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Spectral theory and eigenfunction expansions for uniformly
propagative systems
By Kenji YAJIMA Department of Mathematics
University of Tokyo
1. Introduction.
In a recent year C.H.Wilcox showed that linear partial
differential systems describing the wave propagation phenomona

of classical physics in inhomogeneous anisotropic media filling

the whole space can be written in the form

- A%
1.1 = Mw ;Aéwj + fln kY

1 n m
where teR , x€R, u(x,t) is € -valued function, M(x) is an
. s . . . . n
mx m positive definite hermitian matrix depending on x €R
and Aj’s are mX m constant hermitian matrices.

In this lecture we shall study some spectral properties,

especially eigenfunction expansions , for the operator

- -1 S
(1.2) L M(x) %Aij ( Dj i 2%, )

in a suitable Hilbert space and scattering theory between

system (1.2) and system

n

1.3 L. = A.D, .
( ) O(J_z'\JJ

2. Preliminaries.
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Our assumptions imposed on the operators are as follows:
(A.1) L0 is uniformly propagative system in the sense of Wilcox,
i.e, the roots of the characteristic equation p(')\,*g) =
M
det (NI - _Z.Aj §j) = 0 have constant multiplicities
o
and never vanish unless vanish identically;

(A.2) There exist constants 'Clr, 02>0 and : §>1 such that

(2.1) 'Cl‘g\Q = (g, Mg )= C;‘lggz © " for'all’ x and ‘¢ ¢R",
: o _ o, =&
(2.2) sup | m,,(x) - Sgi""é‘ 'Cz(‘ 1+ I1x1° )% for all "x ¢R",
1si,jem I :

where m  (x) is the (i,j)-component of M(x).

By assumption (A.1l) the roots % (£) of p(Z,§) = 0 can be
enumerated as 7\_(&;)«“ <A CEYC A8 < MULEI <+ g;r‘g),'where %€= 0
if it exists and will be omitted otherwise. Let us take S&(i)?,o so
small that (L) = { te ¢b l§-?\;(§>l=f‘5&k§){ does not enclose any
root of p(k,§) = 0 except 9, (f) and put
(2.3 B®)=-7= 8 (Tag-sIIMAS .

)

FATRY “n(‘{

n
Let P, be the operator determined by the multiplication by Pﬁ.(g)

|
and put Pi = @hf{} . We put Si = {%é R g 8)= S'{(s"n!lt.

Let ds, be the surface element of Sﬂ and do'g = clSo_/W‘)Ql .

L]

. 1
We need some auxiliary spaces. For o*etRl and sé€R we put

(2)



- s ‘ _
Ho,o = {fe g ®e™y: Hl\is - _g \@-1((\+\§|2)%(‘5“u)(§))f(\+vn\’-)sdx@o{’
’ 0,07 Rh
' m ~1 T 2 s so
Hi,q. = {§ed R €™ \lf\\QH‘;e- SR"I‘} ((\+\g\”*)’“(%‘u)tg)(ﬂ(\ﬂ‘xl’*) dx < t,

where we put (u(x),v(x)), = (u(x),M(x)v(x));

Hy = Hy0 H) = Hp o -
. s _ s ; ;-
By assumption (A.2) HO;T Hl’c,as a set. We define the identi
fication operator J: us —_— aS by the equation Ju(x) = u(x).
1,0 0,0
We can define the selfadjoint realization L0 naturally-
: %

since it has constant coefficiets. We put L = J L. J. L is

o0bviously a selfadjoint operator in Hl'

3. Theorems.

Our results are summarized 1in the following theorems.

Theorem 1. ( Limiting absorption principle for L0 )

Let assumption (A.1) be satisfied. Let Iy = R1\{0§ and let
1T1==&§e-01: Im§ZOI . Let & be any positive constant. Then

the following statements hold:

(1) The resolvent R0(§) (Im§ E 0) of L. can be extended to

0
*ﬁ&.u Ia as a B(HO e s HO _ jx€ )-valued locally Holder
’2 L 2

continuos function.Moreover 'RO(Q)(I-PO) can be extended to the

. . 1 .
same regions as a B(Ho’lgg s HO,— ,Zg Y-valued locally Holder

continuous function. We denote their boundary values on IO

(3)
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\]
as Ro(ﬁi i0) and Ro(y\j-_ i0), respectively.

(2) For any ue&H and J €I

0, (1+e)/2 0’ (LO—')\)RO(itiO)u = u,.

Theorem 2. (limiting absorption principle for L ) Let

assumptiong (A.1) and (A.2) be satisfied. Let I, = (Rl\ ( o’p(L)U’LOS ),

1
where WP(L) is the point spectrum of L. Then the following
statements hold:
(1) The resolvent R(§) of L {Im¥ %¥ 0) can be extended to

3t - “
T UI, as a B(Hl, 572 ° Hl,-5/2) valued locally H6lder
continuous function.-
(2) For any u eHl, 5/2 and 1&-11 » (L=-NR(Axi0)u = u.

Theorem 3. (Discreteness of the point spectrum) Let assumptions

(A.1) and (A.2) be satisfied. Then G"P(L)\ {0} is discrete

and only possible accumulation poeint is the origin.

f
Lemma 4. For each § = 0, let (fg\'k)(wt)’ k= 1,2,3,...
oo 2 1
be a C -class complete orthonormal system of L (SI’C ,d(’rﬁ)
. . . oI
and let hl(x,')\,k) be the matrix depending on x€ R, fxeRsignl

and ke N ( = the set of all integers ) defined by

2 . .5 ~
(3.1) hl(x,?‘,k) = (2m)* _S‘ Q&‘Nwl x C?zk)(wq)gg(we)‘!o'n(wo)-
Se
Then h,(x,A,k) is a bounded function of all variables. Further-

L}

(4)
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more for each fixed 9QeéR ke N and for any €>0 each

sign §°

column h(l) (x,%,k) of h, (x,%,k) satisfies the following relations:

] L

(3.2) For any n-tuple of nonnegative integers (o, Ra, ---, olyy ),

A, W C SN (i) - .
Dli DZZ,...D‘:1 hg (x,‘}\,k)& HO,—(1+$)/2’
(3.3) (L, -AI )hii) (x,9,k) = 0.

Theorem 5. ( Eigenfunction expansion for the operator L0 )

Let hl(x,‘}‘,k) (4*¥0) be the function defined in Lemma 4.

. - *
Then for any f Q—H0 and K> O , & H, (x,,k) f(x)dx Dbelongs

)
‘ ) u n=l lxic K
o LER oo B, T ana
(ij)(ﬁ\,k) - 1.i.m. g hj(x,‘),k)*f(x)dx
K=o Jeick
exists. Let
T : H ® L2®R ™ "1,2;\&)
:OHy — 2 ®eign ¢’ s T 4
ko .
be the operator defined by
Tf = 0 @ Tyf ,  f€H.

£x0
The operator M'® . @E(kewf_:ﬁcc");\ﬂ%?oﬂ)\) > Ho can be LoLined ‘o%
¢*x0
' A K A hd
TS ®E )(x) = ), l.i.m. g %,H.(x,‘k,k)f (LKA T dA
Q%0 L3 90 K90 R, = J {
sign LallXick}

Furthermore the following statements hold:

(1) T is a partially isometric operator from H0 into

Z® LlUEs; . ll(@) “‘ﬁ:\o())and T' is its adjoint operator;
L% 0 e ’

(5)
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(2) (Expansion formula) (I—Po)f’ = T'T f for all feHO;

(3) (Diagonal representation formula) f&D(LO) if and only if
3
AWHOR) €l Rge o , ), AT dA)  for all g 4 0 . If

feD(LO) » (T Lof)(‘)’k—) =A(T f)(?\sk)

¢ |

%-1

%
Lemma 6. Put G(Axi0) = J + A@J 1

- J )R(AELi0) &
B(Hy g, » Hy ,5/9)+ Let 'o(‘z'(x‘,‘)\,k) (§ % 0) be an mxm-matrix
depending on x €R", A€L and k€N defined by

(3.4) o (x,0,6) = G(AR10) hy (k)

: *
where G(4+ i0) is applied to h,(x,2\,k) by matrix multiplication

|

rule. Then the following statements hold:

-+

(1) Each column o(in(i)(x,'),k) of oLg.(X,’}\,k) is an Hl,—5/2_

valued locally Holder continuous function of A€ Ii for each fixed
k € N;

(2) O(i(x,‘)\,k) can be decomposed into three parts as

[}

- 4 *

(3.5)  LEEAE = IR GGAL )+ ECGLALK) + Wy () E)

L $

where hl(x,‘)‘,k) is the matrix defined by (3.1) , t;:(x,j\,k)

is an Hl,—(l+€)/2—valued continuous function of A€ I, for

each fixed k€ N and any € 0, and is given by

. _ T )]{
. e SN [ BT (U-Mlp)ee ey, fONE wmf
(.6) TN R="N s%c:e:«;f {n«% M) = (M E17)

using o(i(x,‘)\,k) ,and wf;(x,)\,k) is an Hl (5._2)/2-valued continuous
3

(6)
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function of ’k&I,‘ fér each fixed 'k ¢N;
(3) L(D)OL:;(X,%,R) = {KO(:;(X,‘)\,k) , where L(D) is applied
by matrix multiplication rule and the differentiation is in the
sense of distributions.

Remark. In the decomposition (3.5) of the function d;’(x,‘)\,k)
J—lhsi(x,’)k,k) s t:;(x,’}‘,k) and W;(X’l’.k) are considered to describe
the state of the incident wave, outgoing (imcoming) spherical
wave, and the wave damping r_apidly at infinity, respectively,
in the description .of the stationary scattering process. Further-

more ti(x,‘),k)’s are the quatities which are connected with

¢

the scattering amplitudes. (See furmulas (3.6) and (3.8).)
Theorem 7. Let Q—IS(L) = {')\6 lRl: \'X'*pl( K_l for some He%(L)}
[ sign {

and let I, . =R N > /U ii<ET U T . Lt

o(i(x,%,k) be the matrix-valued function defined in Lemma 6 .

4

¢

*
Then for any f€-Hl and KX>O, Xo(t(x,‘)\,k) M(x)f(x)dx Dbelongs
o <K

to LZ(RSign ¢ 226y, (N¥d))  and
+ . + *
(ZL£) (A, k) = 1.i.m. A (x,0,k) M(x)Ef(x)dx
' K>b0 - g

lxj<k

0 2 2,.m %"
exists. For any :fg(i,k)e L (Rs L (€)1 d]) and K> 0,

ign ¢’

pIRES 2 =
1. X k=1 dﬂ(x"\,k)fj (?\’k)n\lz 4% belongs to Hl and

("
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= 1l.i.m. 0( 24
(Zy £ @) 1im f . PR CIV O EC M STEN RS

exists, where l.i.m. stands for the convergence in Hl and the

integration is Bochner integral. Let

2 H —> Z@Lz

2,.m q\""‘;d
® LRy g0 L€, T A2
Ry

and
zt o Y @ik, £5E™ AZdr) —> =
1#0 Sign n, ’ 1

be the operators defined by

It = Z@Z;f,‘ £ CH,

4%0
and
A A A N _ v 4L A
N CIRTITRN ST FIRTPR W jzﬂ|) ol S
{x £ g ) e SS@ Ll I nf;d))
_"'L,.'.’ "l’ 1’-°¢: tA' e g=0 Sign a, ’ E]

respectively. Then the following statements hold:

(1) Let Pac be the projection operator in H_onto the absolutely

1

continuous subspace with respect to L. Then Zt is a partially

w4

isometric operator from H1 into ZQLZ(IR Q,Z(Cm), (NT dx

40 sign §°

1,
with initial set PacH and ,Zi is its adjoint operator;

1

(2) (Expansion formuras for L ) For any f£f¢& Hl

1.
7z gtg

-]
th
-

ac

K
Zi g (KoMK %

I
M
=
-
s
.
M

nd
1 i.m. j A ¢ x 0 HEIEGay | INE dag;
IyI<k’

(8)
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(3) (Diagonal representations) For £ eHl, Pacf &€D(L) if

Raly
and only if ',\Z:;f(‘}\,') < LZ(RSig iz(Cm),ll\lz' 0{} for each

n ¢’
§%¥0. Furthermore for £ (:Hl with PacfED(L)

T

(Z!

LE) (QLk) = N (an)_(')\,k) s A€ L‘.
Theorem 8. ( Orthogonality of eigenfunctions ) The range

R(zT) of z%

is equal to’the range R(T) of T? where T 1is
the operator defined in Theorem 5.

Next we shall give the theorems concerning the applications
of the previous theorems.

Theorem 9. (Existence of the wave operator and its completeness)

Let assumptions (A.1l) and (A.2) be satisfied. Then the wave

operators
WolL,L ,37) 1i itLJ* —itLO(I P)
| = g=- m e e -
I £ 0’ .b_’rw 0 ’
itL —itL
W (L ,L,J ) = s-lim e Je P
0 4+ toa ac

exist and therefore they are complete.

Theorem 10. Let assumptions (A.1l) and (A.2) be satified.
Let ACIO ( OIACI]_ ) , then

Wi(L,LO,J*)EO(A) = Z**TEO(A) »ACT and

* ¢
Wi (Ly,L,Jd YE(QA) = T Z"EQ) » ACTy .

(9
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Scattering operator S is custumarily defined by the formula

* % %
(3.7) S = W (L,Ly»J ) W_(L,L,J)
~ *
Put S = TST . Then S is a unitary operator (I—PO)H0 -— PacHI
A
and S 1is a unitary operator M —> M, where M = R(T) = R(Zt).

Theorem 1l. ( Representation formula for the scattering

operator ) For {§%0, let (\sk,k') be the matrix depending

F
{,tn

on ?\eRsign ﬂ‘f\ Il’ k&N , k'eN, and M(signm = sign (,

m = -H,-tdl,.-..,—l,l,..., p ) defined by

(3.8) Fl’m(‘}\,k,k )

-t
_ R’ T il 2. ¢ et do (w0
Jscym ’cwmflmm)[ﬂm A (Mx) nell(x,‘x,i)]\mgm o (O ),
m

Then for any fixed 9 and k , each column of Fj m(‘y\,k,k')
S

2 m . 1 - 1]
belongs to Q (€) with respect to k'€ N and for any f£f(k')E

2, .m i .
{7(¢) and any fixed A€ Rsign Qf\ll’

(o]

DI

Lk, kDT € 2™
k'=1 n’m

with respect to k. Let
TN 2, @ e — 2@ 0%
sign = signA sign = signA

be the operator defined by

@ ( S, @ ) )
sign {=signi J
[

- 2® 3, SR kDT ).

sign f=sign) signni=sign)

(10)
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Then Q(ﬁ) is a compact operator on z , @ Qz(cm) and

sign {=signn\

A
the scattering operatorfs can be written in terms of the operator

t(A) as follows: For any fé&M = R(T) = R(Zt)
(jgf)(?\,k) = f(A,k) - Z‘Ri[/t\(‘)\)f(%)](k) a.e. ‘XGBl-

Remark 1. F0 m(%,k,k') is the k'-th Fourier coefficient
sV : .

of the numerator in (3.6) with respect to the complete ortho-

T
normal bas?s Q(k ?(u&Q as a element of Lz(Sag.

m

Remark 2. The operator

I - 2t 2.8 »Qzécm) — 2. & Q %™

sign (= signqQ sign § = signA

is a strongly continuos unitary operator valued function of

Aertar (or r°nI,).
1 1
Remark 3. If M(x) - 1 decreases sufficiently rapidly

at infinity we can prove that the operator %(1) is Hilber;—
Schmit type.

4.Concluding remark.

Our method for proving limiting absoption principles is.

the method of Agmon and the method for proving the expansion

formulas are the method of Kato-Kuroda. In using these methods

a-
the following lemma proves toLszgggéntialu nefe

(11)
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Lemma 12, Let K be an arbitrary Hilbert space and
let HS(Rl,K) be K-valued Sobolev space of order s in the usual

sense. Let ué—HS(Rl,K) with s> 1/2. For'HeRl put

A)-u () * . u ()

u. (A,m) u( ¢ and u, A,) = lim > -
1t A - 220 T A-(pt i
We fix H’ and regard uy and u, as K-valued distributions of
the variable A . Then ule Hs_l(Rl,K) and u;e H_(l+e)/2(ml,K)

for any £> 0, and there exist constants Cland C2 such that

Nu, Gyl < C_ | ul s
1V gs~1 1 S

h 3
lluz(-,p ] H—(l+e)/2 = C2 flufl Hs.

(oo Cor uEG,w ) are 8BS @Y, K)-valued (or wT (M2
valued ) continuous function of tk.
Furthermore the following equation holds in H—(l+ )/2:
700 m-?m ip - u(f:):uéf‘o M ;\-‘E&‘i in)
For the proof of the theorems and lemmas we refer the

readers to the papers [1l] and [2].
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