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§1. Introduction

The problem of neutron transport in an infinite slab leads,
after an appropriate simplification, to the evolution equation
(1) | §~u(t X,u) = iy + K j 1u(t X,u')du' t >0

3t s Xyl uax 7 -1 sX5 U u st ‘s
where u(t,x,u) 1is the density of neutrons at x (going in the
direction u at time t) , and k 1is a positive parameter. . If

the slab is extended between the planes X = -a, x = a and the

outside of the slab is a vacuum, we have the boundary conditions

~
S
-
-t
v .
(o]

(2) u(t,*a,u) =0, q
0f course we have t§ add the initial condition
(3) u(O,x,g) = uo(x,u) , -a <x<a, -l <pc<1

This equation was deeply studied by J. Lehner and G. M. Wing

([2] = [4]) . 1In this lecture, a slight improvement will be

done.
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First we set the problem in an operator-theoretical frame-

work. Put 9 = L%(-a,a) , H=1%(-w,®) , M= (-1,1), H =

LZ(M ; ) and Hy = LZ(M ;}&Q . Define closed linear operators

L in J¢ and A in H (similarly L; in #;, and A, in H,
with (-a,a) replaced by ‘(~w,w)) as follows: |
D(L) = (ve B ;3 Fvmed, vi-a) =0},
_d
(Lv) (x) = -xv(x)
D(A),%f{u(Xsﬂ)’é H ;. u(e,u) € D(L): ~for:"a.e.ji 5707,
u(-,u) € DY) for d.e.u< 0 A€ H)
(Au) (e ,u) = ( plu(e,u) , wu>0,
* -
~pluCe,u) , w0,

Denote by J _(resp. 33 “the projectidn from jfo ‘to P ‘(resp.

from HO to H) , and by K the "integral operator'':
1,1
H > u(x,u) —>/5 f_lu(x,u)du e .

I1f we put

(4) B=A+kkKK, D(B) =D(A) ,

~vEk Rk A ) »
o * kI KKI, D(By) = D(Ay) ,
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then the problem (1)-(3) can be written in an evolution equia-
tion in H :

d
Iy = Bu , u(0) = ug -

Simultaneously we consider the corresponding evolution equation

in H0

%fv = Bov , v(0) = Vo .

. x -
It is easy to see that L (and hance L) generates a

*
.contraction semi-group et; (resp. etLr) in 3, and L, sgen-

erates an unitary group etLO in 3€b . Hence A generates a

contraction group etA in H , and A0 generates an unitary
group etA0 ‘in Hy . In addition, we obtain that
L * * % ’
(6) etl = jetlog , etl - ge~tlog (t>0 ,
~ * * ~ ~R
(7) eth = Jethos™ |, ™A = Tt (> 0)

R ~k ko .
Since C = K K (resp. C0 = J K KJ) 1is a bounded linear operator
in H - (resp. Ho) , B (resp. BO) generates a semi-group otB

in H (resp. a group etBo in Ho) . Furthermore we have
~ ~k
(8) et = FetB07 | t> 0.

.Following Lehner and Wing, we are concerned with spectral -

3
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properties of B and B0 , and asymptotic properties of etB

tBy

and e However the relation (8) implies that there are

no essential differences between etB and étBO

tBy

in the physical
meaning. Thﬁs we treat only BO and e in this lecture.
Our main result is as follows:

The continuoué spectrum of B, , which is the whole imagi-

nary axis, is similar to the spectrum,of_AA0 except for the

discrete values of « .
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§2. The spectrum of B0

Put VE’= KJ .  Then the second resolvent equation for AO

and B0 :

(9) (A-BO)'l - (A-Ao)'l + K(A-Aoj'lk'*fc'(X-BO)'l
gives the following
10) (-3t = (a-ap 7t K‘(A'AO)-lhﬁ*(l-KG()\))l-i%’(A-AO)-l ,
where
G = K(a-a) 1K = KT (a-a) 1K .

Thus the study of G(A) is essential for our purpose. Denoting
by B(E@) (resp. Cw(3€)) the set of all bounded (resp. compaCt)
linear operators in P , and by ||T| the opeia;or norm of T &

B(H) , we summarize some properties of G(A)

Lemma 2.1. (i) G(A) 1is a mw(ae)—valued analytic func-

tion in C+ = {A ; Rex 3 0} and satisfies
* . %
G(X) = G(A) , G(-X) = -G(W) .

(ii) Let are €, . A belongs to the resolvent set p(BO) of

B (i.e., there exists (A-BO)'lé B(Hoj) if and only if there

0
exists (l-KG(A))-le B(H)

(iii)' For 1€ €, , G(A) satisfies

-
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-1 )<
0 < ReG(A) = z{G(A) + 6(N) } < 55 »

IG(A) = 2= (6N - 60 1 g0 (Imn 3 0)

(iv) For 0 <g <8 , G(B) > G(8') > G(+=) = 0 .

v) G(A) is continuous in T_ - {0} = {X ; ReA > 0, A # 0}

with respect to the norm of B(3) and satisfies |
. 1 '
0 R
< eG(B+1Y).§ T?T(1+“) >
ImG(B+iy) 2 O for y 0 and B8 >0 .

(vi) For A€ T,-[0,») , there exists (1-kG(A)) 1€ B(4R)

For any &6 > 0 , there exists a constant Ce.s > 0 such that
. ’

la-xe) ™ <c s (Rex >0, [Im] > 6)
For x€ T_-{0} , there holds
RERTTE R IR

For B > 0 , there exists (l'KG(B))-l'E B(H#) except for

the fimite set of B which depends on « .

Carrying out simple calculations we obtain

At

—

* -
G = [§ et + et yat ] Setau.
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Using the equality

Z
11§
—~e Fd
fo m u

I % e Mdy

-log z - b + Eo(z) ,

where b 1is Euler number and Eo(z) is an entire analytic fun-

ction of z which satisfies |Ej(z)| < |z| for z € T, , we

have
(11) 6(A) = f5 Re e®"{-log At - b - Ej(At) }dt .
We put
K(A) = -[; Ré etLdt(logA+b) + j; Re etL(-log t)dt ,

Gy(A) = [§ Re e®FE (at)dt .

Since [g Re etldt = Re L reduces to the 1-dimensional

operator:
H e ulx) F——é‘% f_g u(x)dx = azé{u,l)lqe H®,
we have

(12) K(A) = -aNlog A - baN + K,
where N 1is the orthogonal projection %5( ,1)1 in . and

K, = g Re e*F(-log t)dt € €, (3P) -

:7
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The inequality |E,(z) | |z| (z € T,) implies that

2
a a
uGQ(}\)"f_foMtidt TIH .

This implies that the spectrum o(G(B)) of G(B) converges to
the spectrum o(K(B)) of K(B) aé B + 0 . Thus we have the

following
Lemma 2.2. Let {p,(B)} be the set of (positive)

eigen values of G(B) (counted as many times as muitiplicities);

We can arrange '{pn(s)} in the following way;

p,(B) is monotone decreasing in B € (0,») ,
py(B) + 0 as B+ =,

* -
p,(B) t o as B+ 0,

pn(B) is real analytic in B8 € (O,@)_.

% * *
Here Py = and Py > pg >ve are the eigen values of N'KON’

arranged in the decreasing order. (In above we have put N' =

1 - N . Note that _N'KON' > 0 on the range R(N') of N' .)~

v . A
For « > 0 , denote by N(k) the number of Pn such that

*
ko, > 1 . Let Bn-= Bn(K) be the root of Kpn(B) =1 for n =

1, =+, N(x) . Then (1-«xG(\)) 1€ B(H) exists for r e T U
¢, - {o, By(k), ===, BN(K)(K)} . The Sn(K)'s are simple roots
of (1-x6())1 . Hence (A-By) le B(HR) exists for ie C_V

c, - {Bl(K), sev, BN(K)(K)} and has simple poles at {B;(k), «¢-

+

BN(K)(K)} . A simple argument connected with Lemma 2.1 shows
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that the there is not the point spectrum op(BO) of BO on the

ipaginary axis iR . Hence op(BO) coincides with the discrete

spectfum o4(B;) of By , i.e. op(Bo) = od(BO) = {Bn(K)}
Similarly op(B;) = od(B;T = {8 (k)} . Furthermore the inequal-

ity (proved by Ukai) °

~r ‘ -1k
Re(K u, (A-AO) K u).

{v

Re ((A-Ag) (A-Ag) 1K, (A-a5) 1K"w)

-]~%
ReA | (A-Ag) 1K uf?
shows that for A € C,

a-2g) 2K w2 < 2L Re(u,c (VW)

A

e lubllg (A)ull .

. . -k
Thus the compactness of G(A) ‘implies that of (X-AO) 1K .
This implies that the essential spectrum of B, coincides with

that of A which is the whole imaginary axis. All these argu-

0 H
ments show that the contiﬁuous'spectrum oO(BO) of B0 is the

imaginary axis iR , and the residual spectrum or(BO) of B0

is empty. Thus we have the following theorem due to Lehner.

Iheorem 1. Let x > 0 and BO be defined'by (5) . Then

p(By) = € UC, - {B1(K), ==+, By(y (K]}

0, (Bg) = 04(By). = {By(k), ==, By(yy ()}
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6. (By) = iR , 0 (By) = ¢

(A-BO)-I has simple poles 'at. {Bl(lc), see, BN(K) («)} .

[ D
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§3. The similarity of the continuous spectra of A0 and B,

Denote by Pj = Pj(K) the residue of (A-BO)-l at A
Bj{K):, that is the eigen projection of B0 belonging to
Bj(K) ’ . j’= 1,¢+¢,N(k) . Put Ql = ZPj’

. - 1 - .
ByQ; and B, = ByQ, . Then (A-By>"1Q, = (A-B,)"1Q, is ana-

QW =1-0Q, B =

lytic in €, and there hold

. N(k)
= (B lQ, ¢ £ g P,
j:l . j

-1
(A'Bo)

etB0 - etBOQZ + ZetBij ;

In order to study the spectral property of B, , we use the
method of Ao-smooth perturbation developed by Kato [1] . 1In

what follows, we put for a fixed o € (0, 1)

a;(s) = 2% - log|s| , s} <1,
(1+[s® , Is| > 1,
32[5) = (1+|S|)a ’
and for later conveniens N1 =N and N, = N' . From Lemma 2.1,

(11) and (12) , we obtain for some constant a,
[Re N,G(xo+iy)N.| < = aja:(v)" Y, § = 1,2
| A At A
Let '{EOCS)} be the spectral resolution of -iAO and put R(A)

1/
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= (t-Ag) "t = [(r:is)"1dE (s) . Following Kato [1] , we have

I Nj"ﬁ(x-Ao)‘lu - NRC-X-Ag) "l

0’

. -1 -1,
< 2|Re NjG(A)qu({(A-qQ) - (-X-Ay) “lu,u)
_ S 20 2 . .
< ago . (y) co 77 AEG(SIT , A =0 + iy
= 0% foo o7 R

This implies
[ s O INRR(*iv)u - N R (-0+iv)uf ay
< 2 12 j = 1,2 .
< 2maglul®, 3 =1,2.

Using estimates for Hilbert trénsforms with weighted norms, we

have

'f;:a-(YjuNjﬁ§(0+iY)U"2dY'

I A

CQ'I_:G-(Y)“Njﬁh(U+iY)u - Njkk(-d+iY)u"2dy

A

2
ZnaOCOﬁu" s

Hence Njik(c+iy)u is an element of a J{-valued Hardy class

with a weighted norm, and is a continuous function of o > 0
' 1

and ¢ < 0 with values in LZ(R, aj(y)zay ; 38)

Putting RI(A)' (A-Bo)'; and recalling that

Roa-)™t = (k600 RO-Ap

/2
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we define so called wave operators W,_  and Z;' as follows:

: 0 O . ”~ —_ . *
Wy, v) = (0w 2 2——-—;?1 [ .o (RR(£0+iy)u, KRy (Fi0+iy) - v)dy ,
—— . o0 lad . ~ - . *
(Z,y,v) = (Qu,M) # 7§T [ . (KR; (£0+iy)Q,u, KR(F0+iy) v)dy .

To see the convergence of these integrals, we have to in-
vestigate the behavior of (l-KG(A))'l near;AX =0 €€, .

We put NiGij(A)Nj = Gij(k) , 1=1,2. ‘Then Gij(A)'s havg

- the following forms:

Gllﬁx) ‘{-alog)x - ab - gl(i)}N

1 14

| .
6,0 = Gy (X) = NyKoN, + NGy (AN

1 2

Gy2(2) = NyKgN; + NyGy (MIN,
1.2 - 1.2
1 < a2l L INGOIN) < el

Let. us assume that K > 0 and K-l ¢ U(NZKONZ) . Then for

sufficiently small X € €

+ ?

there exists (1 - KGZZ(A))'lé

B(}H) with uniformly bounded norm. Hence we have

C o
l. (1 - KG_(A))’_luﬁ f_ mﬁlNlu‘l + c2|N2uﬂ

for sufficiently small ) € C,

(and hence for small A & C)

This implies

Cc
nKRI(A)uu < ZTTBETKT“NlKR(*)““ + cz“NzKR(*)““

/3



137

for sufficiently small A € € . Thus the above integrals con-

verge absolutely, and W+ s L, € B(HO) . Following Kato's argu-

ment, we can easily see that

13y z, W, =1, W, 7, ='Q

(A-BW, = W,(-A))"h ie. B, = WA

(14) e =W,_e V/

+

Thus we have : o
Theorem 2.  Let k >0 and « " 4 O(N,KN,) . Then A,
and B2*= ByQ, are similar to each other. That is, W, and

Z, € B(H)) exist and satisfy (13) and (14). Furthermore we

Have
tB -tA
Wy =5 -1imQ, e 0 0 >
- trtoo
tA -tB
. 0 0
Z, = s - 1lim e e .
+ o, Q,

If we put F(4) = W,(A)E;(8)Z,(8) , A = (a,b) , then F(A) is

the "spectral resolution" of B2 s 'i.e.,

By = i [_AdF(Q) + B;P; -

[ &
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