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1, Introduction

Let ff (resp. ¢) be a nofmal semi-finite weight on a von Neumarn
algebra M (resp. N). There exists the maximal weight ¢® p on M® N
suph that ?Q' v (xoy) =‘f’(x)w(y) for each x in (mr)+ ard y in (mw)_,_.
Purthermore if (f and ¢ are faithful in addition, % ® ¢ is a faithful
semi-finite weight on M@ N and its one-parameter mcdular automorphism
group is the tensor produ::t , of} one-parameter modular automorphism
groups I and ¥, Let (fl (rgsp. wl) be a normal semi-finite, I - invariant
weight on M (resp. Ag , N). By [5] Theorem 5.12 there is a unique
positive self-adjoint operator h affiliated with the sub-algebra of
fix-points for £ (resp. k, Zw)such that (?1 = ‘f(h-) (r_esp. ¥y = p(k<))
We get @@ ¢ = ¢® ¢ (h®k .).
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2, The Tensor Product of Unbourded Self-Adjoint Operators

Theorem 2,1, Let Hl and H2 be Hilbert spaces, Kl and K2 self-
2
unique self-adjoint operator Kl [} K2 on the Hilbert space H1 Yoz 'H2
such that D(K; ® K,) > D(K)) @, D(K,) and K @ K,(g, ®£,) = K £ DKL,
na
DR ®
k=1

Ei» e ®H, : EIJE eD(K, ), Ei eD(K,) fork=1, ,.., n }, Moreover if

‘adjoint operators on Hl and H,, respectively, Then there exists a

for all ¢, eD(Kl) and &, eD(KZ), where D(Kl) @a D(K2) = {

K, and K, are positive, K, ® X, 1s positive,
Proof. Let K =f Ade(r) and K, =f vdE(v) be the spectral
] -0
decampositions of Kl and K2 respectively,

Put D= U R(e. ®E ) where e_ =e(n) «e(~n) and E_ =E(m) - E(-m),
v nmel n< m n m

Define an operator Kl D K2 on D by ;
0‘1 ®K2)§ = (Klen®K2Em)£ , where ¢ in R(enQEm).

Then K1 ) K2 1s a well-defined and densely defined symmetric
operator, Furthermore, it is essentially self-adjoint,
[i] | Kl ® K2 is well defined, Suppose that £ in R(en Q Em) and £ in
Re. ®E ).
o

We may assume n g n, and m im without the loss of generality.
Then we have

(Kienl ® KQE%)z = (Klenl ® KzEmz) (en ® Em)z
= (g &0 O K, B

= (K;an ® K2Em)€ .
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[11] K, ® K, 1s densely defined and symmetric
D= U R(enQEm) is dense in H1®H2 ‘since s—limen=land

n,m=1
8 = dim E =1.

For all £ in D and n in D we have
(K, ® K,)¢ [ n) = ((Ke, ® KE )E | n) for sufficient large n, m.

Since Klen ® KZEm 1s bourded and self-adjoint, we have

(K, ® K))g | n) = (£ | (Kje, @ K )n)
= (E I (K]_@Kz)ﬂ) .
K, @ K, 1s densely defined and symmetric
(1117 K, ®K, 1is essentilly self-adjoint. Suppose that there
exists a constant C such that |((K; ® K,)g | n)| ;c {6y » forallg inD
Take ¢ = (Klen® KzEm)“ = (e @ Em) (Kje, ® KFp)n InD
then we have '

J(Ke ®KEIN <C  foralln, m.

Sirce ([(Kje, ® KE Inll 2a ((K:ZLen ® KgEm)n | n) 1is monotone

- increasing with respect to (n, m), there exists 1im ﬂ(Klen ® KZEm)“ il 2
A (n,m)

We have, for n < nj, mgm,

Il (Kl ® KZ)(eﬁl ) Eml - enQ Em)nﬂ 2

| &y, @ K5, M, ®F, - e,0 Bl 2
I e, @ K D = e, ® K E

€ for sufficient large (n), my) 2 (n, m).

A
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Since s- lim (e_ ® E )n = n, and s~ 1im (K, ® K,)(e ®E )y exists,
(n’m) n m 2 (n,m) K1 2 n m

we get n in D((K; @ K,)*¥), therefore (K, ® K,)** 1is equal to (K, @ Ky)*.

We denote the closed extension of Kl 150 K2 defined above. again by

Kl® K2. It is noticed that (}(le K2)en® Em = Klen@ KZEm for all
n, m 4n N,
Far each g, in D(K,) and £, in D(X,),
1K K2)(en1® Eml - e, ®E ), ®¢,) 2
= REpen 81 ® K &5 ~ Kyofy @ Ko 2

s & ".(‘Klenfl - Kioty) @ Ky eoll R PN K B2 = KFpf) | %

L 2ANEKe, ~Ke e 12 IKe, 12 + 1Ke I 1068, = KFpes | 3.

!

We get £ 8 £, in D(Kl@ K.2) by the closedness of K1 @ K2 s
which means that D(Kl ® K2) 2 D(Kl) e, D(KZ) ad K, ® K2(gl® 52)
= K8, ® K5 for all glinD(Kl) and gzinD(Kz).
Iet T be an another self-adjoint operator on H1 ® H2 with the
above properties. By T(en® Em) (51@52) = Kle nE® KzEmg2 =
(&, ® Ky)(e @ E)(5) ®¢,) for all & in D(K)) and ¢, in D(Ky),
and the closedness of T, we get T(en ® Em) = (Kl ®K2)~en ®Em' Using
the closedness of T again and s -1lim en® Em = 1, we have T D K, therefore

(n,m)
-T =K by the self-adjointness of Tand K, then Kl ] K2 is determined
undiquely. If Kl and K2 are positive, Kl ® K2 is positive since

(Kl ® K2)en ® Em = Klen ® K}.Em is a pcsitive bounded operator,

Notice 2.2, let Kl and K2 be bounded positive operators on I—Il and

H, respectively, K, ®K, is a positive (bounded) operator on H ®H,.

-l



]

(1

Remark 2.3. In the Theorem 2.1 if Kl and K2 are affiliated with
von Neumann algebras M and N respectively, then K, @K, is affiliated

with the von MNeumann algebra M® N.

Definition 2.4, If h and k are positive self'—akjoin’c operators on
Hilbert space Hand €> 0 we put h_= h(l + eh) . Wewrite htk
if h_sgk_ for some ( and hence any ) €> 0. This is equivalent to

the two corditions

! 1 1, 1,
D( hZ ) 2 D( kZ ) and b7 egll“ < k2 e\

1
for each g in D(k2), We say that a net { h; } of positive self-adjoint

operators increases to the self-adjoint operator h, and write hi Zh
if hig/ hs. Thus h Z~”h when MO0,

Lemma 2,5, Kl ®K2 A K1®K2 whenKl ard K2 are positive
self-adjoint operators on Hl and H2 respectively, § \ O, € S 0

Proof’,

(Kl’s ® K2e) (e, ®E) = K16 e, ® K2qu , for eachn, m in W

< < e
Klen"‘Kl.en""Klen’ KEEm;Kz.Em;KZEm
$ ) € €
where 6 2 &' and e2 ¢,

By Notice 2,2, we get

(K16® 1{2&:)(en ®F )2 (Kla' ® Kze,)genob E) 2 (K oK)e @F)

moreover
: ® Q

K1 (,sen®K2€Em7r (Kl K2)en Em '

Then .
® -1 ® . -1

(1+(xJ K, )) e, ®E 3.(1+(K1®K2)) e, ®E.
Since the operator norms of (1 + Kl ® K, ) and (1 + K® Kg)-l
are smaller than 1, s - 1lim e ®E = 1, we get

(n,m) "

!\5@
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Q-+ K @K, )'1\ 1+K @ Ka)"l,
8 €
Then we get .
. - - |
“159 Kze)l =1-(1+ xlschae) 21-~@1+ xlexz) = (K; ®K,);.
Hence

K16 e Kzeﬂ Kl ® KZ'

3, The Tensor Product of Normal Semi-Finite Weights.

In this chapter, we often refer to [5] The Radon-Nikodym theorem
for von Neumann algebra, and let ® be a falthful normal semi-finite
weigm: on von Neumann algebra M, which glves rise to a one-parameter
group ¢ of adtomrphisms of M, The proof of Lemma 3,1 is almost similar
to [5] Lemma 5.2,

Lema 3.1. Let ¢ be a normalsemi~finite weight on M, if there
-exists ao--weakly dense ¥-subalgebra B in mg, invariant under I such
that § = ¢ on B, then we have ¥ 3¢, v Im =‘§’, and § is faithful.

Proof., If x and y are in B, then $(x + y) and y(x » y) are
normal functionals an M which agree on B, since B 1s an algebra. Therefore
?(x *y) =y * y), Since B is a dense *_algebra there 1s a

net { w Mn B, such that w, converges o#-strongly to 1 and J|u, || <1. "Put
1/7% 2 '
= ﬁ?{ ~ t%, (u, )dt.
hommejom - togly

Since B is invariant under I we have

P (0, (ay) w0 (0))) = ¥(oy () w (w))

for ail s and t and each x in M, It follows from [5] Lemm 3.1, by the

polarization identity, that ¢ ('hxx Ah)) = w§h3x .hA).

-6 «



Each h)‘ is an analytic element with
1

olhy) = 72 f exp(~(t-a)%)o, (1, )at

.3 P
N Qo (b ))EN = 1 A2 f exp(-(t-a)Dar (ot Dae)e I

1
172 [ exp(-(t-a) %, (1-u et |

1

72 [ lew(-(t)?| 1 oy (10 Fat

1

‘= 2 exp(Ima)Zf exp - (t-Rea)zﬂ o (1=, )¢ dt

| Iy

1im ugt(l-u}‘)gll =0 and. o, (1~u)E) £ 2 ned, for all X ing,
A o
ard so by Lebesgue dominated convergence theorem we have

‘l;.m il (l—oa(h)‘))gll =0 ie s ~1lim cq(h)‘) =1 for alla inC .

Take now X in m, . Using the g-weakly lower semi~continuity of ¢ and

1 1 _ 1
A?"h)\A" 7= g“i/zghx) on DA™ 2) by [5] Lemma 3.5 we get

p(x) < Um q,(h)‘x h)‘) = L@f}’(h}\x hA) = 1im || n(x2 hx)” 2

1 2 1 -1 L >
= Um I shSa(x24 © = Lim [7a2 0,8 27 n(x2) ||
1 1
= Unllo_y ,(0)InGDI 2 = Lim fo_y () )nxD) | 2

1 1 2
= 170 2 = InG2) I 2 = $(x).

Thus ¢ ,<=<f'
By [1] Lemma 2,3, there exists T in vr(M)' such that

0<T<1, wy*x) = (&) |Tny)

for x, y in nr. Then we have

1 1
v(hx h) = (a(x2 1) | T n(x2 h)))

: i 1 2
=] T2 n(x2 bl

'y



By the same arguement above

: 1 10
¥(hyx b)) = [T2 Jo_; ,,(h) In(x2) It

1 1
‘Then we have Um ¥(hyx b)) = 1im || T2 Jo_, ,5(h) In(x2) | 2
1 1 2
=IT2 J-In(x2) ||
T%(xB) = v,

Therefore ¥(x) =%¢(x) for all x in (m?)+.

We. refer to [5] Lemma 3.1 with.respect to the faithfulness of .

Proposition 3.2.({5] proposition 5.9) If ¢ is I~invariant
nornal. semi-finite weight on M which is equal to ¢ on a o-weakly dense

# — )
I-Invarizsnt -subalgebra of m? then Cr =y,

Proposition 3.3, Let ? and ¢ be faithful normal semi-finite weights

“on von Neumann algebras M, N, o and Pr one-parameter groups of

sutomorphisms of ‘f and ¢, which are denoted by £ and A respectively.
There exists a unique & @ I’-invariant normal semi-finite weight 6 on
M®N such that

my > mY®amY, e(x®y) =¢(x) - viy)

for all x in (an)+, y in (mw)+ . Moreover let g be a normal semi~-finite

welght on M@N such that Mg > Mg e, mw,

for x in(mf)_,_, y in(mw)+. Then we have g < 6, élme = 6 and g is faithful.

g{x @ y) =¢x)u(y)

Proof. We may assume that M =C(‘)14‘ ), N =LCI/¢ ) wherezy?o and

Q// Ve e the maximal modular algebras associated with ‘QI/?and?[/ p in [2]

Theorem 2.13 respectively. By [4] Theoremll.l.{'l/y @awu'; N Al(a) 8, 45(a),
(o] o

¢ in{} is alsc a modular algebra, -moreover we get

L, o, LY ) LT,)

-8~



By [4] Lemma 2.1 there exists a unique positive self-adjoint non-
singular operator A on H ?® H  such that A® is the closure of
l(a) 2(0.) for all a in{, therefore st = it ® Aét for all
t 1nR.

For each n,in?j/ro and n, 1n?4[¢ we get
o

oy & "t("(“l) ® n'(nz)) a (W(nl)) ® ot(vr(nz))

-1t

(Aitml)zs'“’) ® (a1 (n,0;

( 1t -it it)

>(n<n1> ® 1(n,))(47°° @ 8,

= at "(nl ® n2)A

3 ° ?
Then o, @ p, coincides with the modular automorphism group of J(szo Qa?l/wo
on a o-weakly dense sub-algebra w(?(/, ) e "% ). Therefore
. (=] [+
O ® P is equal to it.
Let 6 be the canonical velght of Y, ®,%/, defined in [2]
. ) (] o]
Theorem 2.11. By [2] Propsition 4.4 ¢ is a faithful normal semi-finite
K.M.S. weight with respect to o ®p,, 8=1. Since?é/P (respfl[/f) is
equivalent to Jl/j’ (resp. qu’) we have £ ® n in (% a%/w ) for each
g mz/rand n :Ln&,/‘p and 7(£ ®n) = 7(€) ® 7(n). We get

8((nr(g) @ 7(n))*¥(nx(g) @ n(n))) = 8(n(£ ® n)*r(£ & n))

(e®n | £®n)
=uen % unu
=P (n(E)*n(£))-v(m(n)¥n(n)).
By [2] Lemma 2.4 for each x in(m,,)+ and y J‘.'n(mlp)Jr there exist E
1 1
in U/?and n in X/’!‘ such that x2 = w(€), y2 = n(n), then we have

8(x@y) =P(x) - wy).
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Let g be an another I ® Zﬂinvariant normal semi-finite weight
on M@N such that ;

mOme® m , gx®y) =P - vy

for all x 1n(m,,)+, y in(mw)+. By Proposition 3.2 we have 6 = g . The
last part of Proposition 3.3 is clear by Lemma 3.1.

Theorem 3.4 , Let P and ¥, be normal semi-finite weights on
Mand N, p and g, the suppor't projections of ?1 and wl respectively.
There exists a unigue normal semi-finite weight el on M ®N such that ;

@) meiv:> my, % ™.
(8) 6;(x@y) = (x) - ¥;(¥)

for each x in(mg,), and y in(m g )+ » @0 that 8, 1s z?l ® ™ ~invariant
an the von Neumann algebra p@ q(M® N)p ® q. Furthermore 8, is the
maximal normal semi-finite weight with the properties (1), (#) and

its support pr'ojeétion' is the teﬁsor product p®q,

Proof, It follows fram Proposition 3.3,

Definition 3.5. The maximal weight above 1s called the tensor
product of ¢, and ¥;, which s denoted by ¢, @Y, .

Corollary 3.6.([3] Proposition 6.2) Let M and N be two von Neumann
algebras, v and y two normal strictly semi-finite weights on M and N,
(fi)isI [resp. (gj )J eJ] a family of posij:ive normal linear functionals

such that I eI fi =v on M+ and their supports are mutually or’thogonal

+
[reSP' EJEJ gj= u, N 1.
(1) ==z, . f, ®g, 1is a strictly semi-finite normal weight on
. i, 177
mem*.

This weight does not depend'on the choice of (fi) and

iel? (gj)jel’
- 10 -
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its support is the tensor product of the supports of v and u. The

algebra m contains m ea m and we have .T.[m e m -V @a Y.

v au
Let 6 be an another normal semi-finite weight on (M ® N)+ with the

above properties. Then we get ;

mg> m.  and T = 6]

(#1) We suppose that v [resp. u] is K.M.S.with respect to a
one-paraneter automorphism group {wt} [resp. x,c], 8 = 1. Then there

exists a unique normal weight t on (M@ N)+ such that m.o>m ®a mu,

T} =V o, p and t is K.M.S. with respect to {w, ®x 3 on M@ N,

mv @a mu

8 = 1. This weight 1s equal to the weight defined above,

Proof. (1) By the choice of f,, fi(') is equal to v(pi' p;) where
Py is the support projection of f,, therefore fi is zv-invaifiant on
pMp where p is the support projection of v. Similarly 'gl is Xu-invariant
on gNq where q is that of y. Since < = zi,J fi ® 8y -ié ¥ ® rY-invariant
on peqgMeN)peq, _ .t is the maximal weight in Theorem 3.4.

() By the uniqueness of K.M.S. in [2] Proposition 4.8
we have ;

_ v
pmt( ° )p = ct

Clxt( * )q = Utu‘

Therefore 1 is ' & tV-invariant on p3® a(M® N)p ® gq. It follows

from Theorem 3.4.

Corollary 3.7, ([2] Corollary 6.5) Let v and u be two normal semi-
finite traces on von Neumann algebras Mand N. 1t =v®u 1is a unié;ue
normal semi-finite trace of M@ N such that m, ®a m,&m_ and
=V ﬁa M.

"mv 6, m,

-11 -



Remark 3.8. (1) If v and w are strictly semi-finite normal
‘weights onMand N, v ® u 1s a normal strictly semi-finite weight on
M® N. ‘ |

(#) If v and y are normal semi-finite traces on M and
N, v®u is a normal semi-finite trace on M e N.

Corollary 3.9. (The extension of [2] Corollary 6.4) Let ¢ and y be
two falthful normal semi-finite weights on M and N, 91/?, 'JUw and ?1,/,1,‘9 v
be the generalized Hilbert algebras defined by So, ¢y and P® ¢ respectively.
Then 2[/?‘8 v is isomorphic to the acheivad-pemeralized Hilbert algebra
of U/rQaijj v Furthermore the modular operator A Of'%,@ v is the tensor
product _of . modular operators of 2;/? and‘?y v

Proof. It has already beén vroved in Pronosition 3.3.

4. The Radon-Nikodym Theorem in the Tensor Product.

Theorem 4.1 Let ¢ and y be faithful normal semi-finite weights on
M and N, Cfl j"(h +} and *l = rp(k ) where positive self-adjoint operators
h and k are affiliated with M?: ad N respectively.
Then we get
”1?"’1( *)=popthok )
where h @ k has been defined in §2.
That is  P(h ) ® vk )= P@y(h @ k ).

Proof. For feach X in(m?‘)+ and y m(mw.)+

$1(x)
) = lim'!’(k *y).

lim?’(h * x)

By [5] Proposition 4.2 we have

oy
N R e

X inm

\

Inm
V12—

c»ﬁli—-' NR;IH
« ,
=,



79
forall >0 6§ >0,
$,® ¥ (x@y) =P ()

= lim P(h-x)¥(k;y)
§,e)

=1lim Y® y(h_® k' x ®y).
(s,e)? e °

By Lemma 1.2 and [5] Proposition 4.2 we get
P,2¥,(x®y) = ¢@4(h® k:x ®y)

for x in(m ‘f,)+ y in(mw‘ )+ .
[5] Theorem 4.6 says that

@ _ it g, it
% hot()h

¥, it ¢  -it
A k oy k

ey
By the definition of ¢, ® ¥, ; o
o ?P 1]
since hit & kit ¢ ¥ o N
| ?, 0
fev(h®k - ) is g

where [h] and [k] are the range projections of h and k respectively. By

Uit o it 02@ "i(. . Xh—-it ® k—it).
and h ® k commutes with hit@ kit

1 tnvartant on (h]l e [k](M ® N)[h] ® [k]

Theorem 3.4 we get P@u(h®k * ) =¢, @ ).

Corollary 4.2, In Theorem 4.1 we suppose that?l and ¥, are
K.M.S. welghts with respect to O and 78 respectively.
Then ¢ 19% 1s K.M.S. weight with respect to o ® Pe-

Proof, .. It follows _from Theorem 4.1 and [5] Corollary 4.1.
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