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Unknotted Surfaces in 4-space

Fujitsugu Hosokawa and Akio Kawauchi

{Zobe University and Usaka City University)

In this note we will discuss a concent of unknotted surfaces
in the euclidean 4-svace R and stuly elementary tovnics related to
it., Spnaces and maps will be considered from a piecewise-linear point

of view. #e will denote by Rj[toj the hyperplane whose fourth
N . 4

coordinate 1t is t, in i, and for a suvset A of RBLOJ,

A¥Xl2 =t = b] means the subset {(x,t)€2{4i (x,0)&€ A, a< t< b}

o

f

N o . - . 4 . . -
of =X The conTigurations of surfaces in K will be described by

adopting the motion picture method. (cf. R.H.Fox[1l], F.Hosokawal4 ]

a

or A.Kawauchi—?.dhibuya[éj.)

1. A Concevnt of Unknotted Surfaces

Consider a closed, connected and orineted surface Fn of

enus n (n > 0) in 34. #e will assume that FY1 is locally flat

in . It is reasonable to note the following known basic fact

before stating our definition of unknotted surfaces: The surface

¥ alwavs bounds a comvwact, connected orientable Bemanifold in K




[For example, to see this, consider the regular neighborhood 1
. 4 . . - . . .
s/ F in R'. Since F is loecally Tlat, we have N(F )= F XD
(a8 n n “ n n
2 . . aL omar/ T 5 2 . -7 .
for a 2-cell D", The projection f: QN(En>(=Eﬁan ) — a0 is
A ~
N - . -4 T e o
easily extendable to a niecewise-linear map f:cl(ﬁ%-N{}n)) — D

by an elementary obstruction theorv. Then the transverse-regularity

argument assures us to find a compact, connected orientable 3-manifold

4 . . : 2 s
f in cl(R'- N(Fn)) with QM = anx for some x€ D7, This M may
. ] - — - . R N - v
pe extended to a manifold M with Q¥ = F_ in R’ . See HeGluck[2]

n
or A.Kawauchi-T.Shibuyal 6,Chapter II] for other more constructiv

proofs.] We will define an unknotted surface as the boundary of a
. . 4 .
solid torus in R . Precisely,
P . . . A L s
1.1.Definition. Fn is said to be unknotted in K, if there
. . - . 4 .
exists a solid torus Tn of genus n in R whose boundary 37T
is Fn. If such a Tn does not exist, then Fr is said to be knotted

I i

in R7.

In the case of 2-gspheres(i.e., surfaces of genera 0), Definitio
. s . . 4 R
1 is the usual definition of unknotted 2-spheres in R~ and it is
) ‘ . L U & R
well-known that any unknotted 2-sphere is ambient isotopic ) to the

boundary of a 3-cell in the hyperplane RB[OJ.

1) An ambient isotopy of a space X is a family g\ht} (0=~ £ =1) of

auto-homeomorphisms of X with identity map h.. For two subspaces
! B, i O s

Xl and in a space X, xl is ambient isotopic to AP’ if there

X
2
exists an ambient isotopy 'ght} of X with hW(Kl): L. An auto-

homeomorphism f of X dis anmbient isotopic to the identity, if there

4

exists an ambient isotopy §ht} of ¥ with hy =%,

~
- L -
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The following theoren seems to justify Definition 1 for

arbitrary unknotted surfaces.

1.2.Theorem.‘Fn is unknotted if and only if Fq is ambient

isotopic to the boundarv of a regular neighborhood of an n-leafed

rose L_ in RBEOJ.
N o}

A O-leafed rose Lj in R’ is understood as a point in RS.
For n>1 an n-leafed rose Ln in R3 is the union Uiiiaﬁa of
the boundaries 3£ki of 2-simplices Zli in R’ whose intersection
ﬂigl[li is one vertex of each 431 and such that for each k,j, k¥ # 7,
- _ . n y .I;‘ - . >
Zlk”lkj = ”i:lﬁhif In Fig. 1 Dbelow, we illustrated Ln for the case

n = 6,

Fig. 1

1.3.Example. The surface of genus 1 in Fig. 2 is unknotted,

since it bounds a solid torus of genus 1 that is shown in Fig.3.
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Theorem 1.2 shows that this surface is ambient isotopic to the

surface described in Fig. 4.

T—

1.4. Proof of Theorem 1.2. It suffices to prove Theorem 1.2 for

the case n > 1. Assume F  1is unknotted. By definition, F, bounds

-4 -



a solid torus Tn of genus n. Let a gvsten .{Bl,.,.,Bn} be mutually
disjoint n  %-cells in T _, obtained by thickenning a system of
meridis . disks oF Tn’ such that & = cl(Tn— BlU...Ubn) is a 3-cell,
2 is amitient isotonic to a 3-cell in RBEDJ; g0 we assume that E

Z .
is contained in R7[0j. Let L. be a one-point-union of n l-spheres

i

at v in Int(Tr) which is a svine of Tp, i.e., to which Tn

collanpses., Choose a sufficiently small , comvnact and connected

neighborhood U(v) of v in L so that U(v) contains no

B @Y

vertices of Ln except for v. We may consider that U(v) = LqH B

L

and BX{-1 < t < L5, ~U(v)) = $. It is not hard to see that L,

is ambient isotopic to an n-leafed rose in &”_ U] by an ambient
. L4 . . o e 9
isotopy of R keeping BX[-1 < t < 1] fixed. So, we regard Ln

2 ‘
s an n-leafed rose in Kk7[0]. Let Rg = 01(14—BX[—1 <1t <1]) and

Y
n

cl(Lq—U(v)):ﬂlU...Uﬁh, where Jli are connected comvonents. Hote

that cl(T -B)= 31

Il “

U...UBn. Now we shall show that there exist

utually disjoint regular neighborhoods Hi of 2& in Ré that meet

: . L4 . -
the boundary Bno regularly and such that the pairs (5ic Hi) are
L] » T ~ h) g 4 "4
proper, i.e., aBiz ( ni)ﬂﬁi. To show this, triangulate Ky SO that
S0 m SR ) o s
uqb...bBr is a subcomplex of K, and so that xlU...Uﬂn is a
L 1

subcomolex of BlU...UB . Let X and H' Dbe the barycentric second

4

derived neighborhoods of—@wU...Uﬁh in B U...UBn and in RO,

1 1
resvectively. It is easily seen that the nair (X<CH') is proper.
Since cl(ElU...UBn—X) is homeomorphic to cl(Fn—aB)X[O,lJ,

¥

BoU,..UB is ambient isotopic to X by an ambient isotopy of Rg.

e ambient isotopy, the desired pair ,(BlU...UBnC HlU...UHn)



19
Next, by using the uniqueness theorem of regular neighbtorhoods, we
nay assume that H, = N ,R2X[-1 =t <1], i =1,2,...,n, where
Rg= c1(R°[0]-B) ~and N(Qﬁ,ﬁg) is a regular neighborhood of 'Bi in
Rg meeting the boundary aRg regularly. More precisely, we can
assume that RGIN(L.,R)) = (3Bl B,

Now we need the following lemma:
o

. d e o2
1.5.lemma, Let a l-sphere S be contzined in a Z2-sphere D?

S
and consider a vprover surface Y in 8°%X[0,1], (abstructly)

T . . . i1
nomeomorphic to SX[0,1]. If YisX0 = 5'X0 and Y81 = s'x1,

then Y is ambient isotonic to SIX[O,l] by an ambient isotopv of

s%[0,1] keeving S°X0U 8X1  fixed.

By using Lemma 1.5, cl(aBi—aB) is‘ambient isotopic to
cl(bN(ii;Rg)—aB) by an ambient isotopy of cl(aHi—BBXL—l <t <1])
keeping the boundary fixed. Hence by using a collar neighborhood of
c1(3H,-3Bx[-1 =t <1]) in &}

o
of Rg keeping gﬂg fixed. This implies that F = is amblent

we obtain that by an ambilent isotopy

isotopic to the boundary of a regular neighborhood of L_ in K7_LU].
Since the converse is obvious, the oroof is completed.

1

.

~ 2 Y - . ~ -~
1.6. Proof of Lemma 1.5. Let D € S° be a 2-cell with 3D= 3

The 2-sphere YUDXOUDX1 ©bounds the 3-cell C in SQX{O,lj, since
SQX[O,lJCS3. Let vne&€Int(D) and choose a proper simple arc o« in

C to which C <collapses and such that dHS%XO: px0  and xﬂﬁ?xl = pkl.
Since there is an ambient isotopy of ng[o,lj keeping SR OUSRL

fixed and carrying & to px(U,1], it follows from the unigueness

-6 -
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theorem of regular neightorhoods that C 1is ambient isotonic to
N . . P o . 20 i
DX[0,1] by an ambient isotopy of 95°%K[0,1] keeping B5'X0OU SX1

fixed. This vnroves Lemma 1.5.

As one consequence of Theorem 1.2, we have the following

corollary:

. 4
1.7. Corollaryv. For snv unknotted surface Fn in R, the

. . . . . . , 4
vounding solid torus Tn is unigue uv to ambient isotopies of R .

Proof., Let Tn be a solid torus in R4 with aTn = Fn. It
sufficies to construct an ambient isotopy .{ht} of X* such that
hl(T ) is a regular neighborhood of an n-leafed rose in r°[0]. By
Theorem 1.2, we can assume that Fn is the boundary of a regular
neighborhood of an n-leafed rose in RB[OJ. Let N(Fn) be a
sufficiently thin regular neighborhood of Fn in Rj[OJ. Then we
may consider that the union of T  and one component C(Fn) of
N(Fn)— Fn is a solid torus Tﬁ. Since C(Fn) is homeomorphic to

+3

FnX(O,lj, T) 1is ambient isotopic to . Let 17 be a regular

n

neighborhood of an n-leafed rose in C(Fn) such that cl(Té-T;) is

homeomorphic to FnX[O,l]. Since T! 1is ambient isotopic to o

we complete the vproof.

1.8. Note. It should be noted that for n > 1 the bounding

)

solid torus Tn is not unique up to ambient isotopies of R
keeping Fn cetwise fixed. Consider, for example, an unknotted
surface Fl of genus 1 as in Fig.5.

-7 -



t=-3 t=-2 t=-1 to vl =2
Fig. 5

This surface Fl bounds two kinds of solid tori Tl, Ti as shown

in Fig. 6.

Ly ay—

-] — 7
_ Z =5
-t - 7 =
T g § 4 L_Tf? =
t=-3 t=2 t=0 =1
Fig. 6
Since the meridian curve of Tl relating critical bands of Fl is
not a meridian curve of Ti, Tl is not ambient isotovnic to Ti by

an ambient isotopny of R4 keeping - Fl setwise fixed,

. . L4 .
1.9. Note. Let Fn be unknotted in R, Consider the homeoctony

-8 -



P! ) i , .
group MH{(R ,Fn) of auto-homeomorvhisms of the pair (h ,Fn) modulo

the homeomorphisms ambient isotopic to the identity. By Theorem 1.2,
the homeotopy group )(ln Fo ) is isomorphic to a homeotopy group
3(134,2ﬂn), where ‘aTn is the boundary of a regular neighborhood
T  of an n-leafed rose in RB[OJ. 5o, we assume F _=3T . Note 1.8

.
?

. ~or ot . .
asserts that the group M(R',F_ ) is non-trivial. Let a1s..08y
.

n
) 3 .
be the standard meridian and longitude curves of TnC:ﬁ’[OJ.

The homeotopy group ){ﬂ ,E contains the elements represented by

the following auto-homeomorphisms; h(i and h<3) such that

Lreeeiin)

h,. = q.
(1 ...,J.n,(a iy

h(l seeendy )(b ) = b' ’

!
o

where (il,...,i ) is a nermutatlon on {l,...,n} defined by

. . 1i...
(11,...,1n)= ( n ), and

o~
—
Tt
~—
—
v
~
i

bj h(j)(ak) = a,

h(j)(b_]) = a. W) = L x4,

J k k

. . . . . 4 . .
since Tn is contained in a 3-sphere in R'. ( Discussions on the

orientation are now omitted.) Details of the homeotopny group
-4 o . - . v 4
H(x ,F ) remain as an oven problem. For example, is H(R F )

isomorphic to the homeotovy group }C(Fn) of the surface F_ 7

2. Hyperboloidal Transformations

Let F be a ( possibly non-connected ) closed and oriented

-9 -
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. 4 .
gurface 1in R'. An oriented 3-cell B in R is said to span F

o

as 2 l-handle, if BN F = (3B)IIF and this intersection is the union
of disjoint two 2-cells, and if the surface c1[FUB - (JE)IIF] can
have an orientation compatible with both the orientations of

- (@B)ii: ( induced from ¥ ) and 2B- (IB)IIF ( induced from B ).

plso, an oriented 3-cell B in 34 ~spans F as a 2-handle, if

BF = (9B)IF and this intersection is homeomorphic 1o the annulus

s%K[O,lJ, and if the surface cl{FU2B-(9B)ilF] can have an orientation

compatible with both the orientations of F-(3B)IF and 2B-(3B)IIE.

2.1. Definition. If Bl""’Bm are mutually disjoint oriented
3-cells in R4 which span F as l-handles, then the resulting

. lﬁT | o i ' ATy ] 1N\ 4

oriented surface h (r;ﬁl,...,Bm) = cl[rUaBlU...UaBm ~Fil aJlU..bBbm)J

with orientation induced from T - FH(BlU...UBm) is called the

surface obtained from..F by the hvperboloidal transformations zlong

1-handles Bl""’Bm' Likewise, if B “’Bm span F as 2-handles,

1’

the resulting oriented surface hg(F;B B :cl{?UBBwu.,.UaBm -

o)

l’c.o,
FH(QBlU...UaBm)J ig called the surface obtained from F by the

hyperboloidal transformations along Z-handles B‘,...,B,.
. 1 4]

We may have the following:

2.2. For arbitrary integers m and n with 1 <m<mn, if

Fn is unknotted in Rq, then there exist mutually disjoint =m 3-gells

B,...,B in R% wuhich svan F, as 2-handles and cuch that

2 - oL
h (Fn;ﬁl,...,Bm) is an unknotted surface of genus n-m.

- 10 -
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We shall show the following theorem which was partially
suggested to the authors by T.Yajima:

2.%. Theorem. For arbitrarv integers m and n with I<ms n,

Fn is unknotted in R’7, then one can find mufually disjoint m

1"“’Bm in R4 which span Fn as 2-handles and such

n;Bl,...,Bm) ;s a _knotted surface of genus n-m. Further,

3-cells B

that he(F

. 4 . . .
every knotted surface in R is ambient isotovpic to a surface
2(

h Fn;Bl,...,Bm) with an unknotted surface Fn and spanning

2-~handles B ..»B for some m and n (m<n ).

1
The proof will be given later.

Combined 2.2 with Theorem 2.3, we conclude that the knot type

of the surface h2(Fn;B "Bm) in r* depends on the choice of

l,ao
Bl”"’Bm’ even if Fn is unknotted. (In case Fn is knotted , the

assertion has already known by T.Yajimal[7].)
OUn the other hand, concerning l—handles; we shall obtain the

following:

2.4, Theorem, Given an unknotted surface Fn and mutually

disjoint m 3-cells Bl,...,Bm in R4 which span Fn as  l-handles,

then the resulting surface hl(Fn;Bl,...,Bm) of genus n+m is

necessarily unknotted.

2.5. Note, In case Fn is a knotted surface, then the knot

type of the surface hl(Fn;B .,Bm) depends on the choice of

l’>..
Bl,...,Bm. For example, let us consider the 2-sphere 8§ illustrated

in Fig. 7.

- 11 -



Aanntds:
==3 t=-2 t=-1 t=0 =1
Fig. 7

This 2-sphere S

T R4—S) has a presentation

2

l( (a,b: aba=bab)

polynomial is t
as the spun 2-knot of a trefoil.] Let B, B'

span S as l-handles, as shown in Fig.8.

is certainly knotted, since

“~t+1.[In fact, this 2-sphere

t=3

the fundamental

groun

whose Alexander
has the same knot type

be two 3-cells that

B
/ Z/B'
I' 4 Wz/f 77 . CITEL
7/ /i e
2| =] =P 2P
@ < =7 |G= ) H=”
t=-1 t=-05 €£=0 t+=0"5 =1
Fig. 8
The surfaces Fl= hl(S;B) and Fi = hl S;B') of genera 1 related
t0 the 3-cells B and B' are illustrated in Fig. 9.

- 12 -
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7 .
s ) ‘L E
A :

V//, [:) /// |
L) i ,
@;m Q=] &= ]
t=-2 t=-1 =0 t=1 t=2
L1
/LA
Sy
=) |a=)| | &P
T=-2 t=-1 £=0 tT=1 t=2
Fig. 9

It is easily seen that the fundamental group ;ﬂl(R4—Fl) is an
infinite cyclic group [ In 2.7 we shall show that this P, is
actually unknotted.] and the fundamental group 'Ki(R4~Fi) is
isomorphic to the fundamental group WTl(R4—S) that is non-abelian.
Hence the knot types of Fl and Fi are distinct.

2.6. Proof of Theoremb2.4. We shall show the existence of g

. . - A o -
solid torus T  of genus n in R with 2T =TF  and Int(¢ﬂ)LBi_¢,
i=1,2,..,m, Then the desired result follows , since ’i‘nUElU..UBrn
i o = 3 o ~ l'ﬁ‘ . — m i |
is a s0lid torus of genus n+m and since h (‘n’Bl""Bm)_zanUBlb'

.UBT). Choose for each i, i =1,2,..,m, a simple proper arc di in

- . , . . .
B; so that the union FnUdlU...Udm is a spine of the union

- 13 -
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FnUBlU...UBm. Since Fn is unknotted, we may consider En as the

curface of genus n illustrated in Fig. 10.

Fig. 10
By sliding Bl,...,Bm along Fn and by deforming Bl,...,Bm
themselves, we can assume that “1"-"an are attached to the circle
2 .
in the level t = 0,i.e., FnHR)[OJ in well order and that for each i
the two attaching points of <¥i to FnHRE[OJ have compact and

. ; + - . s cma
connected neighborhoods n, and n; in (Xi which are contained in

the level +t= 0. For m = 3 we illustrated the situation in Fig.11.




For each i, let Sj_ be the part of FnHRJEOJ divided by ‘xi as
in Fig. 12. (For m =1 1let 61_ be any one of the two components of

N O - s g 5 . +,. -~
P iR LO] divided by dl.) Further, for each i, let o = cl(qi—nibni),
Now we join , for each i, the end points of c{i with a simple arc

. . -+ - . .
Ba such that the looyp BiUniUniU21 bounds a non-singular disk D,

1
in R°[0] with Int (D )I(F U U...0d ) = @, as in Fig. 12.

Fig. 12
The simple closed curve 'KiUdi is in general not homologous to O in
R4 - F . However, by twisting Y} along the circle FnHRB[O] ( See

for example Fig. 13.), we can assume that the simple closed curve

. gt 4
]&Uai is homologous to O in R = Fn.
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Since Fn is unknotted, we have the Hurewicz isomornhism 'Kl\ﬁ -F )
¢5H1(R4—FH;Z). Hence }ﬁﬁidé_ is null-homotopic in Rt F . By
general position and by slight modifications, jiUdi, i=1,2,..,m,
bound mutually disjoint non-singular disks di in R4— F
FnUa&U...Lu% is ambient isotopic to J(n Un JU.. (n UY‘Hn ).

Hence FnUdiU"'qu is ambient isotoplc to the standard surface of

genus n with .m attaching curves, as in Fig. 14.

Fig. 14

Now by using the unigueness theorem of regular neighborhoods, one
. . . . s . -
can easily find a solid torus Tn of genus n in & w1th.'aTn= br

and Int(T )ilB, = $, i =1,2,...,m. This completes the vroof.

2.7. Proof of Theorem 2.3, We shall show that , for an

unknotted surface Fl of genus 1, there exists g 3-cell Bl in

R4 which spans Fl as a 2-handle and such that h2(Fl;Bl) is =

knotted 2-sphere., Then it is easy to find mutually disjoint 3-cells

B ,Bm which span an unknotted surface Fn as 2-handles znd such

ly...
- 16 -
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2 - . LA o
that h“(Bn;B «..,B_) is a knotted surface of genus n-m for

i m
arbitrary given m < n. we consider the surface Fl in Fig.-9. This
surface is actually unknotted. In fact, let B be the 3-cell which

™

spans F; as a 2-handle, illustrated in Fig. 15.

77

L
e’ |

t=05% =1

A
&
“@@J[‘

+
i
O

? t=-1 +=~05

Pig. 15

The resulting 2-svhere Soz h2(Fl;§) is clearly unknotted. Then
Theorem 2.4 shows that the surface Fq= hl(SO;E) is unknotted.
Consider the 3-cell B in Fig. 8 that spans Fl as a 2-handle, The
resulting 2-sphere hZ(Fl;B) is knotted, because hz(Fl;B) is 8 in
Fig, 7.

Secondly, we shall show that any knotted surface F in R4v is
ambient isotovnic to .a surface h2(Fn;Bl,...,Bm) with an unknotted
surface Fn and. spanning 2-handles Bl""’Bm for some m and n

: . = . . 4 .
(m < n). Consider a compact, connected 3-manifold M in R’ with

oM =

d

*, It is not difficult to find mutually disjoint 3-cells B.,..,B

1
in M which span F as l-handles and such that T:cl(M-BlU...UBm) is

m

a so0lid torus.[In fact, take a 2-complex K that is a spine of M

- 17 -
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be the l-skelton of K. Take the regular neighborhood
re NEY 1) o k(1) in M. We may comsider that cl(X-T')
consists of m 2-cells 151,132,...,[§m for some m. For each i,
let B be a 3-cell thickenning Aﬁ. in c¢l1(M-T'). The union FH'=
T‘UBiU...UBé is a regular neighborhood of K in . Using the
unigueness theorem of regular neighborhoods, we obtain that M' is
homeomorphic¢ to M. Divide M into a solid torus T and 3-cells

Bl""'Bm corresponding to T' and BS,...,B!, respectively,

1]
m
utilizing this homeomorphism. The result follows.] Let Fp: o5,

where n 1is the genus of T. By definition, Fn is unknotted. EFrom

. 2 - .
construction, we have F = h (Fn;bl,...,Bm). This completes the vproof.

A basic unsolved problem still remains that asks whether, given
a knotted surface Fn of genus n, n=> 1, one can always find
4

which spans F as

mutually disjoint n 3-cells Bl,...,B in R 0

n

2-handles and such that h?(Fn;Bl""’Bn) is a 2-sphere. (The
resulting 2-sphere will be necessarily knotted by Theorem 2.4.)

The following shows that there is a knotted surface Ffrom which
one can never produce a 2-sphere by the hyperbolic transformation
along 2-handle without changing the fundamental groups:

2.8.Theorem. There exists a knotted surface F

! ks
=
Hj
o)
*3

n

each n > 1) such that

0 0

(1) One can find mutually disjoint n 3-cells By,euasB)

2(

with h

Fn;Bi,...,Bg) a 2-sphere,

" . . . 4 200 oy e
(2)'Wi(R -Fn) is not isomorphic to “ﬂi(R -h (Fn’Bl"“’Bp)) foy

any mutually disjoint n 3-cells Bl,...,Bn with hz(Fn;B B ) a

2-sphere.
- 18 -



Proof., It suffices to prove for the case n = 1. wWe shall show

that the surface of genus 1 described in PFig. 16 is such a

surface,

7) (R[5 [ER T 17
< SlE |7
% Pt CCL?\D =, %
/,' =7| f— zzz.| ; jj;
/ @;%i 5 % {f |
= Z
& ] ml__ FL? ml o
t=-3 t=-2 t=-1 1=0 t=1 t=2 +=3

Fig. 16
This surface certainly satisfies (1). To see that it also satisfies
(2), consider the fundamental group ¥ of the complement of this
surface in &7, T has a presentation (a,b] ab = baz, ba5=a5b).(8ee
for examole R.H.Fox[l]or T.Yajima(T] for a calculation.) Obviously,
Hlfﬁ;Z)Q:Z and, by sending b of this presentation to t, a
generator ot an infinite cyclic group, the abelianized commutator
subgroup '/ of T is isomorphic to Z[t]/(1-2t,5t-5) as

2[4t |]-modules, where (1-2t,5t-5) denotes the ideal over ARD

- 19 -~
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generated by the polynomizls 1-2t and 5t-5. Using the identity
is, consequently, isomorphic to

5 = 5(28-1)+2(5-5t), /7"
Zs[t]/(ﬁt—l) as 2[t]-modules. In particular, -f'/" 1is isomorphic

as abelian groups.

Z
5
same as a result of M.A.Gutidrrez[3] (, although our approach is

to
Now we need the following theorem that seems essentially the

.
e

be a finitelv presented group with
ig a finitely generated torsion:

2 .
in

o
o

gifferent from his.)
2.9.Theoren. Let G
Hl(G;Z) = 7 and such that G'/G"
group. If G is isomorphic to WTI(R4—S) for some 2-svhere
T +he first polynomial invariant
= al(t

-
-1\
/

1s

then for anv finite field
a(t) of (G'/G")ﬁ@ZF as PF[t]-modules is reciprocal: af(t)
a(t)

R,
up to units of Flt].(The first polvnomial invariant
.fr(t) for a cyclic
))

defined to be the product fl(t)fz(t)
gecomposition (G'/a")®,F X Flt]/ (£, (+)IBFLL]/(£,(£))é, Bt /(£ (8

F[t]-modules.)
Note that 2t-1 is the first polynomial invariant of

as
Since 2t-1 is not reciprocal in Zslt], it follows from 2.9

. o . 4
Tt is not the fundamental group of any Z2-sphere in R'. This
(2). This completes the proof.
3 is isomornhic 1o
‘4. Let

c1 (o7 =1())

enough to show
2.10. Proof of Theorem 2.9. By assumption,
S in a 4-sphere

S and M

S in

the group 1(1(84—8) for some 2-sphere
o]

be the regular neighborhood of
Note that 1 is homeomorphic to “SlXSZ. Consider the infinite cyclic

N(3)
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cover [ of [ associated with the Hurewicz epimorphism ‘“i(ﬁ)_f>
. . ~o : . . .

Hl(M;Z). Since H1(m;é):: G'/G" is a finitely generated torsion

group, it follows from A.Kawauchi[5,Theorem 2.3] that H*(M;Z) is

finitely generated as an abelian group and that there is a duality

ns A/ ~
)i HZ(M;Z) mHl(M,m@;z).
By the universal coefficient theorem, Hl(ﬁ;F) is canonically

isomorphic to the torsion product Tor[ﬂg(%;Z),FJ , for Hlﬁ%;z) = 0,
o

. . . - . ~ B . . .
Since the inclusion map ¥ € (M,3MM) induces an isomorphism

Loy Y . y . c s
Hl(M;a):z Hl\M,Bm;Z) as Zlt]-modules and hl(ﬁ;z) is a finitely

generated torsion group and F dis a finite field, we obtain the

composite isomorphism

2

ﬂ}&p): Hl(ﬁ}F):: Tor[H (T;2),F| =~ Tor[Hl(ﬁ,Qﬁ;Z),F]

= tor(#, (7;2),7] =~ H (7).

E

; - 2, .
The identity (tu)Q}L= 4 l(uuﬁ) for any 11&&1(@&Z), then, induces
. J

the following commutative square of isomorphisms:

Since Hl(m;F) and H. (M;F) are isomorphic as F[t]-modules, the

1 (
first polynomial invariant a(t) of Hl(ﬁ;F) must be reciprocal:

-1,
a(t) = a(t™"). This completes the proof.
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