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Dimension formula for the Landau singularity.
Mikio SATO, Tetsuji MIWA and Michio JIMBO
Research Institute for Mathemtical Sciences
Kyoto University, Kyoto, Japan
Abstract Dimension formula for the Landau singularity corresponding

to a Feynman graph whose vertices are all external is obtained and
the codimension 1 intersections of Landau singularities are

determined.

§1, Holonomy structure of Landau singularities.
In the micro-local study of S -matrix and related quantities

(21, [3], [41, [51, [6])the following problem is fundamental.

Problem determine the holonomy structure of Landau singularities.
We shall give an answer to this problem in the case when fhe
corresponding Feynman graph has no internal vertices.

Let G be a Feynman graph with n(G) vertices and N(G)
1)

internal lines. We assume that G has no internal vertices
throughout this paper. Let bi(G) (i=0,1) Dbe the i-th Betti
number of G. As 1s well known bO(G) is the number of connected
components of G and bl(G) is the number of independent loops.
We also denote by x(G) the Euler characteristic of G, i.e.
x(G)= n(G) - N(G) = bO(G) - bl(G), and by m(G) the integer

n(G) - by(G) = N(G) - b,(G).

The leading Landau singularity AG is an analytic set in

1) See [5] as for definitionsand notations which we do not mention.
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the (p, i®x) space defined by the following Landau equations:

p, - &.(k) =0 (j=1,...,n),

j j -
K% - m2 =0 n.(x) = o, k (2=1,....N)

,Q' JZ/ L] 2, Q, /Ql 9 sy .

It can be expressed by a (multi-valued) holomorphic function

of homogeneous degree 1

H(x) =

myv/(ny (x))° (2)

e~

=1
as follows ([31, [6]).

=9

Ay = {(p:i=x) | py = 53
J

s H(x)}. (3)

This expression implies the following theorem.

Theorem 1. AG is a non empty, irreducible holonomic manifold.

We denote by L the projection of A to the p-space.

G G

LG is an ahalytic set contained.in the linear submanifold

n
PO = { z pj = 0} corresponding to the over-all energy-momentum
J=1

conservation. Usually, physicists say that there are no leading

singularities if the codimension of LG in PO is more than one

([3], [6]). But in micro-local analysis we consider that the
singularities of certain quantities lie not simply on QG but on

AG’ the conormal bundle of LG' Therefore we cannot say that there
are no leading singularities if only L

a is not a hypersurface in

. 1 1
i + and that
0" For example, the singularity structure of 0 0

P

1 . 1
x1+10 x2+10

on the conormal bundle of the origin but the latter does have.

of are different. The former has no singulatities

The following formula tells us how to calculate the codimension
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of LG. In what follows Vv denotes the dimension of space-time.
Theorem 2. (Dimension formula)
aimL, = _ min(-k+vm(G)) )
G=G,"7HG,

We explain the notation G. Let IO be the set of indices

of internal lines. To any partition Il‘-'"‘UIk of IO corresponds
the partition G = Glu"‘qu of G. Here Gi' is the subgraph
of G composed of the internal lines in Ii‘ m(@) means the
k
sum Z m(Gi). A partition will be called good if it attains the
i=1

minimum in the formula.
It is easy to rewrite the above formula to the codimension

formula. Here we consider codimension in P, not in P

0"
Theorem 2' (Codimension formula)
codimL, = vx(G) + max(k+vb.(G)), (5)
G el 1
G=G G
1 k
L - k
where Db, (G) = .Z by (Gy).
i=1
This expression is often convenient because COdlmLT(G),T= codlmLT(G)

holds for a contracted graph T(G) ([6]).

Our codimension formula also gives a necessary and sufficient
condition for LG to have codimension v+l in P (or equivalently
1l in PO), in which case wé call G  is primary. In other words,

a graph G' is primary if and only if it is connected and has only

the mobility of translation and similar enlargement.

Corollary 1. (Primary graph) G is primary if and only if

1+ vbl(G):;k+vbl(§) for any partition Q.

Since the union of two primary subgraphs with an internal



line in common is itself primary, there exists a unique partition
~
G =’G1U"'UGk composed of all the maximal primary subgraphs

of G. This maximal primary partition is a good partition.

e

max
In fact, take any good partition G = Giu"'uGﬁ. Each G} is
necessarily a primary graph, so that ] gives a partition of

Goax- Decause each G, is primary, we have ) dimLg

i=1 i

-k+vm(§max) < -h+vm(G) and, together with the inequality
dimL, = -h+vm(G) i.’k+vm(Gmax)’ we conclude that G___ 1is good.

When the partition (1 YNy is good, we call G is
ample. An ample graph has codimension 'N+vX(G) in P. 1In [3]
and [6] the first author and M. Kashiwara mentioned a necessary
‘and sufficient condition for the ampleness of G. But their

condition must be corrected as follows:

Corollary 2. (Ample graph) G is ample if and only if

N >k +‘vb1(a) for any partition q.

Wé give the proof of the formula in section 2. Here are some
examples. | |

Example 1. (1 loop graph)([3]) codimLG = max(v+l, N).
G is primary if and only if v+1 > N, and is ample if and

v only if v + 1 < N.

Example 2. (2 loop graph)

+1, N_+1, N,+N +N3—v),

codimLG = max(v+l, Nl+1, N 1Y,

2 3

where N; is the number of internal lines composing each arm
(See Fig.l). G 1is primary if and only if v > Nl’ N2, N3, and

2v+1l > N1+N2+N3. G 1is ample if and only if N1+N2+N3 > 2v+l

and Ni+N,, N +Ng, No+N, >v +1.

3

-4 -
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Figure 1.
N,

Ny

Now we state some applications of the formula.
Theorem 3.

Let GO be a full subgraph of G and AT(G),T = AG/GO,T

be the Landau singularity obtained by contracting it ([6]). Then

AG/GO,T intersects AG regularly ([3]) and

idlmAG/GO,T(\AG = vn(G) - (codimLGO-vbo(Go)).
Proof.
Put H(x) = H'(x) + H'(x), H'(x) =  my,/ (n,,(x))°, where

R]'
the summatiqn is taken over all the internal lines of GO. In

a neighborhood of A TnAG H"(x) - is a homogeneous holomorphic
b .

G/GO b
function of homogeneous degree 1.

Consider the following transformation
i

pj > pj— 5;3, Xj —_ Xj'

Due to the homogeneity of H"(x), this is a well defined contact
transformation ([7] )and reduces the problem to the case where
G = GO and 7T(G) = pt. The theorem is then obvious.

Corollary 1. codim AG/GO,T/\AG in AG = 1 if and only if

GO is primary.
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Thus the holonomy diagram for a Feynman integral is completely
determined when G has no internal vertices.
Theorem L. Assume that G0 is a primary subgraph of G
and take the maximal primary subgraph Gl containing GO.

codimLG/G - codimLG = -1, 0, 1, 2,
0
Moreover we have
COdlmLG/GO = codlmLG—l if and only if Gy = Gl. (6)
codlmLG/GO = codlmLG if and only if Gl/GO is primary.
(7)
Proof. -

Let the maximal primary partition of G, G/GO and Gl/GO be

r~

—~~ ~
= [H] (W] = (W] ) =
G ox = Gq"...HG., (G/Gy), . = HH...UH  and (G)/G,) .
Kl‘-"...u Km, respecﬁively.

(W] UK ug U i i 1ti
Now that Kl cee Km G2 ce Gk gives a partition of G/GO,

. m k
- codimL, > vx(G/GO)+(k+m—l)+v;Z:bl(K.)+v:Z:bl(Gi)

codimL
G/Gg G j=1 J j=2
k
- (vx(G) + k + v ) bl(Gi)) (8)
i=1 N .
m
= (vx(Gl/GO)+m+vjzlbl(Kj)) - (vx(Gl)+1+vbl(Gl))

codimL - codimL
: Gl/GO Gl

> -1

b

where we have used x(G/GO) - x(@) = l—x(GO) = x(Gl/GO) - x(Gl).

-6 -



In particular we see that the equality holds only if GO = Gl'

Conversely assume GO = Gl. Considered as a subgraph of

G/Gl, each Gi (i=2,...,k) is still primary but may not be a

maximal one, SO we may suppose Hl""’Hh have the form
H, = GV...VYG, ,..., H = G, “ooMG, o (A+.. .41 =k-1) as
1 2 1 " h 1h_l+l 14 1 h
. . Es3 = W) Y v
subsets of internal lines. If we put HS Gl Gis—l+l . Gis
= u = u v u :
(s=1,...,h), we have Hs/Gl Hs,and Gl Gi +1 .-G gives
s-1 s
the maximal primary, hence a good partition of ES. Since
codimLg 2> v+2, codlmLH = v+l, and codlmLH /6. " codimLﬁ > -1
s : S s” 71 s
by (8), codimLy must be v+2 and we have
s
0 =1+ codimLH - codimLﬁ
s s
= 1+(vx(Hs)+1+vbl(HS)) - (vx(HS)+(1S+1)+vb1(Gl)+vbl(GiS_l+l)+...
+vb, (G, )
s
= (14vby (H))=(1+vb (Gy  ,9))=...=(1+vD (G; ).
s-1 S
Therefore,
h k
codimL, /o —codlmLG=vx(G/Gl)+h+v Z bl(Hs)—(vx(G)+k+v z bl(Gi))
1 s=1 i=1
= v(x(G/Gy) - x(G) = by(G)) = 1
+Z{(l+vbl(HS))—(l+\)bl(Gi' p1))= - =(14p (6 N
s=1 s
= _1’ (9)
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because bO(Gl) = 1. This proves (6).
From (6) and (8) follows the "only if" part of (7). Let us prove

the "if" part. Assume G./G is primary. We may suppose H., =
1’70

1
G, /¢, avV...Ye, , H, = aV...Ve, ,..., H = G, V.. .Va,
1770 2 i, 2 2 i, h 1h_l+l i
. s = . . T _alUp U U
(11+...+1h k). Actually iy 1, because setting Hl Gy G2 ces Gil,
we have Hl/GO = Hl and COdlmLﬁi/GO— codlmLﬁl > 0 so that
codimLﬁ =v+1. FIn the same way as in (9), we get
1
h
codlml’_;G/G - codimL, = Z (codimLy ~codimL, o v\ )=0,
0 s=2 s 0 i +1 i
, s-1 s
and the proof is now complete.
Example 3. .(Holonomy diagram for 2 loop graph)
For the sake of simplicity we assume v=2 and N1=N2-= N3 = 3.

Each arrow G -+ G' indicates the fact that the latter is obtained
by contracting a primary subgroph of the former.

Here we have

codimbg

Figure 2. ' | )
. 1—~ :
e ;
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used a reduced expression. Each figure represents several
Landau singularities corresponding to different contractions.
for Example,(jil represents 9 Landau singularities,corresponding

to contractions of 9 different internal lines of

§2. Mobility of a graph and a mini-max theorem.

Fix a value of x = (Xl,.;.,xn). X determines a realization
of G in v-dimensional space. We consider the mobility of this
realization x to another x' not changing the direction of
the internal lines. Obviously there is the mobility of v-dimensional
translation, and if G does not reduces to one point there is
the mobility of 1 dimensional similar énlargement. In general,
more mobility exists. For example the mobility of n-point simple
loop is max(v+l, n) if the realization in v dimensional space

is generic.

Proposition 1.

codimLG = the mobility of a generic realization of G in v

dimensional space.

Proof. Because AG is wvn -~dimensional, the codimension

of LG in vn - dimensional p-space is equal to the maximal

dimension of a fiber (Tr|A )—l(p) = {(p;iwx)éfAG}. In other
G
words it is equal to the dimension of a generic fiber. As 1is

G
for codimLG is equal to the dimension of a generic fiber of the

shown in (3) A is locally bi-holomorphic to x sSpace, there-

mapping x +— p=grad# H(x). Note that if we choose a
generic x the corresponding p 18 also generic. Therefore

choosing a generic X we have
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codimLG = corank Hess H(x).

Corank of Hessian is equal to the degeneracy of the corre-

N

sponding quadratic form with respect to vy

2
22H(x) (), (u)
L SRORSR TR I

Qlx,y) =

where the summation is taken over 1 < j, j' <n and 1 ;‘u,

ur < v, A little caluculation shows that

N m :
Qlx,y) = ] = 3 {ng(x)znz(y)2 -<n, (x),n,(y)> 2y,
=1 2
: n, (x) :

We can calculate thé degeneracy of Q(x,y) considefing it in a
positive definite Euciidean vector space. On account of the
Schwarz' inequality it is equal to dim {ylng(x)//ng(y)}, that is,
the dimehsion of the mobility of G when it is realized in a
generic position.

Remark 1. The above proposition implies that if we fix the

2

momenta kés are uniquely determined ([1]).

We can calculate the mobility of the graph in a generic

masses m!s and the external momenta pjs, then the internal

position wusing a mini-max theorem in linear algebra.
We denote by C(respectively by D) the incident matrix
(Lj:21) (j=1,...,n, and 2=1,...,N) (respectively the circuit

matrix ([Ci:lj) (i=1,...,b and #£=1,...,N)) of & ([6]). By

13
the definition nz(x) = (tC<8 Iv-x)l where Iv is v x v identity
matrix. Note that a set of v-vectors h2 (2 =1,...,N) can be
, N
written as h, = n,(x) for some x if and only if ) d, ® h, = 0,
% % e 2

where dis are column vectors of D.

- 10 -
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We have for a generic X

dim {y | ng(x) // ng(y)}

Ky

= dim {y | (*c ® I,)y =|. | for some ky, = B,* n,(x)}

N
] d, ®B,n, (x) = 0}

dim kernel °C ® I, + dim {8 |
1

2

vbO(G)-Fn-max rank (dl ® hl""’ dyg ® hN) A
where we take the maximum over hl,...,'hN (v -vectors) such that
d; ® hot...+dy ® hy = 0.

We can state generally the following mini-max theorem.

Theorem 5. (Mini-max theorem)

Let V be a finite dimensional vector spade over a field K.

For subspaces V.,...,V,,, we have
max dim (le+...+KxN) = . ~?13 u§N—k+dlmVIO'I£q"'nvio'lk)
01 "t Tk
€
X Vl,...,XNEVN
Xl+"'+XN=O
where Ilu...ULA is a partition of the set I, = {1,...,N} and
VI means the sum ) V..
. & i
iel
Proof of theorem 2.
4 vbl v
We take € as V and {d, @y | yec’} as V,. Then we

have

codimLy, = Vb, (G)+N(G)-min (N(G)-k+dim VIO_Iln..J\VIO_Ik)

- 11 -
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= vx(G) + max (vbl(G) t k- dimVy 0.0V ;).
0 71 0 "k

To prove dim VIO;Ifw...nVIO_Ik = v(bl(G) - bl(E)) we can assume

v = 1 without loss of generality. The circuit matrix can be
modified so that it has the form of Fig. 3, where blocks not
shaded are zero matrices. It clarifies the identity

N.ooNVp _p = by(6) - b (B).

dimv
To-11 0~ Tk

Pig. 3

b(G)
| //47
hG) 77

y

WG| | v

~ Proof of the mini-max theorem. For notational convenience
I I, S T ’ 7 -
. 1,.. k
we write VvV T*°°°? =V N---0Ve -,
Io-1 I Iy

if I I

130 dy

are subsets of IO.

i) Proof of the inequality <. Choose xiéiVi (iGIIO). For any

partition IO = IlLJ...LJIk there is a canonical injection

(KX1+...+KXN+VIl""’Ik ) /vl T . _—

(Kx1+...+K§$VIl)/V11 ®...0 (le+...+KxN+VIk) / vik,

- 12 -
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-which yields the inequality

dim(Kx.+...+Kx +VEils..-Tk)

dim(Kx +.. . +Kxg) < 1 N
X ‘ Iy Is I Iy
< ) dim(Kx+.. . +Kx+V Jy/vid o+ aimvL - .5 Tk,
J=1
Let us assume that X X; = 0. Rewriting this equality in the
i€I
form 0
) ox, =- ) X, (3=1,...,k),
i L2 i
i€T, €T -T.
J =07

we have inequalities dim(le+...+KxN+VI~j)/VIJ < #(Ij)—l, which
together with the above inequality yield the desired one.
ii)  Proof of the enequality ;; . We shall make use of an induction
on N. The case N=0,1 1is trivial.

Case 1. The minimum on the right hand side is attained by a
partition | Ilu"‘qu where 2 < k < N-1.

We claim that for generic xieVi such that xl+...+xN = 0,

dim(Kx +. . . +Kx iy vl = #(I,) -1 (3=1,...,N). (10)

N

In fact, applying the induction hypothesis to the case of

vector spaces

1]

7= (v, viywthc v

I .
i v/Vd (1te),

we have a partition ijJ...UI Ij such that

k.
355

i€l.

atm( ] Kxg#VH)/E = #(I)) - kg earn@ I L5 Tk (11)
P

- 13 -
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T Lt u \J U U U = i :
holds. 17 Ijl e Ijkj .o Ik IO gives anocther

partition of IO. In our case
-(kj+k—l)+dimVIl:°"’Ijl"">ljkj>"'>lk > —ktdimyils TR (10)

holds. Note that the following diagram exists:

Vll,...,Ijl,...,Ijkj,...,Ik = VovAyu = VIl, s 1k
| non
vIilserliky = yyysvu = v,

Using the isomorphism theorem for vector spaces, we have

dimVIjl""’Ijkj - dimVIjl""’Ijkj/VIj
: ) o ' (13)

_ dimvll,...,Ijl,...,Ijkj,...,Ik . dimVIl""’Ik

(10) follows from (11), (12) and (13).
Now applying the induction hypothesis to the case of vector

spaces Vi 5...,V- C V, we have a partition J oo Hy =3
I, I, 1 2 0

of JO = {1,...,k} such that for generic yj € VI satisfying
. J

dim(Kyl+...+Kyk) = Kk - ,Q,+ dimVJl"“’J/Q,

holds. Denote by p this dimension. Noting that ( U - Ij)LL..
Jeg :

1
U(\J I,) = I, &lves another partition of TI,, we have in our
jes T T
case p > dimV Loerestk,

For generic xié Vi (i=1,...,k) such that Xyte..otx, = 0,

- 14 —
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;= 1 x, (J=1,...,k) are generic y.eV satisfying
o ieT, J 71

yl+...+y£ = 0. Therefore we can assume without loss of generality
that yl,...,y2 are linearly ihdependent, and also we can assume
that #(Ij)—l elements Qf {xi[ié.Ij} are linearly independent
modulo VIJ. Then we have the linear independence of s~k+p

elements {xili GIl},..., {xi]i€5Ip}, #(1 )-1 elements of

p+1

{Xi]iE-Ip+l},...,#(Ik)—l elements of {xi[i €Ik}, which yields

the inequality

Case 2. The minimum is attained only by the partition {1}U..
CH{Ny.

Applying the induction hypothésis to the case of vector
spaces V{1,2},V3""’VN’ we have a partition Jl,...,Jk of

{{1,2},3,...,8} so that for generic y12ev{1,2}’y36 V3""’yNe Vg
dim(ky,,+Ky+. .. +Ky, ) = N-l-k+dimv9ls---sJk
y12 3 o e yN »

holds. Considering Tiseees J as a partition of {1,2,...,N} ,

we have in our case 2,

N -1-5k+ qimyols---sJk s_1 + dimV{l}""’{N}_

Case 3. The minimum is attained by the trivial partition Io(k=

We are to prove that N-1 of xie'Vi satisfying X1+"'+XN =

are linearly independent. As in case 2 the induction hypothesis

applied to the case V{l 2} V3""’VN assures that
3

- 15 =

0

1).
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aim(Kx +...+Kxg) > N - 2.

1

We shall show that it leads to a contradiction asSuming that
there are only N-2 independent elements. We can choose Xié'Vi
so that X1+"'+XN = 0 and any N-2 of them are linearly
independent. Next we can take yie'Vi' so that y1+...+yN =0
and Iy is independent of the Xi's. In fact , because

{1}...,{N}

dimV 2 N-1 in our case 3, we can take y = y2+...+yNé

V{l}""’{N} which is independent of the Xi'S. Here we may

assume without loss of generality that Yy is independent of the

x;'s. Now that y can be written as y = zl+...+zN 1» we have

_Z1+(y2_z2) +...+ (yN_l—zN_l)’+ vy = 05

which is a desired expression.

We have Xy ; = agX +...%og oXp o whgre oy # 050y oy 5 # 0.

This follows from the fact that N-2 of xi's are linearly

independent. For A # O

(alxl+xyl)+...+(aN_2XN_2+AyN_2)+(—XN_1+AyN_l)+AyN = 0,
hence

N-2 > rank(alxl+xyl,...,aN_sz_2+AyN_2,AyN)

= rank((xlxl-i')\yl, . e ,OLN_ZXN_2+>\yN—2)yN)

v

rank(ulxl,...,aN_2XN_2,yN)

- 16 -
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= rank(xl,...,XN_2,yN),

which is a contradiction.
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