104

A 4-MANIFOLD WHICH ADMITS NO SPINES

By Yukio MATSUMOTO 1

1. <u>Introduction</u>. In this note, we shall sketch the proof of the following result:

THEOREM 1. There exists a compact 4-dimensional PL manifold W⁴ with boundary satisfying the following conditions:

- (i) W^4 is homotopically equivalent to the 2-torus $T^2 = S^1 \times S^1$, and
- (ii) no homotopy equivalence $T^2 \rightarrow W^4$ is homotopic to a PL embedding.

By a PL embedding is meant a one which is not necessarily locally flat. Theorem 1 is an application of the codimension two surgery theory developed in [4], [5], [6].

A calculation in the proof leads to another consequence concerned with submanifolds in codimension two. Let K^{4n} denote a product $\mathbb{CP}_2^{\times} \cdots \times \mathbb{CP}_2$ of n-copies of \mathbb{CP}_2 .

THEOREM 2. For each $n \ge 0$, there exists a locally flat embedding $h_{(4n)}$ of $K^{4n} \times S^1$ into the interior of $K^{4n} \times D^2 \times S^1$, which is homotopic to the zero cross section $K^{4n} \times \{0\} \times S^1$, but is not locally flatly concordant to a splitted embedding.

A <u>splitted embedding</u> (with respect to a point * of S¹) means a locally flat embedding f: $K^{4n} \times S^1 \longrightarrow K^{4n} \times D^2 \times S^1$ such that (i) f is transverse regular to $K^{4n} \times \bar{D}^2 \times \{*\}$, thus the

¹ The author is partially supported by the Füjukai Foundation.

intersection $M^{4n} = f(K^{4n} \times S^1) \cap K^{4n} \times D^2 \times \{*\}$ is a closed manifold, and (ii) the inclusion $M^{4n} \longrightarrow K^{4n} \times D^2 \times \{*\}$ is a homotopy equivalence.

Theorem 2 contrasts with Farrell-Hsiang's result [2] which may be considered as the splitting theorem in higher codimensions.

Let $P_m(\pi \to \pi')^2$ be the group of Seifert forms introduced in [6]. Theorem 2 is equivalent to saying that Shaneson's formula on $L_m(\pi \times \mathbf{Z})$ [10] is not immediately generalized to a formula on $P_m((\pi \to \pi') \times \mathbf{Z})$. See remarks after Lemmas 3 and 4.

Cappell and Shaneson [1] developed another method of surgery in codimension two from homology surgery point of view. They introduced groups $\Gamma_{\rm m}(\pi\to\pi')$ of singular Hermitian forms. Partial explanations about the relationship between Γ - and P-functors will be found in [7].

2. Construction of W⁴. Let h: $s^1 \to s^1 \times D^2$ be an embedding indicated in Fig. 1. Essentially the same embedding $s^1 \to s^1 \times s^2$ was used by Mazur [8] to construct a contractible 4-manifold.

Fig. 1. Mazur's embedding

This notation slightly differs from the original one used in [6].

Extend h to a framed embedding $\overline{h}: S^1 \times D^2 \to S^1 \times D^2$ in such a way that \overline{h} followed by the natural inclusion $S^1 \times D^2 \to S^3$ is a trivial knot with a trivial framing. Let $\overline{g}: S^1 \times D^2 \to S^1 \times D^2$ be a thickened zero-section defined by, say, $\overline{g}(x, \xi) = (x, \frac{1}{2} \xi)$ for $(x, \xi) \in S^1 \times D^2$.

Then our manifold W^4 is constructed by taking a disjoint union $(S^1 \times D^2 \times I)_0 \cup (S^1 \times D^2 \times I)_1$ of 2-copies of $S^1 \times D^2 \times I$ and identifying $((x, \xi) \times \{1\})_0$ with $(\overline{h}(x, \xi) \times \{0\})_1$, and $((x, \xi) \times \{0\})_0$ with $(\overline{g}(x, \xi) \times \{1\})_1$. Since h is homotopic to $g = \overline{g} \setminus S^1 \times \{0\}$, W^4 is homotopically equivalent to T^2 .

3. Seifert forms. First, we give some definitions. Let $\pi \to \pi'$ be an onto homomorphism of groups whose kernel is generated by a (specified) central element t. A $(-1)^n$ -Seifert form $(over \ \pi \to \pi')$ is a $(-1)^n$ t-Hermitian form defined over $z\pi$ which is non-singular over $z\pi'$. We denote by $P_{2n}(\pi \to \pi')$ the 'Witt group' of $(-1)^n$ -Seifert forms over $\pi \to \pi'$. For more precise definitions, see [6] or [7].

The geometric motivation is as follows. (In what follows, all manifolds are compact and oriented. All submanifolds are locally flat.) Suppose a pair (V^{2n+2}, M^{2n-1}) consisting of a connected 2n+2-manifold V^{2n+2} and a closed (possibly empty) 2n-1-submanifold M^{2n-1} of the boundary $\Im V$ has the same simple homotopy type as a Poincaré pair (X, Y) of formal dimension $2n \not \supseteq 4$. One can find an exterior n-connected submanifold L^{2n} of V^{2n+2}

such that $\partial L^{2n} = M^{2n-1}$ [4]. Let N be a 2-disk bundle neighbourhood of L^{2n} .

The homomorphism $\pi_1(V-L) \to \pi_1(V)$ is independent of the choice of a particular exterior n-connected submanifold L^{2n} . It is denoted by $\pi \to \pi'$ and is said to be <u>associated</u> with (V, M). $\pi \to \pi'$ has the property stated at the beginning of this section (t being represented by the fiber of the associated S^1 -bundle with N.)

The codimension two intersection form [6] defines a $(-1)^n$ Seifert form (λ, μ) (over $\pi \to \pi'$) on the left $Z\pi$ -module $\pi_{n-1}(V-L, N-L)$.

Moreover, the element of $P_{2n}(\pi \to \pi')$ which the form represents does not depend on L^{2n} , but depends only on (V, M). Denote the element by $\gamma(V, M)$. Then it is proven that V admits a locally flat spine cobounding M if and only if $\gamma(V, M) = 0$, provided that $2n \ge 6$ [6].

Now we will return to our present situation. With the notations of $\S 2$, we denote the disjoint union $h(S^1 \times \{0\}) \times \{0\}$ $\cup -g(S^1 \times \{0\}) \times \{1\}$, which is a submanifold of $\partial (S^1 \times D^2 \times I)$, by $\sum_{i=1}^{1}$. Denote the pair $(S^1 \times D^2 \times I, \sum_{i=1}^{1})$ by $\widehat{\mathcal{H}}$. Then $\widehat{\mathcal{H}} \times \mathbb{CP}_2$ is homotopically equivalent to $(S^1 \times I \times \mathbb{CP}_2, S^1 \times \{0, 1\} \times \mathbb{CP}_2)$, and the homomorphism associated with it is $\mathbf{Z} \times \mathbf{Z} \longrightarrow \mathbf{Z} \ (= (\mathbf{Z} \rightarrow \mathbf{I}) \times \mathbf{Z})$.

LEMMA 1. The element $\gamma(\Theta \times \mathbb{CP}_2)$ of $P_6((Z \to 1) \times Z)$ is represented by the (-1)-Seifert form (G, λ, μ) given by: $G = \Lambda x_1 \oplus \Lambda x_2, \quad \lambda(x_1, x_2) = -s^{-1}, \quad \mu(x_1) = s - 1, \quad \mu(x_2) = -1,$

where $\Lambda = \mathbf{Z}[t, t^{-1}, s, s^{-1}]$, t (or s) denoting the (positive) generator of the first (or the second) \mathbf{Z} of $(\mathbf{Z} \to 1) \times \mathbf{Z}$.

The proof of Lemma 1 is divided into three steps. The first is to construct a 2-surface F^2 of genus 1 in $S^1 \times D^2 \times I$ cobounding \sum^1 . To F^2 are attached two 2-disks D_1 , D_2 within $S^1 \times D^2 \times I$. To compute the codimension two intersection [6] of these specific 2-disks is the second and crucial step which requires careful geometric observations. The final one is to lift this low dimensional computation to the higher dimensional one by crossing \mathbb{CP}_2 . Cf. [6, pp.307-308].

Remark. The matrix $(\lambda(x_i, x_j))$ of the Seifert form of Lemma 1 is

$$\begin{pmatrix}
(s-1)-t(s^{-1}-1), & -s^{-1} \\
st, & -1+t
\end{pmatrix}$$

The determinant of this matrix is $s(t-1) + (t^2-t+1) + s^{-1}(t-t^2)$, which coincides (up to units) with the Alexander polynomial of Mazur's link (Fig. 1) calculated by the method of Torres-Fox [11].

4. The Murasugi invariant. Let $(\Lambda \times_1 \oplus \cdots \oplus \Lambda \times_{2\ell}, \lambda, \mu)$ be a (-1)-Seifert form over $(\mathbb{Z} \to 1) \times \mathbb{Z}$, Λ denoting $\mathbb{Z}[t, t^{-1}, s, s^{-1}]$. The Murasugi invariant σ_M of the form is defined to be the signature of the symmetric integral matrix obtained from $(\lambda(x_i, x_j))$ by substituting t = s = -1.

It gives us a well defined homomorphism

$$\sigma_{\mathrm{M}}: P_{4\mathrm{k}+2}((\mathbf{Z} \to 1) \times \mathbf{Z}) \to \mathbf{Z}.$$

Let
$$(G, \lambda, \mu)$$
 be the form given in Lemma 1. We have
$$\sigma_{M}(G, \lambda, \mu) = \text{sign}\begin{pmatrix} -4 & 1 \\ 1 & -2 \end{pmatrix} = -2.$$

This implies

LEMMA 2. $\gamma(\Theta \times \mathbb{C}P_2)$ is a non-zero element of $P_6((Z \to 1) \times Z)$.

Remark. It should be noted that the value -2 is the minus of Murasugi's ξ -invariant [9] of Mazur's link (Fig. 1).

Again let $(\Lambda \times_1 \oplus \cdots \oplus \Lambda \times_{2\ell}, \lambda, \mu)$ be a (-1)-Seifert form over $(\mathbf{Z} \to 1) \times \mathbf{Z}$. Then the substitution $\mathbf{s} = 1$ gives us a (-1)-Seifert form over $\mathbf{Z} \to 1$, defining a homomorphism β_+ : $P_{4k+2}((\mathbf{Z} \to 1) \times \mathbf{Z}) \to P_{4k+2}(\mathbf{Z} \to 1)$. β_+ is a left inverse of the 'inclusion' homomorphism $\mathbf{i}_*: P_{4k+2}(\mathbf{Z} \to 1) \to P_{4k+2}((\mathbf{Z} \to 1) \times \mathbf{Z})$.

LEMMA 3. $\gamma(\Theta \times \mathbb{CP}_2)$ is not in the image of $i_*: P_6(Z \to 1) \to P_6((Z \to 1) \times Z)$.

Remark. The cokernel of i_* is proven not to be finitely generated.

5. Proofs of theorems.

Proof of Theorem 1. Let W^4 be the manifold constructed in § 2. The manifold $W^4 \times \mathbb{CP}_2$ is homotopically equivalent to

 $T^2 \times \mathbb{C}P_2$, and the homomorphism $(Z \to 1) \times Z \times Z$ is associated with it (§ 3). The element $\eta (W^4 \times \mathbb{C}P_2)$ is proven to be the image of $\eta (\Theta \times \mathbb{C}P_2)$ under the (injective) homomorphism $j_*: P_6((Z \to 1) \times Z) \to P_6((Z \to 1) \times Z \times Z)$.

Now suppose that there were a spine $T_0^2 \subset W^4$. T_0^2 may be assumed to be locally flat except at one point. The product $T_0^2 \times \mathbb{CP}_2$ is a spine of $W^4 \times \mathbb{CP}_2$ with the singularity of the type (knot cone) $\times \mathbb{CP}_2$. Since $\pi_1(\{\text{pt}\} \times \mathbb{CP}_2) = \{1\}$, this singularity is replaced by a (7, 5)-knot cone singularity [4]. This means that $\eta(W^4 \times \mathbb{CP}_2)$ (= $j_*(\eta(\theta \times \mathbb{CP}_2))$) is in the image of $j_* \circ i_*$, since C_5 , the knot cobordism group of (7,5)-knots, is isomorphic to $P_6(\mathbf{Z} \to 1)$ [6]. However, this contradicts Lemma 3.

<u>Proof of Theorem 2.</u> Let M^m be a closed 1-connected manifold of dimension $m \ge 5$, $f: M^m \times S^1 \longrightarrow M^m \times D^2 \times S^1$ a locally flat embedding which is a homotopy equivalence. Denote the pair $(M^m \times D^2 \times S^1 \times I, f(M^m \times S^1) \times \{0\} \cup M^m \times \{0\} \times S^1 \times \{1\})$ by Ψ . The homomorphism $(Z \longrightarrow 1) \times Z$ is associated with Ψ .

LEMMA 4. (i) If m is odd, f is splittable. In other words, f is locally flatly concordant to a splitted embedding. (ii) If m is even, f is splittable if and only if $\gamma(\Psi)$ is in the image of $P_{m+2}(Z \to 1) \to P_{m+2}((Z \to 1) \times Z)$.

Let $h_{(4n)}: K^{4n} \times S^1 \longrightarrow K^{4n} \times D^2 \times S^1$ be defined by $h_{(4n)} = id_K \times h$, h being Mazur's embedding. Then Theorem 2 follows from Lemmas 3 and 4.

Remark. Lemma 4 is generalized to non-simply connected

manifolds as follows: There is no obstruction in the odd dimensional case. In the even dimensional case, the obstruction lies in the cokernel of $P_{m+2}(\pi \to \pi') \oplus L_{m+1}(\pi') \to P_{m+2}((\pi \to \pi') \times Z)$ but even in the latter case any embedding is almost splittable in the sense of [3].

- 6. Concluding remarks. 1) For each g ≥ 1, one can construct a spineless 4-manifold of the same homotopy type as the orientable surface of genus g.
- 2) If we start the construction with the embedding indicated in Fig. 2, we will obtain W^4 , which admits a <u>locally flat</u> spine.

Fig. 2 False embedding

REFERENCES

- 1. S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. 99 (1974), 277-348.
- 2. F. T. Farrell and W. C. Hsiang, A geometric interpretation of the Künneth formula for algebraic K-theory, Bull. Amer. Math. Soc. 74 (1968), 548-553.

- 3. ——, Manifolds with $\pi_1 = \mathbb{Z} \times \mathbb{G}$, to appear.
- 4. M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in codimension two I, J. Math. Soc. Japan 24 (1972),
 586-608.
- 5. Y. Matsumoto, Surgery and singularities in codimension two, Proc. Japan Acad. 47 (1971), 153-156.
- 6. _____, Knot cobordism groups and surgery in codimension two, J. Fac. Sci. Univ. Tokyo, Sec. IA 20 (1973), 253-317.
- 7. Some relative notions in the theory of Hermitian forms, Proc. Japan Acad. 49 (1973), 583-587.
- 8. B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. 73 (1961), 221-228.
- 9. K. Murasugi, On the signature of links, Topology 9 (1970), 283-298.
- 10. J. L. Shaneson, Wall's surgery obstruction groups for $\mathbb{Z} \times \mathbb{G}$, Ann. of Math. 90 (1969), 296-334.
- 11. G. Torres and R. H. Fox, Dual presentations of the group of a knot, Ann. of Math. 59 (1954), 211-218.

Department of Mathematics
College of General Education
University of Tokyo
Komaba, Meguro-ku
Tokyo, 153
Japan