THE TENSOR PRODUCT OF WEIGHTS

By

YOSHIKAZU KATAYAMA

Osaka University

1. Introduction

Let φ (resp. ψ) be a normal semi-finite weight on a von Neumann algebra M (resp. N). There exists the maximal weight $\varphi \otimes \psi$ on M \otimes N such that $\varphi \otimes \psi$ (x \otimes y) = φ (x) ψ (y) for each x in (m $_{\varphi}$) $_{+}$ and y in (m $_{\psi}$) $_{+}$. Furthermore if φ and ψ are faithful in addition, $\varphi \otimes \psi$ is a faithful semi-finite weight on M \otimes N and its one-parameter modular automorphism group is the tensor product of one-parameter modular automorphism groups Σ and Σ^{ψ} . Let φ_1 (resp. ψ_1) be a normal semi-finite, Σ - invariant weight on M (resp. Σ^{ψ} , N). By [5] Theorem 5.12 there is a unique positive self-adjoint operator h affiliated with the sub-algebra of fix-points for Σ (resp. k, Σ^{ψ}) such that $\varphi_1 = \varphi$ (h.) (resp. $\psi_1 = \psi$ (k.)) We get $\varphi_1 \otimes \psi_1 = \varphi \otimes \psi$ (h \otimes k.).

2. The Tensor Product of Unbounded Self-Adjoint Operators

Theorem 2.1. Let H_1 and H_2 be Hilbert spaces, K_1 and K_2 self-adjoint operators on H_1 and H_2 respectively. Then there exists a unique self-adjoint operator $K_1 \otimes K_2$ on the Hilbert space $H_1 \otimes H_2$ such that $D(K_1 \otimes K_2) > D(K_1) \otimes_a D(K_2)$ and $K_1 \otimes K_2(\xi_1 \otimes \xi_2) = K_1\xi_1 \otimes K_2\xi_2$ for all $\xi_1 \in D(K_1)$ and $\xi_2 \in D(K_2)$, where $D(K_1) \otimes_a D(K_2) = \{ \sum_{k=1}^n \xi_k^1 \otimes \xi_k^2 \in H_1 \otimes H_2 : \xi_k^1 \in D(K_1), \xi_k^2 \in D(K_2) \text{ for } k = 1, \ldots, n \}$. Moreover if K_1 and K_2 are positive, $K_1 \otimes K_2$ is positive.

Proof. Let $K_1 = \int_{-\infty}^{\infty} \lambda de(\lambda)$ and $K_2 = \int_{-\infty}^{\infty} \nu dE(\nu)$ be the spectral decompositions of K_1 and K_2 respectively.

Put $D = \bigcup_{n,m=1}^{\infty} R(e_n \otimes E_m)$ where $e_n = e(n) - e(-n)$ and $E_m = E(m) - E(-m)$.

Define an operator $K_1 \otimes K_2$ on D by;

$$(K_1 \otimes K_2)_{\xi} = (K_1 e_n \otimes K_2 E_m)_{\xi}$$
, where ξ in $R(e_n \otimes E_m)$.

Then $K_1 \otimes K_2$ is a well-defined and densely defined symmetric operator. Furthermore, it is essentially self-adjoint.

[i] $K_1 \otimes K_2$ is well defined. Suppose that ξ in $R(e_n \otimes E_m)$ and ξ in $R(e_n \otimes E_m)$.

We may assume $n \le n_1$ and $m \le m_1$ without the loss of generality. Then we have

$$(K_1 e_{n_1} \otimes K_2 E_{m_2})^{\xi} = (K_1 e_{n_1} \otimes K_2 E_{m_2})^{(e_n \otimes E_m)\xi}$$

$$= (K_1 e_{n_1} e_n \otimes K_2 E_{m_2} E_m)^{\xi}$$

$$= (K_1 e_{n_1} e_n \otimes K_2 E_m)^{\xi}.$$

[ii] $K_1 \otimes K_2$ is densely defined and symmetric $D = U R(e_n \otimes E_m) \text{ is dense in } H_1 \otimes H_2 \text{ since } s - \lim e_n = 1 \text{ and } s - \lim E_m = 1.$

For all ξ in D and η in D we have

 $((K_1 \otimes K_2)\xi \mid \eta) = ((K_1 e_n \otimes K_2 E_m)\xi \mid \eta)$ for sufficient large n, m.

Since $\text{Ke}_n \otimes \text{K}_2\text{E}_m$ is bounded and self-adjoint, we have

$$((K_1 \otimes K_2)\xi \mid \eta) = (\xi \mid (K_1 e_n \otimes K_2 E_m)\eta)$$
$$= (\xi \mid (K_1 \otimes K_2)\eta).$$

 $\mathbf{K_1} \otimes \mathbf{K_2}$ is densely defined and symmetric

[iii] $K_1 \otimes K_2$ is essentilly self-adjoint. Suppose that there exists a constant C such that $|((K_1 \otimes K_2)\xi \mid \eta)| \leq C \|\xi\|$, for all ξ in D Take $\xi = (K_1 e_n \otimes K_2 E_m)_{\eta} = (e_n \otimes E_m)(K_1 e_n \otimes K_2 E_m)_{\eta}$ in D then we have

$$\| (K_1 e_n \otimes K_2 E_m)_n \| \leq C \qquad \text{for all } n, m.$$

Since $\|(K_1e_n \otimes K_2E_m)_n\|^2 = ((K_1^2e_n \otimes K_2^2E_m)_n \mid n)$ is monotone increasing with respect to (n, m), there exists $\lim_{(n,m)} \|(K_1e_n \otimes K_2E_m)_n\|^2$.

We have, for $n \leq n_1$, $m \leq m_1$,

 $\leq \epsilon$ for sufficient large $(n_1, m_1) \geq (n, m)$.

Since s- $\lim_{n\to\infty} (e_n \otimes E_m)_n = n$, and s- $\lim_{n\to\infty} (K_1 \otimes K_2)(e_n \otimes E_m)_n$ exists, we get n in $D((K_1 \otimes K_2)^{**})$, therefore $(K_1 \otimes K_2)^{**}$ is equal to $(K_1 \otimes K_2)^{*}$. We denote the closed extension of $K_1 \otimes K_2$ defined above again by $K_1 \otimes K_2$. It is noticed that $(K_1 \otimes K_2)e_n \otimes E_m = K_1e_n \otimes K_2E_m$ for all n, m in N.

For each ξ_1 in $D(K_1)$ and ξ_2 in $D(K_2)$,

$$\| (K_1 \otimes K_2) (e_{n_1} \otimes E_{m_1} - e_n \otimes E_m) (\xi_1 \otimes \xi_2) \|^2$$

$$= \| K_1 e_{n_1} \xi_1 \otimes K_2 E_{m_1} \xi_2 - K_1 e_{n_1} \xi_1 \otimes K_2 E_{m_1} \xi_2 \|^2$$

$$\underline{ 4} \quad 2 \{ \| (K_1 e_{n_1} - K_1 e_n) \xi_1 \|^2 \cdot \| K_2 \xi_2 \|^2 + \| K_1 \xi_1 \|^2 \cdot \| (K_2 E_{m_1} - K_2 E_m) \xi_2 \|^2 \}.$$

We get $\xi_1 \otimes \xi_2$ in $D(K_1 \otimes K_2)$ by the closedness of $K_1 \otimes K_2$, which means that $D(K_1 \otimes K_2) \supset D(K_1) \otimes_{\mathbf{a}} D(K_2)$ and $K_1 \otimes K_2(\xi_1 \otimes \xi_2)$ = $K_1 \xi_1 \otimes K_2 \xi_2$ for all $\xi_1 \text{ in } D(K_1)$ and $\xi_2 \text{ in } D(K_2)$.

Let T be an another self-adjoint operator on $H_1 \otimes H_2$ with the above properties. By $T(e_n \otimes E_m)(\xi_1 \otimes \xi_2) = K_1 e_n \xi_1 \otimes K_2 E_m \xi_2 = (K_1 \otimes K_2)(e_n \otimes E_m)(\xi_1 \otimes \xi_2)$ for all ξ_1 in $D(K_1)$ and ξ_2 in $D(K_2)$, and the closedness of T, we get $T(e_n \otimes E_m) = (K_1 \otimes K_2)e_n \otimes E_m$. Using the closedness of T again and s-lim $e_n \otimes E_m = 1$, we have $T \supset K$, therefore (n,m) $n \otimes E_m = 1$, we have $T \supset K$, therefore T = K by the self-adjointness of T and K, then $K_1 \otimes K_2$ is determined uniquely. If K_1 and K_2 are positive, $K_1 \otimes K_2$ is positive since $(K_1 \otimes K_2)e_n \otimes E_m = K_1e_n \otimes K_1E_m$ is a positive bounded operator.

Notice 2.2. Let $\mathrm{K_1}$ and $\mathrm{K_2}$ be bounded positive operators on $\mathrm{H_1}$ and $\mathrm{H_2}$ respectively, $\mathrm{K_1} \otimes \mathrm{K_2}$ is a positive (bounded) operator on $\mathrm{H_1} \otimes \mathrm{H_2}$.

Remark 2.3. In the Theorem 2.1 if K_1 and K_2 are affiliated with von Neumann algebras M and N respectively, then $K_1 \otimes K_2$ is affiliated with the von Neumann algebra $M \otimes N$.

Definition 2.4. If h and k are positive self-akjoint operators on Hilbert space H and $\varepsilon > 0$ we put $h_{\varepsilon} = h(1+\varepsilon h)^{-1}$. We write $h \le k$ if $h_{\varepsilon} \le k_{\varepsilon}$ for some (and hence any) $\varepsilon > 0$. This is equivalent to the two conditions

$$D(h^{\frac{1}{2}}) \supset D(k^{\frac{1}{2}})$$
 and $\|h^{\frac{1}{2}}\xi\|^2 \le \|k^{\frac{1}{2}}\xi\|^2$

for each ξ in $D(k^2)$. We say that a net $\{h_i\}$ of positive self-adjoint operators increases to the self-adjoint operator h, and write $h_i \nearrow h$ if $h_i \nearrow h$. Thus $h_i \nearrow h$ when $\epsilon \searrow 0$.

Lemma 2.5. $K_{1_{\delta}} \otimes K_{2_{\epsilon}} \nearrow K_{1} \otimes K_{2}$ when K_{1} and K_{2} are positive self-adjoint operators on H_{1} and H_{2} respectively, $\delta \searrow 0$, $\epsilon \searrow 0$.

Proof,

$$\begin{split} &(K_{1_{\delta}} \otimes K_{2_{\epsilon}})(e_{n} \otimes E_{m}) = K_{1_{\delta}}e_{n} \otimes K_{2_{\epsilon}}E_{m} \text{, for each n, m in } \mathbb{N} \\ &K_{1_{\delta}}e_{n} \leq K_{1_{\delta'}}e_{n} \leq K_{1}e_{n}, \quad K_{2_{\epsilon}}E_{m} \leq K_{2_{\epsilon}}E_{m} \leq K_{2}E_{m} \\ &\text{where } \delta \geq \delta' \text{ and } \epsilon \geq \epsilon'. \end{split}$$

By Notice 2.2, we get

 $(K_{1_{\delta}} \otimes K_{2_{\epsilon}})(e_{n} \otimes E_{m}) \leq (K_{1_{\delta}}, \otimes K_{2_{\epsilon}})(e_{n} \otimes E_{m}) \leq (K_{1} \otimes K_{2})(e_{n} \otimes E_{m})$ moreover

$${^{K}\!1}_{\!\delta}{^{e}}_{n} \otimes {^{K}\!2}_{\!\varepsilon}{^{E}_{m}} \nearrow ({^{K}\!1} \otimes {^{K}\!2}){^{e}}_{n} \otimes {^{E}\!m} \;.$$

Then

$$(1 + (K_{1,\delta} \otimes K_{2,\epsilon})^{-1} e_{n} \otimes E_{m}) (1 + (K_{1} \otimes K_{2})^{-1} e_{n} \otimes E_{m}.$$
 Since the operator norms of $(1 + K_{1,\delta} \otimes K_{2,\epsilon})^{-1}$ and $(1 + K_{1,\delta} \otimes K_{2})^{-1}$ are smaller than 1, s - lim $e_{n} \otimes E_{m} = 1$, we get

$$(1 + K_{1_{\delta}} \otimes K_{2_{\delta}})^{-1}$$
 $(1 + K_{1} \otimes K_{2})^{-1}$

Then we get

 $(K_{1_{\delta}} \otimes K_{2_{\epsilon}})_{1} = 1 - (1 + K_{1_{\delta}} \otimes K_{2_{\epsilon}})^{-1} / 1 - (1 + K_{1} \otimes K_{2})^{-1} = (K_{1} \otimes K_{2})_{1}.$ Hence

3. The Tensor Product of Normal Semi-Finite Weights.

In this chapter, we often refer to [5] The Radon-Nikodym theorem for von Neumann algebra, and let φ be a faithful normal semi-finite weight on von Neumann algebra M, which gives rise to a one-parameter group Σ of automorphisms of M. The proof of Lemma 3.1 is almost similar to [5] Lemma 5.2.

Lemma 3.1. Let ψ be a normal semi-finite weight on M, if there exists a φ -weakly dense *-subalgebra B in m_{φ} , invariant under Σ such that $\varphi = \psi$ on B, then we have $\psi \leq \varphi$, $\psi \mid m_{\varphi} = \varphi$, and ψ is faithful.

Proof. If x and y are in B, then $\phi(x \cdot y)$ and $\psi(x \cdot y)$ are normal functionals on M which agree on B, since B is an algebra. Therefore $\phi(x \cdot y) = \psi(x \cdot y)$. Since B is a dense *-algebra there is a net { u_{λ} } in B, such that u_{λ} converges $\sigma *$ -strongly to 1 and $||u_{\lambda}|| \le 1$. Put $u_{\lambda} = \frac{1}{\pi 2} \int_{0}^{\infty} \exp(-t^2 \sigma_t(u_{\lambda})) dt$

Since B is invariant under Σ we have

$$\label{eq:phi_to_t} \P\left(\sigma_{\mathsf{t}}(\mathsf{u}_{\lambda}) \ \mathsf{x}\sigma_{\mathsf{s}}(\mathsf{u}_{\lambda})\right) = \psi(\sigma_{\mathsf{t}}(\mathsf{u}_{\lambda}) \ \mathsf{x}\sigma_{\mathsf{s}}(\mathsf{u}_{\lambda}))$$

for all s and t and each x in M. It follows from [5] Lemma 3.1, by the polarization identity, that $\phi(h_{\lambda}x h_{\lambda}) = \psi(h_{\lambda}x h_{\lambda})$.

Each h_{λ} is an analytic element with

$$\begin{split} \sigma(h_{\lambda}) &= \frac{1}{\pi^{\frac{1}{2}}} \int \exp(-(t-\alpha)^{2}) \sigma_{t}(u_{\lambda}) dt \\ \parallel (1-\sigma_{\alpha}(h_{\lambda})) \xi \parallel &= \parallel (1-\pi^{\frac{1}{2}}) \int \exp(-(t-\alpha)^{2}) \sigma_{t}(u_{\lambda}) dt) \xi \parallel \\ &= \parallel \frac{1}{\pi^{\frac{1}{2}}} \int \exp(-(t-\alpha)^{2} \sigma_{t}(1-u_{\lambda}) \xi dt) \parallel \\ &\leq \frac{1}{\pi^{\frac{1}{2}}} \int \left| \exp(-(t-\alpha)^{2}) \right| \parallel \sigma_{t}(1-u_{\lambda}) \xi dt \\ &= \frac{1}{\pi^{\frac{1}{2}}} \exp(\operatorname{Im}\alpha)^{2} \int \exp(-(t-\operatorname{Re}\alpha)^{2}) \parallel \sigma_{t}(1-u_{\lambda}) \xi dt \end{split}$$

 $\lim_{\lambda} \|\sigma_t(1-u_{\lambda})\xi\| = 0 \quad \text{and} \quad \|\sigma_t(1-u_{\lambda})\xi\| \leq 2\|\xi\|, \quad \text{for all λ in \mathbb{C},}$ and so by Lebesgue dominated convergence theorem we have

$$\lim_{\lambda} \| (1-\sigma_{\alpha}(h_{\lambda}))\xi \| = 0 \text{ ie s-} \lim \sigma_{\alpha}(h_{\lambda}) = 1 \text{ for all } \alpha \text{ in } C.$$

Take now x in m₊. Using the σ -weakly lower semi-continuity of ψ and $\frac{1}{\Delta^2} h_{\lambda} \Delta^{-\frac{1}{2}} = \sigma_{-1/2}(h_{\lambda}) \quad \text{on} \quad D(\Delta^{-\frac{1}{2}}) \quad \text{by [5] Lemma 3.5} \quad \text{we get}$

$$\begin{split} \psi(\mathbf{x}) & \leq \lim_{\mu \to 0} \psi(\mathbf{h}_{\lambda} \mathbf{x} \ \mathbf{h}_{\lambda}) = \lim_{\mu \to 0} \varphi(\mathbf{h}_{\lambda} \mathbf{x} \ \mathbf{h}_{\lambda}) = \lim_{\mu \to 0} \|\mathbf{h}_{\mu}(\mathbf{x} \mathbf{2} \ \mathbf{h}_{\lambda})\|^{2} \\ & = \lim_{\mu \to 0} \|\mathbf{s}_{h} \mathbf{s}_{h}(\mathbf{x} \mathbf{2})\|^{2} = \lim_{\mu \to 0} \|\mathbf{J}_{\Delta} \mathbf{2} \ \mathbf{h}_{\lambda} \mathbf{h}_{\Delta} \mathbf{2} \ \mathbf{J}_{\mu}(\mathbf{x} \mathbf{2})\|^{2} \\ & = \lim_{\mu \to 0} \|\mathbf{s}_{-1/2}(\mathbf{h}_{\lambda})\mathbf{J}_{\mu}(\mathbf{x} \mathbf{2})\|^{2} = \lim_{\mu \to 0} \|\mathbf{s}_{-1/2}(\mathbf{h}_{\lambda})\mathbf{J}_{\mu}(\mathbf{x} \mathbf{2})\|^{2} \\ & = \|\mathbf{J}_{\mu}(\mathbf{x} \mathbf{2})\|^{2} = \|\mathbf{h}_{\mu}(\mathbf{x} \mathbf{2})\|^{2} = \varphi(\mathbf{x}). \end{split}$$

Thus $\psi \leq \varphi$.

By [1] Lemma 2.3, there exists T in $\pi_{p}(M)$ ' such that

$$0 \le T \le 1$$
 , $\psi(y^*x) = (\eta(x) \mid T \eta(y))$

for x, y in n_{ϕ} . Then we have

$$\psi(h_{\lambda}x h_{\lambda}) = (\eta(x^{\frac{1}{2}}h_{\lambda}) | T \eta(x^{\frac{1}{2}}h_{\lambda}))$$

$$= \|T^{\frac{1}{2}} \eta(x^{\frac{1}{2}}h_{\lambda})\|^{2}.$$

By the same arguement above

$$\psi(h_{\lambda}x h_{\lambda}) = \|T\overline{2} J\sigma_{-\mathbf{i}/2}(h) J\eta(x\overline{2})\|^{2}.$$

Then we have
$$\frac{\lim_{h \to \infty} \psi(h_{\lambda} x h_{\lambda}) = \lim_{h \to \infty} \|\frac{1}{T^{2}} J_{\sigma_{-1/2}}(h_{\lambda}) J_{\eta}(x^{\frac{1}{2}})\|^{2}$$
$$= \|T^{\frac{1}{2}} J_{\eta}(x^{\frac{1}{2}})\|^{2} = \psi(x).$$

Therefore $\psi(x) = \Psi(x)$ for all x in $(m_{\psi})_{+}$.

We refer to [5] Lemma 3.1 with respect to the faithfulness of ψ .

Proposition 3.2.([5] proposition 5.9) If ψ is Σ -invariant normal semi-finite weight on M which is equal to φ on a σ -weakly dense Σ -invariant *-subalgebra of m, then $\varphi = \psi$.

Proposition 3.3. Let φ and ψ be faithful normal semi-finite weights on von Neumann algebras M, N, $\sigma_{\mathbf{t}}$ and $\rho_{\mathbf{t}}$ one-parameter groups of automorphisms of φ and ψ , which are denoted by Σ and Σ^{ψ} respectively. There exists a unique $\Sigma \otimes \Sigma^{\psi}$ -invariant normal semi-finite weight θ on M \otimes N such that

$$m_{\theta} \supset m_{\psi} \otimes_{a} m_{\psi}, \quad \theta(x \otimes y) = \phi(x) \cdot \psi(y)$$

for all x in $(m_{\psi})_+$, y in $(m_{\psi})_+$. Moreover let g be a normal semi-finite weight on M \otimes N such that $m_g \supset m_{\psi} \otimes_a m_{\psi}$, $g(x \otimes y) = \phi(x)\psi(y)$ for x in $(m_{\psi})_+$, y in $(m_{\psi})_+$. Then we have $g \leq \theta$, $g|_{m_{\theta}} = \dot{\theta}$ and g is faithful.

Proof. We may assume that $M = \mathcal{L}(\mathcal{V}_{\phi_0})$, $N = \mathcal{L}(\mathcal{V}_{\psi_0})$ where \mathcal{V}_{ϕ_0} and \mathcal{V}_{ψ_0} are the maximal modular algebras associated with \mathcal{V}_{ψ_0} and \mathcal{V}_{ψ_0} in [2] Theorem 2.13 respectively. By [4] Theorem 11.1 $\mathcal{V}_{\phi_0} \otimes_a \mathcal{V}_{\psi_0}$; $\Delta_1(\alpha) \otimes_a \Delta_2(\alpha)$, α in \mathcal{L} is also a modular algebra, moreover we get

$$\mathcal{L}\left(\mathcal{Y}_{\varphi_{o}}\otimes_{a}\mathcal{Y}_{\psi_{o}}\right)=\mathcal{L}\left(\mathcal{Y}_{\varphi_{o}}\right)\otimes\mathcal{L}\left(\mathcal{Y}_{\psi_{o}}\right).$$

By [4] Lemma 2.1 there exists a unique positive self-adjoint non-singular operator Δ on $H_{\psi} \otimes H_{\psi}$ such that Δ^{α} is the closure of $\Delta_{1}(\alpha) \otimes_{a} \Delta_{2}(\alpha)$ for all α in ℓ , therefore $\Delta^{it} = \Delta_{1}^{it} \otimes \Delta_{2}^{it}$ for all t in R.

For each η , in \mathcal{Y}_{ψ_0} and η_2 in \mathcal{Y}_{ψ_0} we get

$$\begin{split} \sigma_{\mathbf{t}} \otimes \rho_{\mathbf{t}}(\pi(\eta_1) \otimes \pi(\eta_2)) &= \sigma_{\mathbf{t}}(\pi(\eta_1)) \otimes \rho_{\mathbf{t}}(\pi(\eta_2)) \\ &= (\Delta_1^{\mathbf{i}t} \pi(\eta_1) \Delta_1^{-\mathbf{i}t}) \otimes (\Delta_2^{\mathbf{i}t} \pi(\eta_2) \Delta_2^{-\mathbf{i}t}) \\ &= (\Delta_1^{\mathbf{i}t} \otimes \Delta_2^{\mathbf{i}t}) (\pi(\eta_1) \otimes \pi(\eta_2)) (\Delta_1^{-\mathbf{i}t} \otimes \Delta_2^{-\mathbf{i}t}) \\ &= \Delta^{\mathbf{i}t} \pi(\eta_1 \otimes \eta_2) \Delta^{-\mathbf{i}t}. \end{split}$$

Then $\sigma_t \otimes \rho_t$ coincides with the modular automorphism group of $\mathcal{U}_{\phi_0} \otimes_a \mathcal{U}_{\psi_0}$ on a σ -weakly dense sub-algebra $\pi(\mathcal{U}_{\phi_0}) \otimes_a \pi(\mathcal{V}_{\psi_0})$. Therefore $\sigma_t \otimes \rho_t$ is equal to it.

Let θ be the canonical weight of $\mathcal{U}_{p_0} \otimes_{a} \mathcal{U}_{\psi_0}$ defined in [2] Theorem 2.11. By [2] Proposition 4.4 θ is a faithful normal semi-finite K.M.S. weight with respect to $\sigma_{\mathbf{t}} \otimes \rho_{\mathbf{t}}$, $\beta = 1$. Since \mathcal{U}_{p_0} (resp. \mathcal{U}_{ψ_0}) is equivalent to \mathcal{U}_{p_0} (resp. \mathcal{U}_{ψ_0}) we have $\xi \otimes \eta$ in $(\mathcal{U}_{p_0} \otimes_{a} \mathcal{U}_{\psi_0})$ " for each ξ in \mathcal{U}_{ψ} and η in \mathcal{U}_{ψ} and $\pi(\xi \otimes \eta) = \pi(\xi) \otimes \pi(\eta)$. We get

$$\begin{split} \theta((\pi(\xi) \otimes \pi(\eta))^*(\pi(\xi) \otimes \pi(\eta))) &= \theta(\pi(\xi \otimes \eta)^*\pi(\xi \otimes \eta)) \\ &= (\xi \otimes \eta \mid \xi \otimes \eta) \\ &= \|\xi\|^2 \|\eta\|^2 \\ &= \psi(\pi(\xi)^*\pi(\xi)) \cdot \psi(\pi(\eta)^*\pi(\eta)). \end{split}$$

By [2] Lemma 2.4 for each x in(m_{ψ})₊ and y in(m_{ψ})₊ there exist ξ in ψ_{ψ} and n in ψ_{ψ} such that $x\overline{2} = \pi(\xi)$, $y\overline{2} = \pi(n)$, then we have $\theta(x \otimes y) = \varphi(x) \cdot \psi(y)$.

Let g be an another $\Sigma \otimes \Sigma^{\underline{\psi}}$ invariant normal semi-finite weight on $M \otimes N$ such that ;

$$\mathbf{m}_{\mathbf{g}} \supset \mathbf{m}_{\mathbf{f}} \otimes_{\mathbf{a}} \mathbf{m}_{\mathbf{\psi}}$$
, $\mathbf{g}(\mathbf{x} \otimes \mathbf{y}) = \mathbf{f}(\mathbf{x}) \cdot \mathbf{\psi}(\mathbf{y})$

for all x $in(m_{\psi})_+$, y $in(m_{\psi})_+$. By Proposition 3.2 we have $\theta = g$. The last part of Proposition 3.3 is clear by Lemma 3.1.

Theorem 3.4. Let φ_1 and ψ_1 be normal semi-finite weights on M and N, p and q the support projections of φ_1 and ψ_1 respectively. There exists a unique normal semi-finite weight θ_1 on M \otimes N such that;

(fi)
$$\theta_1(x \otimes y) = \varphi_1(x) \cdot \psi_1(y)$$

for each x in(m $_{\psi_1}$)₊ and y in(m $_{\psi_i}$)₊, and that θ_1 is Σ^{ψ_i} -invariant on the von Neumann algebra $p \otimes q(M \otimes N)p \otimes q$. Furthermore θ_1 is the maximal normal semi-finite weight with the properties (i), (ii) and its support projection is the tensor product $p \otimes q$.

Proof. It follows from Proposition 3.3.

Definition 3.5. The maximal weight above is called the tensor product of φ_1 and ψ_1 , which is denoted by $\varphi_1 \otimes \psi_1$.

Corollary 3.6.([3] Proposition 6.2) Let M and N be two von Neumann algebras, ν and μ two normal strictly semi-finite weights on M⁺ and N⁺, $(f_i)_{i \in I}$ [resp. $(g_j)_{j \in J}$] a family of positive normal linear functionals such that $\Sigma_{i \in I}$ $f_i = \nu$ on M⁺ and their supports are mutually orthogonal [resp. $\Sigma_{i \in J}$ $g_i = \mu$, N⁺].

(i) $\tau = \Sigma_{i,j}$ $f_i \otimes g_j$ is a strictly semi-finite normal weight on $(M \otimes N)^+$.

This weight does not depend on the choice of $(f_i)_{i \in I}$, $(g_j)_{j \in I}$, and

its support is the tensor product of the supports of ν and μ . The algebra m_{τ} contains $m_{\nu} \otimes_{a} m_{\mu}$ and we have $\tau_{\mid m_{\nu} \otimes_{a} m_{\mu}} = \nu \otimes_{a} \iota$. Let θ be an another normal semi-finite weight on $(M \otimes N)^{+}$ with the above properties. Then we get;

$$m_{\theta} > m_{\tau}$$
 and $\tau = \dot{\theta}|_{m_{\tau}}$

- (ii) We suppose that ν [resp. μ] is K.M.S.with respect to a one-parameter automorphism group $\{\omega_t\}$ [resp. χ_t], β = 1. Then there exists a unique normal weight τ on $(\mathbb{M} \otimes \mathbb{N})^+$ such that $m_{\tau} > m_{\nu} \otimes_a m_{\mu}$, $\dot{\tau}|_{m_{\nu} \otimes_a m_{\mu}} = \dot{\nu} \otimes_a \dot{\mu}$ and τ is K.M.S. with respect to $\{\omega_t \otimes \chi_t\}$ on $\mathbb{M} \otimes \mathbb{N}$, β = 1. This weight is equal to the weight defined above,
- Proof. (i) By the choice of $f_{\bf i}$, $f_{\bf i}(\cdot)$ is equal to $\nu(p_{\bf i}\cdot p_{\bf i})$ where $p_{\bf i}$ is the support projection of $f_{\bf i}$, therefore $f_{\bf i}$ is Γ^{ν} -invariant on pMp where p is the support projection of ν . Similarly $g_{\bf i}$ is Γ^{μ} -invariant on qNq where q is that of μ . Since $\tau = \Gamma_{\bf i,j}$ $f_{\bf i} \otimes g_{\bf i}$ is $\Gamma^{\nu} \otimes \Gamma^{\mu}$ -invariant on p Φ q(M Φ N)p Φ q, Γ is the maximal weight in Theorem 3.4.
- (ii) By the uniqueness of K.M.S. in [2] Proposition 4.8 we have ;

$$p\omega_{t}(\cdot)p = \sigma_{t}^{\nu}$$
 $q\chi_{t}(\cdot)q = \sigma_{t}^{\mu}$

Therefore τ is $\Sigma^{\nu} \otimes \Sigma^{\mu}$ -invariant on p \otimes q(M \otimes N)p \otimes q. It follows from Theorem 3.4.

Corollary 3.7.([2] Corollary 6.5) Let ν and μ be two normal semifinite traces on von Neumann algebras M and N. $\tau = \nu \otimes \mu$ is a unique normal semi-finite trace of M \otimes N such that $m_{\nu} \otimes_{a} m_{\mu} \subset m_{\tau}$ and $\tau \mid_{m_{\nu}} \otimes_{a} m_{\mu} = \nu \otimes_{a} \mu$.

Remark 3.8. (i) If ν and μ are strictly semi-finite normal weights on M and N, $\nu \otimes \mu$ is a normal strictly semi-finite weight on M \otimes N.

(ii) If ν and μ are normal semi-finite traces on M and N, $\nu\otimes\mu$ is a normal semi-finite trace on M \otimes N.

Corollary 3.9. (The extension of [2] Corollary 6.4) Let φ and ψ be two faithful normal semi-finite weights on M and N, \mathcal{U}_{φ} , \mathcal{U}_{ψ} and $\mathcal{U}_{\varphi \otimes \psi}$ be the generalized Hilbert algebras defined by φ , ψ and $\varphi \otimes \psi$ respectively. Then $\mathcal{U}_{\varphi \otimes \psi}$ is isomorphic to the acheived remeralized Hilbert algebra of $\mathcal{U}_{\varphi \otimes \psi}$. Furthermore the modular operator Δ of $\mathcal{U}_{\varphi \otimes \psi}$ is the tensor product of modular operators of \mathcal{U}_{φ} and \mathcal{V}_{ψ} .

Proof. It has already been proved in Proposition 3.3.

4. The Radon-Nikodym Theorem in the Tensor Product.

Theorem 4.1 Let φ and ψ be faithful normal semi-finite weights on M and N, $\varphi_1 = \varphi(h \cdot)$ and $\psi_1 = \psi(k \cdot)$ where positive self-adjoint operators h and k are affiliated with M^{Σ} and N^{Σ} respectively.

Then we get

$$\Psi_1 \otimes \psi_1(\cdot) = \mathcal{P} \otimes \psi(h \otimes k \cdot)$$

where h @ k has been defined in §2.

That is $\varphi(h \cdot) \otimes \psi(k \cdot) = \varphi \otimes \psi(h \otimes k \cdot)$.

Proof. For each x $in(m_{\psi_i})_+$ and y $in(m_{\psi_i})_+$

By [5] Proposition 4.2 we have

for all $\varepsilon > 0$ $\delta > 0$,

$$\begin{split} \boldsymbol{\varphi}_{1} \otimes \boldsymbol{\psi}_{1}(\mathbf{x} \otimes \mathbf{y}) &= \boldsymbol{\varphi}_{1}(\mathbf{x}) \boldsymbol{\psi}_{1}(\mathbf{y}) \\ &= \lim_{\boldsymbol{\delta} \in \mathcal{S}} \boldsymbol{\varphi}(\mathbf{h}_{\hat{\boldsymbol{\delta}}} \mathbf{x}) \boldsymbol{\psi}(\mathbf{k}_{\hat{\boldsymbol{\delta}}} \mathbf{y}) \\ &= \lim_{\boldsymbol{\delta} \in \mathcal{S}} \boldsymbol{\varphi}(\mathbf{h}_{\hat{\boldsymbol{\delta}}} \mathbf{x}) \boldsymbol{\psi}(\mathbf{h}_{\hat{\boldsymbol{\delta}}} \mathbf{y}) \\ &= \lim_{\boldsymbol{\delta} \in \mathcal{S}} \boldsymbol{\psi}(\mathbf{h}_{\hat{\boldsymbol{\delta}}} \otimes \mathbf{k}_{\hat{\boldsymbol{\delta}}} \cdot \mathbf{x} \otimes \mathbf{y}). \end{split}$$

By Lemma 1.2 and [5] Proposition 4.2 we get

$$\varphi_1 \otimes \psi_1(\mathbf{x} \otimes \mathbf{y}) = \varphi \otimes \psi(\mathbf{h} \otimes \mathbf{k} \cdot \mathbf{x} \otimes \mathbf{y})$$

for x in(m_{ψ_i})₊ y in(m_{ψ_i})₊.

[5] Theorem 4.6 says that

$$\sigma_{\mathbf{t}}^{\Psi_{\mathbf{t}}} = \mathbf{h}^{\mathbf{i}\mathbf{t}}\sigma_{\mathbf{t}}^{\Psi}(\cdot)\mathbf{h}^{-\mathbf{i}\mathbf{t}}$$
$$\sigma_{\mathbf{t}}^{\Psi_{\mathbf{t}}} = \mathbf{k}^{\mathbf{i}\mathbf{t}}\sigma_{\mathbf{t}}^{\Psi}\mathbf{k}^{-\mathbf{i}\mathbf{t}}$$

By the definition of $\varphi_1 \otimes \psi_1$, $\sigma_t^{it} = (h^{it} \otimes k^{it}) \sigma_t^{\varphi} \otimes \rho_t^{\psi} (\cdot) (h^{-it} \otimes k^{-it})$.

Since $h^{it} \otimes k^{it} \in \mathbb{M}^{\Sigma} \otimes \mathbb{N}^{\Sigma^{\psi}}$ and $h \otimes k$ computes with $h^{it} \otimes k^{it}$

Since $h^{it} \otimes k^{it} \in \mathbb{N}^{\Sigma^{\varphi}} \otimes \mathbb{N}^{\Sigma^{\psi}}$ and $h \otimes k$ commutes with $h^{it} \otimes k^{it}$ $\varphi \otimes \psi(h \otimes k \cdot)$ is $\sigma_t^{\varphi_1} \otimes \psi_1$ —invariant on $[h] \otimes [k](M \otimes N)[h] \otimes [k]$ where [h] and [k] are the range projections of h and k respectively. By Theorem 3.4 we get $\varphi \otimes \psi(h \otimes k \cdot) = \varphi_1 \otimes \psi_1$.

Corollary 4.2. In Theorem 4.1 we suppose that $\pmb{\varphi}_1$ and $\pmb{\psi}_1$ are K.M.S. weights with respect to σ_t and $\pmb{\rho}_t$ respectively.

Then $\varphi_1 \otimes \psi_1$ is K.M.S. weight with respect to $\sigma_t \otimes \rho_t$.

Proof, 1. It follows from Theorem 4.1 and [5] Corollary 4.1.

References

- [1] Combes, F., Poids sur une c* algèbra. J. Math. pures et appl., 47 (1968), 57 100
- [2] _____, Poids associé à une algebra hilbertiene a gauche.

 Compositio Math., 23 (1971), 49 77

- [3] _____, Poids et espérances conditonnelle dans algèbres de von Neumann. Bull. Soc. Math. France, 99 (1971), 73 112.
- [4] Takesaki, M., Tomita's theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematic no.128

 Springer Verlag 1970.
- [5] Pedersen, G. K. and Takesaki, M., The Radon Nikodym theorem for von Neumann algebras. Acta. Math. 130 (1973), 53 87.