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Causal calculus arising from Brownian Motion

Takeyuki HIDA

Nagoya University

§0. Introduction

A new viewpoint of the analysis of functionals of Brownian
motion is presented in this note. From this viewpoint a
generalization of those functionals will naturally be introduced.
Our approach, however, is still in 1iﬁe with the so-called causal
analysis, where the propagation of time is taken into account in
analysing functionals of Brownian motion.

Functionals of Brownian motion, call them Brownian functionals,
with finite variance can be expressed in terms of white noise which
is viewed as the time derivative of Brownian motion B(t). Start
with the probability measure u of white noise introduced on the
space ,J* of tempered distributions. It is given by the

characteristic functional

& C&) = expl- 3 1171, £ <

in such a way that

1

(2) Cc(&) j; expli<x, &>1du(x).

With this measure u each x eAJA may be thought of as a sample
function of é(t) = dB(t)/dt. The Hilbert space (L2) = LZQX*, u)
is therefore the collection of all complex-valued Brownian
functionals with finite variance,

Our main interest is to discuss differential and integral

calculus on the space (LZ). Our -approach involves the following



three steps. 1) The first thing which should be done is to
visualize those members of (LZ) by using standard tools from

analysis. For this purpose a transformation [ is introduced :

(3) 79 (©) =Xexp[i<x, £ 1P (), g e ah.

The collection }7= Uy ; g€ (Lz)} becomes a reproducing kernel
Hilbert.space, so that 7 is isomorphic to (Lz) under J. The
Fock space expression for 37 follows immediately, and one has the
integral representation of the multiple Wiener integrals. ii) One
then must introduce a most suitable coordinate system in )j* with
measure yu to carry on the causal analysis, that is the analysis
where the propagation of time is always taken into account.

Roughly speaking, the system ’{é(t) ; t € R} is taken to be a
coordinate system. iii) With this system we shall be able to
introduce a certain class of generalized Brownian functionals.

Such kind of generalization can be done via the integral repre-
sentation of (Lz)—functionals, and the idea comes from P.

Levy's approach to functional analysis (P. Lévy [i1D.

‘ The author should like to add a few words on the motivation

of this work. He has been inspired by several problems, indeed
actual problems, arising from Quantum Mechanics, in particular
field theory or Feynman's path integral, Stochastic Control theory
and stochastic evolution equations in Population Biology.  Those
problems require nonlinear, causal analysis of functionals of
ﬁoise or fluctuation, a mathematical expression of which is to

be the white noise {B(t)}.

§1. Summary of known results

This section is devoted to a quick review of well-known

o



results for Brownian functionals as well as their integral repre-
sentations, For details we refer to [2], [3], [5].

Let gf*, u) be the measure space of white noise, where u
is given by (1) and (2), and set (Lz) = ngf*, u). The
functional C(¢ - n), (€, n) e x ,J, CE) being given by (1),
is positive definite, so that it defines a‘reproducing kernell

Hilbert space which is denoted by é%: Let J be given by (3).

Theorem 1. The reproducing kernel Hilbert space % with

kernel C is isomorphic to the Hilbert space (L2) under the

transformation /.

Now observe the Taylor series expansion of the kernel C :

o n
p et c(y,

(4 Cle -n) =
n=0
( , ) the inner product in LZ(R).
Set
n
(5) c (g, m = e c(n.

Since Cn(g, n) is positive definite, it defines a reproducing
kernel Hilbert space, call it 5ﬂf which is a subspace of 5{

In addition, one can prove that

(Cn(', nl)’ Cm(', nz)) = 0, for n # m, nl’ T]2€ )f’

F

which proves that the subspaces ?;, n 2 0, are mutually

orthogonal. Thus a direct sum decomposition of F is obtained :
(6) j; = I @ jﬁ (Fock space)
n=0
Now set
A=)
n n’ "



The space }45 is called the multiple Wiener integral of degree n.

2
Then the decomposition (6) of F gives us that of (L")

(e o]

(7) L) = 1 el
n=0
Theorem 2. i) For #(x) e,g/n we have
(8) gy ) = inC(E)\j n"'hYF(ul""’ un)g(ul)---g(un)dun,
R
P |

{symmetric LZ(Rn)-functions}, and the mapping

where F ¢ LZ(Rn)

PS

¢ +F e L2@RY, ? e A,
is one-to-one.
ii) Under the relation in i) it holds that
9) el , = var el , .
(L9 L"(R)
Definition 1. The expression (8) for ¢ is called the

integral representation of ¢ ig }in, and F 1is called the

kernel of the representation.

For general j’ in (Lz) one uses the expansion
¥ = j%’ j% e‘ﬁé
n=0
to have a series of integral representations and that of kernels
{F_}.
A special interest can be found in the case where ¢ 1is in
}%2. Associated with such f is a symmetric LZ(RZ)—function
F(u, v). If, in addition, we assume that ¢ is real-valued,
then F defines a Hermitian operator of Hilbert-Schmidt type

acting on LZ(R). One can therefore appeal to the Hilbert-Schmidt

expansion theorem to have the eigenfunction expansion of F :

9



|
Flu, v) = z 5= n (Wn (v,
- n=l 'n
where ‘{An’ n, n 2z 1} 1is the eigen system, This implies the

expansion of ¢ into a sum of independent random variables

Lo

1 2
PO = T 5= (<x, n>" - 1.
n=1 "n

Having gotten this expansion, one can easily see the probability
distribution of $ by computing the characteristic function or

semi-invariants.

§2. Coordinate systems in (f*, p).

We discuss coordinate system in J* and bases for the Hilbert
space (Lz). Before we come to the main topics, let us remind
some elementary concepts appearing in the anaiysis on L2([0, 11).

Let {gn} be a complete orthonormal system (c.o.n.s) in

L2([0, 11).  Introduce Wn and N by

En(U)EnCV),

1 ~3

1
' “yn(u, V) = —ﬁ

i=1

@n(u) = Wn(u, u).

Then, one immediately sees

1 2 1
(10) Y (u, v) dudv = =~ 0,
oJo M n
' . 2 2
namely Wn converges to 0 in L([0, 1]7). For @n(u),
1
® (udu = 1, for every n
o D

holds, however the convergence
(11) o (u) > 1 in Li([0, 1)

is not always true. If (11) holds, then the c.o.n.s. {En} is



said to be equally dense.

Examples of an equally dense c.o.n.s.
i) {1, V2 sin 2krt, 2 cos 2knt ; k > 1}.

ii) Walsh functions.

Remark., One can think of an equally dense c.o.n.s. even in
L2(R). The condition (11) could now be understood as the property

that o should approximate the so-to-speak uniform probability

measure on R. An example of such c.o.n.s. is the {gn} given
by
e
(12) E(u) = —1 H (we ° n >0
n n s = s

s

where H is the Hermite polynomial of degree n,
We now come to a coordinate system in )f*.
[1]. Let '{gn} be a c.o.n.s. in LZ(R). Each member x in Jf*

has the coordinate representation of the form

X v {xn ;n o> 1}, X, = <X, gn>.

While, if the measure 1y is introduced to Jf*, {<x, gn>} forms
a system of independent standard Gaussian random variables on the

probability space (§*, u). Hence we have

N
5§ I <X, £ ><y, E> >0, a.e. on (J* x 9%, u x u),
n=1
p N 2
= I <X, £ > > 1, a.e., on (J*, v,
n=1 n ‘
(the strong law of large numbers). Those observations show that

the c.o.n.s. {<x, £n>} enjoys the property "equally dense'" in
the Hilbert space )41.
One is naturally led to a c.o.n.s. in ﬁih defined by the

Fourier-Hermite polynomials of the form



8 1
n, -5 <x, E.>
(13) M(n.!12 ) H (—2, T n. =n.
i ! i 2 .

Unfortunately such a c.o0.n.s. is not fitting for the causal calculus,

because the propagation of time cannot be expressed explicitly.
[II]. Take the unit time interval [0, 1] to fix the idea. Let

II n > 1, be a sequence of partitions of [0, 1] with mo<m

“n? n+l

(1 is finer than 1 ). For T = {Ai} with A, = [t

n+l i Lyl

we introduce the quadratic variation of f(t), 0 <t <1, by T :
n-1
ne = 3z |£(t..) - £0t)]%.
520 j+l j

Let B(t, x) be a version of Brownian motion given by

IA
ot
IA
ot

B(t, x) = <x, X[O t]>’ 0
3

Then we have

Lemma If &I = Maxltj+1 - tj] + 0, then it holds‘that
. 2
lim Hn B(., x) =1, a.e. (p).
N

For proof we refer to [3, pp.60v64].

If, in particular, Hn is the uniform partition with

la;] = 2°", then

n

2 2"
b (AkB)Z = lﬁ- T (VEH.AkB)Z > 1, a.e. (u).
k=1 2" k=1
. . - +dB(t) .
Formally speaking, this says that {———<r 1is an equally dense
Vat
c.o.n.s, in )4&. In other words, the projective limit of
AkB :
—_— Ak € Hn , Hn uniform,
My

defines a c.o.n.s. which is equally dense.
One then proceed to a c.o.n.s. in }%2. By using Fourier-

Hermite polynomials all the members of the system are classified



as follows

.‘.i.li(_ﬂ .EE.L.S_.)_ (t # s) class (1),
ydt  /ds
l_{(é§£5192 - 1) class (2).
y2  /at

If one uses the Hermite polynomials with parameter given by

2 2

X X
2.n 2 n 2
H (x ; o%) = (_G,) 20 4 _g 2% n>0, ¢=20,
n n! ax"

then a c.o.n.s. in j#h for general n is easily expressed. In

fact, 1
T {H. (B(t.) 5 —20)YdTLl, (t.'s different) class (1),
j=1 1 j dtj j J
(14) n
. N SR =
?anHnj(B(tj) 5 dtj)( dtj) an n, class (2),

(tj's are different, c, = {ZHjnj!}—is.
J
They are still formalyexpressions, but it is noted that they are
consistent with the partitions 1L through the addition formula
for Hn(x’; 02)'5 :

n 2

: 2 2, . L 2
kio Hn_k(x 5 O )Hk(}’ 5 T ) - Hn(X+y 5 O + T )‘

§3, Generalized Brownian functionals

We start with an example which suggests us to define a class

of generalized Brownian functionals. Set

B(t) = B(t, x) = <x, X[t 0, t 0]

Then {B(t)} is a version of a Brownian motion. Being inspired

by the class (2) base with n = 2 in (14), 1let us observe a

functional of the form



10
1| A58 ,
fﬂ =z a, —A<(—9)" - 1}, n={A.} partition of R,
j I sz /E; J
which is in /¥é. Then the integral representation is

a.
, .2 1
TPg) = 1 C(i)——jrjz 2 %, (u, VIE@E()dudv.
il /3 . AL 2
13 Ay
I1f the partition 1 = {Aj} becomes finer and finer with &I » O,

then the integral representation approaches

(15) iZC(z)-l—jf(u)a(u)zdu,
V2
provided Zaij (u) approximates a function f. Such an

expression can never be found in é;é, however if it is written as

iZC(g)—l-/—z_—ﬂf(” S8 (u - VEWE(V)dudy,

then one is led to think of a much wider class of functionals than
;;2. At the same time one considers a limit (in some sense, but
not in (Lz)—sense) of the 3%[ when &I - 0. The limit,

formally writing, would be expressed in the form
. 1
(16) /z‘Jf(u)Hz(B(u) ) Fpdu

and the integral representation would be given by (15).

We are now in the position to give a definition of generalized

Brownian functionals. Let Hm(Rn) be the Sobolev space of order
N :
m on R, and set H"(RY) = H™(R™M n L’(R"). Define
/N
. n+l
2
FM = we =j“:JF(ul,o--,un)g(ul)'--g(un)dun ; Fel © (R)]
and
AY)
F = (e v e iV

n+1
Introduce the H ° (R™) -topology on \%ﬁn) . that is, if i'C(£)U(E)



l?
is in ;;gn) with kernel F, then the norm of the functional is
n+l

defined to be the H 2 (Rn)-norm of F times v¢n! (cf. Theorem 2,

ii)). Set
B = EM)

and topologize /¢£n) so that J is an isometry. Let F#ﬁhn) and
j?ﬁ—n) be the dual space for /#én) and jﬁﬁn), respectively.

Then one has the following diagram

Fa) en b e BV
{ ! {
eV o H o

The vertical bi-arrow means isomorphism under ./ (note that J~
can be extended naturally to /4£-n))’ and C» means continuous

injection.

Definition 2. A member of )¢£-n) is called a generalized

Brownian functional of degree n.

§4. Generalized random measures

As 1s easily seen,

n ™ Mk, k
17 1 C(&)J"'jf(ul,'”,U-k)i(ul) "'g(uk) du”, inJ =1,
. . . -n) . .
is a functional in 5Z£ . One expects that the relationship

between (15) and (16) will be extended to the case where (15) is

replaced by (17). Start now with an }#ﬁ—functional
A. B
. 3 1
= Rapeeen, MG T
1° sy ] J j j J

ij's, j= 1, 2,-+, k, different,

10



1

9

(a4

where I = {Ai} is a partition of R. Then, if

C(n)_1 .?. . a; "'ikXAi (ul)---xAi (uk), C(n) constant
1’ 7k 1 k

approximates f(ul,o--, uk), one can prove that the integral

representation of the ‘f’ approaches the functional (17) in the

space 5;é—n)‘

With this observation in mind, let us introduce notations.

Set
- A .1
Mn(dt) = Hn(B(t) s afadt,
and set
k
M oM (dt.) or M_(dt,) o ees o M (dt,)
5=1 nj j ny 1 n k
k
(18) oM (dt.), if t.'s are different,
=17 !
0, otherwise.

Of course, for a rigorous definition of the product 1o one must
do the same thing as in §2, [II] by using a sequences of partitions
I of R with &I_ > 0.
n n
By using this notation the above discussion can be summarized

as follows: :

k
Theorem 3. The product 1 oMn (dtj), an =n, is a
=1 7] ;
random measure, and the integral with respect to it is in /{g n)'

In addition,

k n. n.
(19) J(m oM (dt.)) = C(m)Is Jdu 7,
=1 M5 it

n,n . .
where Sudu is a measure given by

11



n n = L 4
jRn'"jf(ul’"" u s dut = £lu,eee, u).

Definition 3. The measure defined by (18) is called a

generalized random measure.

The integral, although it is symbolic, with respect to a generali-

zed random measure, say (18), 1is written as

J...\J‘f(ul,o..’ u_k)Mnl(dul) 0 eee o Mnk(duk).

A multiplication of generalized random measures can be defined
only for special cases. Namely, only multiplication by Ml(dt)

is possible,

M_(dt) M, (ds) = M_(dt)oM,(ds) + 6, M . (dt)

k k
(T oM_ (dt.))-M,(ds) = % {M_ (dt)-M (ds) T oM_ (dt.)}.
S j=1 " T4y 250 2

For instance,
\gf(U)Mn(dU);yg(V)Ml(dV)
=Sxﬁf ® g(u, V)Mn(du)oMl(dv) +&yf(u)g(u)Mn_l(du).
Three remarks are now in order.

Remark 1., Integrals with respect to generalized random
measure should not be thought of as definite integral, but they
should be viewed as continuous analogues of polynomials. Such a

consideration comes from the discussions in §2, [II].

Remark 2. The space ]4% is in agreement with the collection

of integrals with respect to Ml(dul) o seo o Ml(dun).

Remark -3. The space }4£-n) can not be covered by the

12
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integrals with respect to generalized random measures of the form
(18) with an = n., An example of a member of ]¢£—n) which is
not an integral will be presented in the next section. In terms
of P. Lévy, a functioﬁal in §¥n is said to be regular, and

U(g) such that inc(g)U(g) is expressed in the form (17) is

called a normal functional.

§5. Causal calculus

""Causal calculus'" here means differential and integral
calculi as well as related operétions where the propagation of the
time is involved or expressed explicitly. A most suitable base
or c.o.n.s. for this calculus has been introduced in §2, and with

this choice of a base we have discussed

[I] 1Integration
in the last section by introducing generalized random measures.

The next topic has to be

[I1] Differentiation,

One is interested in a differentiation , the exact

dB(t)
meaning is going to be illustrated in what follows,

By analogy with 5¥n a functional space j%ﬁn) can be defined

and is topologized in such a way that ;%ﬁn)

is isomorphic to

(n) (-n) (-n) . (n)
jzn . The same for j?n g‘ﬁ; . Let ¥ be in /%3 . Then
one can find U(Z) in j?in) such that (J) (£) = i"C(E)U(E).
Take the functional derivative (in the sense of Fréchet). Let
it be denoted by Ué(E ; B). It always exists and belongs to
v(n-1) . . -1 .
5Fn—1 for every t. Applying the transformation 7 one is

given an }4&?_1)-functiona1, call it ¢'(t, x)

13



Jf(i“'lcca)Ué(a S = 9, X).

The mapping ¢(x) » #'(t, x) is denoted by

d :
(20) =— () = ¢9'(t, X).
dB(t)
It is a derivative, indeed B(t)-derivative of L.
2 2
Higher order derivatives like d s d can also

()l db(r)dh(s)
be defined by using second order functional derivatives. They

are simply illustrated by the following,

}Q‘/r(ln) f}gn)
d2
(21 - 5 ——— U"Z(E 5 t)
dB (t) g
dZ

ur (g ; t, s).
dB(t)dB(s) £g

Note 1) wvariation 8U when £ varies by &k

a) linear in &f

b) U(g + 8g) - U(E) = 8U + o(s¢&)
functional derivative Ué(g;t) : 8U =\[Ué(g;t)6£(t)dt
ii) second variation 62U

a) quadratic in &%

b) U(E + 68) - U(E) = 6U + 5 6°U + o(68)”
functional derivatives U"z(g ; ) and U (E; t, s)
£ 3
GUé(t) = ng(i;t)ﬁi(t) thUggl(E;t,S)GE(S)dS-

The infinite dimensional Laplacian A on )¥£-n)

can now be defined by

14
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domain @(r) =J (i"c(a)u(e) ; U, Uy, exist and
£ 1
(22) U"Z(g;t) is t-integrable

=g
AP = dt.
y B (t)? y

It is straightforward to extend A on a certain subset of zké_n).
n

Examples.

1) §,00 = exp[B(t) - 3tl.

. ﬁ%, 0<s <t,
" th =
dB(s) 0, s >t
ii) H (B(t) ; £) =H_ _(B(t) ; t), s=<t
dﬁ(s) n n-1
iii) ¢ =\[f(u)M2(du)
' 2
Ly - fbm), 7= £m

aB(t) dB (t)

d2

dB(t)dB(s)

¥=0, Af=ff(t)dt.

Definition 4. If ¢ is in £ (A), and if

then P is said to be harmonic.

Theorem 4. Every functional in & , n > 0, is harmonic.
——e n P e e PR

[III] Multiplication by B(t).

. : i<X > .
Since the system {e1< > N , M e)Y} generates the entire

i<x, n>

(Lz), one start with the product B(t)e , which is

approximated by

15



(R
o1

Applying 7~ to this approximation yields
. X 12
1C(8) (g + n, pexpl- 5 Inf” - (&, M1

As A » {t}, this tends to

1C(E) (£(t) + n(t))expl- 5 |n|° - (&, m)].

The result enables us to prove

n
(23)  JBWH (<x,m//2) @) = i"2% e E,m™ + mee) @, " e,

n]=1.

This means that é(t)Hn(< x, n>/¥2), |{nj =1, belongs to
/¢£;?_1) +/4h_1 and that the associated kernel of its integral

representation is

D~

22{nn® ® s, - nn(t)n(n_l)Q}, ~—~  symmetrization.
Thus one can prove the following theorem,

Theorem 5. One can multiply functionals in /4£n) EX.'B(t)

and the product is in Hﬁl?_l) +/¥h—1'

[IV] Fourier transform.

So far there have been introduced several different kinds of
Fourier transform, however none seems to be fitting for our

causal calculus.
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