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§1. Inﬁroduction and informal discussions.

When we discuss 3-valued logics, we find that some different
semantics are introduced. Ia%his paper we shall digcuss three logics
among them_wﬁich have much interest related to the theory of computation.

The first one is Kleegé'sAlogic introduced in [1]. xé is

- 3

determined by the following four truth tables for propositional

connectives.
AVB. AAB ADB- 1A
A\B twf . A\B twf A\B tw f A -
t -ttt t twf t twf £t f
o twy w ww £ w tww ‘wow
f tuf £ ffFf f ttt £ t

Here t,f or W means 'true'; 'false' or 'undefined' respectively.
Tiukasievicz's logic is also described in [1], which differs

from Kleene's by the definition of the conditional. It is given by

>
A3 B
A\B t w f
t twf
g ttw
f ttt

That is, A:iA is always true in the logic, while it may be undefined
in that.

The last one is McCafthy's logic introduced in [2]. It has
the same table for the negation’as the former, and has the following
tables for the other connectives. It is convenient ;o use the symbols

+ (or ) and . ( and ) instead of VM and qr



A+B A.B : ADB
M

AB tuwf ANB tw f A\B tw f
t ttt t tof =t twfe
w w wow o Wwoww w w W
f twfef £ fff f ttt

Here deciding the value of e.g. A+B, we calculate B if_nécessary, after

terminating-ghe calculation of A. Thus if A is undefined, so is A+B

Yegardless of the. value of B. Whilé in Kleene's we calculate in pararell,

&
s

and so when B is trué} so is AVB even if A is undefined.
. ot N s

The following equalities are’easily Verified, where = means

that the left and the right hand sides always have the same truth value.

1A = A .
AVA = A& , AAA = A
(the absorptivity in Kleene's).
A+A = A K A.A =A
(the absorptivity in McCa?thy‘s).
AV(BYC) = (AVB)VC , AA(BAC) = (AABIAC
(the associativity in‘Kleene‘s).
A+(B+C) = (A+B)+C , A.(B.C) = (A.B).C
(the associativity in McCarthy's).
1(AVB) = TAAIB , T1(AAB) = TAVIB
(de Morgan's property in Kleene's).
1(A+E) = 7A.7B , | “(A.B) = JA+B |

(de Morgan's property in McCarthy's)
ADB = JAVB ,
A3B = TIA+B ,

while ADLB # 1AVB .
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The commutativity in Kleene's holds, i.e.
AVB = BVA , AAB = BAA ,
while that in McCarthy's does not hold, i.e.
. A+B # B4A , A.B # B.A .
The distributivity in Kleene's and the left distributivity in

McCarthy's hold, i.e.

.~

AV(BAC) = (AVB)A (AVC) AN(BVC) = (AnB)V (BAC) ,
(BAB)Y & = (AVC_)A’(BVC)_, (AVB)AC = (RAC)V(BAC) .
and A+ (B.c)v = (A+B). ‘A+C) , : A:(B+C.)‘ —’;""(A;B)+(A.C). P

while the right-distributivity in McCarthy's does not hold, i.e.
(A.B)+C # (AtC). (B+C) , (A+B).C # (A.C)+(B.C) .
McCarthy's connectives can be interpreted in Kleene's by the .

following equalities.

A+B = (AVIA)A (AVB)
= AV (GAAB) .
A.B = (AATA)Y (AAB)

AA(TAY/B) .

Formulas are constructed in the usual manner. A prime formula
is a formulg which contains no logical symbol, énd a literal is a prime '
formula or its negation. W%%all a pair of prime formula and its
negation a pair of duals. Wé use A,B,C, etc. with or without subscript
to designate formulas. A seéuent is an ordered pair of finite sets of
formulas. We use the notation Al""'Am > Bl,...,Bn for a sequent

<t Al,...,Am},{Bl,...,Bn§)> . The order of formulas in each side is

immaterial. The part A ,...,Am is called the antecedent and means the

1

conjunction AI\...AAm , and the part Bl,'...,Bn is called the sccedent
w
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and means the disjuhction Bid..jgn , where we ragard the empty conjunction
\’

as true and the empty disjunction as false. We use Greek capital

letters T,A,B, etc. to designaté sets:of formulas. An assignment

t, £ or W to all prime formul;s is extended to all formulas in the ordinal
way according to the tiuth tables. Such assignment is said t; satisfy

a sequent if ohe-of the following conditions is fulfilled: i)‘iﬁvaésigns

f to some formula in the %ntécedent,bii) it assigns t to some formula

in the succedeﬁt; 6r iii) there are some formuiaslinfboth sides to

which it assigns W .. In other words the value assigned to the antecedent
is less than or equals to the one to the succedent with respect to the
order f{uw<t. A sequent is said to be valid if it is satisfied by all

assignments.
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§2.-

The formal system for Kleene's 3-valued logic and its plausibility.
In this section weishall describe a formal system, and show

its plausibility, that every provable sequent is valid in Kleene's

sense.

As axioms we admit the sequents of the form
.r,n=> A,A ,

as well as those of the form

-

,aYA > a,B, 1B .

Among the rules of inferences in the propositional calculus

of Gentzen's LK, those for conjunction and for disjunction are admitted

in our system, while those for negation are refused.

0w RSt

> A) rz\’?"ia,g\: A ,B ,

V=) r,A?'A&’BgrAB%A -,
ans {(=>V) —%% .

And the rules for conditiocnal are replaced by the rules

: T8 > 4 r,B a
6=) Ff,AB=> A

A LA = aB
and =>) L2 rl% A, BB — .
¥

Furthermore instead of the rules for negation, we have the
rules for double negations and those for combinations of negations and

each other symbols whicg correspond to de Morgan's property.

T,A = A
() LA = A ’

= A,A
=77 r> a4

aAs ) FJaa= a [OAB > A
n I 1(BAB) = A !




' = A 13,18

W T A (aAB)
=) ? 13‘?&33743 '
V) L #.l.kr'—lg A ,"]:A\?B)A = '
0>%) r'__,’?;;)z s,
and (o9 L2 2B T2 478

[ = &, 1(A3=B)

‘The,fbrmula in“the lower seqﬁent of a rule, in which the

logical symbol'is introduceqd, is!cal;ed~the principal formula of the
rule.

The following rules are useful although it shall be clarified

later that they ar%%nsessential.

T-#A,A @,Ae’/‘\..
Pay

(CUt) r ’ 4 ’ /\_

v

. T Ja
(weakn}ng) ) A
where[ C G andA < AL '

A sequent is provable if it is an axiom or the result of
applying a rule of inference to sequentg which are already known to be
provable. A sequent is strictly provable if it is provable without
using (cut) nor (weakning).

In orxder to observe that these rules keep fhe validity, we
musf examine it for each ru}e. Here we shall show it only for the rule
(> "D), - for other cases it can be easily shown in the similar way.

Suppose that the lower sequént of the rule (& D) were not

satisfied by an assignment, and it will be shown that one of the upper

sequents is to be not satisfied by the assignment. Since T1{A=B) is in
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the succedent it takes the value f orw. When it takes f, either A
takes f or B takes t. So th>em first or the second upper sequént is’
not satisfied respectively. T;Vhen “1(a>B) takes (0,. " must take t, to
be exact every formula in [" takes t. So the first or the second
upper sequent is not satisfipd according to either A or B takes i .

Thus the following theorem holds.

PLAUSIBILITY THEOREM. Every provable sequent is valid.

We shall show the formal proof of the equivalence of
(A5 B)A(B>A) and (AAB)V({TAATIB) as an example.

B
B, B 5 A,7JA B,1& > B,1A
TTA,1B 2 AAB,JA B,1B = AAB,1A

A DB,1B = AAB,1A  A®B,1B = AAB,IB

A> B, 1B 5 AAB,7A\7iB

. \A,A > B,7A TiA,A > B,IB

TA,A =% B,TAATB B,A = B,7AATB

ADB,A 3 A,TAATB ADB,A & B,T7AATB

R

AD B,A & AAB,7ANIB

ADB , BoA = 2AAB , 1AATB

ADB , BDA = (AAB)v ("AATB)

(A>B)A(BDA) = (AAB)V (TAATB)

A,B 3> TA,B A,B 3 -1B,A Ja,7B % "A,B JA,9B > B,A

A,B = ADB A,B = gDA 1A,1B =2 ADB TA,B & BoA

AMB 3% ADB ANB = BDA TAATB 3> ADB JAATB = BDA

AAB 5 (AS B)A (BoA) 9AAB > (ASBIN(BOA)
(BAB)V (TAATIB) =+ (A> B)A(BD A)




&§3. The completeness of the previous system.

We shall show in this secti&n that the system defined in the
previous section is complete.

Given a sequenF we make the so—cailed decomposition of it.
That is, we construct strinéé of sequents such that i3 the first
sequent of thg_§£ring is the‘given sequent, ii) when eithefltpe n—-th
sequent is an axiom or it Fontains 6nly literals,’it is the end of
the string, agﬁ iiié-hhéﬁ the‘ﬁ—th sequent is ot an axiom and it
contains a fofmula other thén literals, the (nIi)—ét sequent is one
of the upper'ééquents of the r&le whose lower seque;t is \n-th sequent

, : T G
and whose principal formula is such a formula mentioned above. It
is clear thét every string is finite and that if every string ends
in an axiom, the given sequent is strictly provable .

Thus making the decomposition of the given sequeﬁt, if it
is not strictly proQable, there is a strin§ containing no axiom. Let
I" or A be the set of all formulas which appear in the antecedents or
in the succedents of the sequents.in the string‘reséectively. Siﬁce
a literal appearing in a sequent of the string also‘appears in the
same side of every following sequents, i) I” and A have no literal in
common, and ii) it.is impqssible that both I” and 4 have a pair of
duals. We may assume th%t[: has no pair of duals. Now we take an
assignment, i) which assig;s t to prime formulas whose negations: are
in A, ii) which assigns f to those which are inA ,and iii) which
assigns & to all other prime formulas.

It is shown by the induction on the number of symbols that

the extension of this assignment assigns t or() to formulas in I
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and £ to those in& . We shall show the cases of ADB. If ADB is
in Z\,both’}A and B are innﬁxtoo.v Therefore by the induction
hypothesis A ‘takes t and B takes £, so ADB takes f. If ADB is in
I, either '|A or B is in'['. The .former implies that A takes f or w

and ADB takes t or © . The latter implies that B takes t or «J and

so is AD B.

Hence the given sequent is not valid. .
e B -
k 7.

Thé:fdilowihg example will clarify’ this method.

Suppose that the sequent (ADB)A(TASC) = (BAB)Y (WAAC) is
given. We can find the string:

(A>B)A(AD2C) = (AAB)V (TAAC) ’
(A>B)A(OWADC) > AAB , T1AAC ’

ADB , 1ADC > BAAB , TAAC ,
1A, WADC =  ANB , TBAC '
A, A = BAAB, TIBAC ,
A, A = B, 1AAC /
9“a , 2 = B, C .

So I' consists of A and 1A and A consists of B and C.. Then an assignment
which assigns () to A and £ to B and C fails to satisfy the given
sequent.

This showed the following theorem.
COMPLETENESS THEOREM. Every valid sequent is strictly provable.

COROLLARY. Every provable sequent is strictly provable;
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§4. The formal system for the extended Kleene's 3-valued logic.

We shall give the interpretation of the quantifiers and

infinitary connectives in the 3-valued logic.

GOx)A(x) is trme iff A(t) is true for some term t, it is

false iff A(t) is false for every term t, and it is ’undefined iff

- . .

none of A{t)"'s. are true and some A(t) is undefined. /\(A A ,...)

1772

is true iff,ev'e‘ry An is true, it is false iff some An' is false, and

s .

it is undefinéd iff none of A'n's,,are false and some An is undefined.
. )

L

¢x)A(x) and V(A ,A_,...) are :'gnterpi}eted likewise.

where a

1'72

.r

‘The follow1ng equalities hold.

"xex)A(Qz) = ¥x)ax) , YRAR) = @)Ax)

/-1 ~ /’\
_-]V(A IA o) = /\(jAl'jAz"..)'—IA(Al,AZ'...) = V(_fAlllAzto--) ’
(BX)A(X)V‘VB = (3x) (A(x)vB) » (¥X)A(X)IAB = (¥x) (A(x)AB) .

I
I

Ex)A(x)AB Gx) (A {(x)NB) s ¥x)A(xIVB = (¥x) (A (x)VB) ’

il

V(Achzr--O)vB \’!(BlAllAzl---) ’

I

A& BB /\(B,Al,Az.. S

V(Al,\B,A AB,...) ,

\/(A ,A,-.-)/\B 3

!

/\(Al,AZ, ...)VB /\(Alv“B,szB, S

Rules for those symbols are those in LK with slight modification.

r.a@ 3 A

%) —Enam > A

is a free variable not appearing in the lower sequent. Such

a is called an eigen-variable.

and '

r = A,A(tl) .A(tz),...,A(tn),Gﬂx)A(x) for some n

=3 F 5 2,608 ' '
A=) r, A ,A yeeesA ,/\(Al,Az,...) = A for some n
T./\(A Boresa) 2 A !
r=>4,a for all n
(FA) n - .

=4 ./\(Al,Az, ...)

10
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In addition we have also rules for combinations of negayions and each

of these symbols. T o
r ;m(tl) nA(tZ) yens ,’(A(tn) JI0Ex)A(x) = A for some n

3= F @0 S &

r = A l\‘A(a)
= &,7@x)a(x)

(=131)

where a -is an. eigen-variable.

.

T S Tma = A foralln
ans) r,‘lt\(Aer geee) A o
NP 2 S
5 = A"‘Alf“‘z"f ,‘lAh',"{/\x(Al,Az,...) ~ for some n
, T2 annB A ,...) .

1 2
The other rulés (V‘—‘>),('—>V),N=-> )I(QV)I(\‘?’%)'(5{.1V)lhv=‘7)' and (:;’-J\v/l

-are given likewise.

The plausibility of the extended system will be shown by the
induction on the number of rules of inferences applied in the proof of
the given sequent which is provable and should be shown to be walid.

Suppbse that the lower sequent of the rﬁle (= 3) were not
satisfied by an ascignment. Then (3x)A(x) takes the value f or W and

A(t1.) ,A(tz),..., and A(tn) take also f or W . ﬁoreover some of §
them take ) only if {Ex)A(x) takes w and then I” takes t by the assumption.
The upper sequent fails to be satisfied by the assignment.

Suppose that thg lower sequent of the rqle (3% ) were not
satisfied, @x)A(x) takes t or W. When it takes t, A(t) takes t for
some term t. Then the se;;uent which is obtained from the upper
sequent by replacement the eigen-variable a with the term t is not
satisfied. This contradicts the induction hypothesis. When (3x)A(x)
takes ) it is quite similar.

It is shown for the other cases in the similar way.

11
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The completeness of the extended system will be shown using
the similar method of decomposition as that of the original. system.
However there is a little difficulty , and we must devise a means.

Consider an enumeration t +--- of all terms and an

152
enumeration of all formulas other than literals.

We': ébﬁstrnct‘strings as follows: i) The‘first sequent of the
string is the ‘.;;.iven s_equerft. ii) When the n-th s,‘e»qt.lent is an axiom,
it is the end 7"o>f the string. ‘ iif) When_the :;'1-71:;1.; sequent is not an
axiom, let i, j be such integers that.: n=2i_1(2'j—i)‘. iji-i) If it
does not contain the i-th formula, the (n+l)-st sec;uent is the n-th
sequent again. iii-ii) If it contains the i-th formula, the (nt+l)-st
sequent is one of the upper sequents of the rule whose lower sequent
is the n-th sequent and whose principal foﬁnula is the i~th formula.
Moreover when the rule is (% 3) with the lower sequent [ F A ,.(‘:‘sx)A(x) .
the (n+l)-st sequent must be chosen T 5 A ,A(tl) ‘- "'_A(tj) , @Ex)A(x)
that is, all first j terms are substituted to x . When the rule 1653
A=) with the lower sequent r,/\(él:A rees) ¥ A, the (ntl)-st

2

Aj,/\(Al,A res-) DA The similar

sequent must be [ ,A )

) A
restrictions are alsc; necessary when the rule is (132), V=), (YY),
(TN, (3V), or V) . |

If the given seguent is not strictly provable , there is a
string which does not end Eyﬁ an axiom and so is infinite. Let [ or

A be sets of formulas in the antecedents or the succedents of the

_sequents in the string . Also [T and A have no literal in common,

12
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and eithr [ or A has no pair of duals. We assume ‘again that A has no
pair of duals.

Take an assignmeﬁt i) which assigns t to prime formulas
whose negations are in A , 1i) which assigns f to prime formulas in A ,
"and iii) which assigns W to‘ball.oth.er prime formulas. It 'Will be
shéwn by t};g- i“niluctign on th;a number of symbols that every Eoﬁxﬁla in

[ takes t or &) and every formula in A takes f. . For example , if
. Ve . - . :
- , .

@x)A(x) is in A’ ’ then A(t) is in A for every term t by means of the

W
construction of the string . So evéry A(t) takes f and (@x)A(x)

takes f too. '

Therefore the assignment fails to satisfy the given sequent.

13



£5. The formal system for the extended Tukasievicz's 3-valued logic.

In .this section we shai_l extend Kleene's iogic by adding new
symbol ¥ ,called strong conditional, which just reflects the concept of
sequents..' Tukasievicz's logic is then _jinterpretable in the extended one.

The truth table for étrong éonditionalris as follows:

£>B

<
<

A\B
s !

t
w
f

ct ot ot

o ot Hy
o HH

It is easily seen that A-»B has always the definit value but v ,

and thatiB>7A has the same value as it. It is also seen that

Al,...,Am = Bl""’Bn is valid if and only if Al/\ ./\A =B \/""Bn
is wvalid .
Adukasievicz's conditional is then interpreted by the following
equality:
A9B = (A=B)/(A>B)
Rules for strong conditional are-
(> =) FOA> o,A T=24A,A0B T, A,B 24 B = 4,8
i T,A>B 2 & i
MNA=2>A,B T.,9B =2 4,7A
(=) = a,A>B ?
I“A—,»A B OB =2 2,04
- 9 : )
and (5 >) I A s AA T 3 AATB LAB>a T B AB
= a,y(4>B) -
The rule
A> B
3 A>B

is not necessary since it is covered by the special case of the rule (3->)

that [and A are empty, and by the fact:

14
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LEMMA. 1A 7B is provable if and only if B = A 1is provable.
‘The prgz% is so easy as omitted,w
" The plausibilities of these rules are shown by using the table
as under; where the rule (» =) is taken as an example. The rows of the
1table are divided correspoﬂéing to assignments which do not satisfy‘the

lower sequent'oﬁ the rule. The' last columm indicates'fhe uppef sequents

which fail to be satisfied by the respective aséignments. For exahple
P el - ) .; » )

the first row asserts that”if | takes t,Atakes 3 -, A takes f, and

B takes some value by an assignment, it.does not Eﬁtiéfy the first

upper sequent. .-

,-J:_hufil;ﬁﬁ?gﬁa A | B upper sequent .
1 H :—— f».u-- :, _..:,_. N —— firSt ———— ?
t {»w: t |- |t second |
: , @ w o fourth = ¢
I f . -  first :
t | f t 1 - .t | second :
U S uLfﬁﬁnﬁ;jvfmmﬂPﬂ.
R FET T rivst
£t .- 't  second

w  third

'We can prove the completeness of .this system in the similar
way as in Kleene's.

We can regard A2B as an abbreviation of (A>B)(A->B) and
we can construct rules for it:

TL,(A2 o TB>aA T a,A0B

> AR 2 o >

(3>,) (LA = ?_:j;,iygém 2 478

03%) LAB TZ f’:(,z%, B)T“;A;:‘B > A8
and (> —)_%) = A,?‘éf;r;?;%g) FIAB 24 .

15
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[
§6. The intérpretation of the extended McCarthy's 3-valued logic in Kleene's.
|

In McCarthy's logic the concept of quantifiers cannot be

|

introduced, while infinitary connectives are allowed as extensions of

binary connectlves, that 1s, the value is determined by the serial

calculatlon from the left to the rlght.

We use the notatlons

Z(Al,Ae,...) apd__T[(Al,A »...) for the infinite disjunction A1+Aé'+‘.' ..

and the infinite -conjunction Al.Ag...'. respectively.
ER - - ;

.

Formulas in this extended’ McCarthy's logic are interpreted

in Kleene's as follows:

A+B =" (AVIAA(AVB)
= AV(TAAB) .
A.B = (AATA)V(AAB)
= AN(AVB) >
(A AL, ee0) = A(V(A LA,,. .0 ) A VTA AvAv-mz,...)
= v(i}l,‘(Ai\A2,wAi\ 7A2AA3,. .. ’
T[(Al,A ,...)‘=\/(A(Al Aysens .) SAATA AN AATIA yees)
=A (A IAVA, AV AV AL, .. ) .

We examine the last equalities.

'\T(Al,Az,...) is t

’(T(Al,Az,...) is w

=

"
Y

"
x

all A 's are
n

N R,

VG, A,

for some n A

t
is t
')'AllﬂAl’AlAAzﬂAZ'“‘) is t ,

',AZ,...,and A are t

1 n-l

and A is w
n

1

are

\" (A(Al By

- 16

AA...AA A
A n/\‘! n

is W and other components

f orw

=) BATA LANAATA .. ) i W,
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T\‘(Al,Az,...) J.$ f = for some n Al,Az,...,and An—l are t
and A is f
n

=2 all components are £

._:;, V(A(Al,Az,...),Af\’}Al,AlAAZﬂAZ,...) is £

T]’(A ,A ,...) is t ==‘7 all An‘s are t

== (RS '
> all ~113‘]\_/ V‘IAn_lvAn s are t

= Al 1 AVA, ,WA:L\/'}psza,...) is t ,
'n'(A ,A ,...) isw —=‘> for .some n Al 2,.,.,and A _j are t

and’'A is w
n
=5 ‘IAi/.-.V'{An_lV An is W) and other components
are t or W
=5 /\(AlriAf/Az,"xAlv-xAyAy...) is w ,

and T((A ,A 1---) is £ = for some n Al Az,...,and A n-1 ¥ t

and A_ is ¥

= is f
S TAM..VA VA is

=3 /\(Al,‘TA1VA2,"lA]\_/*1A2VA ye..) is £ .

3
The rule for McCarthy's symbols are obtained in the following

manner. At first we replace the principal formula in the lower
sequent by the suitable form of the above equalities. Then we

apply rules for Kleene's symbols in succession. For example, since

I'1a,B 3 A

Ta A [ MRAB = A
T ,Av(1a4B) = A
F,,AatB 3 A

rlA =lA ) rfTA'B %A
[, Aa4B S A

SO

(+)

17

i
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and since > AMAM0A I =4,3B
r= A,AVNA I = o,AVB
" % A, (AVIB)A(AVB)

= 4, AtB

FS>A,A°98 [ 4A,A,B
T % 4 ,A+8 .

so (> +)

And by the de Morgan's property
.27 = A T,J2,71B > 4
. r I“(A+B) -'“*\A
P>4,98 T & ABIB
- r % Arj(A‘fB)

>y

and 7
Rules for infinitary disjunction are _
) r,TAl,‘;AZ,..'. nAn—l'An' > A fqr-all n
U LB B,,..) 2 A !

s Ana a2 ... T aa,...A /A

(=z) r =4 'Z(Al'A2'~°-)lAl:---:An for some n
r=a 'Z(AI'AZ" ]
r'-]AllAl =_> A e r'_IAl"'"l-lAn_lpAn_l 2> A
r’E(AlIAzl-'-)I’IAll""l—?An % A for some n

5_‘;
Q 7’) | ’ (AlpAz,.,.) = B
and . C9 ABA,-..B A for alln
I %A0%AA,,...) , .

The rule (33) has the undefinite number of upper sequents. We
i . §

can avoid it if we leave \/(A +---) in the succedent of an upper

1’A2

sequent. However we choose this form to exclude the symbol V .

18



The following examples prove the equivalence of A. (B+C)
and (A.B)+(A.C)

A,B3A A,B3>7A,B AMB3AAA  AB > TA, 1B

A.(B+C) = A.B,A.C

A,B 3 A.B ‘ A,1B 3 "1(A.B)
A,B > A.B,1(A.B). A,1B,C =A.B, (A.B)
A,7A = A.B,1(A.B) A,B+C % A.B,"\(A.B)
A. (B+C) > A.B,(A.B)
R h : _ e e
AR A ACASTA,B A,B SAB “A,C ¥ A.C
" BA = A.B " "aA,B= A.B,A.C_ A,/ IB,C > A.B;A.C
i A A > A.B,A.C - A,B+C 3 A.B,A.C

‘A.(B+C) » (A.B)+(A.C)

ANA>7A,B A,B>7A,B B3B,B B >B,C
A/7A A A,B3>A A.B > 1A,B B = BiC

(cwt)
A.B S A A.B = T1A,B+C

A.B < A. (B+C)

9A FTA,7B AIB FTA,B

e
@ T(A.B) =1A, B A.C 7A,C
A.C 2 (A.B),A.C = 1A,B7B 7(a.B),A.C > 7A,B,C

UA.B) ,A.C S A . T(A.B) ,A.C 1A, (B+C)
“(A.B) ,A.C = A. (B+C)
(A.B)+(A.C) = A. (B+C)

9000000 te s 0

In the proof we omitt the upper sequents of some sequents ,

which are marked @ . They are easily fulfilled since the same or similar

sequents occur before with the upper sequents.

19
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§7. Correlation between the present formulation and Takahashi's.

As above we formulate the system by using the instrument

‘sequent! , by the wéy Takahashi used 'matrix' in his general method

to formulate many valued logics.

Now we shall apply his method to Kleene's logic and compare

it with ours.

A mat;ik is an ordered Eriple of finite ‘sets of formulas, -

for which we use the notation {Al'"7AL$fUiBl'Jf'ighﬁqy{cl"'"ant .

The part A

1

C .--uCn

l,..;,Al is called the f-part,Blp...,BA the W-part, and

Eals

the t-part.

An assignment satisfies a matrix iff it assigns £ to some

formula in the f-part, W to some in thei) ~part, or t to some in the

t-part.

and

The rule

Axioms are matrices of the form i ,A}fu{&A}wUz’_A,ASt .

Rules for the negation are

{rSfU{gng{A’A,gt
af) UrAal_ofel vial '
s £ {'iju\-A-t :
LrSfU{Q'AkU) v {A}t ’
(w) y
{riguien Tw“[“ft
ir.ay u{Bh, s
qe) £ r-t )

108 VIO UATA

Rules for the conjunction are
{F IAIBEEU{.B wa{é}t

() 1M, MBY U (8] LA}t g
\ . 21
) irizul8.2,8},, ulsf irj,fu{e,Agg {A,A}t {rgfxlf_e,gjmo{b,g&t
rjgut® By v {a}
o) {rifuw}mu{a,A}t {r ulsjula, B}

{r}f U{@}NU{A.A Bjt

(Af) , say, originally consists of five schmata and they

20
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- are condensed to one schema descrived above.

Rules for the existential quantifier are k
{r/a(a)h oteh,vlaf

T @A) ool il
where a is an eigen-variable,

, ra@fyeaa@i, el Lul®,ace),, viak
) 10, @A) -

a6

uish

-

ﬁh_ere a is an eigeu?variable and t is a term,
i pul B} Ul R (B §
‘-r!’f U‘{@'SwU{AI (-:X)A (x)}t

3I.\)

and =l
where t is a term.
Rules for other symbols, (VE), (vw), (vt), ©f), Gw), (5t),

(V£), (Yw), and (Vt), are omitted.

The following rules are not essential but useful.

U’ ARV R {A}t {rﬁfu {B,Agwu{A,Agt

{cut) - - .
(rfeo oh il -
Irgule.af, otag,  r.af uleh.usag,
(cut) ; — — = .
iﬁfJi@le;Ae,t ‘
rigof@§uis,al 1 ,af 0l0,a] visl
(cut) — . ’
iguLef viaj
i 'l”fU{@}U{A_!’t
and (weakning) ~ —
‘ tirigv{ @'t visk

where FCFI,BC @f,' and ACA'.

The following theorem states the’ ‘cor:;elatioxi between his
system and ours.
THEOREM. A sequent = A is provable in ours if and only if the
mat,rivces 1ir }EU{F}WU(._A_‘: and {r}fuiéjc‘uu {_A}t are b;)th provable in his.
Cdr.xvérsely a matrix {r‘jfu{_@}wb{éjt is provabl‘e in his if and only if
the sequexits r,X,@ > §¢ are provable in ours, equivalentlyv the

Sequents @,)‘ > F,A,@,L are provable in ours, for all mapping Y from
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@ to l0,1} , where 8. (or 57,) is the set of formulas A's such that
¥(8)=0 (or ¥(A)=1 ) and of JA's.such that ¥(a)=1 (or ¥#(A)=0 ), and
T or A consists of the negat‘ions' of formulas in [ or A respectively .

Since both systems are complete, it is sufficient to
prove the theorem semanticall;.

It s eésily sees that an assignment satisfies | $'A
. 1t S ng .

iff it satisfies - __{r%u(r};,’ulpk: and"- {r}futAswu{A_{: . In fact

they are both éciuivaléﬁt to the statement : the assignment assigns
.. " Wl . .

f to some formula in[ , t to some in A, or wto some in [ and to some
in A .

| It is also easily seeﬁ that an assignment which satisfies
i3 fu{ea}wu{aj;c also satisfies r ,Z,@Y#; 570 and @}-'? ‘I:.A.-é,,b for
all ')L. Conversely suppose that an assignment satisfies
r.4, By = {:D,y’ for ally . If it assigns to some formula in 8 ,
it clearly satisfies "{Fv}fu'{®}wu{5}t too. Otherwise take the
mapping o such that '5.' (A) is 0 or 1 according as A takes the value
t or £, then we find that some formula in .I_“UE must. take f. Therefore
(ﬁfuf._@'wa{A}t is satisfied.

We note that an axiom A > 'A in ours corresponds to

{a} fU{A'L,“ ia jt which» is also an axiom in his, and that an axiom
AA ¥ B,TB corresponds to. {A,‘lASfU{A,'IA}wU{B,'TBSt and
aay fU{B;']B}wv {B,‘yB} ¢ whicl'; are provable in his as followsi

{Asfu{AnA}w'u{A,BnB‘lt
{A,'m}futAnﬂwu{B.‘rB}t

{a/7a,B) UiB, 7B} v IB],

and {a 2t u{B,Bf, uiB, By,
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