5次无多様体上の SO(3)-作用について

津田塾大 中西あい子

8.0 準備

8.0 で準備も、8.1 で得られた結果を、8.2 以降でその証 明さ与えることにする。

0.1 \$0(3) の部分群について

本論文では SO(3)・多様体も取り扱うので、先ず SO(3)の部 分群について知らなければならない。ところが、50(3)は次の クラの部分群、及びその共役類以外に部分群をもたないこと がわかっている。 (M, 57 参照)

- ① S¹ ≈ SO(2) ② N ≈ O(2) ③ 巡回群 Zn

- ④ 正2面体群 D_n ⑤ 正4面体群 $H_T \approx A_a$
- ⑥ 正8面体群H。≈S4 ⑦ 正20面体群HI ≈ As Aq, Sq. A, 13.名文、4次の交代群、4次の対粉群、5次の 交代群を示す。

0.2. スライス表現について

次に示す表は、G \pm 50(3), M \pm 5 次元の向ぎづけられた連結な可能分南多様体とし、M には可能分50(3) 作用がはいっている場合の、スライス表現と、名場合の principal orbit type き記したものである。また G ∞ として存在し得るものは、0.1 に示した通り。

Ga	S≈	表現	principal orbid type
e	D³	trivial (C日単位元)	e
50(3)	D⁵		(S ⁴)
		② weight 2 の表現 ([1] 参照)	(D2n)
		3 trivial	S0(3)
(5 ¹)	D ₃	$\beta^4 \longrightarrow 0(3)$	(Z_n)

		$\begin{bmatrix} \cos 0, -\sin 0, 0 \\ \sin 0, \cos 0, 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \cos n0, -\sin n0, 0 \\ \sin n0, \cos n0, 0 \end{bmatrix}$	
		$\begin{bmatrix} \sin \theta, \cos \theta, o \\ 0, o, 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \sin n\theta, \cos n\theta, 0 \\ 0, o, 1 \end{bmatrix}$	
(W)	D^3	O 5º trivial に作用する場合	
		1/51 ≈ Z₂ だから Z₂の O(3) への表現を	(S ⁴)
		考える。	
		② 5'が non-trivial に作用する場合	(D_n)
i i		3 trivial	(N)
(Z_n)	D ²		
		Z_{g} の D^2 への作用は、 D^2 の真を (Y, T) で	(Z_m)
		あらわしたとき、 多(ア,ア)=(ア,ア+2多)	
		$=\frac{2\pi}{9}$, $(9, \nu)=1$, $0<\nu<9$	
(D_n)	Dª		(Z _n)
			(Dg)
		3 trivial	(D,)
(A ₅)	D ²	① trivial (As 13 单纯群)	(As)
(Ax)	D^{2}		
		V4は、(i,j)(k,l)の形の元からなる	(D ₂)
		A 4 の正規部分群で、V4 2 D2.	
		ただし、ひ、かんんはすべて異なる	
		2 trivial	(A4)
(54)	Dz	① S_4 $S_4/A_4 = Z_2 C_7 SO(2)$	(A ₄)

0.3 軌道空向性の向きについて.

M は、の2の後半に示したような 5次元の何きづけられた可数分 SO(3)- 多様体とする。 このとき、 Stiefel - Whitney 類 W_1 を調べて、 Principal io etropy 群 E(C(N)) があらりれないことがりかる。また、 N 以外の Principal io etropy 群 E(C(N)) があらりに E(C(N)) があらりに E(C(N)) があらり E(C(N)) が E(C(N)) が

8.1. 結果

M き、5次元、向きづけられた連結な可微分束多様体とし、Mには可微分 50(3) 作用がはいっているものとする。そして、このような多様体 M, Mの向に、equivariant diffeomarphism Y $(\varphi(x,g)=\varphi(x),g)$ が存在して、それが軌道空间14*, M*

の向きも保っ写像なき諮算するとき、MとMは同値であると 記める。ただし、Mが向きづけ可能多様体である場合に限る 。 この同値関係によって、上のような5次元 SO(3)-多様体 も分類すると、principal article type が e, A, A, A, A, A, C, C とき、次に記す定理を得る。定理1~3においてMは上に記 したような多様体であるものとする。

定理1

principal isotropy 群か日のとき、Mは次の(1) (1) も満たす数 $\{ \ell : (g, f, m) ; (\alpha_1, \beta_1), \dots, (\alpha_r, \beta_r) \}$ によって分類される。

- (i) f>0 a sij f=0, m≥0, f=0asij f∈Zz, m=0
- (ii) $(\alpha_i, \beta_i) = 1$, $0 < \beta_i < \alpha_i$

定理2.

principal isotropy 群が(As)のとき、Mは軌道空向M*の 複数gによって分類される。このことは(S4)のときにも成り 立つ。

定理3

principal isotropy群が(な)のとき、Mは(い)(い)を満たす数

{9, 6, r} によって分類される。

(i) e e {0,1} (ii) Y 日偶数 (iii) 9=0ならばを=0

8.2. 定理1の証明

 $\S.0.2$ の表から存在し得る and it type は e , (S') , (Z_{μ}) の O である。ここで、 $E=\{\alpha\in M; G_{\alpha}= \underline{\omega} \ ert \ B\}$, $Y=\{\alpha\in M; G_{\alpha}= \underline{\omega}\}$ と O を O

gをM*の種数と定める。MとMが同値ならばたしかにg=g'である。

Case 1 EUY=POLZ

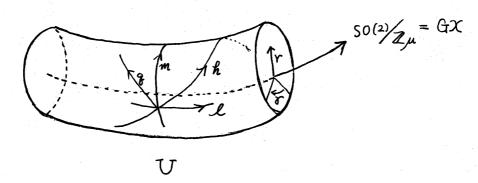
M は M^* 上の principal SO(3)- bundle であるから、M は bundle として、abstruction $b \in H^2(M^*; \Pi_i(SO(3))) \sim \mathbb{Z}_2$ で分類される。故に、M は $\{g, b \in \mathbb{Z}_2\}$ で分類される。M の

向ききかえた-MとMが同値であることは容易にわかる。

Case 2 E = P) Y=P n t =

Mの実 χ の ioatropy 群が χ_{μ} であるとする。このとき S_{χ} は2次元のオ円板 D^{2} と考えられ、 Z_{μ} は D^{2} に次のように作用していることは前に示した。(0.2)

 $\S(Y, Y) = (Y, Y+\nu\S)$, $(\mu, \nu) = 1$, $o< \nu < \mu$, $\S = \frac{2\pi}{2\mu}$ and GX の管状近傍V は $D^2 \underset{\mu}{>} SO(3)$ で、この近傍に自然にはいっている部分集合 $D^2 \underset{\mu}{>} SO(2)$ をひとする。



更に、mをスライス Dの境界の何きづけられた曲線、LをGXとホモローグな D ひの何きづけられた曲線とすると、順序対 (M,L) は D の何きを与える。 また、D は D は D の何きを与える。 また、D は D が D が 存在する。 そして、允を D に の向きづけられた principal arbitと D に D を D に D に D に D に D に D に D に D で D に

ファイバー空向の完全系列より、加, lは

 $m= \alpha \beta + \beta \, \hat{h}$, $\ell = -\nu \beta - \beta \hat{h}$, $\ell = \mu$, $\beta > 0$, $\nu > 0$ c あらわされる。 また、 (m,ℓ) , (β,ℓ) が同じ向きも与えることから、 $\beta \nu = 1$ ($m \text{ ad } \alpha$) が導かれ、断面も適当にえらんで $\beta \text{ id}$ の $\ell \in \mathbb{R}$ に制限できる。また、 $\ell \mu$, $\ell \in \mathbb{R}$ から $\ell \in \mathbb{R}$ の $\ell \in \mathbb{R}$ がある。

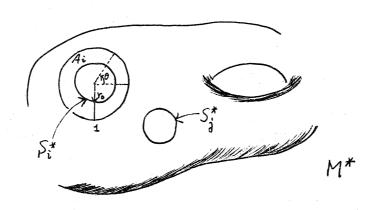
これで、E-orlit の isetropy 群,及びそのスライスへの作用から一意に定まる、上の条件をみたす整数の組(d, B)が作られた。 逆にこのような組(d, B)が与えられれば、isetropy 群、及びそのスライスへの作用は一意に与えられる。また、(d, B) は、m=dg+BR となる断面をもまひ上に、それ飲まひ上に一意に定めている。 -19では、この組は (d, d-B) になる。

今、E- or live の個数を $Y \ge 1$ て、名々の僧状近傍をV にすると、同様に、 (d_i, B_i) が 妃められ、それは IV_i 上に拡張する obstruction を \mathcal{L} とすると

1g, f; (d1, B1), ----, (dr, Br)} が Mき決定する。
ここに、-Mのこのabeliaction は、 アが偶数のとき Mのそれ
と同じで、 アが奇数のとき、 Z2の元としてもう - 方の方もと
る。

Case 3. E=P, Y + P oz +

Yの名連結成分を S_i とすると、スライス表現とMがコンパクトであることから $S_i^* \approx S^i$ で、 S_i^* は M^* の境界となっている。また、 S_i は S_i^* 上のファイバー $SO(3)/S^1$ 、構造群 MS_i^* $\approx Z_2$ の bundle で、それは、trivial か non-trivial かの2種類 | かない。 そこで、f ま Y の連結成分の数、m まそのうちの non-trivial bundle k なっている k のの数と k のうちの non-trivial bundle k なっている k のの数と k のうちの k によって向きを与えるよう k の実を k の、k によって向きを与えるよう k の実を k の、k によって向きを与えるよう k の実を k の、k によって向きを与えるよう k のをす。



DSi - Si trivial bundle o & 3

K(t)に $G_{S(V_0,0)} = Se_1$ となる断面をが存在する。ここに e_1 は e_3 の標準基底で、 Se_L は e_1 な軸とした回転をあらわす。これに e_2 0月、 e_3 1月、 e_4 1月、 e_4 1月 e_5 1月 e_5 1月 e_5 2日 e_5 2日 e_5 3日 e_5 4に e_5 5に e_5 6に e_5 6

② $S_i \longrightarrow S_i^*$ が non-trivial bundle の $z = G_{S(r_0,0)} = S_{P_0} \ge G_3$ 新国 S が存在する。 $P_0 := S_0^* = S_0^* =$

 P_{Po} は P_{O} き通 3 軸に 闵する回転をあらわす。 これにも、[6] , d_{emma} 2.6 き適用して、拡張した断面 $S: A_i \longrightarrow F'(A_i)$ $G_{S(V_{O},O)} = S_{Po}$, $G_{S(V_{O},O)} = P$ ($Y \neq Y_{O}$) が存在する。

また、船をののとき、 C_1 を軸としたOの回転、Oのとき、 C_1 を通る軸に闵する角兀の回転とし、 C_0 の C_1 の C_1 の C_1 の C_1 の C_1 の C_2 のた断面 C_1 と考えると、 C_0 C_1 0の C_1 0の生成元をあらかすから、 C_1 0の C_2 0のでき、 C_1 0の C_2 0の生成元をあらかすから、 C_1 0の C_2 0のでき、 C_3 0の C_4 0のでき、 C_4 0の C_5 0のであることができる。 更に①でも②でも、 C_4 1の C_5 1ののであることに注意すると、 C_4 1の C_5 1のようにして得られる断面から、 C_4 1の C_5 1の C_4 1の C_5 1のようにして得られる断面から、 C_5 1の C_4 1の C_5 1の C_5 1のようにして得られる断面から、 C_5 1の C_5 1の C_5 1の C_5 1の C_5 1の C_5 1のようにして得られる断面から、 C_5 1の C_5 1の

によって分類される。

Case 4. E = P Y = P n 2 3

Casel~4:よって定理1の証明は与えられた。

§3. 定理2の証明

principal ieetropy 群が (A_5) のとき、存在し得る type は (A_5) のみである。スライス表現を調べて、M*が境界のない2次元の向きづけられた、連結、コンパクト多様体となることがわかる。 また、 $N(A_5)/A_5= \mathcal{C}$ であるから、 $M=M^*_{\star}$ $SO(3)_5$

となり、Mは、Mon種数gによって分類される。 (S4)の場合も、存在(得る arbit type は(Sx)のみで、MSx = e であるから全く同様である。

8.4. 定理3 n 証明.

存在し得る arliet type は (A_0) , (S_a) のみである。 $E=\{x\in M: G_x=(S_a)\}$ とおくと、Mは、境界のない、何きづけ可能な、 $2次元、連結、コンパクト多様体で、<math>E^*$ は、 M^* で孤立矣の集合としてあらめれる。

Case 1. E= P n 2 ?

 $M^{A_4} = \{x \in M ; G_x = A_4\} \times j 3 .$ $M^{A_4} \otimes M^{A_4} \otimes M^$

1 g=0 n 2 .

M+ S2 政に MA4 13 trivial bundle の2).

@ g=102 3.

 $M^* \approx T_1$, $H_1(M^* : Z_2) \approx Z_1 \times Z_2$ の生成元 $\geq Q$, $b \in I$ たとき、 M^* の向きを保っ diffeomorphism から導かれる。次のよう $(J_1, H_1(M^* : Z_2))$ の homomorphisms J_1, J_2 が存在する:とがわかる。 J_1 ; J_2 の J_3 。 J_4 ; J_4 。 J_5 。 J

これから、M+上の non-trivial Zz-bundles は、すべて同値 となることがわかる。

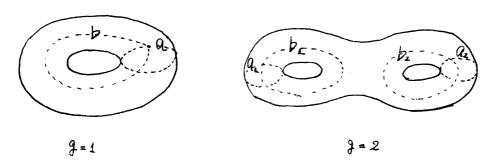
①9=2のとせ、

 $H^1(M^*; Z_2) \sim Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_2$ の生成 $z \in Q_1, b_1, Q_2, b_2 \in I$ たき、同様に、15の向きを保っ diffeomorphism から導かれる homomorphismo Δ_1, Δ_2 が考えられる。

 Δ_1 ; $\Omega_1 \longrightarrow \Omega_2^{-1}b_1$, $b_1 \longrightarrow \Omega_1^{-1}$, $\Omega_2 \longrightarrow \Omega_1^{-1}b_2$, $b_2 \longrightarrow \Omega_2^{-1}$ Δ_2 ; $\Omega_1 \longrightarrow \alpha_1b_1$, $b_1 \longrightarrow b_1$, $\Omega_2 \longrightarrow \Omega_2$, $b_2 \longrightarrow b_2$ $Z \mid Z \mid \Delta_1$, $\Delta_2 \cap \triangle \vec{K}$, $Y_1 = \Delta_1^3$, $Y_2 = \Delta_2$, $Y_3 = \Delta_1 \Delta_2 \Delta_1^{-1} \Delta_2 \Delta_1 \Delta_2 \Delta_1^{-1}$ $Y_4 = \Delta_1 Y_3$ $C \downarrow 1$. $M^* \succeq 0$ non-trivial Z_2 -bundles I_3 . $Z \subseteq \mathbb{R}$ $Z \subseteq \mathbb$

@ 9≥3 のとき

9=2 のときのhomomarphiemsを適当に使って、同じ結果が得られる。



①~回より、Mは、ig, e} で分類されることがいえる。
= こに、をは M⁴⁴ が trivial bundle、それ改、M がtrivial bundle のときの、そうでないとき1をあらわすものと
する。

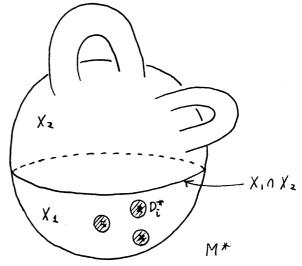
Case 2. E + p n z ?

E*の美 χ^* の 近傍 は、 $S \times /G_{\chi} = D^2 S_4 \approx D^2$ である。 S_4 の S_4 への作用はスライス表現の表も参照。 更 κ . E^* の A を B で A の B で B で B で B で B で B で B で B で B で B で B で B で B で B で B で B で B で B で B に B に B

着するから、Miz {g, E, r} で分類される。

たしかに $\{g, \epsilon, r\} = \{g', \epsilon', r'\}$ ならば、 $p'(X_1 \cup (\stackrel{\vee}{\boxtimes}D_c^*))^{A_1}$ と $p^{-1}(X_1' \cup (\stackrel{\vee}{\boxtimes}D_c^*))^{A_4}$, $p^{-1}(X_2)^{A_4}$ は同値であり、 $p^{-1}(X_1)^{A_4}$ と $p^{-1}(X_2)^{A_4}$ のっなぎ合わせはMにか、わりなく一意に定する。 故に、 M^{A_4} と M'^{A_4} は同値、即ち、M' とM' は同値である。 逆も明らか。

これで定理3が証明された。



以上で、定理1~3の証明が与えられた訳ですが、紙数の都合で、途中、簡略になった箇所がありますが、ご斟酌下さい。

以上

引用之献

[1] G.E. Bredon

Introduction to Compact Transformation groups

Academic Press 1972

[2] K. Jänich

Differenzierbare G-Mannigfaltigkeiten

Springer-Verlag, No. 59 1963

B] A. Karrass

Combinatorial group Theory

W. Magnus

Interscience Publishers

D. Solitar

B] P. Orlik

Seifert Manifolds

Springer-Verlag, No. 291

[5] P. Orlik

actions of SO(2) on 3- manifolds, "Proc.

F. Raymond

Conf. Transformation groups ., New Orleans

1967. PP. 297-318. Springer-Verlag, 1968

[6] R.W. Richardson

actions of the Rotation group on the 5 Sphere.

Annals of Math. vol. 74.