Operator theoretical approach for transport equations

### Kiyoshi Asano

Institute of Mathemaitcs Yoshida College Kyoto University Kyoto 606, Japan

### §1. Introduction

The problem of neutron transport in an infinite slab leads, after an appropriate simplification, to the evolution equation

(1) 
$$\frac{\partial}{\partial t}u(t,x,\mu) = -\mu \frac{\partial}{\partial x}u + \frac{\kappa}{2} \int_{-1}^{1} u(t,x,\mu') d\mu', \quad t > 0,$$

where  $u(t,x,\mu)$  is the density of neutrons at x (going in the direction  $\mu$  at time t), and  $\kappa$  is a positive parameter. If the slab is extended between the planes x=-a, x=a and the outside of the slab is a vacuum, we have the boundary conditions

(2) 
$$u(t, \mp a, \mu) = 0$$
,  $\mu \ge 0$ ,  $t > 0$ .

Of course we have to add the initial condition

(3) 
$$u(0,x,\mu) = u_0(x,\mu)$$
,  $-a \le x \le a$ ,  $-1 \le \mu \le 1$ .

This equation was deeply studied by J. Lehner and G. M. Wing ([2] - [4]). In this lecture, a slight improvement will be done.

First we set the problem in an operator-theoretical framework. Put  $\mathcal{H}=L^2(-a,a)$ ,  $\mathcal{H}=L^2(-\infty,\infty)$ , M=(-1,1),  $H=L^2(M;\mathcal{H})$  and  $H_0=L^2(M;\mathcal{H}_0)$ . Define closed linear operators L in  $\mathcal{H}$  and A in H (similarly  $L_0$  in  $\mathcal{H}_0$  and  $A_0$  in  $H_0$  with (-a,a) replaced by  $(-\infty,\infty)$ ) as follows:

$$D(L) = \{v(x) \in \mathcal{H} : \frac{d}{dx}v(x) \in \mathcal{H}, v(-a) = 0\},$$

$$(Lv)(x) = -\frac{d}{dx}v(x)$$

$$D(A) = \{u(x,\mu) \in H ; u(\cdot,\mu) \in D(L) \text{ for a.e.} \mu > 0 ,$$
 
$$u(\cdot,\mu) \in D(L^*) \text{ for a.e.} \mu < 0 , Au \in H\} ,$$

$$(Au) (\cdot, \mu) = \begin{cases} \mu Lu(\cdot, \mu), & \mu > 0, \\ -\mu L^*u(\cdot, \mu), & \mu < 0. \end{cases}$$

Denote by J (resp.  $\widetilde{J}$ ) the projection from  $\mathcal{H}_0$  to  $\mathcal{H}$  (resp. from  $H_0$  to H), and by K the "integral operator":

$$H \ni u(x,\mu) \longmapsto_{\sqrt{2}} \int_{-1}^{1} u(x,\mu) d\mu \in \mathcal{H}.$$

If we put

(4) 
$$B = A + \kappa K^* K$$
,  $D(B) = D(A)$ ,

(5) 
$$B_0 = A_0 + \kappa \tilde{J}^* K^* K \tilde{J}$$
,  $D(B_0) = D(A_0)$ ,

then the problem (1)-(3) can be written in an evolution equiation in H:

$$\frac{d}{dt}u = Bu , \quad u(0) = u_0 .$$

Simultaneously we consider the corresponding evolution equation in  $\mathbf{H}_0$ :

$$\frac{d}{dt}v = B_0v , \quad v(0) = v_0 .$$

It is easy to see that L (and hance L\*) generates a contraction semi-group  $e^{tL}$  (resp.  $e^{tL^*}$ ) in  $\mathcal{H}$ , and  $L_0$  generates an unitary group  $e^{tL_0}$  in  $\mathcal{H}_0$ . Hence A generates a contraction group  $e^{tA}$  in H, and  $A_0$  generates an unitary group  $e^{tA_0}$  in  $H_0$ . In addition, we obtain that

(6) 
$$e^{tL} = Je^{tL}0J^*$$
,  $e^{tL} = Je^{-tL}0J^*$   $(t \ge 0)$ ,

(7) 
$$e^{tA} = \widetilde{J}e^{tA}_{0J}^{*}$$
,  $e^{tA}^{*} = \widetilde{J}e^{-tA}_{0J}^{*}^{*}$   $(t \ge 0)$ .

Since  $C = K^*K$  (resp.  $C_0 \equiv \widetilde{J}^*K^*K\widetilde{J}$ ) is a bounded linear operator in H (resp.  $H_0$ ), B (resp.  $B_0$ ) generates a semi-group  $e^{tB}$  in H (resp. a group  $e^{tB_0}$  in  $H_0$ ). Furthermore we have

(8) 
$$e^{tB} = \tilde{J}e^{tB}0\tilde{J}^*, \quad t \geq 0$$
.

Following Lehner and Wing, we are concerned with spectral

properties of B and B $_0$ , and asymptotic properties of e<sup>tB</sup> and e<sup>tB $_0$ </sup>. However the relation (8) implies that there are no essential differences between e<sup>tB</sup> and e<sup>tB $_0$ </sup> in the physical meaning. Thus we treat only B $_0$  and e<sup>tB $_0$ </sup> in this lecture.

Our main result is as follows:

The continuous spectrum of  $\,{}^{B}_{0}$  , which is the whole imaginary axis, is similar to the spectrum of  $\,A_{0}^{}\,$  except for the discrete values of  $\,\kappa$  .

§2. The spectrum of  $B_0$ 

Put  $\widetilde{K}$  =  $K\widetilde{J}$  . Then the second resolvent equation for  $~A_0$  and  $~B_0$  :

(9) 
$$(\lambda - B_0)^{-1} = (\lambda - A_0)^{-1} + \kappa (\lambda - A_0)^{-1} \tilde{K}^* \tilde{K} (\lambda - B_0)^{-1}$$

gives the following

$$(10) (\lambda - B_0)^{-1} = (\lambda - A_0)^{-1} + \kappa (\lambda - A_0)^{-1} \tilde{K}^* (1 - \kappa G(\lambda))^{-1} \tilde{K} (\lambda - A_0)^{-1} ,$$

where

$$G(\lambda) = \widetilde{K}(\lambda - A_0)^{-1}\widetilde{K}^* = K\widetilde{J}(\lambda - A_0)^{-1}\widetilde{J}^*K^*.$$

Thus the study of  $G(\lambda)$  is essential for our purpose. Denoting by  $\mathbb{B}(\mathcal{H})$  (resp.  $C_{\infty}(\mathcal{H})$ ) the set of all bounded (resp. compact) linear operators in  $\mathcal{H}$ , and by  $\|T\|$  the operator norm of  $T \in \mathbb{B}(\mathcal{H})$ , we summarize some properties of  $G(\lambda)$ .

Lemma 2.1. (i)  $G(\lambda)$  is a  $C_{\infty}(\mathcal{H})$ -valued analytic function in  $C_{+} = \{\lambda \; ; \; \operatorname{Re}\lambda \; \not \geq \; 0\}$  and satisfies

$$G(\overline{\lambda}) = G(\lambda)^*$$
,  $G(-\overline{\lambda}) = -G(\lambda)^*$ .

(ii) Let  $\lambda \in \mathbb{C}_{\pm}$ .  $\lambda$  belongs to the resolvent set  $\rho(B_0)$  of  $B_0$  (i.e., there exists  $(\lambda - B_0)^{-1} \in \mathbb{B}(H_0)$ ) if and only if there exists  $(1 - \kappa G(\lambda))^{-1} \in \mathbb{B}(\mathcal{H})$ .

(iii) For  $\lambda \in \mathbb{C}_+$ ,  $G(\lambda)$  satisfies

$$0 < \operatorname{ReG}(\lambda) = \frac{1}{2} \{ G(\lambda) + G(\lambda)^* \} \le \frac{1}{\operatorname{Re}\lambda} ,$$

$$ImG(\lambda) = \frac{1}{2i} \{G(\lambda) - G(\lambda)^*\} \leq 0 \quad (Im\lambda \geq 0)$$
.

(iv) For 
$$0 < \beta < \beta'$$
,  $G(\beta) > G(\beta') > G(+\infty) = 0$ .

(v)  $G(\lambda)$  is continuous in  $\overline{\mathbb{C}}_+$  -  $\{0\}$  =  $\{\lambda \ ; \ Re\lambda \geq 0 \ , \ \lambda \neq 0\}$  with respect to the norm of  $B(\mathcal{H})$  and satisfies

$$0 < \text{ReG}(\beta+i\gamma) \le \frac{1}{|\gamma|}(1+\pi)$$
,

 $ImG(\beta+i\gamma) \ge 0$  for  $\gamma \ge 0$  and  $\beta \ge 0$ .

(vi) For  $\lambda \in \mathbb{T}_+$ -[0, $\infty$ ), there exists  $(1-\kappa G(\lambda))^{-1} \in \mathbb{B}(\mathcal{H})$ . For any  $\delta > 0$ , there exists a constant  $c_{\kappa,\delta} > 0$  such that

$$\|(1-\kappa G(\lambda))^{-1}\| \le C_{\kappa,\delta}$$
  $(\operatorname{Re}\lambda \ge 0, |\operatorname{Im}\lambda| \ge \delta)$ .

For  $\lambda \in \mathbb{C}_{-}\{0\}$ , there holds

$$\|(1-\kappa G(\lambda))^{-1}\| \leq 1.$$

For  $\beta>0$ , there exists  $(1-\kappa G(\beta))^{-1}\in B(\mathcal{H})$  except for the fimite set of  $\beta$  which depends on  $\kappa$ .

Carrying out simple calculations we obtain

$$G(\lambda) = \int_0^{\infty} \frac{1}{2} (e^{tL} + e^{tL^*}) dt \int_0^1 \frac{1}{u} e^{-\frac{\lambda t}{\mu}} d\mu$$
.

Using the equality

$$\int_0^1 \frac{1}{\mu} e^{-\frac{z}{\mu}} d\mu = \int_1^\infty \frac{1}{\mu} e^{-\mu z} d\mu$$

$$= -\log z - b + E_0(z) ,$$

where b is Euler number and  $E_0(z)$  is an entire analytic function of z which satisfies  $|E_0(z)| \le |z|$  for  $z \in \mathbb{C}_+$ , we have

(11) 
$$G(\lambda) = \int_0^\infty \operatorname{Re} e^{tL} \{-\log \lambda t - b - E_0(\lambda t)\} dt$$
.

We put

$$\begin{split} K(\lambda) &= -\int_0^\infty \, \text{Re } \, e^{tL} \text{d}t (\log \lambda + b) \, + \, \int_0^\infty \, \text{Re } \, e^{tL} (-\log \, t) \, \text{d}t \ , \\ G_0(\lambda) &= \int_0^\infty \, \text{Re } \, e^{tL} E_0(\lambda t) \, \text{d}t \ . \end{split}$$

Since  $\int_0^\infty \text{Re } e^{tL}dt = \text{Re } L^{-1}$  reduces to the 1-dimensional operator:

$$\mathcal{H} \in u(x) \longrightarrow \frac{1}{2} \int_{-a}^{a} u(x) dx = a \frac{1}{2a}(u,1) 1 \in \mathcal{H}$$
,

we have

(12) 
$$K(\lambda) = -aNlog \lambda - baN + K_0$$

where N is the orthogonal projection  $\frac{1}{2a}$ ( ,1)1 in  $\mathcal H$  and

$$K_0 = \int_0^\infty \text{Re } e^{tL}(-\log t) dt \in C_\infty(\mathcal{H})$$
.

The inequality  $|E_0(z)| \le |z|$   $(z \in \overline{\mathbb{C}}_+)$  implies that

$$\|G_0(\lambda)\| \leq \int_0^a |\lambda t| dt = \frac{a^2}{2} |\lambda|.$$

This implies that the spectrum  $\sigma(G(\beta))$  of  $G(\beta)$  converges to the spectrum  $\sigma(K(\beta))$  of  $K(\beta)$  as  $\beta \downarrow 0$ . Thus we have the following

Lemma 2.2. Let  $\{\rho_n(\beta)\}$  be the set of (positive) eigen values of  $G(\beta)$  (counted as many times as multiplicities). We can arrange  $\{\rho_n(\beta)\}$  in the following way;

 $\rho_n(\beta)$  is monotone decreasing in  $\beta \in (0,\infty)$ ,

$$\rho_n(\beta) + 0$$
 as  $\beta \uparrow \infty$ ,

$$\rho_n(\beta) \uparrow \rho_n^*$$
 as  $\beta \downarrow 0$ ,

 $\rho_n(\beta)$  is real analytic in  $\beta \in (0,\infty)$ .

Here  $\rho_1^* = \infty$  and  $\rho_2^* \ge \rho_3^* \ge \cdots$  are the eigen values of N'K<sub>0</sub>N' arranged in the decreasing order. (In above we have put N' = 1 - N. Note that N'K<sub>0</sub>N' > 0 on the range R(N') of N'.)

For  $\kappa > 0$ , denote by  $N(\kappa)$  the number of  $\rho_n^*$  such that  $\kappa \rho_n^* > 1$ . Let  $\beta_n = \beta_n(\kappa)$  be the root of  $\kappa \rho_n(\beta) = 1$  for  $n = 1, \cdots, N(\kappa)$ . Then  $(1-\kappa G(\lambda))^{-1} \in \mathbb{B}(\mathcal{H})$  exists for  $\lambda \in \overline{\mathbb{C}}_- \cup \overline{\mathbb{C}}_+ - \{0, \beta_1(\kappa), \cdots, \beta_{N(\kappa)}(\kappa)\}$ . The  $\beta_n(\kappa)$ 's are simple roots of  $(1-\kappa G(\lambda))^{-1}$ . Hence  $(\lambda - B_0)^{-1} \in \mathbb{B}(\mathcal{H})$  exists for  $\lambda \in \mathbb{C}_- \cup \mathbb{C}_+ - \{\beta_1(\kappa), \cdots, \beta_{N(\kappa)}(\kappa)\}$  and has simple poles at  $\{\beta_1(\kappa), \cdots, \beta_{N(\kappa)}(\kappa)\}$ . A simple argument connected with Lemma 2.1 shows

that the there is not the point spectrum  $\sigma_p(B_0)$  of  $B_0$  on the imaginary axis iR . Hence  $\sigma_p(B_0)$  coincides with the discrete spectrum  $\sigma_d(B_0)$  of  $B_0$ , i.e.  $\sigma_p(B_0) = \sigma_d(B_0) = \{\beta_n(\kappa)\}$ . Similarly  $\sigma_p(B_0^*) = \sigma_d(B_0^*) = \{\beta_n(\kappa)\}$ . Furthermore the inequality (proved by Ukai)

$$Re(\widetilde{K}^{*}u, (\lambda - A_{0})^{-1}\widetilde{K}^{*}u) \ge Re((\lambda - A_{0})(\lambda - A_{0})^{-1}\widetilde{K}^{*}u, (\lambda - A_{0})^{-1}\widetilde{K}^{*}u)$$

$$= Re\lambda \|(\lambda - A_{0})^{-1}\widetilde{K}^{*}u\|^{2}$$

shows that for  $\lambda \in \mathbb{C}_+$ 

$$\|(\lambda - A_0)^{-1} \widetilde{K}^* u\|^2 \le \frac{1}{\operatorname{Re} \lambda} \operatorname{Re}(u, G(\lambda) u)$$

$$\le \frac{1}{\operatorname{Re} \lambda} \|u\| \|_{G}(\lambda) u\|.$$

Thus the compactness of  $G(\lambda)$  implies that of  $(\lambda-A_0)^{-1} \tilde{K}^*$ . This implies that the essential spectrum of  $B_0$  coincides with that of  $A_0$ , which is the whole imaginary axis. All these arguments show that the continuous spectrum  $\sigma_0(B_0)$  of  $B_0$  is the imaginary axis iR, and the residual spectrum  $\sigma_r(B_0)$  of  $B_0$  is empty. Thus we have the following theorem due to Lehner.

Theorem 1. Let  $\kappa > 0$  and  $\beta_0$  be defined by (5). Then

$$\rho(B_0) = \mathbb{C}_- \cup \mathbb{C}_+ - \{\beta_1(\kappa), \cdots, \beta_{N(\kappa)}(\kappa)\}$$

$$\sigma_p(B_0) = \sigma_d(B_0) = \{\beta_1(\kappa), \cdots, \beta_{N(\kappa)}(\kappa)\}$$

$$\sigma_{c}(B_{0}) = i\mathbb{R} , \quad \sigma_{r}(B_{0}) = \phi$$

$$(\lambda - B_{0})^{-1} \text{ has simple poles at } \{\beta_{1}(\kappa), \cdots, \beta_{N(\kappa)}(\kappa)\}.$$

§3. The similarity of the continuous spectra of  $A_0$  and  $B_0$ 

Denote by  $P_j = P_j(\kappa)$  the residue of  $(\lambda - B_0)^{-1}$  at  $\lambda = \beta_j(\kappa)$ , that is the eigen projection of  $B_0$  belonging to  $\beta_j(\kappa)$ ,  $j = 1, \dots, N(\kappa)$ . Put  $Q_1 = \Sigma P_j$ ,  $Q_2 = 1 - Q_1$ ,  $B_1 = B_0Q_1$  and  $B_2 = B_0Q_2$ . Then  $(\lambda - B_0)^{-1}Q_2 = (\lambda - B_2)^{-1}Q_2$  is analytic in  $C_+$  and there hold

$$(\lambda - B_0)^{-1} = (\lambda - B_0)^{-1}Q_2 + \sum_{j=1}^{N(\kappa)} \frac{1}{\lambda - \beta_j} P_j$$
,  
 $e^{tB_0} = e^{tB_0}Q_2 + \Sigma e^{t\beta_j}P_j$ .

In order to study the spectral property of  $\ B_2$  , we use the method of  $\ A_0$ -smooth perturbation developed by Kato [1] . In what follows, we put for a fixed  $\ \alpha \in (0,\ 1)$ 

$$\alpha_1(s) = \begin{cases} 2^{\alpha} - \log|s|, & |s| \le 1, \\ (1+|s|)^{\alpha}, & |s| \ge 1, \end{cases}$$

$$\alpha_2(s) = (1+|s|)^{\alpha}$$
,

and for later conveniens  $N_1 = N$  and  $N_2 = N'$ . From Lemma 2.1, (11) and (12), we obtain for some constant  $a_0$ 

$$\|\text{Re N}_{j}G(\pm\sigma+i\gamma)N_{j}\| \leq \frac{1}{2} a_{0}\alpha_{j}(\gamma)^{-1}, \quad j = 1,2.$$

Let  $\{E_0(s)\}$  be the spectral resolution of  $-iA_0$  and put  $R(\lambda)$ 

$$= (\lambda - A_0)^{-1} = \int (\lambda - is)^{-1} dE_0(s) . \quad \text{Following Kato [1] , we have }$$

$$\| N_j \widetilde{K} (\lambda - A_0)^{-1} u - N_j \widetilde{K} (-\overline{\lambda} - A_0)^{-1} u \|^2$$

$$\leq 2 \| \text{Re } N_j G(\lambda) N_j \| (\{(\lambda - A_0)^{-1} - (-\overline{\lambda} - A_0)^{-1}\} u, u)$$

$$\leq a_0 \alpha_j (\gamma)^{-1} \int_{-\infty}^{\infty} \frac{2\sigma}{\sigma^2 + (\gamma - s)^2} d\| E_0(s)\|^2 , \quad \lambda = \sigma + i\gamma .$$

This implies

$$\int_{-\infty}^{\infty} \alpha_{j}(\gamma) \| N_{j} \widetilde{K} R(\sigma + i\gamma) u - N_{j} \widetilde{K} R(-\sigma + i\gamma) u \|^{2} d\gamma$$

$$\leq 2\pi \alpha_{0} \| u \|^{2}, \quad j = 1, 2.$$

Using estimates for Hilbert transforms with weighted norms, we have

$$\int_{-\infty}^{\infty} \alpha_{j}(\gamma) \| N_{j} \widetilde{K}R(\sigma+i\gamma) u \|^{2} d\gamma$$

$$\leq C_{0} \int_{-\infty}^{\infty} \alpha_{j}(\gamma) \| N_{j} \widetilde{K}R(\sigma+i\gamma) u - N_{j} \widetilde{K}R(-\sigma+i\gamma) u \|^{2} d\gamma$$

$$\leq 2\pi a_{0} C_{0} \| u \|^{2},$$

Hence  $N_j\widetilde{K}R(\sigma+i\gamma)u$  is an element of a  $\mathcal{H}$ -valued Hardy class with a weighted norm, and is a continuous function of  $\sigma \geq 0$  and  $\sigma \leq 0$  with values in  $L^2(R, \alpha_j(\gamma)^{\frac{1}{2}}d\gamma$ ;  $\mathcal{H}$ ). Putting  $R_1(\lambda) = (\lambda - B_0)^{-1}$  and recalling that

$$\widetilde{K}(\lambda - B_0)^{-1} = (1 - \kappa G(\lambda))^{-1} \widetilde{K}(\lambda - A_0)^{-1},$$

we define so called wave operators  $W_{\pm}$  and  $Z_{\pm}$  as follows:

$$(W_{\pm u,v}) = (u,v) \pm \frac{\kappa}{2\pi i} \int_{-\infty}^{\infty} (\widetilde{K}R(\pm 0 + i\gamma)u, \widetilde{K}R_{1}(\mp i0 + i\gamma)^{*} v) d\gamma$$

$$(Z_{\pm u,v}) = (Q_2 u,v) \mp \frac{\kappa}{2\pi i} \int_{-\infty}^{\infty} (\widetilde{K}R_1(\pm 0 + i\gamma)Q_2 u, \widetilde{K}R(\mp 0 + i\gamma)^*v) d\gamma$$
.

To see the convergence of these integrals, we have to investigate the behavior of  $(1-\kappa G(\lambda))^{-1}$  near  $\lambda=\pm 0\in \mathbb{C}_{\pm}$ . We put  $N_{\bf i}G_{\bf ij}(\lambda)N_{\bf j}=G_{\bf ij}(\lambda)$ ,  ${\bf i}=1,2$ . Then  $G_{\bf ij}(\lambda)$ 's have the following forms:

$$\begin{split} &G_{11}(\lambda) = \{-a\log\lambda - ab - g_1(\lambda)\}N_1 \ , \\ &G_{12}(\lambda) = G_{21}(\overline{\lambda})^* = N_1K_0N_2 + N_1G_0(\lambda)N_2 \ , \\ &G_{22}(\lambda) = N_2K_0N_2 + N_2G_0(\lambda)N_2 \ , \\ &|g_1(\lambda)| \leq \frac{1}{2} |a^2|\lambda| \ , \qquad \|N_1G_0(\lambda)N_1\| \leq \frac{1}{2} |a^2|\lambda| \ . \end{split}$$

Let us assume that  $\kappa > 0$  and  $\kappa^{-1} \notin \sigma(N_2 K_0 N_2)$ . Then for sufficiently small  $\lambda \in \mathbb{C}_+$ , there exists  $(1 - \kappa G_{22}(\lambda))^{-1} \in \mathbb{B}(\mathcal{H})$  with uniformly bounded norm. Hence we have

$$\|(1 - \kappa G(\lambda))^{-1}u\| \le \frac{c_1}{2 - \log|\lambda|} \|N_1u\| + c_2 \|N_2u\|$$

for sufficiently small  $~\lambda\in\,\mathbb{C}_{+}~$  (and hence for small  $~\lambda\in\,\mathbb{C}_{-})$  . This implies

$$\|\widetilde{K}R_1(\lambda)u\| \leq \frac{c_1}{2-\log|\lambda|} \|N_1\widetilde{K}R(\lambda)u\| + c_2 \|N_2\widetilde{K}R(\lambda)u\|$$

for sufficiently small  $\lambda \in \mathbb{C}_{\pm}$ . Thus the above integrals converge absolutely, and  $W_{\pm}$ ,  $Z_{\pm} \in B(H_0)$ . Following Kato's argument, we can easily see that

(13) 
$$Z_{\pm} W_{\pm} = 1$$
,  $W_{\pm} Z_{\pm} = Q_2$   
 $(\lambda - B_2) W_{\pm} = W_{\pm} (\lambda - A_0)^{-1}$  i.e.  $B_2 = W_{\pm} A_0 Z_{\pm}$ .  
(14)  $e^{tB_2} = W_{\pm} e^{tA_0} Z_{\pm}$ .

Thus we have

Theorem 2. Let  $\kappa > 0$  and  $\kappa^{-1} \notin \sigma(N_2 K_0 N_2)$ . Then  $A_0$  and  $B_2 = B_0 Q_2$  are similar to each other. That is,  $W_\pm$  and  $Z_\pm \in \mathbb{B}(H_0)$  exist and satisfy (13) and (14). Furthermore we have

$$W_{\pm} = s - \lim_{t \to \pm \infty} Q_2 e^{tB_0} e^{-tA_0},$$
 $Z_{\pm} = s - \lim_{t \to \pm \infty} e^{tA_0} e^{-tB_0} Q_2.$ 

If we put  $F(\Delta) = W_{\pm}(\Delta)E_0(\Delta)Z_{\pm}(\Delta)$ ,  $\Delta = (a,b)$ , then  $F(\Delta)$  is the "spectral resolution" of  $B_2$ , i.e.,

$$B_0 = i \int_{-\infty}^{\infty} \lambda dF(\lambda) + \Sigma \beta_j P_j.$$

#### References

- [1] Kato, T., Wave operators and similarity for some non-self-adjoint operators, Math. Ann., 162(1966), 258-279.
- [2] Lehner, J. and Wing, G. M., On the spectrum of an unsymmetric operator arising in the transport theory of neutrons, C.P.A.M., 8(1955), 217-234.
- [3] \_\_\_\_\_, Solution of the linearized Boltzmann transport equation for the slab geometry, Duke Math. J., 23(1956), 125-142.
- [4] Lehner, J., The spectrum of the neutron transport operator for the infinite slab, J. Math. Mech. 11(1962), 173-181.
- [5] Asano, K., Sizuta, Y. and Ukai, S., Operator theoretical approach for transport equations, RIMS-Kokyuroku 164, 56-106.