goooboooogn
0 2610 1976 O 29-40

AN ASYMPTOTIC FORMULA FOR FUNCTION SPACE INTEGRALS

WITH RESPECT TO GAUSSIAN MEASURES

Hiroshi Oodaira

Yokohama National University

1. A Laplace asymptotic formula for integrals in one dimension -is of the
form

lim ffms(x)exptx'zy(x)]dxxffmexp[x'zF(x)]dx = G(8),

A>0
where F is a continuous function having a ﬁnique global maximum at £ and G
is continuous at £.

In [8], M. Schilder proved the following analogue of the above formula

for integrals with respect to Wiener measure i on the spaee C = C[O,i] of

continuous functions on [0,1]:

(*)  lim fcc(xx)exp[x'zE(Ax)]u(dx)/fcexprx'zF(Ax)]u(dx) = G(¢),

=0

where F and G are real functionals on C satisfying certain conditions and
¢ is a maximizing point at which the functional F(x) - (l/2)fé(x'(t))2dt
attains a global maximum over thg space H of absolutely continuous functions
on [0,1] vanishing at the origin and having square integrable derivatives.
Schilder proved further some related asymptotic forxrmulas and gave sSome

applications of (*) to analysis.



M. Pincus [7] generalized the result of Schilder to a large class of
Gaussian processes and showed a close connection with Hammerstein integral
equations. Note also a comment in [3]. In a recent paper [4], R. Marcus
has indicated that the results of Schilder and Pincus can be obtained by
the method of that paper.

The object of this note is to prove the asymptotic formula (*) for
integrals with respect to general Gaussian measures on C, making use of a
Freidlin-Wentzell type estimate given in [5] (see Theorem 1, [6]) and the
arguments used there. The proof is along the lines of that of Schilder,
but it may be noted that it is considerably shorter than those of Schilder
and Pincus. Furthermore, the result can be extended to abstract Wiener
spaces usiné similar arguments and the extension is expected to have some
applications to nonlinear functional equations in Banach spaces. The

details will be published elsewhere ([2]).

2. Let C = C[0,1] be the space of all real continuous functions on [0,1]

, and let A be the o-field of Borel subsets of C.

|

with the sup norm ]
Let 1 be a Gaussian measure on (C, A) with mean zero and covariance

function R(s,t), and let H = H(R) be the reproducing kernel Hilbert space

(RKHS) with reproducing kernel R, whose norm is denoted by [[- |H° Note
that H < C and the RKHS associated with Wiener measure is the space H in

the Introduction.

Theorem 1. Suppose F and G are real measurable functionals on C satisfying
the following conditions:
(a) F) - (l/2)[|¢l]§,1P€IL attains its unique global maximum over H at

¢ €H,



(%)
-

(b) F(x) < a; + a2|[x|[co for all xeC, where a; is any positive constant,
-1
a. < (4M) and M = sup R(t,t),

2 ost<l
1/2
}

(¢c) F is uniformly continuous on the set E = { xecC | ||xllw < 2rM
where - > 4{a; - F() + (1/2)|l¢||;},

(@ e < blexp(bzl]xlli) for all xeC, where b, and b, are any

1
positive constants, and G is continuous at ¢.
Then
. -2 -2
(*) 1lim {ICG(Ax)exp[A F(Ax)]u(dx)/fcexp[k F(AX)Ju(dx)} = G(¢).
A0
2 2
Remark. It follows from (b) and (c) that r > ||¢]|H 2 0. Note also that

w2 o] |y < 0/

¢eE,shme|]ﬂ|ms r.

Proof. (i) By the condition (d), for any € > 0, there is a § > 0 such that
| 1% - d>[|°° < § implies |G(x) - G(¢)| < e/2. Hence
-2 -2
| f SOx)expld “F (x) Ju(ax) /S exp A F (AxMn(dx) - G(9) |
<e2+ I |6 (%) -G (6) | exp A %F (A w(@x) /f gexp [ 72F () Tu (ax) .
[ [Ax-¢]] 28
We shall show that the second term is < ¢/2 for all sufficiently small A.
(ii) Consider first the denominator fcexp[A—ZF(lx)]u(dx). By the condi-
tion (c¢) and the remark, for any n > 0, there is a 6' > 0 such that
|1ax - ¢||_ < 6 implies |F(Ax) - F(¢)]| < n/2 and hence F(¢) - n/2 < F(Ax).
Therefore, using a Freidlin-Wentzell type estimate, we obtain
-2 -2
fcexp[l F{ix)]u(ax) =2 S expi{d "F(Ax)]Iu(dax)
[ Ihx=9] | <8

2 expD 2@ (@) -/ Toul |ax - ]| < 8}

> explA "2 (F(9)-n/2) T -expl- (/2272 ([ [¢] | 24m)1]



- exp[A'z{F<¢>-(1/2>ll¢l|§—n}1

for any n > 0, if X is sufficiently small.

(iii) Let K = { yeH| IlwllH < r }. Since K_ is compact in C and the

set { x| ||x-¢]] =6/21 is closed,
D = D(r,8) = Krf\'{ x| [lx- ¢l =6/21
is compact in C. IIw[IH is lower semi-continuous in the sup norm topology,

and since D C Kr<: E, F(y) - (1/2)Ilw[[; is upper semi-continuous in D.
By the condition (a), ¢ is the unique maximizing point, and hence there is
an n' = n'(r,8) > 0 such that

max (P - /2 ]|v][23 <F@) - a2l4]|2 - n.
VeED

Y2y ana if ||x - ]|,

Choose §" > 0 small enough so that 6" < min(§/2, rM
< §" for %, Vv € E, lF(x) - F(y)[ < n'/3, which is possible by the condition
(c).

Let'{wj} be a complete orthonormal system in H and let'{Ej(x )} be a

sequence of independent standard Gaussian random variables defined by

wj(t) = fcgj(x)x(t)u(dt), 0sts 1.
Put
n
= t), O t .
xn(t) § Ej (x)wj( ) sts1
j=1
Then
2 : 2 : oo
o° = sup fc{x(t)—x ()} u@dx) = sup {R(t,t) - L P ()} >0 as n > =,
0<tsl n ostsl j=1 7

2 2 2
Let N be an integer such that l/(20;) >y =1r /(2(8")7). Put



<o
(SR8}

a=tx| (Dol 26 =gl <o D lly <23
and

B={x]| ||x& —_AxNH°° =6" TU{ x| IIAle[H >r }.
Then { x | ||Ax - ¢llw 2§ }cAUB.

(iv) By the conditions (b), (d) and Schwarz's inequality, we have
-2
Sl (x) |exp A F (Ax) Ju (ax)

2 -2 2
< fBblexp(bZ} x| |5) cexpn (al+a2] [Ax|2) 10 (ax)

-2 2 2 1/2 1/2
< biexp(a, ) ) {/ expl2 (byA"+a,) | |x] ] Tu(ax) } 72, e,

By the condition (b}, 2(b212+a2) < (2M).l for all sufficiently small A, and

by Fernique-Marcus-Shepp's theorem ([1], [3]) on the supremum of Gaussian

processes,

J expi2(b A2+a )]lelzlp(dx) < const. < o,

c 2" T%2 o )
Now

- > : >

ue) < ul ||x xNH°° /A } + u llxNIIH /A }.

By Fernique-Marcus-Shepp's theorem,
. sy 2,=2

the first term < const.<exp(-y(S") A 7)

< const.'exp[-zk—z{al - F(¢) + (1/2)(]¢[[§ + h}1,

2 : 2
for any small h > O such that r > 4{al - F(¢) + (1/2)I|¢||H} + 5h, and by

the condition (c), for all sufficiently small A,



N
Wz > rz/)\2 }
j=1 7

1

the second term
< const.-expl-(1/2)2" 2 (2 - h)]
< const.-exp[52?\.2{a1 - F(¢) + (l/2)|l¢]l; + h}l.
Hence we have, for all sufficiently small A,
1,160 [exp 07 ?F () Ju(ax) < const. -expA " {F (¢) - a2 14112 - n1.
Similarly we have
IBIG(¢)lexp[x‘zF(Ax)]u(dx) < const.-exp[A 2{ F(¢) - (1/2)]|¢|]§ ~ h}l.
(v) Let x € A. Then AxN 3 Krcz E and

1/2 1/2

||)xx|l°a < Ilkx - AxNilw + H)\XNHOo < 8" + M < 2rM .

Since ||Ax - }\xNHOo < 8" and Ax, Ax € E, F(Ax) < F(Ax) + n'/3. Further-

more, since
llth - ol 2 [ - o] - |Ixx - AxN|‘w 28 - 8" 2 68/2,
FOx) < (1/2) | [ax |2 + F(o) - /2 ]]s]]2 - n*
N N''H H ‘
and hence
F(Ax) < (1/2)||xXN]|§ +F($) - (1/2)|[¢||§ - /3.

- 2
Let B be a number such that 0 < 8 < (2/3)n'r . Then (1/2)3]1¢[|H <n'/3

2
for all y € K . Therefore, (l/2)B|[AxN|]H < n'/3 and hence

F(Ax) < (1/2) (1 - B)llklelg + F($) - (1/2)l|¢i]§ - n'/3.



Thus

7,160m) [expIA™%F 0x) 131(@x) < by exp (b )\ amr?) -/ exp 1A %F (Ax) 11 (dx)

1

< const.-expix‘z{y<¢)—(1/z>x[¢1lé-n'/s}]-fcexpz(l/z)(1-s)l]xN|!§1u(dx).

But
2 N 2
fCeXP[(l/Z)(l—B)leNIIH]u(dX) = Jexpl(1/2) (1-B) * I E5(x)Iu(dx)
j=1 7
N2 Vo« 2
= (2m) I J__expl~(B/2)s"1ds < =,
3=1

Therefore
IAIG(Ax){exp{A‘ZF(Ax)]u(dx) < const. exp[A 2{F(§) - (1/2)[[¢][§ - n'/31.
Similarly we have
IAIG(¢)[exp[k—zF(xx)]u(dx) < const.'exp[k—Q{F(¢) - (1/2)|[¢{|§ - n'/31.
(vi) From (iv) and (v) we get
s |6 (1) -G ($) | exp [A™2F (Ax) 1 (dx)
| [Ax-9]] 26
< const.*{exp[\"2{F (§)- (1/2) | [¢] | 2-n* /3]
-2 2 .
+ explA {F(¢)-(1/2)]]¢|IH—h}]},
Choose n > 0 (in (ii)) small enough so that n < min(n'/3, h). Then
s |6 (Ax) -G (4) | exp [A™2F (Ax) Tu(ax) /f Lexp[A™F (Ax) Tu (ax)
| [Ax-¢] | _28

< const. {exp[-A\"2(n'/3-n)1 + expl-2"2(h-n) 1} < e/2

for all sufficiently small A. This completes the proof.



N -2 s
3. For the integrability of G(Ax)exp[} F(Ax}], it is enough to assume

-1 A . . s -
a2 < (2M) 7, and it is . desirable to weaken the restriction a2 < (4M) 1 in
the condition (b). This can be done if the condition (c¢) is replaced by a
stronger condition, and we have the following (perhaps better formulation

of) result.

Theorem 2. Assume the conditions (a) and (d) of Theorem 1 and the follow-
ing conditions:
(b')y F(x) < a; + aZHXHOo for all xeC, where a; is any positive constant,

a, < (2M)-l and M = sup R(t,t), and
0<t<l

(c') F is uniformly continuous on any bounded set in C.

Then the asymptotic formula (*) holds.

Proof. The condition a, < (AIM)-l is used only in the step (iv) of the

proof of Theorem 1. It hence suffices to make the following small changes
in the arguments. Choose a number p > 1 close enough to 1 so that pa, <

(2M)_l and put q = p/(p~1). Let r be a number such that
2 : 2
r” > 2q+{a; - F(¢) + @2 [lell } + (arLn

for some h > 0. Use HBlder's inequality instead of Schwarz's in the step
(iv) in the proof. Then
-2
Sple(x) |exp A °F (Ax) Ju (dx)

-2 2 2 1 1
< byexp(ah") U explp () 4a,) | x| | D1 @ } P () Y.

Since p(b2A2+a2) < (2M)_l for all sufficiently small A,

2 2
fCexp[p(bZA +a2)|lxilw]u(dx) £ const. < @,



and by the same reasoning as in (iv) we get, for sufficiently small A,
- -2 2 ,
u(B) < const.cexpl-gh {al - F($) + (1/2)]]¢I,H + hll.
Hence, for all sufficiently small A,
-2 -2 2
fBIG(Ax)]exp[A F(Ax)lu(dx) < const.-exp[) {F(¢)-(l/2)||¢||H-h}].
The rest of proof does not require any changes.

Remark. The uniform continuity of F is a technical assumption. Note that

Pincus [3] assumed the uniform Hblder continuity of F in the Lz—norm.
In (ii) of the proof of Theorem 1 it has been shown that
-2 -2 2
exp PO Ju@xn) > expN{R(O) - (1/2)|[e] ] - n}

for any n > 0, if X is sufficiently small. In fact, the arguments used in

the proof yield the following asymptotic estimate for fcexp[l-zF(Ax)]u(dx).

Theorem 3. Suppose F satisfies the conditions (a), (b) and (c) (or (b')

and (c')). Then
. 2 -2 2
lim A%+ log / exp[N F(Ax) Ju(ax) = F(o) - (1/2)]]e]]}.
A0 :
Proof. 1In view of the abowve result in (ii), it suffices to show that
-2 -2 2
Jexp VPO Tu(@) < expId {F(9) - (1/2)|[8]]] + e}l
for any € > 0, if X is sufficiently small. Put

a={x| || —J.xnllo° <8, IIAXNIIH sr}l,

where § > 0 is a number to be specified later and N is an integer such



(W)
o=

2. -1 2 2 -1 . : .
that (ZGN) > x (287) (see (iii)). Then, in exactly the same way as in

(iv) of the proof of Theorem 1 and in the proof of Theorem 2, it can .be

shown that, for any § > O,

fC_Aexp[)\-zE(Ax)]u(dx) < const.-exp[)\-'?‘{f'(q;) - (1/2) [ [¢| 1121 - n}l
-2 2
< explA{E() - /2 []e]]; - n'h

for a sufficiently small h' > 0, if A is sufficiently small.
Given € > 0, choose § > 0 small enough so that if x €« A, Ax, KXN<EvE,

and if [[|Ax - Ale [, < 8, then F(Ax) < F(Ax) + e/3. Since
FOx) < F(9) - (1/2)]]o]12 + a2 ]| |2
N H N''H'
-2
S pexpIA”“F (Ax) T (dx)
- -2 2 -2 2
<expVHF(9)-(1/2) | |¢] [ +e/31 S exp [41/2) 47| [Ax [ | Tm(ax)

Just as in (v) of the proof of Theorem 1, let 8 > 0 be a number such that

B < (2/3)€r—2. Then
foexpl (1720272 |ax, | |2 max)
A : Ay
-2 2
< exp((e/3)) )-fAexp[(l/z)(l—s)ille{H]u(dx)
-2
< const.cexp((e/3)A )
-2
< exp((2/3)eX °)
for sufficiently small A. Hence

- ., 2
£ N F () Tu(ax) < expDOLR(O) - (1/2)|[6] L + e}

10



if X is sufficiently small. The proof is complete.

Remark. Morxe precise results can be obtained, if F is assumed to have

derivatives at ¢.

If F is continuous on C, then the condition (b') (and (b)) implies

2 . . . .
that F(y) - (1/2)]!wllH attains its supremum over H at a point in H, and
hence we need only assume the uniqueness of its maximizing point ¢ in H.

Indeed, since
2 2 2
Fo) - w2 [ [ellg < a; +a vl - a2l

12
< a, + (aZM—(l/Z))IH)HHSa

1 1’

a; > sup {F(y) - (l/2)ll¢l];} do, say, and, given any d > 0, if |lw|lg

Ve H
2 2
> (a) = dy = A)/((1/2) - a,M) = ¢, then F(y) - (1/2)|[y][] < a4, - a.
Since F(y) - (l/2)l|w[]; is upper semi-~continuous in l . |°° and KC =
{ veH | [lelH < ¢ } is compact in C, F(y) - (l/2)llw|(; attains its

supremum on Kc, and hence on H, in Rc(: H.
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