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Spectra of Elliptic Operators in a Domain

with Unbounded Boundary

Takao TAYOSHT

University of Electro~-Communications*

0. Introduction

We shall study a spectral property of a 2nd order partial

differential operator

Av Sayd w3 2
L = - + &K, —— + p.~~ + 7
J_,'Ek::' Jk ijka ng‘ J 51}\

in a domain QCR" (n>2).
In case that L= R" or = the exterior of a bounded hyper-
surface, this subject have been discussed by many authors. under

various conditions on L. As for the case of unbounded boundary,

we can refer to [11 [3,4] [6-11],
In §§ 1 and 2 of this note, we shall make the following

conditions 1 and 2. (A4 list of notations will be given later.)

Condition 1. Sl is characterized by xn>-p(§) (§é(xl,ua,xn_l)),
2 -
where 3>(§) is a single valued C -function on Rn'l, and

there are positive numbers Ml and M2 such that

~ 2 2 7
T(X)>Ml(xl+'=‘+xn_l)l/¢, Jago-/aleqaa, !azp/axjaxk!ma

(3sk=1, »-,n-1).

Condition 2. Put’
al ®n

Al 2
= ) . + 5 . — + Y
P &P

¥ 1-5-1, Chofugaoka, Chofu-shi, Tokyo 132

-1~



113
then B is real and short range in the following sense.
(i) If we put D(H) = {u ELA(ﬂJi uéHl(ﬂ), =G, AueLC(ﬂj}i
and Hu = Lu for uébD(H), then H is a self-adjoint operator in
L@).

(ii) The inequality

MR o3 ISC (-4 +BYull (R o o o)+ lluly (@ o oo

v Q) wi ig i t of R.
holds for uEHa,lOC(QJ wlth'qp=0,where Cl is independent o

(iii) There are positive numbers h and C, such that

-1-h
”Bu"O(QR,R+l)§¢2R

o (R py2)

for YR>0 and VugH, . ().

Under these conditions the discreteness of non-zero eigenvalues of
H and the absolute continuity of the continuous spectrum of H will
be shown. It should be noted that, under Condition 2, the coefficient
Y may have a high singularity of some. type.
In §3, the conditions will be slightly weakened.
In §4, a short remark on the absence of positive eigenvalues
will be given.,
There are some possibiliﬁies that we can extend the arguments
in §§l—2 to include the perturbations which are not necessarily

short range. For example, we can put

B = Bl+ BZ,

Bl is real and short range in the above sense,

BZ is multiplication by a real Cl—function q., and
4 - e o '

lay | +|va,) < Clx] B %%_2'<LI7L} for some C, h >0,

But, in order to avoid some tedious culculations, we shall omit
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discussions about these possibilities., A full treatment will be

given in [12].

List of notations

€ : an unbounded domain in n-dimensional Euclidean space
R'= {x| X=(xl,-u,xn)} (niZ).
[': the boundary of £; = aQ
q = U - .
f{= VT, ﬁ-R“Rz‘ﬂ-ﬂ'{)" Ri<Xn < Rz}, /p_z’,)gzz r{']{x[ Ri< Xn <Rz})
SR= QA{X l Xn::R}. .
A: the Laplace operator; A:Jg'lba/Aij.
q>: a smooth function which depends only on X
/ U4 2 - 2
¢’= dq>/dxn, = 4 4>/dxn, X
Yn: the angle between xn-axis and outer normal.
.2 2.1/2
Ix1= (xy+ +x )7
. a : 2.1/2
vyl = (Z;laufale /'

-

Em s ¢ the space of functions with the norm
s .

' 1
S o (2 z
Wut = (Sﬂ(;-mmmzl [D¥u [Pdx )

m
a—_ fel &y An _ )
(D=2 /3Xl > S lal =a, * +onn),

Hm(G) : the space of functions with the norm

i
Wun (G) = ( S& 3P dx)—f—

Wigm

z
L () = HO(_Q) = HO,O .

1. Discreteness of non-zero eigenvalues

The next equality is important for our purpose (c.f. [a] chap.4).
Let ueH, 106(_'(7,) be a solution of the equation A-z)u=f with the
3

boundary condition un.,zo (z=6+iT , a complex number), then

G
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. 3w 2 L
.2§ d)'}%%’dzz _2R2J¢-?-)~;~nfdx + é‘jd’"'}ulzdx
1,8, Sp, R, 2R,0,

Ao ¢ FTAL + 2Tn| pHT dx
(L.1) 9-21,?2_ JZR,,RZ_

+ jtb [vuf2ces¥y dd *{S -S}‘i’éf’g‘;‘,%‘IV“l»z-‘G[@'L)ds

Ri,R> 5?; SR(

ref (= fogtaas - H{{-{ | #utas
S

Sz, SR g, Sg

Theorem 1.1. Each non-zero eigenvalue of H has a finite
multiplicity. All of the non-zero eigenvalues of H make a discrete

set on the real axis.

Proof. Let ueéD(H), Hu=iu, Aéla,bl, and 04[a,bl. It suffices

to show that u€H, ¢ for some &£>0, and
bl

(L.2) Huh?’ig Cﬂuﬂc,o ’

where ¢ and C may depend on the interval [a,bl, but are independent
of A and u. Indeed, if we can show (L.2), the assertion of the
theorem follows from the Rellich's compactness theorem (see the
proof of Th. 3.1 in [21).

Note at first that
(1.3) Huﬂa’o g_const.ﬂuﬂo’o .

This follows from Condition 2 not directly, but easily.

For any wGH2 s (s= a real number),
b

(1.4) "BW”O,l+h+s S_const.nwuzﬁ

-l
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This follows from Condition 2-{iii).
Note that (-4-A)u=-Bu, and ulsz. Put ¢s1 in (1.1) and let

RZ->al (along suitable sed%nce if necessary), then we have

0=-~2 R:z,gQ %%‘—Badx,+ S [vullcasYn ds
R(,w

(1.5)

>

/

Ry
— { (2P pufrenup) 43
Sg

for any Rl>O. In view of cos v <0 (Condition 1), we see

(1.6) o (AIZAF= [l AP )aS € 2R | 25 By,
SR DXy
! ‘Q‘Rllﬁb
In consequence of BuéI:{O,l+h ’
(1.7) %:QRH S 4 Bulde =0,
Q’ZR)QO
From (1.6) and (1.7),
(1.8) L aep R S(l{-z;lz~—‘?uf2+)\[w]2>d3 <o,
R 00 SR 3%n ‘

Return to (1.1), and put = x."°° , 0 < 2¢ < minfh,1}, R =0.

(1.8) allows us to take the limit R, »20 , and we have

2 (l—{-ze)gifi (2 [*dx < — 2R, Si,\'“i%z‘;ﬁ;dx + Re (|+22)312£(8u)€€d1
Q o Q
(1.9) ¢
+(l+ze)£(2€—l)5 w22 ufrdy
2
From this we can show
(1.10) £ Ifil%%jloll £ const. i Bu Ilg} 4¢

Ryl

Beéause of Condition 1, we have some latitude in choice of the

direction of Xn—axis. So (1.10) means
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(1.11) ai ad < const HBura
‘ Xy lvuldx < Bullg 4
o
Multiply the equation (-A—X)u:—Bu by X;EG and integrate over [,
then we have by partial integration and (1.11)

(1.12) S Iul dx < const ﬂBuﬂg +

[

From (1.11) 2nd (1.12),

(1.13) ﬂu"l,eg const."BuﬂO,l+e K

If we combine this with the inequality*

(1.14) ;[wua’s < const.(HquO’s + ”w“l,s> (syreal, WEHZ,S~’.WWFO)5
we have
(1.15) flully < const. (|Bull

gye = 0,1+¢

(1.3),(1.4) and (1.15) give

nuﬁ2’€< const.ﬂuua,s_h < const."uﬂo,o .

Thus we can conclude (1l.2). : . (Q.E.D. )

Theorem 1.2. Let A be a non-zero real number, Lu=Nu, Wrzo,and

) 1+h A
ueH- .8 for some s>~ - Then u is in H,‘w = N H- ,t

U wg t<+00

The proof of this thecrem is based on the facts that (1.5) is

valid also for uéH, (s>——229,and that
S

mmLﬁ““ﬁX S Buldx =0,

K> ﬂﬁ,oo

* This inequality follows from Condition 2-(ii).

-6
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2. Absolute continuity of the continuous spectrum

Let H. be the self-adjoint realization of - A defined as follows;

0
D(Hy) = D(H) ={ ueL ()| uel (@), wjp=0, AuL (W} , Hju=—du for

WeD(H,). And put Ry (z)=(H;-2)™" (In z % 0).

Theorem 2.1. Let £>0 and X be a compact set in the complex
plane. If the origin is not in K, there exists a positive constant
C=C(K,%) such that

(2.1) IRy(2)2lp,_ 1tE < Cltfy 1€

for any féHo 1+€ and z¢K with Im z 0. -
r 2

The proof also can be carrieéd out by use of (1.1).  But we omit
it because it is somewhat lengty and partly overlaps with the proof

of Theorem 1.1.

Lemma 2.2. Let 0<f<h and K be a compact set in the complex
plane. If the origin is not in K, there are ro=rO(K.E)>O and C=

C(X,%2)>0 such that

(2.2) ((BR(z)fﬂo,lzi < c{ufuo’;%§ +HR(z)fui(ﬂO’ro) ¥
for any fGHO 1+¢ and z€¢K with Im z %0. Here R(z):(H-z)—l.
, 0,75~

This lemma is obtained from Theorem 2.1 and the inequality

(2.8) K Bwil § const.(ﬂ(L—z)wuo’s +kul,s) (wéHZ’s s wuzo)

0,1+h+s

by estimating

{ :_Lti—-h . 2
5 (1+1x12)" 2 2 I DFuf® dx

f <1
Lp o latg

(u:R(z)f:RO(z)f—Ro(z)Bu).
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In consequence of the a%ee lemma and Theorem £.1 we have
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Lemma 2.3. Let ¢, K as above, then there are ry=r, {K,%) and

C=C(K,¢) such that

(2.4) llR(z)fﬂZ’~L%§ < C{ﬂf(b 1+e +UR(z)le(ﬂO’r0)}

for any f Hy l+¢ and z€K with Im z 40.
Yz

Theorem 2.4. Let K be a compact set in the complex plane.

If K

contains neither the origin nor eigenvalues of H, then, for any £>0,

one can take a constant C=C(K,¢)>0 such that the inequality

——

(2.5) HR(z)EI, Lltre < Cilfd, 1+
&=z = 0,3

holds for any f€H, 1+¢ and z€K with Im z £O.
N

Proof. Without loss of generality, we may assume 0<t<h.

If ]Im z‘>6>0, there is a constant C& which may depend on &, and

uR(z)f“l(QO’rO) < CéﬂfUO,LEE

According to Lemma 2.3, to prove the theorem, it suffices to

show the assertion: if z€K and Im z #0, Cb actually can be taken

independently of 5>0.

Suppose that this is not true, then there would be sequences

JzN} and {uN} which satisfy the following (2.6).

In z,30, ézNhZK, {zN} converges to a real number geK.

(2.6) JuN}(:D(H), haggt ) (& O) =1, fy=(H-z)u, converges
strongly to O in HO l+£ .

We must show that (2.6) leads to a contradiction. Note that

- . . P b
(-A~z )uN_ N B ”BuN”O,(l+£)/é § const (HfNHO (1+£)/2 +1) by

-8-
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Lemma 2.2, SO {(—A-ZN)uN§ is bounded in HO’(1+£)/Z . Consequently,

{uNk is bounded in HZ (Theorem £.1). Let us take ¢'such

y—(1+&)/2
that ¢<f<h. Then, taking a subsequences if necessary, we may assume

. A T
that éuN} converggs strongly to a function u, lnlhl,_(l+é)/z (Rellich's

compactness theorem). Moreover we can see

uuoul(ﬂb,ro) =1
(2'7) (L—O’B)U.O:O

U.O”_'=O

(Theorem 1.2). This

. 1 - .
In view of (1.1%4), quHZ’_1+E , and so uo&Ha,oo

contradicts the assumption that K contains no eigenvalues of H.

(Q.E.D.)

Theorem 2.5, The continuous spectrum of H is sbsolutely

continuous.

This is a consequence of Theorem 2.L4. See, for example, [3]

Chap.l or [8] Appendix C.

3. An extension

Let us suppose L' to be a differential operator in a domain
jﬁc:Rn. We make the following conditions.
(i) There is a diffeomorphism Q'3 0: xl:xl(Xl,.u,Xn),no, X =

Xn(Xl""’Xn)’ and fl satisfies Condition 1.
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(ii) If we define the transform of functions as follows;
(Du) (X)=u(x(X))13(X) [*/% , where J(X) is the Jacobian

1

d(xysesx )/AX s 5% ). Then L=U""L'U satisfies Condition .

In this situation, H':UHU'l is a self-adjoint realization of L!
in LC(QJ) under the Dirichlet boundary condition, and we can replace
H by H' in Theorem 1.1 and 2.5. This follows from the fact that U

. defines a unitary transform La(ﬂ)—iLd(ﬂ}).

4. A remark on the absence of positive eigenvalues

In this section, we write L in thé form

JE&=
Let us assunme thét there'exists’a'positiVe constanﬁ Ty such
that the following conditions are satisfied for {xlzro. (a) ajk »

and‘bj are rgal Valueq Ci-functions and ajkzakj.' (b) 3Fc>0 such
that CIE‘ZS §?ajkij2k §~%Jz]2 for any complex vector (Zy,:s& ).
(0) Bag, /oy =oClxl™). (@) a6y Cixlv=). (o) 3k — 2 =ofur)
(£) q(x):d(txl-l). (g) The unique continuation property holds.
(n) zgajkx.vk § 0 for each boundary point x Q!xt>ro), where
(Vl,'w,»%)vié the outer normal tdl7at X, |

The conditons (a)-(g) are nothing but those which are proposed

by Ikebe and Uchiyama in [5].

Theorem 4.1. If u is a not identically vanishing solution of
Lu=pu (A>0) in Qn{x( (x(>rO} and uli’nfxi lX(>I‘OS’=O’ then we have for

any & >0

lim riS( X ajk?{jﬁk)()\lula + lZajk(,Djﬁ)%f)ds = ©0,
)

~10-
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- 2 _ X 2
where S(r)=fp{xlIxi=r}, Xi= 5 and iDjzfzian+bj .

fxi

The proof can be carried out in the same way of [5]. Because

of the condition (h), the unboundedness of [ brings about no

essential difficulties.

L1,

If L enjoys the unique continuation property on the whole of

the absence of positive eigenvalues of H follows directly from

this theoren.

(1]

2l

(3]

[43
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