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A 4-MANIFOLD WHICH ADMITS NO SPINES

By Yukio MATSUMOTO 1

1. Introduction. In this note, we shall sketch the proof of

the following result:

THEOREM 1. There exists a compact 4-dimensional PL manifold

W4 with boundary satisfying the following conditions: "

¢} W4 is homotopically equivalent to the 2-torus T2 = Slx Sl,
and

(ii) no homotopy equivalence T2 fﬁ'w4 is homotopic to a PL
embedding. |

By a PL embedding is meant a one which is not necessarily
locally flat. Theorem 1 is an application of the codimension two
surgery theory developed in [4], [5], [6].

A calculation in the proof leads to another consequence con-

cerned with submanifolds in codimension two. Let I(lm denote a

-product GPZK e X ¢P2 ofvn-copies of GPZ.

THEOREM 2. For each n 2 0, there exists a locally flat

embedding h(lm) of KlmxS1 into the interior of Klmx DZXS]',

4
which is homotopic to the zero cross section K nx {0})(81, ‘but

is not locally flatly concordant to a splitted embedding.

A splitted embedding (with respect to a point =% of Sl)

means a locally flat embedding £ : Klmx S1 '—>K4nxD2x Sl such

that (i) f 1s transverse regular to K4n>(ﬁzx {*}, thus the

1 The author is partially supported by the Fijukai Foundation.
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intersection M4n = f(Kan><Sl) n K4nx D2:<{*} is a closed mani-

fold, and (ii) the inclusion M4n —ﬁ'Kénx sz‘f*} is a hoﬁotopy
equivalence.

Theorem 2 contrasts with Farrell-Hsiang's result [2] which
may be considered as the splitting theorem in higher codimensions.

Let Pm( T — ﬂ:')z' be the group of Seifgrt forms introduced
in [6]. Theorem 2 is equivalent to saying’that Shanéson's formula on
Lm(ﬁ:x Z) [10] 1is not immediatély generalized to a formula on
Pm((7t — 7t')’x Z). See remarks after Lemmas 3 and 4.

Cappell and Shaneson [1] develgped another method of surgery in
codimension two from homology surgery point of view; They introduced
groups [“m(ﬂt'—ﬂv7c') of singular Hermitian forms. Partial
explanations about the relationship between ['- and P-functors
will be found in [7]. | o

2. Construction of WA. Let h : S1 - S1 X D2 be an

embedding indicated in Fig. 1. Essentially the same embedding

S1 -—>Sl X S2 was used by Mazur [8] to construct a contractible

4-manifold.

Fig.1l. Mazur's embedding

2 This notation(?izghtly differs) from the original one used in [6].
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Extend h to a framed embedding h Slx D2 —*-Slx D2 in

such a way that h followed by the natural inclusion Slx D2 —>

g3 is a trivial knot with a trivial framing. Let g : Slx D2 —>

Slx D2 be a thickened zero-section defined by, say, g(x,'g) =

(x, %‘E) for (x, ‘g) € SlxDZ.
Then our manifold W4 is constructed by taking a disjoint

2 2 1 .2

union (SlxD ;(I)0 v (SlxD X I)l of 2-copies of S x D"xI and

identifying ((x, g) X {1})0 with (EKx,‘g) X {0})1, and
((x, ¥) x{O})o with (g‘(x,‘;)k{l})r Since h is homotopic

to g = Evl S1 X {0}, W4 is homotopically equivalent to T2.

3. Seifert forms. First, we give some definitions. Let

T —> 7' be an onto homomorphism of groups whose kernel is gener-

ated by a (specified) central element t. A (-1)“-Seifert form
(over T —> ') 1is a (-l)nt-Hermitian form defined over ZT
which is non-singular over 2Zm'. We denote by Pzn(‘I —> ')
the 'Witt group' of (-1)n-Seifert forms. ovex T —» ®™'. For more
precise definitions, see [6] or [7].

The geometric motivation is as follows. (In what follows, all

manifolds are compact and oriented. All submanifolds are locally
V2n+2 2n-1

flat.) Suppose a pair ( s M ) consisting of a connected
2n+2-manifold V2n+2 and a closed (possibly empty) 2n-l-submani-
fold MZn-l of the boundary 9V has the same simple homotopy

type as a Poincaré pair (X, Y) of formal dimension 2n 2 4.

Cne can find an exterior n-connected submanifold LG of V2n+2
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such that aLG = MZn-l [4]. Let N be a 2-disk bundle» neigh-
bourhood of LG.

The homomorphism 71?1(V -L) — "Itl(V) is independent of the

Zn 1

choice of a particular exterior n-connected submanifold L
is denoted by T —> 7t' and is said to be associated with. (V, M).
™ — 7! hés the proPefty stated at the beginning of this section
(t being represented by the fiber qf the.associatedvsl-bundle with
N.) |

The codimension two intersection form [6] defines a (rl)n—
Seifert form (A, u) (over T —> 1') on the left Z7w -module
T _, (V-L, N-L).

Moreover, the element of Pzn(1t‘—# ") which the form
represents does not depend 6n LG, but depends only on (V; M).
Denote the element by 71(V, M). Then it is proven that V admits
a 1ocaliy flat spine cobounding. M if and only if 7(V, M) = 0,
provided that 2n 2 6 [6].

Now we will return to our present situation. With the
notations of § 2, we denote the disjoint union h(S1 x {0}) x $03

U -g(Slx §0}) X fl}, which is a submanifold of S(Slx D2

x1),
by §:1. Denote the pair (Slx D2><I,'§i¥) by () . Then
@ x CP, is homotopically equivalent to (Slx Ix CP,, Slx {0, 1}x CPZ),

and the homomorphism associated with it is Zx Z —> Z (= (291) x Z).

LEMMA 1. The element 7 (@xeP,) of P, ((Z —1) x 2) is

represented by the (-1)-Seifert form (G, X, @) given by:

G = f\xl ® sz’ ?\(xl, XZ) = - s-l, /.L(xl) =gsg-1, }L(Xz) = -1,
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where A = 2[t, t , s, s-l], t (or s) denoting the (positive)

generator of the first (or the second) Z of (Z —1) x Z.

The proof of Lemma 1 is divided into three steps. The first
is to construct a 2-surface F2 of genus 1 1in S]' X D2 x I
cobounding Zl, To F? are attached two 2-disks D, D, within
S1 X D2 X I. To compute the codimension two intersection [6] of
these specific 2-disks is the second and crucial step which requires
careful geometric observations. The final one is to 1lift this
low dimensional computation to the higher diuiensi.onal one by cross-
ing)\\sz. cf£. [6, pp.307-308].
<W%f§§) |

emark. The matrix (A (xi, xj)) of the Seifert form of

Lemma 1 1is

(s-1)-t(s 1-1), -s*

st , -1+t
The determinant of this matrix is s(t-1) + (tz-t+1)+ s-l(t-tz),
which coincides (up to units) with the Alexander polynomial of

Mazur's link (Fig. 1) cé_lculated by the method of Torres-Fox [11].

4. The Murasugi invariant. Let (/Lxle e D A'XZI.’ A, M)

be a (-1)-Seifert form over (Z —> 1) x Z, N\ denoting

Z[t, t-l, S, s-l]. The Murasugi invariant o’M of the form is

defined to be the signature of the symmetric integral matrix
obtained from ()\(xi, xj)) by substituting t = s = -1,
It gives us a well defined homomorphism

128

v} Paup((Z—>1) x 2) —>z.
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Let (G, A, &) be the form given in Lemma 1. We have

~4 1
O'M(G, A ,/u.) = gign = -2,
1 -2
This implies

LEMMA 2. " (@ X CPZ) is a non-zero element of P6((Z — 1) x 2.

Remark. It should be noted that the value -2 is the minus

of Murasugi's § -invariant [9] of Mazur's link (Fig. .1).

Again let (/\.xl B - @ AXZI’ X, }A.) be: a (-1)-Seifert
form over (Z — 1) x 2. Then';he substitution s =1 gives us a
(-1)-Seifert form over Z — 1, defining a homomorphism Pyt
P4k+2((2’ —>1) x 2) — P4k+2(2 - 1). f+ is a left inverse of
Vs . [ 1 .
the 'inclusion' homomorphism i S P4k+2( Z—>1) — P4k+2((z —>1)x 2).
Now }°+( ?1(@ X CPZ))' is represented by the form (G', )\'; A"
given by G' = A'xl & Alxy, }\'(Xl, X,) = -1, }L'(Xl) =0,

_ /u.' (xz) = -1, where A' = Z[t, At-l

]. This form is null-cobordant
in the sense of [6, § 4.9]. (The submodule .A_'xl is a Seifert
subkernel.) Therefore, )0*('7(@ x €P,)) = 0. This together with

Lemma 2 yields

LEMMA 3. N (0 x CPZ) is not in the image of i, : P6(Z — 1)
">P6((Z"‘?1) X 2).-
Remark. The cokernel of i, 1is proven not to be finitely

generated.

5. Proofs of theorems.

Proof of Theorem 1. Let W4 be the manifold constructed in

§2. The manifold W x CP, is homotopically equivalent to

-6 -



1149

2

T x CP and the homomorphism (Z —> 1) xZxZ is associated

2’
with it (§ 3). The element i (wl‘x CPZ) is proven to be the image

of (@« CP,) under the (injective) homomorphism j, :

P6'((Z>-'> 1) x2) = P6((Z —1)x2x2).

Now suppose that there were a spine TOZC W4. Tg may be

assumed to be locally flat except at one point. The product ngx [

| 2
is a spine of W4x CP, with the singularity of the type (knot cone)

X CP Since Il({pt} X CPZ) = {1}, this singularity is replaced

2
Ty

by a (7, 5)-knot cone singularity [4]. This means that ‘Q(W"x CPZ)

(= j*('?l(@xCPZ))) is in the image of j, °1i,, since CS’ the

knot cobordism group of (7,5)-knots, is isomorphic to P6 (Zz —1)

[6]. However, this contradicts Lemma 3.

Proof of Theorem 2. Let Mm be a closed l-connected manifold
1 2

of dimension m 25, £ : Mx s —>me D" x S1 a locally flat

embedding which is a homotopy equivalence. Denote the pair
oM™ x p? x st xI, £M"x Sl) x {0} v M™ x {0} X Slx §1}) by ¥ . The

homomorphism (Z —> 1) xZ is associated with V¥ .

LEMMA 4. (i) If m is odd, f is splittable. In other

words, f is locally flatly concordant to a splitted embedding.

(ii) If m is even, f 1is gplittable if and only if 7‘((\1’) s

in the image of Pm'_Z(Zf’ 1) "'">Pm+2((z —>1)x2).

. L4n Lhn 2 1 . -
(4n) ° K"xS8 —K xD xS8 b? defined by h(lm)

ide h, h being Mazur's embedding. Then Theorem 2 follows from

Let h 1

* Lemmas 3 and 4.

Remark. Lemma 4 is generalized to non-simply connected
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manifolds as follows: There is no sztruction in the odd dimensional

- /’ .
case. In the even dimensional case, the obstruction lies in the

cokernel of Pm+2(7r_" ') © L:ii,l(‘n:') ——+Pm+2(( T—> ') x Z)@\

but even in the latter case any embedding is almost splittable in o

e

the sense of [3].

6. Concluding remarks. 1) For each g =2 1; one can

construct a spineless 4-manifold of the same homotopy type as the

orientable surface of genus g.

2) 1If we start the cdnstruction with the embedding indicated in
by

Fig. 2, we will obtain W

which admits a locally flat spine.

Fig.2 False embedding
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