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The motion of a particle in a central field.

Izumi KUBO
(Nagoya University)

§1. Introduction

Let us consider a 2-dimensional rectangle box, in which there exist
several fixed particles with non overlapped potentiéls of central force
(see Fig, 1). Such field will be called a compound, central field.
OBserve the motion of another free particle in the compound central
field. ' The purpose of this report is to announce that the motion is
ergodic if the central potentials ave "bell-shaped"” and the energy level
of the moving particle is low. In this report, we say that a central
potential U is bell-shaped if
| (1) U(s) is continuous for s > 0, and U(s) =0 s > R,
(2) U(s) belongs to C(S)—class for 0 <s <R and there

exist left derivatives U'(R-0), U"(R-0), U"'(R-0),

(3) -sU'(s) is monotone decreasing and U'(R-0) < 0.

a.—lg 32, e a_.I are centers

of particles.

Ul(lat1)—q]) is the central

potential corresponding to a;.




101

a figure of '"bell-shaped"

potential .

/

-R 0 R

Fig. 2
The method of my proof is based on the fact»that our system is

a perturbation of a Sinai's billiard system. Let T be the basic
automorphism of the natural Kakutani-Ambrose representation of our
dynamical system, whose basic space is the set of all incident
vectors at the boundaries of the potentials. You can imag%‘of this
representation by Fig. 3. The automorphism ,T can be resolved inté
two automorphisms T' and T", such as

T =TT,
where T" is an automorphism found in Sinai's billiard system and

T' 1is Anzai's automorphism, as you can see it.

Fig. 3



§2, Perturbed billiard system
. . 1) =~ .
Let L be a 2-dimensional torus ~ and let Q be.a strictly
. ’ 1

convex open domain in L with boundary aQi of Cs-class,'1 =1, 2,

«ee I, Put Q=1L - uQ . The motion of a particle in the domain Q
1 - : - -

1=l I

with éllastic collision at the boundary 3Q = u 3Q is called Sinai’s
1
1=1

biZZiard‘system.~ Then, the energy surface M is the product of Q and

a one dimensional sphere s e denote by ‘{Sg} the dynamical
system on. M, Let g be the natural projection of M onto Q.

Let X be the set of all incident vectors, that is,

X =[x = (,p) 3 x € 7 (3Q), (pn(a)) = 03,

where n(q) is the inward normal atk gq. Since an has a natural
arclength coordinate r, we can introduce a natural coordiﬁates
(1,r,9) for the space X, where r 1is the arclength coordinate

of 7(x) € aQ1 and ¢ 1is the angle of incidence., An automorphism

T" of X is defined by

™ ‘= 1
() T =S g%

where o(x) = inf{t > 0, S x € XJ, that is, o(x) is the next
incident time. Then {S;} is the Kakutani-Ambrose flow with basic

~automorphism T" ‘and ceiling function o(x).

1) For the case of rectangle box, we can reduce it to the case of

torus.



Fig. 4

~ We now introduce Anzai's transformation of X by

(5)

with functions H (¢¥), 1 <
1

T' @

¢ ,r,‘f) > (1 ,r+H'L (‘-‘?) ,‘Z?)

I, of Cz—class.

Definition : We say that the Kakutani-Ambrose flow LSt} with
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the basic automorphism T = T"T' and the ceiling function o(x) is a

perturbed billiard system.

Lemma 1. Let us suppose that (i,r',49) = T'(1,r,9) and

(11,r1,91) = T"(1,r',9). Then the Jacobian matrix of T 1is given

by
féfl-arl’ ( cosg+k 't 7 + (cosg+i' Jh )
ar 3¢ coszf1 s coscy1
(6)
klk t ]
Efl.aql klcosq+kcos¢1+ 171 ) klrl+(klcosq+k cosfl+k lel)h
3T 3¢ cosg& s coscy1 J
where k' = k(1,r') and k_ = k(1 , r,) are curvature of 3Q at
1 17 71 daH
(1,r') and (11,r1), respectively, and where h = ag}- and T

= -o(1,r' ).
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We introduce some constants :

. -1 -1
g .. (1) = ((min|cC,r,9)]) ~ + max k(1,1)) ~ ,
min
(r,g’) r
kmin = min k(1,1’) ) l‘l.'lmin = minl‘f(l,r,?)‘ s
1,T (I’r,.‘f)
kmaic = max k(1,r) and n = kmin“‘min'

15T

Now we assume the following assumption (H) ;

(H) minh (9) + =K>0,
1,9 ! k =+

where h (4 = dH (9)/49.

Under the assumption, we have inequalities

(7) 7y + (cos ¢+ k't )h < -Kn
and

(8); cosyY + k'Tl + (klcosy’+ k'cos?l + k'kl-cl)h < -Knkmin.
These inequalities and Lemma 1 garantee the following proﬁerties.

‘ -1
Lemma 2, Let y be a smooth curve in M = ¢ “(5Q ), which
1 1 .

is defined by an equation r = r(¥).

. dr
1) 1£ 37 > gmin(t) , then
dr
(1) € —=< = and
Enin''1’ = a¢. T k., :
1 min
¢ . ] '
"_-l__l... (1+.k111 ) ; k cosg’l-l-klcosshk lel (_d_x; s 1
de¢ cos ('Pl COSS’I dy =T
‘ dr1 ‘
(ii) If - -—— 2 0, then
d¢
1 dr 1 :
k_—-d?_k + max h (¢') and
min (1,9
1 1] 1 .
a9 - k Tl - k cosg’1+k1cos$i’+k lel dr .
dy. cos ¥ cos ¢ ag_ =

1 1
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Using these properties, we can prove the following theorem by
the similar proof of fhe ergodicity of Sinai's billiard system.
Theorem 1. Under the assumption (B), T ig a K-system, and

the perturbed billiard system is ergodic.

§3. The motion of a particle in a compound central field.

: . o, _
Let L :be a two dimensional torus.) We suppose that Apseces

qI are centers of bell-shaped central potentials Ul,---, UI’

respectively. Let us observe the motion of a particle with energy

E. The motion is described by the cannonical equations

da, dp, 5
®) = E H(a,p), g = - a‘i—ﬂ(q,p)
with Hamiltonian : -
I
1 2 2 -
(9) H(gq,p) = E;-(pl + P, ) + 21U1(|q - q1|).
1:

Our purpose of this section is to show the following theorem.

Let a_ be the range of the potential U1’ R1 be the radius of
1

a. and L, be the distance between the ranges Q and Q ,+ Put
1 1,1 1 1 v
R. =minR and L, =min L .
min 1 min . st
1 1,1

Theorem 2. If energy E satisfies the inequality

Lo
(10) E < 4m(Rm1"+21” 5 min (-U'(R -0))
i min - min 1 vt

Then the motion bf the particle in the compound central field is ergodic.

We shall reduce our problem to the case of §2. The energy

2) The case of rectangle box can be reduced to that of torus.
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surface ME = {(q,p) ; H(g,p) = E} is a fibre bundle. Let m be

the natural projection of M_ to QE ={q; U (|a-— q|) < E,
1

E
1 =1, 2,..s, I}. Let 3Q be the boundary of the potential range
6. and let Q=1L - Ua. (= n QE). Then the induced flow onto
1 1 ; .
E>0
MO = n—l(Q) (in the sense of Kakutani) of our system is obviously iR

a perturbed billiard system. Hence, in order to prove‘Theorem 1,

.it is sufficient to show that H (¢) satisfies the assumptioﬁ (H) .
1

Fig. 5

Let us return back to a bell-shaped potential U. We introduce
the polar coordinates (S,B). Then Hamitonian is given by
(1) H(s,8) = 2w + s26%) v u(s).
It is well known that the angular momentum of the particle,
2

(12) A =ms 8.

is a first integral. Moreover, the equation of the motion is
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given by
. 2 d

13 - = - — U .

(13) ms s§ s (s)
Hence the equation of a path is written in the formula

: -2
A
(14) g = S B8 Lo 5= ds + const.
/ém(E—U(s))-A s

Especially, we shall observe a path which attains to the minimum value
u of s-coordinate (see Fig; 7). Its angular momentum’ A is equal

to /Zm(E-U(u)) -u, by (115 and (12). We suppose that the path

passes (u,0). Let (R,a(u)) be the point, at which the path

goes out from the potential range. By (14), o(u) is given by
2
R deuw) as
/2 -2 s
u/ s (E-U(s))-u (E-U(u))

(15) ; d(u) = nxg

On the other hand, the angle y(u) between the velocity and the
radius vector at (Rya(u)) 1is given by

2E-u2(E-U(u))

2
R E

(16)  y(u) = cos

A proof of the equality (16) is given in the following. The
velocity of the path at (s,B) 1is given by (§ cosB-és sinB,

s sin3+és sing). Hence

) S

s=R

On the other hand, by (11) and (12), we have that

2 2.2 2 2E

s+ s’ "=;(E-U(5))| ==

s=R s=R
and
A= mszél
Is=R
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Hence we have (16) from the above formulae.

Fig. 7

Lemma 3. Let us consider a path passing into the range of the
potential with an incident angle ¢. Then the arclength distance
‘between the position of going out from the range and the poéition
of passing into the range, is giveh by

an HE) = e (- 9D sigm(@ - .

Moreover, for u = w_1(|ﬁ - ¢,

(18) dH(®) _ -4mR(E—U(u))+2mR¢£2E-u2(E-U(u))'g(u)
dg - 2(E-V(u))-ul' (u)

holds with

1ogR/u 2s S 3s : s
g(u) =S [-e " (E-U(e u))U'(uw)+e " (E-U(u))U'(e u)]
1 2s s 3/2
2V/E-U(u) [e”~ (E-U(e u))-E+U(u)]

This Lemma is an immediate consequence of (15) and (16).

ds

Proof of Theorem 2. From the property (3), of a bell-shaped
potential, we can easily see that g(u) is non negative. . Hence

we have inequalities
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dH(g) | _ -4mR(E-U(u))
dg  2(E-U(u))-uU'(u)

h(g) =

- 4mE
T U (R+0)

In our system, k(1,r) 1is equal to 1/R1' ‘Hence if the inequality

ax 4mE . 1
X g7 (R+0) 1 1
1 —_— 4
R ., L .
min min
holds, then assumption (H) is fulfilled. Q;E.D.

Examples of Bell-shaped Potentials :

,

LI 0 <s < R o >0,
@ v = |5 R
0 R <s
0 c log — 0 <s <R
® U (s) =
LO R S S -
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