Homomorphisms of differentiable dynamical systems By Toshio Niwa

1) In this note we consider the following problems.

Let (M, \mathcal{G}_{t}) and (N, \mathcal{V}_{t}) be differentiable dynamical systems (D.D.S.). Assume that there exists a homomorphism, i.e. differentiable mapping $\pi: M \to N$ such that $\pi \cdot \mathcal{G}_{t} = \mathcal{V}_{t} \cdot \pi$ for all $t \in \mathbb{R}$. Under these assumptions, what relations can exist between the structures of (M, \mathcal{G}_{t}) and (N, \mathcal{V}_{t}) ?

Then we obtain the following results. For the proofs, see [1].

2) Theorem 1. Let (M, \mathcal{L}) and (N, \mathcal{L}) be D.D.S.'s and \mathcal{T} be a homomorphism of (M, \mathcal{L}) to (N, \mathcal{L}) .

If M is compact and the system (N, \mathcal{H}_{1}) is minimal, then \mathcal{T} is a surjective mapping of maximal rank, and as a consequent of it, M is the total space of a locally trivial fibre space over N, the system (\mathcal{H}_{1}) preserves the fibres, and the naturally induced system on the base space is isomorphic to (N, \mathcal{H}_{1}) .

Theorem 2. Let $\pi: T^{m} \to N$ be a homomorphism of a quasi-periodic motion (T^{m}, \mathcal{T}_{t}) to D.D.S. (N, \mathcal{T}_{t}) , and $r = \operatorname{rank}$ of π .

Then $\pi(T^{m})$, image of π is an r-dimensional invariant submanifold of N, which is homeomorphic to an r-dimensional torus T^{r} , and the restricted system of (N, \mathcal{T}_{t}) to $\pi(T^{m}) \subset N$, $(\pi(T^{m}), \mathcal{T}_{t})$ is C° -isomorphic to some quasi-periodic motion (T^{r}, \mathcal{T}_{t}) , i.e. there exists a homeomorphism h of T^{r} to $\pi(T^{m})$ such that

 $h \cdot T_t = \frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} h$ for all t.

Here (T^{n}, T_{t}) is called a quasi-periodic motion, when $T^{n} = \{ (x^{i}, x^{2}, \dots, x^{n}) : x^{i} \in \mathbb{R} \pmod{1}, i=1,2,\dots, n \}$, and $T_{t} : (x^{i}, \dots, x^{n}) \longmapsto (x^{i} + W^{i}t, \dots, x^{n} + W^{n}t), \mod 1$, where W^{i}, \dots, W^{n} are rationally independent.

References

- 1 . T. Niwa: Homomorphisms of differentiable dynamical systems, to appear.
- 2 . T. Niwa: Classical flows with discrete spectra, J. Math. Kyoto Univ. 9-1 (1969) p.p. 55-68.
- 3 . V.I. Arnold- A.Avez : Problemes ergodiques de la mecanique classique, Gauthier-Villars, Paris (1966).
- 4 . S. Smale: Differentiable Dynamical Sydtems, Bull. A. M. S. 73 (1967) p.p. 747-817.