Recent advances of analytic method in the theory of numbers

By Tikao Tatuzawa

In this lecture, I shall state two analytic methods induced by Gallagher [2] and Fogels [1] and extend these so as to be able to apply in case of algebraic number fields. By virtue of these tools we shall have a prospect of natural extension of density theorem concerning the number $N(\sigma,T)$ of zeros $f = f + i \delta$ in the rectangle

of all Hecke's zeta-functions $\zeta(s, \mathcal{X})$ with same moduli \widetilde{m} . Hirano is now working out this problem applying the extended Ingham's method [\mathcal{S} , Chapt. 9].

Let k be an algebraic number field of degree n over the rational number field. Let k have r real conjugates $k^{(\ell)}$ (1 \leq $\ell \leq r_i$) and r_2 pairs of complex conjugates $k^{(m)}$, $k^{(m+r_2)}$ ($r_i+1 \leq m \leq r_i+r_2$), namely $n=r_i+2r_2$. A formal product

$$\widetilde{m}_{l} = m_{l} f_{\infty}^{(l)} - \dots f_{\infty}^{(q)} \qquad (0 \leq q \leq t_{l})$$

is called a divisor of k, where \mathfrak{M} is an integral ideal and $\mathfrak{z}_{\infty}^{(i)}$ is an infinite prime spot. Let $A(\widetilde{\mathfrak{M}})$ be the group of all ideals prime to \mathfrak{M} in k and $S(\widetilde{\mathfrak{M}})$ be the group of all principal ideals (\vee) generated by \vee satisfying the multiplicative congruence

$$V = 1 \mod \widetilde{m}$$

namely

$$v \in \mathbb{R}$$
, $v = 1$ mod v and v'' , ---, $v'^{(3)} > 0$.

A class of the factor group $A(\mathfrak{R})/S(\mathfrak{R})$ is called a ray class mod \mathfrak{R} . We denote by $h(\mathfrak{R})$ the number of classes of this factor group. Let \mathfrak{F} be the different and d be the discriminant of k, so that $N\mathfrak{F}=|d|$. Let R be the regulator of k, h be the number of absolute ideal classes of k and w be the number of roots of unity in k [4].

Throughout the paper, c or c with suffix will be used to denote a positive constant depending only on k, and c(*) will be used when c depends further on several parameters *. A \ll B

or A = O(B), where B is positive, means that there exists c satisfying

in the region under consideration.

In the first place, we shall estimate the number T(t) of integral ideals in a ray class C mod $\widetilde{\boldsymbol{\pi}}$ whose norms don't exceed t. The details of this subject will be stated another paper. We shall therefore only point out the main results.

Theorem 1. Let C be a ray class mod \widetilde{m} . Take c sufficiently large, and suppose that

$$T(t) = \sum_{N\pi \leq t, n \in C} \frac{1}{k(\widetilde{m})} \prod_{f \mid m} \left(1 - \frac{1}{Ng}\right) \frac{2^{T} (2\pi)^{T} |R| h}{\sqrt{|d|} w} t + O\left\{\frac{1}{k(\widetilde{m})} \prod_{g \mid m} \left(1 - \frac{1}{Ng}\right) N m^{\frac{1}{m}} t^{1 - \frac{1}{m}}\right\}.$$

Theorem 2. If $0 \le y \ll x$

$$\sum 1 \ll \frac{1}{h(\widetilde{m})} (y + Nm^{\frac{1}{n}}x^{1-\frac{1}{n}} + Nm)$$

 $x \leq Nn \leq x + y, n \in C$

Secondly, we shall introduce a new elegant real analytic method due to Gallagher.

Theorem 3. If
$$\sum_{n=1}^{\infty} |a_n| < \infty$$
, then
$$\int_{-T}^{T} |\sum_{n=1}^{\infty} a_n n^{it}|^2 dt \leq \frac{\pi}{2} T^2 \int_{\tau^{-1}}^{\tau} |\sum_{n\leq n\leq 2\tau}^{\tau} a_n |^2 \frac{dz}{z}$$

$$\tau = e^{\frac{\pi}{\tau}}.$$

Proof. Write

$$a_n = c \left(\frac{\log n}{2\pi} \right)$$

Therefore,

$$S(t) = \sum_{n=1}^{\infty} a_n n^{it} = \sum_{\nu} c(\nu) e^{2\pi i \nu} t$$

where
$$\gamma$$
 runs over

o, $\frac{\log 2}{2\pi}$, $\frac{\log 3}{2\pi}$,

Put

$$F_{s}(x) = \delta^{-1}$$
 or 0

 $F_{S}(x) = S^{-1} \quad \text{or} \quad 0,$ white according as $|z| \le \frac{1}{2}\delta$ or not, and write $f(x) = \sum_{\gamma} c(\gamma) F_{\zeta}(x-\gamma) = \frac{1}{\delta} \sum_{|\gamma-z| \le \frac{1}{2}\delta} c(\gamma)$ (1) Accordingly,

$$\int_{-\infty}^{\infty} |f(t)|^{p} dt = \frac{1}{\delta^{p}} \int_{-\infty}^{\infty} \left| \frac{\sum_{n=1}^{\infty} a_{n}}{\frac{\log n}{2\pi} - t} \right|^{p} dt$$

$$= \frac{1}{2\pi \delta^{p}} \int_{2\pi}^{\infty} \left| \sum_{n \leq 2\pi} a_{n} \right|^{p} \frac{dz}{z}$$
(2)

for p=1 and 2, where $S = \frac{1}{2T}$ and $\tau = e^{\frac{\pi L}{T}}$

Assume that the right side of Theorem 3 is finite, since the result is trivially true otherwise. Hence, f(x) belongs to L^2 because of (2). We have also

$$\int_{-\infty}^{\infty} |f(t)| dt \leq \frac{1}{2\pi \delta} \int_{\gamma-1}^{\infty} \sum_{z \leq n \leq z\gamma} |\alpha_n| \frac{dz}{z}$$

from (1), where the coefficient of $|a_n|$ of the left side turns out to be $\frac{1}{2\pi\delta}\int_{\pi/2}^{\infty}\frac{dz}{z}\ll\frac{1}{2\pi\delta}\log\tau=1$

It follows therefore from the assumption of the theorem that f(x) belongs to L.

By these properties,

$$\hat{f}(x) = \int_{-\infty}^{\infty} e^{2\pi i x t} f(t) dt = \sum_{\gamma} c(\gamma) \int_{-\infty}^{\infty} e^{2\pi i x t} F_{s}(t - \nu) dt$$

$$= \sum_{\gamma} c(\gamma) e^{2\pi i x \gamma} \frac{\sin \pi \delta x}{\pi \delta x}$$
(3)

belongs to L2 [3] and

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(x)|^2 dx$$

This implies from (1) and (3) that

$$\frac{1}{S^{2}} \int_{\infty}^{\infty} \left| \sum_{|\gamma-x| \leq \frac{S}{2}} c(\gamma) \right|^{2} dx = \int_{\infty}^{\infty} \left| \sum_{\gamma} c(\gamma) e^{2\pi i x \gamma} \frac{\sin \pi S \chi}{\pi S \chi} \right|^{2} d\chi$$

$$\geq \left(\frac{2}{\pi}\right)^{2} \int_{1}^{\infty} \left| \sum_{\gamma} c(\gamma) e^{2\pi i x \gamma} \right|^{2} d\chi$$
In view of (1) and (2), it follows therefore

$$\int_{-T}^{T} \left| \sum_{n=1}^{\infty} a_n n^{it} \right|^2 dt \leq \frac{T^2}{4} \int_{-\infty}^{\infty} \left| \frac{1}{S} \sum_{|\gamma-x| \leq \frac{S}{2}} c(\gamma) \right|^2 dx = \frac{\pi}{8S^2} \int_{\gamma^{-1}}^{\infty} \left| \sum_{z \leq n \leq z_{\zeta}} a_n \right|^2 \frac{dz}{z}$$

Now we shall apply Theorem 3 to the sum of the form $S(x,t) = \sum_{i} A(\alpha_i) \chi(\alpha_i) N(\alpha_i)^{i,t}$

where α runs over all integral ideals of k, $\mathcal X$ is a character mod \widetilde{m} and A(α) is a function defined over all integral ideals in k. Put

$$a_m = \sum_{N\alpha=n} A(\alpha) \chi(\alpha),$$

and make use of Theorem 1, we have

$$\sum_{\chi \text{ mod } \widetilde{m}} \int_{-T}^{T} |S(\chi, t)|^{2} dt = \sum_{\chi \text{ mod } \widetilde{m}} \int_{-T}^{T} |\sum_{n=1}^{\infty} a_{n} n^{it}|^{2} dt$$

$$\leq \frac{\pi}{2} T^{2} \int_{T^{-1}}^{\infty} \sum_{\chi \text{ mod } \widetilde{m}} |\sum_{\chi \leq Nn \leq z_{1}}^{\infty} A(n) \chi(n)|^{2} \frac{dz}{z}$$

$$(4)$$

Divide integral ideals n satisfying $z \le N n \le z \tau$ into several classes in such a way that each pair of integral ideals in a class n is never congruent mod n with each other and that the number M of classes is less than

$$0\left\{\frac{1}{h(\widetilde{m})}\left(z_{2}-z+z^{-\frac{1}{n}}Nm^{\frac{1}{n}}+Nm\right)\right\}$$

in view of Theorem 2. Accordingly,

$$\frac{\sum}{\chi \mod \widetilde{m}} \left| \frac{\sum}{z \leq N \widetilde{n} \leq z \tau} A(n) \chi(n) \right|^{2}$$

$$\leq \frac{\sum}{\chi \mod \widetilde{m}} M \sum_{n \in \widetilde{d}} \left| \frac{\sum}{n \in \widetilde{d}} A(n) \chi(n) \right|^{2}$$

$$\ll \frac{1}{k(\widetilde{m})} (z \tau - z + z^{1 - \frac{1}{n}} N \widetilde{m}^{\frac{1}{n}} + N \widetilde{m}) \sum_{n \in \widetilde{d}} \left| \sum_{n \in \widetilde{d}} A(n) \chi(n) \right|^{2}$$

$$\ll (z \tau - z + z^{1 - \frac{1}{n}} N \widetilde{m}^{\frac{1}{n}} + N \widetilde{m}) \sum_{n \leq N \widetilde{m} \leq z \tau} |A(n)|^{2}$$

Substituting (4) for this result, we get

$$\sum_{\chi \mod \widetilde{m}} \int_{-T}^{T} |S(\chi, t)|^{2} dt$$

$$\ll T^{2} \int_{z^{-1}}^{\infty} \frac{z z - z + z^{-\frac{1}{m}} N w_{1}^{\frac{1}{m}} + N w_{2}}{z} \sum_{\chi \leq N \leq z} |A(\pi)|^{2} d\chi$$

$$\ll \sum_{\chi = 1}^{\infty} |A(\pi)|^{2} (N\alpha + N\alpha)^{-\frac{1}{m}} N w_{1}^{\frac{1}{m}} T + N w_{1} T).$$

which was the result obtained by Hirano in his master dissertation.

Theorem 4. If $\sum |A(n)| < \infty$, then

$$\sum_{\chi \mod \widetilde{m}} \int_{-T}^{T} |\sum A(\alpha)\chi(\alpha) N\alpha^{it}|^2 dt \ll \sum (N\alpha + N\alpha^{i-\frac{1}{n}} N\pi^{\frac{1}{n}}T + N\pi T) |A(\alpha)|^2$$

Thirdly we shall introduce a new Lindelöf principle due to Fogels.

Theorem 5. Let $f_j(s)$ ($l \le j \le m$) be regular in the region D

$$\sigma_1 < \sigma < \sigma_2$$
, $-\infty < t < \infty$,

satisfying the conditions

$$F(\Delta) = |f_1(\Delta)|^p + \cdots + |f_m(\Delta)|^p \le c_0 e^{c_1 t}$$

and be continuous over the closure of D, p being some positive integer. If the conditions

$$F(\delta) \leq A(|t|+2)^{\alpha} \log^{\alpha} C(|t|+2)$$
 on $\sigma = \sigma_1$
 $F(\delta) \leq B(|t|+2)^{\alpha} \log^{\alpha} C(|t|+2)$ on $\sigma = \sigma_2$

are fulfilled, then there exists $c(\sigma, \sigma)$ such that

$$F(4) \leq C(\sigma_1, \sigma_2) A \frac{\sigma_2 - \sigma_1}{\sigma_2 - \sigma_1} B \frac{\sigma_2 - \sigma_1}{\sigma_2 - \sigma_1}$$

$$(|t| + 2) \frac{\alpha \sigma_2 - \sigma_1}{\sigma_2 - \sigma_1} + b \frac{\sigma_2 - \sigma_1}{\sigma_2 - \sigma_1} \{ \log C(|t| + 2) \}$$

uniformly in $\sigma_{\leq \sigma \leq \sigma_{2}}$, where a, b, c are given positive numbers and A, B, C>1 are parameters not depending on t.

Proof. We know that
$$|\Gamma(6)| = \sqrt{2\pi} |t|^{6-\frac{1}{2}} e^{-\frac{\pi}{2}|t|} \left\{ 1 + O\left(\frac{1}{12}\right) \right\}$$

uniformly in $0 \le 0 \le 5$, $|t| \ge 1$. Hence

$$\left|\frac{\Gamma\left(2-\frac{\Delta-\sigma_1}{2(\sigma_2-\sigma_1)}\right)}{\Gamma\left(1+\frac{\Delta-\sigma_1}{2(\sigma_2-\sigma_1)}\right)}\right| = \left(\frac{1}{1+2}\right)^{1-\frac{\sigma_2-\sigma_1}{\sigma_2-\sigma_1}}\left\{1+O\left(\frac{1}{|t|+2}\right)\right\},\tag{5}$$

and

$$\left| \frac{\Gamma\left(2 - \frac{\sigma_2 - \delta}{2(\sigma_2 - \sigma_1)}\right)}{\Gamma\left(1 + \frac{\sigma_2 - \delta}{2(\sigma_2 - \sigma_1)}\right)} \right| = (|t| + 2)^{1 - \frac{\sigma_2 - \sigma_1}{\sigma_2 - \sigma_1}} \left\{ 1 + O\left(\frac{1}{|t| + 2}\right) \right\},$$

Take
$$\sigma_s$$
 such that $1-\sigma_s < \sigma_t$ and define $c(s+\sigma_s) = \int_{-\infty}^{\infty} \frac{dz}{z}$,

the contour lying on the right half plane **→≥**0.

$$\log C(s+\sigma_0) = \log C(\mathrm{i}t_1+2) \left\{ 1 + O\left(\frac{1}{\log C(\mathrm{i}t_1+2)}\right) \right\}.$$

Now we define

$$\begin{cases}
\frac{\sigma_2 - \delta}{\sigma_2 - \sigma_1} & \frac{\delta - \sigma_1}{\sigma_2 - \sigma_1} \\
\begin{cases}
\frac{\Gamma\left(2 - \frac{\delta - \sigma_1}{2(\sigma_2 - \sigma_1)}\right)}{2(\sigma_2 - \sigma_1)}
\end{cases}
\end{cases}
\begin{cases}
\frac{\Gamma\left(2 - \frac{\delta - \sigma_1}{2(\sigma_2 - \sigma_1)}\right)}{\Gamma\left(1 + \frac{\delta - \sigma_1}{2(\sigma_2 - \sigma_1)}\right)}
\end{cases}
\begin{cases}
\frac{\Gamma\left(2 - \frac{\delta - \sigma_1}{2(\sigma_2 - \sigma_1)}\right)}{\Gamma\left(1 + \frac{\sigma_2 - \delta}{2(\sigma_2 - \sigma_1)}\right)}
\end{cases}
\end{cases}
\begin{cases}
\log C(\delta + \sigma_0)
\end{cases}$$

Obviously G(s) is regular in $r \leq 0 \leq 6$ and there exists c, satisfying

in the region stated above. By (5) and (6),

$$|G(\delta)| = A(|t|+2)^{\alpha} \log^{\alpha} C(|t|+2) \{1+O(\frac{1}{\log C(|t|+2)})\}$$

on $\sigma = \sigma_i$ and

=
$$B(1t1+2)^{\frac{1}{2}} log^{c} C(t1+2) \left\{ 1 + O\left(\frac{1}{log C(t1+2)}\right) \right\}$$

on $\sigma = \sigma_1$. Further, from the assumption of the theorem,

$$\frac{F(\delta)}{|G(\delta)|} \leq c_3 e^{C_1|C|} \qquad \text{for } \sigma_1 \leq \sigma \leq \sigma_2$$

$$\leq c_4 \qquad \text{for } \sigma = \sigma_1 \text{ and } \sigma = \sigma_2$$

For any $\varepsilon > 0$,

is subharmonic in $\sigma,<\sigma<\sigma$ and is continuous on $\sigma,\leq\sigma\leq\sigma$. Applying the usual Lindelof principle to this function and letting $\epsilon \rightarrow 0$, we get the desired result.

From now on let \varkappa be a primitive character mod $\widetilde{\boldsymbol{m}}$, $\widetilde{\boldsymbol{m}}$ being $m_j^{(i)} \cdots p_{\infty}^{(i)}$ as before. We can find $p_j (1 \le j \le s = N(m_i))$ in $(m_i)^{(i)}$ which satisfy the following conditions:

$$S_j \equiv 1 \mod p_{\infty}^{(i)} \quad (1 \leq i \leq q),$$

each pair of f_j is never congruent mod f_j , moreover, if $f \in (mf)^{-1}$, then

for some f_j . The set of these f_j is called a complete residue system mod \mathfrak{J}^- in $(m\mathfrak{J})^-$.

Let $\S \neq 0$ and $\S \in (m\Im)^{-1}$. Put

$$G(\xi, \chi) = \sum_{\beta} \chi(\beta) e^{2\pi i S(\beta \xi)}$$

where β runs over a complete residue system mod $\widetilde{\boldsymbol{m}}$, satisfying

$$\beta \equiv 1 \mod g_{\infty}^{(i)} \quad (1 \leq i \leq q)$$

Further we define

$$G(\chi) = \sum_{g} \chi(g m \theta) e^{2\pi i S(g)}$$

g being over a complete residue system mod \mathfrak{f}^{-1} in $(m\mathfrak{f})^{-1}$. Take $\eta = \eta$ (\S) such that

$$\eta \equiv 1 \mod m, \quad \chi \equiv 3 \mod p_{\infty}^{(i)} \quad (1 \leq i \leq q),$$

then we have

$$G(3, \chi) = \overline{\chi}(\gamma(3) \leq m \vartheta) G(\chi)$$

and

$$\chi(\gamma(3)) = (agn 3^{(1)}) \dots (agn 3^{(g)}).$$

If we define the normalized Gauss sum by

$$I(\chi) = (-i)^{8} \, \varphi(\chi) / \sqrt{N(m)},$$

then we have the following relation[7]

$$I(x)I(\overline{x})=1.$$

Let $\zeta(s, \Lambda)$ and $\zeta(s)$ be functions defined by

for r>1, the summation being over all non-zero integral

where $r+l=r_1+r_2$ and

$$a_p = \begin{cases} 1 & (1 \leq p \leq q) \\ 0 & (q+1 \leq p \leq n) \end{cases}, \quad Z_p = Z_{p+r_2} (r_1 + 1 \leq p) \leq r_1 + r_2)$$

which turns out to be

Further define

$$\overline{\mathcal{P}}(\delta, \mathcal{X}) = \frac{(2\pi)^{\frac{1}{2}}}{\sqrt{|d|}} A(\chi)^{\frac{\delta}{2}} \Gamma(\delta, \chi) S(\delta, \chi)$$

and

$$A(\chi) = \pi^{-n} |d| Nw$$

Similarly we define

$$P(\delta, \chi, b) = \int \int e^{-\sum_{p=1}^{n} Z_p} \frac{dz_1 \cdot dz_{p+1}}{dz_p} \frac{dz_1 \cdot dz_{p+1}}{z_1 \cdot z_{p+1}}$$

and

$$\Psi(\delta, \chi) = \frac{(2\pi)^{\frac{1}{2}}}{\sqrt{|d|}} A(\chi)^{\frac{\delta}{2}} \sum \chi(b) \Gamma(\delta, \chi, b) Nb^{-\delta}$$

We know that $\Psi(\mathbf{s},\chi)$ is an integral function which satisfies the formula

$$\underline{\Psi}(s,\chi) = -\frac{z^{t_1+t_2}\pi^{t_2}R^{t_2}R^{t_2}}{w\sqrt{tdt}}\frac{E(\chi)}{s(t-s)} + \underline{\Psi}(s,\chi) + \underline{I}(\chi)\underline{\Psi}(t-s,\chi)$$
(7)

where

$$E(\chi) = \begin{cases} 1 & \text{if } \tilde{m} = 0, \chi \text{ principal} \\ 0 & \text{otherwise} \end{cases}$$

The functional equation

$$\Phi(s, \chi) = I(\chi) \Phi(i-s, \bar{\chi})$$

follows from (7) immediately [7].

The formula (7) can be transformed in the following form:

$$\Phi(s, \chi) = -\frac{2^{t_1+t_2}\pi^{t_2}Rh}{w\sqrt{|a|}} \frac{E(\chi)}{s(l-s)} + \frac{(2\pi)^{t_2}}{|a|} \left(\pi |a|^{-\frac{1}{m}}Nm^{-\frac{1}{m}}\right)^{\frac{1}{2}}$$

$$\sum_{\alpha \neq \sigma} \int_{t_p>0} \left(\chi(\alpha)N(t)^{\frac{s}{2}} + I(\chi)\overline{\chi}(\alpha)N(t)^{\frac{l-s}{2}}\right)N\alpha^{\frac{s}{m}} e^{-\pi |a|^{-\frac{1}{m}}Nn^{\frac{2}{m}}}S(t)$$

$$N(t) \geq l \qquad \qquad \sqrt{t_1\cdots t_p} \frac{dt_1\cdots dt_{p+1}}{t_1\cdots t_{p+1}}, \qquad (8)$$

with the abbreviations $N(t)=t_1\cdots t_n$ and $S(t)=t_1+\cdots +t_n$. The formula (8) is nothing but the Siegel formula in case $E(\chi)=1$ [6].

If we take 5 such that

$$\Phi(\delta, x) + \frac{2^{t_1+t_2} \pi^{t_2} R h}{w \sqrt{|a|}} \frac{E(x)}{\delta(1-\delta)} \ll c(\sigma_0)$$

and

$$(\delta-1) \qquad \zeta(\delta,\chi) \ll c(\sigma_{\delta}) e^{-c|t|} \frac{\sigma_{\delta}-1}{|v|^{2}}$$
 (9)

for $r \leq r \leq r$.

Let 0 < S < 1. Obviously

$$|\zeta(1+\delta+it, \chi)| \leq \zeta_{\kappa}(1+\delta) \ll \frac{1}{\delta}$$
 (10)

Put

$$f(\Delta, X) = I(X) A(X)^{\frac{1}{\lambda} - \Delta} 2^{\frac{1}{2}(2\Delta - 1)} \left\{ \frac{\Gamma(1 - \frac{\Delta}{2})}{\Gamma(\frac{1}{2} + \frac{\Delta}{2})} \right\}^{\frac{1}{\delta}} \left\{ \frac{\Gamma(\frac{1}{2} - \frac{\Delta}{2})}{\Gamma(\frac{\Delta}{2})} \right\}^{\frac{1}{\epsilon} - \frac{\delta}{\delta}} \left\{ \frac{\Gamma(1 - \delta)}{\Gamma(\delta)} \right\}^{\frac{1}{\epsilon}}$$

Then the functional equation can be expressed as

$$\zeta(\delta, \chi) = f(\delta, \chi) \zeta(1-\delta, \overline{\lambda}) \tag{11}$$

With the aids of (10) and (11), we get

$$\zeta(-\delta+it,\chi) \ll c(\sigma_1,\sigma_2) N m^{\frac{1}{2}+\delta} |t|^{(\frac{1}{2}+\delta)} n \left\{1+O(\frac{1}{|t|})\right\}$$
 (12)

for $o_1 \le o \le o_2$, $|t| \ge 1$, since

Hence, from Theorem 5, we have

$$5(6, \chi) \ll Nm^{\frac{1}{2}(1-\sigma)} (|t|+2)^{\frac{m}{2}(1-\sigma)} l_{tg} Nm(|t|+2)$$

for $0 \le \sigma \le 1$, provided $E(\mathcal{X})=0$. In applying the theorem we use (9) and (10), (12), putting

$$S = \frac{1}{\log Nm(it|+2)}.$$

More precisely we shall get the following result.

Theorem 6. In case $E(\chi)=0$, we have

In case $\mathrm{E}(\mathcal{X})$ =1, we can also obtain similar results by using

$$\frac{\delta(1-\delta)}{(\delta+\delta_0)(1-\delta+\delta_0)} \zeta_{k}(\delta)$$

in place of $\zeta_{\bullet}(s)$, ς_{\bullet} being determined satisfying

In particular, we have

References

- [1] E.Fogel: On the zeros of Hecke's L-function I, Acta Arith., vol. 7(1961) 87-106.
- [2] P.X.Gallagher: A large sieve density estimate near $\sigma = 1$, Inventiones math. 11(1970) 329-339.
- [3] R.R.Goldberg: Fourier transforms, Cambridge (1961).
- [4] H. Hasse: Vorlesungen uber Klassenkörpertheorie, Physica-Verlag, Wurzburg, (1967).
- [5] K. Prachar: Primzahlverteilung, Springer(1957).
- [6] C.L. Siegel: Über die Klassenzahl quadratischer Zahlkörper Acta Arithmetica, 1(1935).
- [7] T. Tatuzawa: On the Hecke-Landau L-series, Nagoya Math. Journ. vol.16(1960).

Institute of Mathematics, College of General Education University of Tokyo