m^{(x,\eta)}}$ is real and of simple characteristics. Then
$supp$ sp $u$ eonsists of bicharacteristic strips; in other words, it is invariant under the Hamilton field
of $P$ (Kawai [1], [2], [3]. See also Sato [2]. Hormander [3].) Thus, the $ob^{\sim}ser\dot{v}$ation of micro–

$n$

function solutions reveals the major role of bicharacteristic $\underline{stri\mathfrak{v}s}$ as the true carrier of the solution

of the given equation, and significantly improves the hitherto known resuIts on propagation of
singularities and regularities expressed in terms of bicharacteristic curves, which are the images of

bicharacteristic strips projected onto M.

1) In this note everything is treated in the real analytic category and the phrase ’real analytic’
will be often omitted.

2) Recently Professor L. Hormander [3] introduced the $C^{\infty}$ -theoretic version of $supp$ sp $u$

under the name wave front set’ of $u$ (cf. Sato [4]).
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These examples may even suggest that our $hyperarrow 1oca1^{t}$ theory can control the global theory

to a certain extent, certainly better than the usual \dagger local’ theory can. In the present note we shall go
further along this hyper-local theoretic way and establish the fundamental theorems on a system of

pseudo-differential equations. These theorems give the complete answer as to the strueture of micro-

function solutions for any system of pseudo-differential equations (of finite type as defined in

Kashiwara-Kawai [1]), in the both cases of real and complex characteristics, provided that the system

is of the most generic type of the kind. The results reveal that the structure of a system of pseudo-

differential equations of such a generic type is extremely simple from the $hyperarrow 1oca1’$ point of view.

Our fundamental theorem for the system of pseudo-differential equations, in the case of real

characteristic $s$ , states
Theorem A. Let $\mathfrak{M}$ : $P_{\nu}u=0$ $(\nu=1,2, \ldots)$ be a system of pseudo-differential equations of

finite type and finite order whose characteristics V in the $cosph_{8}re$ bundle is real and simple in the
$0$ $0$ $0$ $0$

neighborhood of $(x \eta)$ . Then, in the neighborhood of $(x , \eta)$ ,

$Ext_{\theta}^{k}(\mathfrak{M},C,)=0$ for $k>0$ ,

while for $k=0$ the solution sheaf $Hom_{\theta}(\mathfrak{M},C’)$ is a sheaf supported on V which is locally constant
along each bicharacteristic manifold and flabby in the transversal direction.

Here we denote by $\theta$ the sheaf of rings of pseudo-differential operators of finite type and finite.
order, and we identify the system EM with the $\theta$-coherent sheaf $\theta/\oint$ , the quotient module of $\theta$ by its

left ideal $\beta$ generated by $P_{1},$ $P_{2}$
, , . . Furthermore, the $meanin\tilde{g}$ of the above statement about the

solution sheaf is the following: We have $a$ manifold $U_{0}$ , a flabby sheaf $O_{U_{0}}$ on $U_{0}$ , a neighborhood
$0$ $0$

$U$ of $(x \eta)$ in the characteristic variety V, and a smooth morphism $\rho:Uarrow U_{0}$ , so that the

bicharacteristic manifolds lying in $U$ are just the fibers of $\rho$ , and that the solution sheaf $Hom_{\theta}\mu,c,$)

restricted onto $U$ is isomorphic to $\rho^{-1}G_{U_{0}}$ .
The vanishing of all $Extk,$ $k\neq 0$ , means the non-existence of obstructions to constructing a

’Poincare’ complex’ for the system $\mathfrak{M}$ , because it nplies that a $g$-projective resolution of the sheaf
Wt will give rise to a corresponding injective resolution of the microfunction solution she$afHom_{\theta}(\mathfrak{M},C^{\backslash }$

by mean$s$ of flabby sheaves of microfunctions.

One of the easy consequences of Theorem A is

Corollary. The support of the microfunction solution $u$ of the equation Wt, which of course
is contained in the characteristic manIfold V, is actually a union of bicharacteristic manifold$s$ .
Conversely, there exists a microftmction solution of EM whose support coincides with a given single

bicharacteristic manifold,
$t$

provided that the bicharacteristic submanifoId is simply connected.

This generalizes the above-cited result of $Kawaiarrow Kas$hiwara to the ease of a system.
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Theorem A is an immediate consequence of the following Theorem A.

Theorem $A’$ . Any system of pseudo-differential equations of finite type and finite order

$\mathfrak{M};P_{\iota}u=0$ $(\iota=1,2, \ldots)$ ,

$0$ $0$

whose characteristic variety is real and simple at $(x , \eta )$ , is ‘hyper-locallyt equivalent to $a$ partial

de Rham system

EM ‘ : $a_{e_{\iota}t}^{3}u’=0$ ( $\iota=1,2,$ $\ldots$ , d),

$d$ denoting the codimension of the characteristic variety in $s^{*}\mathbb{N}$ near $(x^{0}, \eta^{0})$ .
The fundamental theorem for the system of pseudo-differential equations of the most $\frac{eneric}{}$

type, in the case of complex characteristics, is the following

Theorem B. Let $\mathfrak{M}$ : $p_{t}u=0$ $(\iota=1,2, \ldots)$ be a system of $pseudoarrow differentialequati()ns$ of

finite type and finite order. Suppose that its complex characteristic variety $v^{\mathbb{C}}$ (which lie $s$ in $tne$

complex neighborhood of $S^{*}M$) is locally defined by $f_{1}(x, \eta)=0,$ $\ldots,$ $f_{d}(x, \eta)=0$ in the neighborhood of
$0$ $0$

$(\dot{x} , \eta)\in S^{*}M$ , with $f_{\iota’}s$ in the symbol ideal $J$ of $\mathfrak{M}$ , and assume that the hermitian form (called

‘generalized Levi form’) whose coefficients are the Poisson brackets

$\frac{1}{2i}\{f_{\iota t}\overline{\prime\prime_{1}}\}$ ,

is non-degenerate and has the $s$ ign (d-p, p) ( $i$ . $e$ . has d-p positive eigenvalues and $p$ negative
$0$ $0$ $0$ $0$

eigen alues) at $(x . \eta)$ . Then, in the neighborhood of $(x , \eta)$ ,

$Ext_{\theta}^{k}(\mathfrak{M},C)=0$ for $k\neq p$

whiIe for $k=p$ this is canonically isomorphic to a fIabby sheaf $G_{W}$ defined in the neighborhood of
$t^{x^{ff},\eta^{e})}$ and supported on $Wd\overline{\overline{e}}fv^{\mathbb{C}}$ A $S^{*}M$ .

$\sim$

We note that non-degeneracy of the generalized Levi form inplie $s$ Iinear independence of

$df_{1},$ $\ldots,df_{d},$ $d\overline{f}_{1},$ $\ldots,$ $d\overline{f}_{d}$ , and $\omega$ , where $\omega$ denote $s$ the canonical l-form $\eta_{1}dx_{1}+\ldots+\eta_{n}dx_{n}$ on
$-T^{*}Marrow M$ . This means that $v^{C}$ is simple in the neighborhood of $(x^{0_{*}}\eta^{0})$ , that $v^{\mathbb{C}}$ and its complex

conjugate $\overline{v}^{\mathbb{C}}$ intersects transversally at the compleXification $w^{\mathbb{C}}$ of $W$ , and that $\omega f_{W}$ does not
$0$ $0$

vanish at $(x \eta)$ .
On the other hand, it is a remarkable fact that thc sheaf $G_{1V}$ is fully determined by $W$ alone,
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139
and is not affected by $v^{\mathbb{C}}$ passing through W. This inplies also that $c_{W}$ is independent of $p$ , because

$f^{1}$

as will be seen from the subsequent discussions, there exist for a fixed $W$ infinitely many V ’s $Y\lambda$ ith

all possible values of $p=0,$ $\ldots$ , $d$ , each of them corresponding to some system $\mathfrak{M}$ with properties

described above.

Theorem $B$ can be derived from the following Theorem $B’$ and Theorem $B_{q}$
, which will be

proved in \S 2. In the sequel, ‘a system bf pseudo-differential equationst always means ‘a system of

pseudo-differential equations of finite type and finite orderf.

Theorem $B^{\dagger}$ . Any system of pseudo-differential equations

$\mathfrak{M}$ ; $P_{\iota}u=0$ $(\iota=1,2, \ldots)$

$0$ $0$

whose generalized Levi form is non-degenerate at a characteristic point $(x , \eta)$ , is $hyper-10^{\wedge}\cdot ally’$

equivalent to a system of the following form, considered in the neighborhood of $x’=0,$ $\eta’=(0, \ldots , 0,1)$

$\mathfrak{M}_{q}$ : $( \frac{3}{6x_{\iota}’}-\frac{i}{2}\frac{3q(x’)}{\partial x_{\iota}}\frac{3}{3x_{n}})u^{\dagger}=0$ $(t=1, \ldots, d)$ ,

where $d_{\vee}(<n)$ is the codiniension of the complex characteristic variety $V^{\oplus}$ in a complexification of
$0$ $0$

$S^{*}M$ near $(x , \eta)$ , and $q(x’)$ is a non-degenerate real-valued quadratic form of $x_{1}^{7},$ $\ldots$ , $x_{d}’$ with the

same sign as that of the generalized Levi form of ‘M.

$TheoreIY_{\dot{\iota}}B_{q}$. Theorem $B$ is valid with the equation $\mathfrak{M}_{q}$ in Theorem $B’$ .
Consider the equation $\mathfrak{M}_{q}$ . (We omit primes, and we consider $\mathfrak{M}_{q}$ on that part of the cosphere

bundle of $R^{n}$ where $(\eta_{1}, \ldots, \eta_{d}, \eta_{n})\neq(0, \ldots , 0,0).)$ Since the equation has a covariant expression,

$\mathfrak{M}_{q}$ can be brought to the form

( $\frac{b}{a_{x_{t}}}+ix_{t}\frac{3}{3x_{n}}\rangle u=0$ $(\iota=1\ldots p):$’

$( \frac{a}{\delta x_{t}}-ix_{t}\frac{3}{\partial x_{n}})u=0$ $(t=p+1, \ldots, d)arrow$

if one prefers to do so, by bringing $q(x)$ into the canonicai form $arrow x_{1}^{2_{\ddagger}}arrow\ldotsarrow\dot{x}_{p}^{2}+x_{p+1}^{2}+\ldots+x_{d}^{2}$

through a linear transformation, where $(darrow p, p)$ denotes the sign of $q(x)$ .
Let the first $order-$ operators $5^{\frac{8}{x_{t}}-} \frac{i}{2}\frac{8q(x)}{a_{x_{t}}}\frac{8}{a_{X}}$ appearing in $\mathfrak{M}_{q}$ be denoted by $p_{\iota}$ , and its

complex $conju_{o}\sigma ate$ by P. $P_{\nu’}s$ are mutually $commutativ^{n_{e}}$ , and so are $\overline{P}_{\nu’}s$ , while we have, setting
$q(x)=\sum_{a}$ $xx$ with a $=a$

$\iota\kappa$. $\iota\kappa_{-}$ $\iota.\kappa_{-}$ $\kappa_{-}\iota$

’
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$\frac{1}{2i}[p_{t},\overline{p}_{\kappa}]=\frac{1}{2i}(p_{t}\overline{p}_{\kappa}-\vec{P_{K}}P_{\iota’})=$

.
$\frac{1}{2}\frac{3^{2}q(x)}{3x_{\iota}\partial x_{X}}$

$\frac{8}{8x_{n}}=a_{\iota\kappa,\sim-}T^{\frac{\delta}{x_{n}}}$

or in terms of the symbols $P_{\iota}(x, \eta)=\eta_{\iota}-\frac{i}{2}\frac{\partial q(x)}{8x_{t}}\eta_{n}$ ,

$\frac{1}{2i}\{P_{t}(x, \eta), \vec{P}_{\kappa}(x, \eta)\}=a_{1K}\eta_{n}$.

The charactertstic variety of $\mathfrak{M}_{q}$ , which is determined by the equation $P_{1}(x, \eta)=0,$ $\ldots$ , $P_{d}(x, \eta)=0$ ,

consists of two disjoint analytic sets $W$ and $w^{a}$ in the cosphere bundle given by

$W=\{(x, \eta);x_{1^{=\ldots=x_{d}=}}0, \eta_{1}=\ldots=\eta_{d}=0, \eta_{\{1}=1\}$

$w^{a}=antipodal$ of $W=\{(x, -\eta);(x, \eta)\in W\}$

because we excluded that part where $\eta_{1}=\ldots=\eta_{d}=\eta_{n}=0$ . The meaning of above calculation is that

the generalized Levi form for the system $\mathfrak{M}_{q}$ is given by the coefficients
$a_{\iota.\kappa}$

.
of $q(x)$ on $W$ , and by

$arrow a_{tK}$ (of $-q(x)$) on $w^{a}$ . And of course we need only prove Theorem $B_{q}$ at the point $x=0$ ,
$\eta=(0, \ldots, 0,1)$ which is on W.

We note that the theory of ‘Fourier integral operators\dagger due to $ff\dot{o}rmander(H\dot{o}$rmander [2],

Egorov [1]) combined with the theory of $C/$ is effectively used in our reasoning. Indeed, Theorem $A’$

is proved without any difficulty by using the classical theory of Jacobi on systems of involution and

contact transformations, whereby making essential use of the hyper$function-theoretic$ version of
‘ Fourier integral operators’, and Theorem 7 of Kashiwara-Kawai [1]. We also note that our work is

deeply affected by instructive articles of Lewy$([1], [2])$ and recent works by I. Naruki. Theorem $B’\vee$
’

is proved also along the same line $s$ , by making use of the following important lemmata.

Lemma 1. Given an analytic $fim^{-}ctionf(x, \eta)$ defined in the neighborhood of $(x^{0}, \eta^{0})\in T^{*}M-M$ ,
homogeneous in $\eta$ , and satisfying the conditions

$0$ $0$

(1) $f(x \eta)=0$

(2) $\sqrt{2-1}^{1}\{f, \overline{f}\}(x^{0}, \eta^{0})_{\neq^{>}}0$

then we can choose an analytic function $\Phi$ $(x, \eta ; t,\overline{t})$ in $(x, \eta)$ and a complex variable $t$ and its complex

conjugate 1, defined and real valued in the neighborhood of $(x , \eta ; 0,0)$ and such that
$0$ $0$

6-$(x, \eta ; f(x, \eta), \overline{f}(x, \eta))$ is homogeneous in $\eta$ , so that we have

$S1-MS-5$



$\frac{1}{2\sqrt{arrow 1}}\{f\Phi (x, \eta ; f,\overline{f}), \overline{f}\Phi(x, \eta ; f,\vec{f})\}=1$.

$\sim$

$|\backslash .\prime A^{t}\sim_{\backslash }$

$\backslash ’$ :
$C^{t}\}\sim 1\sim j$ . $t_{-}j$

$\iota_{4}1$
$\iota,$

$\{$

More generally, suppose we are given an analytic function $F(x, \eta ; t,\overline{t})$ defined and strictly ’

$0$ $0$

positive valued in the neighborhood of $(x . \eta ; 0,0)$ and such that $F(x, \eta ; f(x, \eta),’\overline{f}(x, \eta))$ is $homoge\overline{n}e\overline{on}s$

in $\eta$ , then we can again choose a $\Phi(x, \eta;t,\overline{t})$ with the properties described above, so $\overline{t}hat$ we have

$\{f\Phi(x, \eta ; f,\overline{f}), \overline{f}\Phi(x, \eta ; f,\overline{f})\}=\{f,\overline{f}\}\cdot F(x, \eta ; f,\overline{f}).\sim$

(Proof of the generalized statement)

Abbreviating $\Phi(t,\overline{t})_{d\overline{\overline{e}}f}\Phi(x, \eta ; t,\overline{t})$ and setting $\Psi(t,\vec{t})d\overline{\overline{e}}f(\Phi(t,\overline{t}))^{2}$ , the left hand $s$ ide of the
desired equality

$\{f\Phi(f,\overline{f}), \overline{f}\Phi(f,\overline{f})\}=\{f,\overline{f}\}F(f, \overline{f})$

is rewritten as

$=\{f,\overline{f}\}(\Phi(f,\overline{f}))^{2}+f\Phi(f,\overline{f})\{\Phi(f,\overline{f}),\overline{f}\}+\overline{f}\Phi(f,\overline{f})\{f, \Phi(f,\overline{f})\}$

$=| f,\overline{f}\}\Psi(f,\overline{f})+\frac{1}{2}f\{\Psi(f,\overline{f}),\overline{f}\}+\frac{1}{2}\overline{f}\{f, \Psi(f,\overline{f})\}$ .

We have, however,

$| \Psi(f,\overline{f}),\overline{f}\}=(\{\Psi(t,\overline{t}), \vec{f}\}+\{f,\overline{f}\}\frac{3\Psi(t,\vec{t})}{\partial t})_{(t,\overline{t})=}(f,\overline{f})$

$\{f, \Psi(f,\overline{f})\}=(\{f, \Psi(t^{\sim},\overline{t})\}+\{f,\overline{f}\}\frac{3\Psi(t,\overline{t})}{\underline{\delta}\overline{t}})_{(t,\overline{t})=}(f,\overline{f.})$

Therefore, defining the derivations $\Lambda$ and $I$ acting on a function $g(x, p)$ in the neighborhood of
$0$ $0$

($x$ $\eta\cdot$ } by

$\Lambda g_{d\overline{\overline{e}}f}\frac{\{g,f\urcorner}{\{f,\overline{f}\}}*$ $\overline{\Lambda}g_{d\overline{\overline{e}}f}\frac{\{f}{\{f’}\frac{\}}{1}\frac{g}{f}$

and setting

$\Psi(t,\overline{t})=\sum_{\mu,\nu}\psi_{\mu\nu}\frac{t^{\mu}\overline{t}^{\nu}}{\mu!\nu!}$ with $\psi_{\mu\nu}=\psi_{\mu\nu}(x, \eta)$

A $\Psi(t,\overline{t})=def\sum_{\mu,\nu}$ (A $\psi_{\mu\nu^{)}}\frac{t^{\mu}\overline{t}^{\nu}}{\mu!\nu}!$

$S1-MS-6$
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$\overline{\Lambda}\Psi(t,\overline{t})=def\sum_{l/,\nu^{(\vec{\Lambda}\psi_{\mu\nu})}}\frac{t^{\}’}J\overline{t}^{\nu}}{l^{4!\nu}}$

!

we see that the $req\iota liremeI!ts$ iinposed on $\Phi(t,\overline{t})$ are certainly met if the following equation for $\Psi(t,\overline{t})$

holds:

$\Psi(t, \overline{t})+\frac{1}{2}t(\frac{3\Psi(t,\overline{t})}{\partial t}+\Lambda\Psi(t,\overline{t}))+\frac{1}{2}\overline{t}(\frac{8\Psi(t,\overline{t}}{3\overline{t}})+X\Psi(t,\overline{t}))=F(t,\overline{t})$ .

$coefficientsNowwesetF(t,\overline{t}=oft^{\mu\frac{)}{t}\nu}/\mu^{|4,\nu^{c_{\mu\nu}\frac{t^{\mu_{\overline{t}}\nu}}{thebo\mu!\nu!}with,=}}!\nu!onthsidesofthi^{\wedge}sequation,andget\sum_{\mu\nu\mu\nu\nu\mu\mu\nu;}cc(x,\eta),\overline{c}=cc_{00}\neq>0$ , and compare the

$\psi_{\mu\nu}+\frac{I}{2}\mu(\psi_{1^{\iota\nu}}+\Lambda\psi_{\mu-1,\nu^{)}}+\frac{1}{2}\nu(\psi_{\mu\nu}+\overline{\Lambda}\psi_{\mu^{\backslash }\nuarrow 1})=c_{\#\nu}$

$i.e$ . $(1+ \frac{1}{2}/l+\frac{1}{2}\nu)tlp_{\mu\nu}=arrow\frac{1}{2}\mu\Lambda\psi_{\muarrow 1,\nu}-\frac{1}{2}\nu\overline{\Lambda}\psi_{\mu,\nu-1}+_{-}c_{\mu\nu}$ .

It is obvious that all $\psi$ are determined recursively through this formula in a unique and
$\mu\nu$

consistent way:

$\psi_{00}=.c_{00},$ $\psi_{01}=\frac{1}{3}(arrow\Lambda c_{00}+2c_{10}),$ $\psi_{10}=\frac{1}{3}(arrow\overline{\Lambda}c_{00}+2.c_{01}),$
$\ldots$ .

and that the $series\Psi(t,\overline{t})00=\sum_{\mu,\nu^{\psi’}\mu,\nu}\frac{t^{\mu}\overline{t}^{\nu}}{\mu!\nu}!$ thus $construct_{\vee}J\backslash d$ certainly $convel\cdot ges$ uliiformly in the

ncighborhood of $(x , \eta ; 0,0)$ . Moreover, these $\psi_{\mu\nu}$ satisfy $\overline{\psi}_{\nu\mu}=\psi_{\mu\nu}$ and $\Psi(0,0)=\psi_{00_{-}}=^{\backslash _{-}}c_{00}>0$

$0$ $0$ $\sim-$(in ihe $neighbor1_{1Ood}$ of ($x$ , $\eta$ )), whence we conclude that $\Psi(t,\overline{t})$ is real valued and strictly positive

valued and that $\Phi$ $(x, \eta ; t,\overline{t})$ with the desired property is obtained by

$\Phi(x, \eta ; t,\overline{t})=\sqrt{\Psi(t,\overline{t})}$ $(q.e.d.)$

’

[ Lemma 2. Given two analytic $f\iota mctionsf(x,\eta)$ and $g(x, \eta)$ , both dcfined in the neighborhood
$0$ $0$

of $(x \eta)\in T^{*}M-hI$ , homogeneous in $\eta$ , and satisfying the conditions

$0$ $0$ $0$ $0$

(1) $f(x \eta)=0$ , $g(x, \eta)=0$

(2) $\{f,\overline{f}\}=2\sqrt{arrow 1}$ , $\{f, g\}=0$ ,

$0$ $0$

then we can find another analytic function $g^{1}(x, \eta)$ also defined near $(x , \eta)$ , homogeneous of the same
degree in $\eta$ as $g$ , and satisfying the conditions

$g’\equiv g(mod i)$ , $\{f, g’\}=0,$ $\{g’,\overline{f}\}=0$ .
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Indecd, such $g$
’ is given by the following series uniformly convergent in the neighborhood of

$0$ $0$

$(x \eta)$

$g^{\tau_{d\overline{\overline{e}}f}}g^{(0)}+\frac{1}{1}g^{(])}f!+\frac{1}{2}$
$g^{(2)}f^{2}+$

! $\ldots$

(0) (1) (2)where $g$ , $g$ , $g$ , . . . are de$f$ined by

$g^{(0)_{d\overline{\overline{e}}f}}g$ , $g^{(\nu+1)}d\overline{\overline{e}}f2^{arrow}T^{1}arrow r^{\{g^{(y)},\overline{f}\}}$

(Proof of $|f,$ $g’\}=0$)

It suffices to prove $\{f, g^{(\nu)}\}=0$ for every $\nu$ , and this we prove by \’induction. If $\nu=0$ then
it is all right. So assume this is true for $g^{(\nu)}$ . Then

$\{f, g^{(\nu+1)}\}=\frac{arrow 1}{2\sqrt{arrow 1}}\{f, \{g^{(\nu)},\overline{f}\}\}=\frac{-1}{2\sqrt{arrow 1}}t\{\{f, g^{(\nu)}\}^{-}, \overline{f}\}+\{g^{(\nu)}, \{f,\overline{f}\}\})$

and within the last expression the first term is equal to $\{0,\overline{f}\}=0$ by the assumption of induction,
while the second term is $\{g^{(\nu)}, 2\sqrt{arrow 1}\}=0$ , whence $\{f,$ $g^{(\nu+1)}1=0$ .

(Proof of $\{g’,\overline{f}\}=0$)

$\{g’,\overline{f}\}=\sum_{\nu^{\frac{1}{\nu!}}}\{g^{(\nu)}f^{\nu},\overline{f}\}=\sum_{\nu}\frac{1}{\nu!}(\{g^{(\nu)},\overline{f}\}f^{\nu}+g^{(\nu)}\cdot\nu f^{\nuarrow 1}\}f,\overline{f}\})$

$= arrow 2\sqrt{arrow 1}\sum_{\nu^{\frac{1}{\nu!}}}g^{(\nu+1)_{f}\nu}+2\sqrt{arrow 1}\sum_{\nu}\frac{1}{(\nu-1)!}g^{(\nu)}f^{\nu-1}=0$

$(q.e.d.)$
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